
Selection and evolution of causally-covarying traits1

Michael B. Morrissey2

January 31, 20143

School of Biology, University of St Andrews4
5

contact
email: michael.morrissey@st-andrews.ac.uk
phone:+44 (0) 1334 463738
fax: +44 (0) 1334 463366
post: Dyers Brae House

School of Biology, University of St Andrews
St Andrews, Fife, UK, KY16 9TH

Keywords: natural selection, causation, selection gradients, path analysis, multivariate,6

secondary theorem of selection7

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by St Andrews Research Repository

https://core.ac.uk/display/30318929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Morrissey, path analysis and quantitative genetics 2

Abstract8

When traits cause variation in fitness, the distribution of phenotype, weighted by fitness,9

necessarily changes. The degree to which traits cause fitness variation is therefore of central10

importance to evolutionary biology. Multivariate selection gradients are the main quan-11

tity used to describe components of trait-fitness covariation, but they quantify the direct12

effects of traits on (relative) fitness, which are not necessarily the total effects of traits on13

fitness. Despite considerable use in evolutionary ecology, path analytic characterizations of14

the total effects of traits on fitness have not been formally incorporated into quantitative15

genetic theory. By formally defining “extended” selection gradients, which are the total16

effects of traits on fitness, as opposed to the existing definition of selection gradients, a17

more intuitive scheme for characterizing selection is obtained. Extended selection gradients18

are distinct quantities, differing from the standard definition of selection gradients not only19

in the statistical means by which they may be assessed and the assumptions required for20

their estimation from observational data, but also in their fundamental biological mean-21

ing. Like direct selection gradients, extended selection gradients can be combined with22

genetic inference of multivariate phenotypic variation to provide quantitative prediction of23

microevolutionary trajectories.24
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Introduction25

Natural selection is the phenomenon where effects of traits on fitness necessarily result in26

within-generation changes in the distribution of phenotype, weighted by fitness (Godfrey-27

Smith, 2007). When heritable traits are selected, and in the absence of antagonistic selec-28

tion of genetically correlated traits, the effect of a trait on fitness also results in changes29

in the distribution of breeding values. This change of the distribution of breeding values30

transmits within-generation phenotypic change to the next generation. This fundamen-31

tal evolutionary mechanism has led to a range of approaches and perspectives on how32

to explain phenotype-fitness relationships in terms of causal and correlative effects, and33

how to quantify the ultimate evolutionary consequences of selection (Endler, 1986; Lande34

and Arnold, 1983; Mitchell-Olds and Shaw, 1987; Price, 1970; Robertson, 1966; Schluter,35

1988; Shaw and Geyer, 2010). The main partitioning of selection is the decomposition of36

a selection differential S, the covariance of a trait with relative fitness, into that resulting37

from direct effects, as represented by selection gradients β, and correlational effects (Walsh38

and Lynch, 2012), resulting from selection of phenotypically-correlated traits. Generally,39

selection gradients are characterized as describing the causal effects of a trait on fitness,40

i.e., representing “selection for” (Endler, 1986; Sober, 1984), rather than the total associ-41

ation of traits and fitness (“selection of”), and so are often the most central parameters in42

empirical and theoretical studies of natural selection.43

Arnold (1983) provided the basis for a thought experiment that can be used to eluci-44

date the importance of the distinction between direct and total causal effects of traits on45

fitness. Consider two characters: an aspect of morphology, and an aspect of organismal46

performance, and also their relationships with fitness. Assume that morphology influences47

fitness via an effect on performance, which itself influences fitness, but that morphology48

does not affect fitness independently of performance. Figure 1 illustrates these relationships49

graphically. Arnold (1983) considered the problem of inference of selection and prediction50

of evolution of morphology, especially in light of the fact that it may be hard to simultane-51
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ously and meaningfully measure morphology and fitness on a sufficiently large number of52

individuals to make robust inferences in any given single study. Arnold (1983) emphasised53

how to use Wright’s (1921; 1934) path rules to make inferences of the selection of mor-54

phology, given separate inferences about the effects of morphology on performance, and of55

performance on fitness. van Tienderen (2000) extended the approach, showing how demo-56

graphic principles can be used to evaluate performance (i.e., demographic rates, life history57

traits) - fitness relationships, and how to relate these to other traits, such as morphology.58

