
Augmented Learning Modes for Internet Routing

John McCaffery

School of Computer

Science

University of St Andrews

St Andrews, UK

Alan Miller

School of Computer

Science

University of St Andrews

St Andrews, UK

Iain Oliver

School of Computer

Science

University of St Andrews

St Andrews, UK

Colin Allison

School of Computer

Science

University of St Andrews

St Andrews, UK

Abstract— As the Internet continues to establish itself as a

utility, like power, transport or water, it becomes increasingly

important to provide an engaging educational experience

about its operation for students in related STEM disciplines

such as Computer Science and Electrical Engineering.

Routing is a core functionality of the global Internet. It can be

used as an example of where theory meets practice, where

algorithms meet protocols and where science meets

engineering. Routing protocols can be included in the

Computer Science curriculum in distributed systems,

computer networking, algorithms, data structures, and graph

theory. While there is a plethora of computer networking

textbooks, and copious information of varying quality about

the Internet spread across the Web, there is still an essential

need for exploratory learning facilities of the type that support

group work, experimentation and experiential learning. This

paper reports on work using open virtual worlds to provide a

multi-user interactive learning environment for Internet

routing which exemplifies the capabilities of emerging

immersive education technologies to augment conventional

practice. The functionality of the learning environment is

illustrated through examples and the underlying system which

was built to support the routing simulations is explained.

Keywords—Open Virtual Worlds, Internet Routing,

Computer Networking Education

I. INTRODUCTION

Internet routing algorithms and protocols are a type of

learning topic that can be used in multiple STEM education

contexts. By reference to the Internet they can be used as an

example of where theory meets practice, where algorithms

meet protocols and where science meets engineering. They

can be included in the curriculum in modules on distributed

systems, computer networking, algorithms and data

structures, and graph theory. They can be tailored to fit

almost any level in higher education from First year to

Masters. There are many good educational texts on

computer networking such as [1-3] which include sections

on Internet routing protocols illustrated by relatively simple

examples, obviously constrained by the nature of the

medium. Well-crafted online courses by networking experts

such as the “Introduction to Computer Networking” MOOC

[4] offer a media-rich, self-learn, free alternative to the

traditional text book through the use of videos, quizzes,

animations and forums. Although a welcome addition to the

networking education landscape, like most MOOCs it is

open to the criticism that it relies solely on a behaviorist

pedagogy where information is transferred from teacher to

student rather than stimulating critical, creative and original

thinking skills in the learner [5].

With respect to textbooks and online courses there

remains a strong need for complementary learning resources

that support interaction and experimentation in order to allow

for knowledge formation in addition to information

assimilation.

Creating

Evaluating

Analysing

Applying

Understanding

Remembering

Figure 1: Anderson’s Revision of Bloom’s Levels of Cognitive
Learning

In terms of Anderson’s revision [6] of Blooms taxonomy
of educational objectives (see Fig. 1) there is a need to
support the higher levels of learning achievement - Apply,
Analyse, Evaluate, Create - as well as Remember,
Understand - and to avoid going down either a solely
theoretical or solely practical path. A version of the
taxonomy adapted for Computer Science [7] by Fuller
identifies the semi-independence of interpreting and
producing with respect to computer programming. If this
distinction is carried over to computer networks we note that
there is often little opportunity in the crowded curriculum to
produce and the emphasis is heavily on interpreting; hence
our motivation for augmenting conventional instructional
materials with exploratory learning environments.

The paper proceeds as follows: section 2 gives an
overview of open virtual worlds (OVW) and their use in
education; section 3 describes routing algorithms used
widely in the Internet and typically included in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/30318931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

curriculum; section 4 shows how OVW can be used to
augment learning about the Internet’s routing protocols;
sections 5 and 6 explain how the system was designed and
implemented, and how users interact with it; section 7
concludes.

II. OPEN VIRTUAL WORLDS

Virtual Worlds are a novel type of Internet application

where users interact with an immersive 3D environment and

with each other through avatars. Part of the motivation for

using Virtual Worlds is that students readily engage with

them, often more so than with conventional learning

materials and contexts [8, 9]. Virtual Worlds for learning

have been created to support topics including WiFi

experimentation [10], electro-magnetic theory [11],

programming algorithms [9, 12], HCI [13], archaeology [14],

space science [15], cultural heritage [16], humanitarian aid

[17] and linguistic and cultural competence for American

forces [18].

Second Life [19] was pioneering in its global reach but it

was not designed for education and several commentators

have highlighted problem areas that arise when using it for

that purpose [20, 21]. These include: commercial cost, code

size restrictions, lack of an integrated development

environment, difficulty of coursework marking due to the

ownership and permissions system, poor quality of

experience due to remote servers, firewall blocking by

campus computing services, a lack of facilities for copying

and sharing content and backing up work outside of the

virtual world. Other issues arise – those of ethics, trust,

privacy – and the technological barriers to running a class

exercise with software which does not scale. In recent years

OpenSim [22] has increasingly displaced Second Life (SL)

as the platform of choice for developing immersive learning

environments. OpenSim is an open source project which

uses the same protocols as Second Life so is compatible

with any SL compatible viewer/client including the SL

viewer itself, Hippo [23], Meerkat [24] and Phoenix [25].

This software compatibility has resulted in OpenSim

becoming a de facto standard for Virtual Worlds; as it is

freely available we use the term Open Virtual Worlds

(OVW).

While OpenSim offers solutions to many of the significant

drawbacks encountered with Second Life there are still

features (or the lack thereof) inherited from Second Life

which act as barriers to exploiting the potential of Virtual

Worlds in educational settings - programmability in

particular - and section 4 shows how this constraint has been

overcome in order to create a sophisticated interactive

routing simulation environment.

III. INTERNET ROUTING ALGORITHMS

The Internet is organised into Autonomous Systems

(AS). There are two general types of routing protocol:

exterior, which guide traffic between AS – notably the

Border Gateway Protocol BGP [26] - and interior, which

manage traffic within a single AS. For example the UK’s

Joint Academic Network, ja.net, is a single AS. In addition,

AS can be organised further into areas e.g. ja.net is

organised into Metropolitan Area Networks, Regional

Networks, Campus Networks, etc.

The two most common types of interior routing protocols in

use are Distance Vector (DV) and Link State. RIP (Routing

Information Protocol) is a widely deployed DV protocol

which was documented originally in 27 pages in RFC 1058

[27] and later in 37 pages in RFC 2453 [28]. OSPF (Open

Shortest Path First) is a widely used link state protocol,

documented in 224 pages in RFC 2328 [29]. OSPF

includes a version of Dijkstra’s shortest path algorithm [30],

a common component of algorithms and data structure

modules, and one that exemplifies the use of Computer

Science algorithms in Internet engineering.

There are many online resources for learning about RIP and

OSPF, including Wikipedia e.g. [31] and YouTube e.g. [32].

The former is intended for reference rather than educational

learning per se, whereas the latter is a type of talking

textbook i.e. the videos are didactic, enhancing the

information transfer pedagogy with animations, but lacking

in interactivity or experimental capabilities. A web-based

OSPF tutorial [33] provides user-controlled annotated

animations, providing some degree of interactivity. A Java

applet [34] allows the learner to specify their own graph

(network) and then run the algorithm but suffers from a poor

user interface and does not contextualise the algorithm

within network engineering and the Internet in general.

Routing Archipelago, described in the next section, is an

OVW based interactive learning environment which

supports various learning modes at various different levels,

accommodating video lectures, animations, documents and

web pages as well as shared and private simulators for

exploring the operation of DV and OSPF.

IV. ROUTING ARCHIPELAGO

With the move from Second Life to locally hosted

OpenSim virtual worlds, barriers of size, space and cost,

have been removed. Whereas an “Island” in Second Life

was prohibitively expensive yet still restrictive in terms of

content, complexity and size of code, and functionality, it is

possible to combine several OpenSim Islands into a single

mega-region, accommodating selected content drawn from a

wide range of sources.

Routing Archipelago combines videos, reference materials

and academic papers with canned simulations, shared

simulation areas and private simulation areas, all within a

multi-user environment, which a cohort of students can visit

together, with or without an instructor, or independently for

private study. The main island - “Routing Centre” supports

didactic learning. It contains a document repository, two

lecture theatres – one for OSPF and one for RIP – and a

museum about the history of the Internet. Many smaller

islands contain either single user sandbox areas, canned

simulations for demonstration purposes, and shared

simulation areas where multiple learners can collaboratively

build a network.