In the morphology-performance-fitness model, a selection gradient of morphology can be59

obtained as the product of the coefficients describing the morphology-performance and60

performance-fitness relationships. The product of this selection gradient and the genetic61

variance of the morphological trait yields a prediction of evolutionary change in perfor-62

mance. Multivariate evolutionary prediction follows in a standard manner in order to63

predict evolutionary trajectories of multiple aspects of morphology (Arnold, 1983; Lande,64

1979). However, simultaneous evaluation of selection and evolution of morphology and65

performance is not so straight forward1.66

If morphology influences performance, three important consequences follow. First, the67

phenotypic covariance (partial covariance, formally, but these are equivalent in this simple68

case) of morphology and performance will be non-zero. Second, the genetic covariance69

will be non-zero; essentially, if morphology affects performance, breeding values for the70

morphological trait are consequentially a component of the breeding values for performance.71

Third, the effect of morphology on fitness will be non-zero, providing that performance72

indeed influences fitness. This illustrates two related and potentially non-intuitive features73

of selection gradients that necessitate care in their interpretation. First, selection gradients74

are not necessarily interpretable simply as ‘effects’ of a traits fitness. Rather, selection75

gradients describe the direct components of effects of traits on fitness. In the morphology-76

performance-fitness model, the selection gradient for morphology is zero, if morphology and77

1van Tienderen (2000), page 676, suggests that causal relationships among the set of focal phenotypic traits can be
accommodated, but does not provide guidance as to how.
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performance are considered simultaneously, but the true value is non-zero if performance78

is not simultaneously considered. So, second, the selection gradient is partially a function79

of the (arbitrary) inclusion of traits that may mediate a focal character’s ultimate effect80

on fitness.81

The dependence of selection gradients on the choice (or constraints) of what traits are82

included in a study is not necessarily a case of selection being erroneously estimated,83

i.e., it is distinct from the “missing variable” problem (Hadfield, 2008; Morrissey et al.,84

2010; Rausher, 1992). A univariate analysis of selection, genetics, and predicted evolu-85

tion of morphology, where the genetic variance of morphology is multiplied by a selection86

gradient representing the total regression of relative fitness on morphology, would pro-87

vide a correct evolutionary prediction. Similarly, a bivariate analysis, where the genetic88

variance-covariance matrix of morphology and performance was post-multiplied by a vec-89

tor containing the partial regressions2, where the partial regression of relative fitness on90

morphology is zero, would yield a correct evolutionary prediction as well. The “missing91

variable problem” would occur if an unmeasured variable existed that caused covariance92

of morphology and/or performance with fitness, beyond the causal effects of the traits93

themselves (Morrissey et al., 2010).94

Clearly, partitioning total selection, i.e. the selection differential, S, into direct and95

indirect selection neither results in full characterization of the different possible aspects of96

relationships among traits and fitness, nor does it match intuition. A selection coefficient97

describing the total effect, not simply the direct effect, of a trait on fitness will have98

substantial interpretive advantages. Definition of this third selection coefficient, effectively99

an “extended-sense” selection gradient η, allows the primary division of types of selection100

coefficients to be based on causation, rather than on direct versus indirect effects. As101

such, total selection is thought of as the result of causal effects of a focal trait on fitness,102

summarized by η, and indirect selection due to incidental correlations. η, the total causal103

2Or more generally, the partial derivatives of relative fitness with respect to the two phenotypic traits, averaged over the
distribution of the traits. This is an issue of what selection gradients mean, not an issue of the methodological means by
which estimated selection gradients are obtained.
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effect of a trait on fitness, can then be further considered in terms of its component direct104

(β) and indirect but causal components. In addition to matching intuition about causation,105

selection and evolution, empirical evaluation of η for a given focal trait or set of focal traits106

(say, morphology) is invariant to whether or not other traits (i.e., performance, life history)107

that mediate the focal trait’s or traits’ ultimate effect(s) on fitness are simultaneously108

considered.109

Path analysis (Wright, 1934) of natural selection provides a means of simultaneously110

modelling how traits affect fitness and how phenotypic traits affect one another (Walsh111

and Lynch, 2013). As such, path analysis can provide insights, both quantitative and112

qualitative, into the mechanisms by which phenotypic traits cause fitness variation (Latta113

and McCain, 2009; Scheiner et al., 2000). The morphology-performance-fitness model is a114

simple path model. The procedure of obtaining the total effect of morphology on fitness as115

the product of the regressions of fitness on performance and performance on morphology116

is a simple application of Wright’s path rules. The qualitative benefits of a path analytic117

perspective for making inferences about natural selection have been discussed from several118

perspectives (Arnold, 1983; Conner, 1996; Crespi and Brookstein, 1989; Kingsolver and119