This range of learning resources is designed to support all

levels of learning – Remember, Understand, Apply,

Analyse, Evaluate, Create – discerned by Anderson [6] (see

Fig.1) in the context of Internet routing.

Figure 2: A scene from the Document Repository

Figure 2 shows a scene from the document repository.

Large notecards can be touched to load reference material

from the web such as RFCs.

Figure 3: A highly rated YouTube video is streamed

www.youtube.com/watch?v=8Ls1RqHCOPw

Figure 3 shows a highly rated education video from

YouTube describing Dijkstra’s shortest path algorithm

being played within the lecture theatre.

A. Bringing textbook examples to life

In order to emphasize the point that this learning

environment is complementary to instructional texts such as

[1-3], examples from these books have been implemented as

interactive simulations.

Figure 4: the book diagram (top) and a live simulation of Count to Infinity

Figure 4 shows the “Count to Infinity” example as drawn in

[3] and then as rendered in the immersive learning

environment. In the simulated version students can control

and watch the forwarding tables change for each router as

the algorithm runs. This simple network can also be readily

built in one of the sandboxes. A student can then break or

repair any link while the network is live, thereby seeing a

visualization of the algorithm in action. As a further option

the algorithm can be changed from DV to OSPF in order to

show how a change of protocol can remove that problem.

Figure 5: An example from [1] is brought to life

Figure 5 shows a link-state example from [1]. Again,

students can study how a router’s forwarding tables change

as the algorithm runs and examine their final states to check

their understanding. Examples from [2] are also provided.

B. Build your own network

In order to support exploratory learning learners can

build their own network in any of the shared or private

sandbox areas provided. The tools for building a network

allow for the creation and deletion of routers, end points and

the links between them. The cost of links can be edited – the

higher the cost the greater the girth of the visual

representation of the connection. Either DV or link-state can

be chosen. A live network with packets flowing from one

end node to another can have its links broken or new links

added in order to see the routing algorithms adapting to the

changed configuration.

In a shared sandbox only one user can take control of the

building tools but any number of other users can be present

and interact using the usual OVW text chat facilities, or

even live audio if headsets are used. The private sandbox

allows for personal exploration of the tools and network

configurations. Topologies can be saved and reloaded for

future use.

Figure 6: Students model and simulate a ja.net region based on a network
diagram; as links are removed and added the forwarding tables at each

node can be observed as they dynamically update.

Figure 6 shows a ja.net area, the Fife and Tayside

Metropolitan Area Network (FaTMAN), modeled in the

simulator by a group of students, with a lecturer on hand to

help. Note that the girth of the links between adjacent

routers reflects their weight.

Figure 7: Students collaboratively build a hypercube (k=4) Internet core.

Figure 7 shows how some students have modeled a network

routing core as a hypercube of degree 4 rather than the more

common fully connected mesh. It is interesting that the 3D

immersive environment allows for better modeling and

visualization of such structures than the awkward

representations such as those shown in Fig. 8.

Figure 8: Representing hypercubes (k=4) in 2D

V. HOW THE ROUTING SIMULATOR WORKS

A. Programming Virtual Worlds

Second Life imposes severe restrictions on coding which

makes complex software development extremely difficult. Its

native programming language, Linden Scripting Language

(LSL) [35], is limited in expressiveness and modularity, code

is expected to be written using a basic text editor, and

Second Life itself, as a commercial distributed environment,

limits the capabilities of code interacting with the host

environment in the same way an operating system or

hypervisor seeks to protect separate users through resource

management and protection.

Routing Island is built on the OpenSim platform and hosted

on servers controlled within the university, enabling many

more options for programming. OpenSim supports C# as

well as LSL, and as the system is locally controlled the

software development capabilities can be extended much

further.

Figure 9: Virtual World programming options

OpenSim provides the following modes for programming

content (See Fig. 9):

 Sandbox Scripting: LSL is an example of this, users

write LSL scripts with very defined constraints in world.

On one level this is powerful, in that it allows in world

objects to be programmed to react to events in a rich and

varied way but the creation of complex systems is

difficult and time consuming.

 Internal API Scripting: An example of this are Mini

Region Modules (MRM) and the alternative scripting

mechanism they provide. Code is written in C# using an

API which gives access to the world’s scenegraph and

also allows external libraries to be loaded in and

referenced by its in-world scripts.

 External API development: This is a system whereby a

small piece of code, plugged directly into OpenSim then

links to an external library which runs as an MRM. The

routing simulator was developed an eXtended MRM

(XMRM) mechanism that was built to support this

functionality. The user writes minimal code in world -

all they do is specify a configuration file. This in turn

triggers an external library which goes on to load a

series of libraries defined in the configuration file. This

is the code which links an in-world script to external

libraries and so enables the code developed and

compiled in an IDE, to run in world.

The XMRM mechanism was implemented in order to create

a development environment powerful enough to program

the routing simulator.

B. System Design

The design of the system is based on the Model, View,

Controller pattern. See Fig. 10. Each Module (model, view,

control) is defined as an interface in a framework library

Each of these interfaces is then implemented in its own

library. The entities that make up the system are modelled by

another set of interfaces again defined in the framework

library. Instances of these interfaces are passed between the

modules to share state. Each module then extends the entity

interfaces to add the extra functionality it needs.

The various modules are designed to be instantiated in a

loosely coupled manner. Because modules only interact

through interfaces defined in a separate library different

implementations of these interfaces can be swapped out

without altering the other modules.

Figure 10: MVC based design for the Routing Island Software Development System

Figure 11: System libraries and their dependencies.

The class which instantiates the modules reads in the

locations of the assemblies which implement the interfaces

from a config file at run time. This loose coupling means

different configurations of the system can be instantiated

just by altering the configuration file. All the libraries which

make up the system and their dependency relationships are

represented in Fig. 11.

Routing Island uses the External MRM system previously

outlined to integrate itself into OpenSim (see Fig. 10).

Because of the loosely coupled nature of the system any of

the modules can be re-implemented or extended to alter

their behaviour. There are two mechanisms which are

designed specifically to allow simple extensions to be

implemented. The first is the algorithm mechanism. The

system as a whole is designed to be independent of what

routing algorithm is running. The ability to create or alter a

topology is completely separate from how the algorithms

themselves are implemented.

Figure 12: State transition diagram for user interaction

The second extensibility mechanism is how the control

module is designed. The control implementations form an

inheritance hierarchy. At the top is the Control class which

tracks the relationship between all entities (what links link

what nodes etc.). This class provides a series of protected

utility methods for querying this information and exposes a

range of protected events that will be triggered on user input

such as a router being touched or a link being deleted. Next

the SandboxControl class extends Control. This class

exposes no methods at all but registers with the listeners

defined in Control and parses this information to produce

the Sandbox behaviour described earlier.

Any programmer wishing to alter how the system is

interacted with just has to extend one or other of these

classes and register with the various listeners to define how

the system reacts to different user inputs. The architecture of

the system is designed to fully exploit the ability to

reference externally compiled libraries from in-world scripts

(see Fig 11). The scripts library can be dropped into the

main OpenSim directory and referenced by any script.

Initialising an instance of an object with the location of a

config file hands over control from the in-world script to the

externally compiled library.

The instantiated class can then dynamically instantiate a

bootstrap class from a library whose location is specified

from the configuration file. By changing what configuration

file the class is initialised with different systems or

configurations can be loaded. The bootstrap class must

adhere to an interface defined in the scripts library but the

files can be compiled and placed anywhere in the file

system. These files can be re-compiled while the system is

running in-world and the in-world system can then be

restarted and the newly compiled code loaded. This

mechanism means that a developer can use an external IDE

to develop a system. The developer is able to make changes

to the system, re-compile and then type a command in-

world to restart the system and see the changes appear. This

is a powerful system as the developer is able to utilise all the

power of multiple libraries, high level programming and

IDE development tools and at the same time behave in-

world as if they were just writing and re-loading a script,

never having to restart the server.