Schemske, 1991; Latta and McCain, 2009; Scheiner et al., 2000; Shipley, 1997). While120

these authors have appreciated and clearly demonstrated the value of characterizing the121

causal effects of traits on one another and on fitness, the distinction between compound122

path-based selection coefficients and (traditional, direct) selection gradients has not been123

made clear. Consequently, some conclusions have been drawn based on the notion that124

path-based inferences of selection and traditional selection gradients represent different in-125

ferences (statistical, philosophical, or both) of the same biological quantity (Scheiner et al.,126

2002, 2000), but this is not the case. In addition to the previous lack of formal consider-127

ation of the mathematical and philosophical distinctions and commonalities between path128

coefficients and selection gradients in the traditional sense, the role of path coefficients in129

quantitative genetic theory has not yet been formally considered.130

I show how path analysis-based extended selection gradients relate quantitatively to131
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genetic variation and evolutionary change by deriving an equation that relates extended se-132

lection gradients to genetic variation in order to quantitatively predict evolutionary change.133

I then provide two examples of the estimation and interpretation of extended selection gra-134

dients in an evolutionary quantitative genetic context. In the first, I present a comparison135

of extended and direct selection gradients of Soay sheep Ovis aries (Clutton-Brock and136

Pemberton, 2004) neonatal traits. This provides a simple situation where the biological137

meanings of the traits, and of their relationships with fitness, are fairly intuitive, allowing138

illustration of the interpretive differences between β and η. I then show the incorpora-139

tion of the path analytic approach into both the decomposition of phenotypic and genetic140

(co)variances, and the simultaneous quantification of selection gradients, using data from141

a laboratory rearing experiment based on a population of recombinant inbred lines derived142

from contrasting ecotypes of the wild oat Avena barbata (Gardner and Latta, 2008; Latta143

and McCain, 2009). The examples demonstrate (i) how β and η can differ qualitatively,144

including how they can take different signs, and (ii) consequently how biological interpre-145

tations that are typically sought regarding the selective meaning of trait variation must be146

assessed via the extended view of selection gradients.147

Multivariate evolutionary prediction using extended selection gra-148

dients149

Expected evolutionary change based on (path coefficient-based) estimates of extended se-150

lection gradients can be obtained starting with the Lande equation (Lande, 1979),151

∆z̄ = Gβ, (1)

where ∆z̄ is the expected per-generation change in the vector of mean phenotype, G152

is the matrix of additive genetic variances and covariances, and β is a vector of direct153

selection gradients, i.e., the average partial derivatives of relative fitness integrated over154
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the distribution of the phenotype. In path analytic terms, β are the coefficients associated155

with arrows directly between traits and relative fitness. To express the rest of the formula156

in terms of path coefficients, G needs to be related to causal effects of traits on one another157

(path arrows among traits). Given a matrix of path coefficients b, the total causal effects158

of each trait on every other trait are159

Φ = (I− b)−1. (2)

Following McArdle and McDonald (1984) and Gianola and Sorensen (2004), G is deter-160

mined in part by Φ according to161

G = ΦGǫΦ
T , (3)

where Gǫ represents the additive genetic component of sources of variance and covariance162

among traits, beyond those attributable to causal relationships among traits. Diagonal163

elements of Gǫ represent the additive genetic components of exogenous inputs of variation164

to a system of structural equations, often denoted U on path diagrams. Off-diagonal165

elements of Gǫ, if any, represent the additive genetic component of covariances that are166

extrinsic to causal relations, often denoted with curved double-headed arrows on path167

diagrams.168

Substitution of equation 3 into equation 1 gives ∆z̄ = ΦGǫΦ
Tβ. Within this expres-169

sion, the extended selection gradients, η, or total effects of each trait on relative fitness,170

are η = ΦTβ. In scalar form, this is ηx =
∑n

y=1Φxyβy, defining the total effects on fitness171

as the sum of the products of the effects of the traits on one another and on relative fitness.172

So the evolution of the mean vector in terms of extended selection gradients is173

∆z̄ = ΦGǫη. (4)