C. User Interaction

A state transition diagram is shown in Fig. 12. The

system is designed to make user interaction as simple as

possible. If the user wishes to create a node they simply click

on the point on the floor where they wish the node to be. If

they wish to link two nodes they click on the first node they

wish to link, selecting it, then click on the node they wish to

link it to. Similarly if they wish to remove a link they click

on the node at one end of the link they wish to remove then

click on the node at the other end of the link. State is

indicated by the ’glow’ effect (see Figs 4 and 7) whereby an

object appears to glow. If a node or link is selected it glows,

when it ceases to be selected it ceases to glow.

Nodes are subdivided between routers and end points to aid

with context sensitivity. Routers can be linked to as many

other nodes as is required. End points can only ever be

linked to one node. End point nodes allow the user see the

system in action. Selecting one source end point and then

selecting a destination end point causes a packet to be sent

between the two end points.

The way the user interacts with the system is a context

based model based on two types of interaction, the notion of

a ’touch’ and the chat system. A touch is the basic method

of interaction in OpenSim. If an in-world primitive has a

listener attached then whenever a user clicks on that

primitive a touch event is triggered.

The input system works with two separate classes of

objects. Firstly there are control primitives. These are

labelled and provide specific functions. Secondly there are

the primitives which make up the simulation, known as

entities. Control prims are further divided into three groups,

buttons, toggles and floor. Buttons cause actions to happen,

toggles set state for a specific parameter and floor can be

clicked on to create entities in-world. Entities are divided

between links, end points, routers and packets. Packets are

not interacted with directly, the other three forms have

specific properties. The notion of control primitives seeks to

give users extra control of the system.

Toggles allow users to set system state e.g. between sending

one packet at a time or sending a stream of packets. Buttons

allow the user to run specific tasks over the topology they

have defined, e.g. running a routing algorithm or speeding

up the operation of the system.

More specific control is gained using the chat mechanism.

Using commands chatted into the global chat window the

user can perform tasks such as saving the topology they

have created to an XML file or changing the weight of a

link.

How the user actually experiences the system is through

nodes and links defining a topology. The system can be

configured to load in a static topology from a configuration

file. This can be set up so the user cannot alter the topology

but can run routing algorithms over the topology. These pre-

defined topologies serve a similar purpose to animating

algorithms, the difference being the algorithm is actually

running dynamically in the simulator. Thus the topology

can be changed and the algorithm will change accordingly.

These topologies can be used to explain specific cases such

as the examples from textbooks described earlier or provide

a detailed textual description explaining the precise

topology being displayed. Of course, the distinguishing

feature of the system is that the user has the power to create

and link nodes in sandbox mode.

VI. CONCLUSION

This paper has described the development and

deployment of Routing Archipelago, a learning aid for

Internet Routing algorithms developed within an Open

Virtual World. The development was motivated by the need

for exploratory learning facilities to complement textbooks

such as [1-3] and online courses such as [4], and by the

observation that learners readily and enthusiastically engage

with virtual worlds [8, 9].

The archipelago is located within a multi-user 3D model

accessible via the Internet. It acts as an interface to a large

range of learning resources, including web pages, videos,

standards documents and animations. Learners can choose

their own pathways to navigate these resources and lecturers

can use it for demonstration purposes. Collaborative

learning strategies are encouraged as the actions and

navigation of learners is achieved through their avatars. The

creation of a new software engineering approach featuring

XMRMs was necessitated by the complexity of this project.

It has unlocked the potential of Open Virtual Worlds

transforming OpenSim into a rapid application development

for 3D applications and enabling powerful new modes of

interaction. In the case of Internet routing it allows for the

creation of integrated and visual 3D simulations of network

routing protocols. Educationalists can define scenarios

which learners can step through, observing the interactions

between network topology, routing algorithms and traffic

flows. In additions learners may individually or

collaboratively define their own network topologies, data

flows and algorithms and step through simulations.

Integration within the learning environment means that it is

possible to change the topology of a simulation whilst it is

live. Users can thus investigate the effectiveness of routing

protocols in managing topological changes. These systems

have been used on multiple degree levels within and credit

bearing courses within HE. Students have found them to be

engaging, stimulating and intuitive to use.

REFERENCES

[1] J. Kurose and K. Ross, Computer Networking: A Top-Down

Approach, 6th ed., 6 ed.: Pearson, 2012.

[2] L. Peterson and B. Davie, Computer Networks: A Systems
Approach (5th ed.), 5 ed.: Morgan Kaufmann, 2011.

[3] A. S. Tanenbaum and D. Wetherall, Computer Networks, 5th
ed.: Pearson, 2010.

[4] P. Levis and N. McKeown. (2014, April 2014). An

Introduction to Computer Networks;

https://class.stanford.edu/courses/Engineering/Networking/

Winter2014/about. Available:

https://class.stanford.edu/courses/Engineering/Networking/

Winter2014/about

[5] T. Bates. (2012, April 2014). What’s right and what’s wrong

about Coursera-style MOOCs;

http://www.tonybates.ca/2012/08/05/whats-right-and-whats-

wrong-about-coursera-style-moocs/.

[6] L. W. Anderson, D. R. Krathwohl, P. W. Airasian, K. A.

Cruikshank, R. E. Mayer, P. R. Pintrich, J. Raths, and M. C.

Wittrock, A Taxonomy for Learning, Teaching, and

Assessing: A Revision of Bloom's Taxonomy of Educational
Objectives. New York, NY: Longman, 2001.

[7] U. Fuller, C. G. Johnson, T. Ahoniemi, D. Cukierman, I.

Hern, #225, n-Losada, J. Jackova, E. Lahtinen, T. L. Lewis,

D. M. Thompson, C. Riedesel, and E. Thompson,

"Developing a computer science-specific learning

taxonomy," presented at the Working group reports on ACM

ITiCSE on Innovation and technology in computer science
education, Dundee, Scotland, 2007.

[8] P. Sancho, J. Tirrente, and B. Fernandez-Manjon, "Fighting

Drop-Out Rates in Engineering Education: Empirical

Research regarding the Impact of MUVEs on Students'

Motivation," presented at the 1st European Imeersive

Education Summit, Madrid, 2011.

[9] G. I. U. S. Perera, C. Allison, T. Sturgeon, and J. R. Nicoll,

"Towards Successful 3D Virtual Learning - A Case Study on

Teaching Human Computer Interaction," in the 4th

International Conference for Internet Technology and

Secured Transactions, London, 2009.

[10] T. Sturgeon, C. Allison, and A. Miller, "802.11 Wireless

Experiments in a Virtual World," ACM SIGCSE Bull., vol.
41, pp. 85-89, 2009 2009.

[11] L. D. Thomas and P. Mead, " Implementation of Second Life

in electromagnetic theory course;

http://www.youtube.com/watch?v=ExWX4Kz-6Qc,"

presented at the 38th Frontiers in Education Conference,
2008. , Saratoga Springs, NY, 2008.

[12] M. Esteves, B. Fonseca, and L. Morgado, "Using Second

Life for Problem Based Learning in computer science

programming," Journal of Virtual Worlds Research, vol. 2,

2009.

[13] R. S. Clavering and A. R. Nicols, "Lessons learned

implementing an educational system in Second Life,"

presented at the Proceedings of the 21st British HCI Group

Annual Conference on People and Computers: HCI...but not

as we know it, University of Lancaster, United Kingdom,

2007.

[14] K. Getchell, A. Miller, R. Nicoll, R. Sweetman, and C.

Allison, "Games Methodologies and Immersive

Environments for Virtual Fieldwork," IEEE Transactions on
Learning Technologies, vol. 3, pp. 281-293, 2010.

[15] NASA. (2010, Learning Technologies Project FY10

Performance Report Project.

http://www.nasa.gov/pdf/505587main_2010_ESE_LT.pdf.

[16] F. Bellotti, R. Berta, A. Gloria, and L. Primavera, "Designing

Online Virtual Worlds for Cultural Heritage," in Information

and Communication Technologies in Tourism 2009, W.

Höpken, U. Gretzel, and R. Law, Eds., ed: Springer Vienna,

2009, pp. 199-209.

[17] L. Dow, A. Miller, and E. Burt, "Managing Humanitarian

Emergencies: Teaching and Learning with a Virtual

Humanitarian Disaster Tool," in 4th International

Conference on Computers in Education, CSEDU 2012,

Porftugal, 2012.