It remains to consider how exogenous genetic variances and covariances are to be ob-174

tained. Gǫ and its components are not generally considered among the parameters of175
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interest in evolutionary quantitative genetics, but have specific evolutionary meaning and176

are obtainable through modifications of familiar mixed-model techniques (Henderson, 1973;177

Kruuk, 2004; Wilson et al., 2010). Standard structural equation modelling packages (e.g.,178

sem; Fox 2006, listrel; Joreskog and Van Thillo 1972) for implementing path analyses179

intrinsically estimate total exogenous variances and covariances, even if these are not typ-180

ically considered parameters of particular interest. The key to the decomposition of the181

total exogenous (co)variances into genetic and residual components is to view a path model182

as a system of mixed model equations. The twist, however, is that any trait that has a183

effect on any other trait is part of the response (i.e., its value is modelled), and also serves184

as a predictor of the observed values of other traits. If there are neither simultaneous (e.g.,185

A → B, B → A) relationships nor recursive loops (e.g., A → B, B → C, C → A), the com-186

ponents of b and Gǫ can be estimated from separate mixed models describing parts of the187

path model. Path coefficients are simply continuous fixed effects, and exogenous variances188

are obtained as random effects, conditional on any fixed effects representing path coeffi-189

cients. If a path model involves exogenous covariances, then components of Gǫ pertaining190

to these variables would be estimated using a multi-response mixed model. Decomposition191

of exogenous (co)variances into genetic, residual, and potentially other components can be192

implemented using standard mixed model techniques. For example, using general pedi-193

gree information, additive genetic exogenous variance components can be estimated using194

animal models (Henderson, 1973; Kruuk, 2004; Wilson et al., 2010) in which fixed effects195

are included to estimate path coefficients. All component mixed models must be simul-196

taneously evaluated in path models that contain recursive or simultaneous relationships197

(Gianola and Sorensen, 2004), but such features of path models do not generally appear198

in studies of natural selection.199
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Example 1: Selection of neonatal traits in Soay sheep200

The purpose of this example is (i) to consider the differences between estimates of β and201

η in the context of covariances among traits in a real dataset, and (ii) to consider the202

ways in which interpretations about natural selection can be made given estimates of β203

and η. Here, I consider the relations among birth date, twin status, birth weight, weight204

in August, and their selection via relationships with relative fitness in the first year of life205

of female Soay sheep lambs on St Kilda, Outer Hebrides, Scotland, during the period of206

1985 to 2009. The fitness component is overwinter survival. In total, the analysis was207

conducted on complete records of all traits and overwinter survival for 1284 individuals.208

More detail about the study system is available in Clutton-Brock and Pemberton (2004).209

Covariances among birth date, twin status, birth weight, August weight, and relative210

fitness (overwinter survival scored as 0 and 1, divided by year-specific mean survival) are211

given in table 1. A plausible model relating the traits to one another and to relative fitness212

is213

wi = µw + bw,awt · awti + bw,bwt · bwti + bw,twn · twni + bw,bdy · bdyi + ei(w) (5a)

awti = µawt + bawt,bwt · bwti + bawt,twn · twni + bawt,bdy · bdyi + ei(awt) (5b)

bwti = µbwt + bbwt,twn · twni + bbwt,bdy · bdyi + ei(bwt) (5c)

where w represents relative fitness, awt represents weight in August (kg), bwt represents214

birth weight (kg), twn represents twin status (scored as zero or one), and bdy represents215

birth date (day of the year). i indexes individuals, ei terms are residual errors of the216

bracketed quantities, and µ are intercepts. I evaluated the three multiple regressions in217

equation 5 using MCMCglmm (Hadfield, 2010). This allowed statistical uncertainty in218

both direct and extended selection gradient estimates to be evaluated by integration over219

the joint posterior distributions of the solutions to equation 5.220

The estimates of β from equation 5a, the fixed components of which are essentially221
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Lande and Arnold’s (1983) multiple regression analysis for directional (direct) selection222

gradients, and estimates of η obtained by applying path rules to coefficients obtained from223

equations 5a-c, are given in table 2. Figure 2 shows the relationships described in equation224

5 as a path diagram, with representation of path strengths (variance-standardized, i.e.225

partial correlations, except for regressions of relative fitness on the traits, which are the226

partial regressions of w on the variance-standardized traits) as thickness of arrows.227