[18] W. L. Johnson, "Developing Intercultural Competence

through Videogames, Keynote speech," in ACM

International Workshop on Intercultural Collaboration

(IWIC) 2009, Stanford Unviersity, Palo Alto, California,
2009, pp. 99-100.

http://www.tonybates.ca/2012/08/05/whats-right-and-whats-wrong-about-coursera-style-moocs/
http://www.tonybates.ca/2012/08/05/whats-right-and-whats-wrong-about-coursera-style-moocs/
http://www.youtube.com/watch?v=ExWX4Kz-6Qc,
http://www.nasa.gov/pdf/505587main_2010_ESE_LT.pdf

[19] Linden_Labs. (2003, October). Second Life,
www.secondlife.com.

[20] S. Warburton, "Second Life in Higher Education: assessing

the potential for and the barriers to deploying virtual worlds

in learning and teaching," British Journal of Educational
Technology, vol. 40, pp. 414-426, 2009.

[21] C. Allison, T. Sturgeon, A. Miller, G. I. U. S. Perera, and J.

R. N. Nicoll, "Educationally Enhanced Virtual Worlds,"

presented at the 40th IEEE Frontiers in Education

Conference, 2010. FIE '10., Washington, 2010.

[22] The_Open_Simulator_Project. (2010, April). OpenSim:

http://opensimulator.org/wiki/Main_Page.

[23] M. Janus, "hippo: http://sourceforge.net/projects/opensim-
viewer/," ed, 2010.

[24] unknown, "meerkat: http://code.google.com/p/meerkat-
viewer/downloads/list," ed, 2009.

[25] P. V. P. Inc., "Phoenix: http://www.phoenixviewer.com/,"
ed, 2012.

[26] Y. Rekhter, T. Li, and S. Hares, "Request for Comments:

4271; Border Gateway Protocol 4;

http://tools.ietf.org/html/rfc4271," IETF2006.

[27] C. Hedrick, "RIP: Routing Information Protocol,

http://tools.ietf.org/html/rfc1058, RFC 1058," IETF1988.

 [28] G. Malkin, "RIP Version 2, http://tools.ietf.org/html/rfc2453,
RFC 2453," IETF1998.

[29] J. Moy, "OSPF Version 2,
http://www.ietf.org/rfc/rfc2328.txt, RFC 2328," IETF1998.

[30] E. W. Dijkstra, "A note on two problems in connexion with

graphs," Numerische Mathematik, vol. 1, pp. 269-271, 1959.

[31] Wikipedia, "Internet Routing

http://en.wikipedia.org/wiki/Routing_protocol," ed.
Wikipedia, 2014.

[32] VambarInc. (2012, October 2012). Distance Vector and Link

State Protocols,

http://www.youtube.com/watch?v=ygxBBMztT4U&feature=

relmfu.

[33] C. Allison and B. Ling, "OSPF Routing Online Tutorial;

http://ospf.cs.st-andrews.ac.uk," 2005.

[34] C. Laffra, "Dijkstra's Shortest Path Algorithm,

http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/
Laffra/DijkstraApplet.html," ed, 2005.

[35] Linden_Labs. (2013, October). Linden Scripting Language;
http://wiki.secondlife.com/wiki/LSL_Portal.

http://www.secondlife.com/
http://opensimulator.org/wiki/Main_Page
http://sourceforge.net/projects/opensim-viewer/,
http://sourceforge.net/projects/opensim-viewer/,
http://code.google.com/p/meerkat-viewer/downloads/list,
http://code.google.com/p/meerkat-viewer/downloads/list,
http://www.phoenixviewer.com/,
http://tools.ietf.org/html/rfc4271,
http://tools.ietf.org/html/rfc1058
http://tools.ietf.org/html/rfc2453
http://www.ietf.org/rfc/rfc2328.txt
http://en.wikipedia.org/wiki/Routing_protocol,
http://www.youtube.com/watch?v=ygxBBMztT4U&feature=relmfu
http://www.youtube.com/watch?v=ygxBBMztT4U&feature=relmfu
http://ospf.cs.st-andrews.ac.uk,/
http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html,
http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html,
http://wiki.secondlife.com/wiki/LSL_Portal