August weight has a substantial direct effect on fitness, while the other traits have228

smaller direct effects (table 2, figure 2). However, in this model, twin status and birth229

weight have effects as well on fitness as well, but they are largely indirect. Birth weight230

has a positive effect on fitness via its effect on August weight, jointly with the fact that231

August weight affects fitness. Similarly, while twin status has little or no direct effect232

on fitness, it does have negative effects on both birth weight and August weight, and233

consequently a negative total, if mostly indirect, effect on fitness.234

The interpretation of extended selection gradients is well-illustrated by this example.235

Twin status and birth weight have very small direct influence on fitness, and therefore236

small β. Insofar as it is reasonable to assume that these traits may have causal effects237

on August weight and fitness, it is very worth quantifying the total effect of this trait238

on fitness if we are trying to understand the adaptive significance of variation in birth239

weight. η most closely reflects the concept of “selection for” (Endler, 1986; Sober, 1984)240

birth weight, as it reflects the selective significance of birth weight in a way that existing241

selection coefficients do not.242

These results do not necessarily represent a comprehensive study of selection of lamb243

traits via variation in first year overwinter survival in female Soay sheep. For example, the244

study population experiences substantial environmental variation with respect to popula-245

tion density, food availability and weather (Clutton-Brock and Pemberton, 2004; Coulson246

et al., 2001), and the relationships among traits and between traits and fitness may vary in247

important ways with environmental conditions (Catchpole et al., 2000). I present this ex-248

ample as a simple calculation of η given a path diagram, and of the interpretive differences249
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between η and β.250

Example 2: Path model-based simultaneous inference of selection251

and genetics in wild oats252

The purpose of this section is to illustrate the simultaneous estimation of extended selection253

gradients and genetic and residual exogenous variances for the purpose of quantitative254

path model-based microevolutionary prediction. The focal dataset in this section is from255

Gardner and Latta’s (2008) experiment in which recombinant inbred lines of wild oat Avena256

barbata, derived from contrasting ecotypes, were grown in the lab to evaluate relationships257

among a number of phenological, vegetative, and reproductive traits. The experimental258

design using inbred lines greatly simplifies the statistical inference of genetic parameters.259

However, the (co)variances among individuals attributable to line must be interpreted as260

broad-sense genetic parameters, i.e., representing total genetic effects, not only additive261

genetic effects. Extension to analysis of classical breeding designs (Lynch and Walsh, 1998)262

and general pedigrees (Gianola and Sorensen, 2004; Henderson, 1973; Kruuk, 2004; Wilson263

et al., 2010) is relatively straight forward (see section 2), once the basic principle is clear.264

Closely following Latta and McCain (2009), I adopted the path model structure in figure265

3 as an a priori set of causal assumptions about covariances among the phenological, veg-266

etative, and reproductive traits, and relative fitness, based on the number of reproductive267
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spikes. The set of mixed models characterizing this causal scheme is268

wi = µ7 + b7,4 ·massi + b7,5 · rpti + b7,6 ·mrti + gǫ,linei(w) + eǫ,i(w), (6a)

mrti = µ6 + b6,4 ·massi + b6,3 · dtfi + gǫ,linei(mrt) + eǫ,i(mrt), (6b)

rpti = µ5 + b5,4 ·massi + b5,3 · dtfi + gǫ,linei(rpt) + eǫ,i(rpt), (6c)

massi = µ4 + b4,2 ·m60i + gǫ,linei(mass) + eǫ,i(mass), (6d)

dtfi = µ3 + b3,2 ·m60i + gǫ,linei(dtf) + eǫ,i(dtf), (6e)

m60i = µ2 + b2,1 · dgermi + gǫ,linei(m60) + eǫ,i(m60), (6f)

dgermi = µ1 + gǫ,linei(dgerm) + eǫ,i(dgerm), (6g)

where the traits are (numerical indices for model term subscripts in brackets): (1) days269

to germination, dgerm, (2) mass on day 60, m60, in grams, (3) days to first flower, dtf ,270

(4) final total mass, mass, in grams, (5) number of reproductive tillers, rpt, (6) combined271

mass of reproductive tillers, mrt, in grams, and (7) relative fitness, w. I obtained relative272

fitness by dividing the number of seed spikes (each spike contains two seeds) by the mean273

number of spikes. For consistency with Latta and McCain (2009), I standardized each274

trait observation by subtracting block averages (the experimental rearing was conducted275

in three blocks) prior to the mixed model analyses. µ are intercepts, and bjk values are276

partial regression coefficients, where j indexes response variables and k indexes predictors.277

gǫ,linei(k) are the trait (k)-specific exogenous genetic values of each line, and are assumed278

to be drawn from normal distributions with estimated variances gǫ,linei(k) ∼ N(0, σ2
ǫ,g,k)279

where N(0, σ2) represents a normal probability distribution with mean 0 and variance280

σ2. g, for genetic value, replaces a, for breeding value, above, in the typical notation281

of the genetic effects, simply because the estimated parameters, given the inbred line-282

based experiment, are broad-sense (exogenous) genetic values rather than additive genetic283

effects. Similarly, eǫ,i(k) are residuals, drawn from normal distributions with trait-specific284

estimated variances, i.e., eǫ,i(k) ∼ N(0, σ2
ǫ,e,k). As for equation 5, I evaluated each multiple285
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regression mixed model specified by equation 6 separately using MCMCglmm (Hadfield,286

2010).287

Conditional on the structure of the path model defined by equation 6, the estimates of288

b and Φ are given in table 3. The genetic and residual variance-covariance matrices (and289

ultimately the phenotypic variance-covariance matrix, their sum), obtained using equation290

3, and equivalently, R = ΦRǫΦ
T are given in supplemental table S2. These estimated291

variance-covariance matrices generally match previously-reported genetic parameters from292

this experiment (Gardner and Latta, 2008), as well as a mixed model-based estimate of293

the genetic variances and covariances made without any assumptions (i.e., without the294

path model; supplemental table S3), using a multi-response mixed model-based analysis295

to estimate the covariance matrix associated with line and the residual covariance matrix,296

using MCMCglmm. However, the path analysis-based estimates of the matrices generally297

contained estimates of individual covariance components that are smaller in magnitude298

than the unconstrained estimates, for variances and covariances involving mass, number of299

reproductive tillers, mass of reproductive tillers, and relative fitness.300

I obtained extended selection gradient estimates by application of equation 2 to the301

estimate of b from equation 6, and obtained credible intervals by integrating this analysis302

over the posterior distribution of the solution to equation 6. Path model-based inference303

of direct and extended selection gradients revealed negative total effects of the two pheno-304

logical traits on fitness, and positive total effects of the vegetative and reproductive traits.305

Trivially, the path-based estimate of the direct effects of number and mass of reproductive306

tillers on fitness were also positive, because η and β are identical for these traits, given307

the path model (figure 3, equation 6). The direct effect of mass on fitness is negative.308

To compare the path-based estimate of β with unconstrained estimates, I estimated β309

by multiple regression of spike number on the other six traits. For this I fitted a model310

directly analogous to equation 6a, but including partial regressions of relative fitness on all311

other traits, and without the estimate of the among-line variance of relative fitness. For312

the traits with non-zero β as defined by the path model, the path-based and unconstrained313
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estimates of β are similar. Unconstrained inference of β suggests a negative direct effect314

of days to first flower on fitness (table 3).315

As in the Soay sheep example, differences between β and η in the wild oats illustrate316

important ways in which formalization the path-analysis perspective into evolutionary317

quantitative genetic inferences yields insight into selective mechanisms. For mass at day 60318

and days to first flower, η, suggests much more substantial selection than does β. Selection319

of mass is particularly interesting, as the two types of selection gradients have different320

estimated signs. Except insofar as individuals with greater mass may have greater mass of321

reproductive organs, total vegetative mass is (trivially) not itself a component of fecundity.322

Since fecundity variation is the only source of fitness variation in this greenhouse-based323

experimental system, the portion of the effect of mass on fitness that is independent of324

effects acting via fecundity is unlikely to be positive. Because non-reproductive structures325

must be maintained, they must be costly in-and-of themselves, and so the direct selection326

gradient of mass is negative. However, individuals with greater total mass also have greater327

reproductive capacity, and so the extended selection gradient of mass, i.e., the total causal328

effect of mass on fitness, is positive.329

To compare evolutionary predictions based on extended selection gradients with alter-330

native approaches to evolutionary prediction, I made predictions of microevolution based331

on application of the Lande equation ∆z̄ = Gβ (Lande, 1979), and on the secondary332

theorem of selection, whereby expected evolutionary change is the genetic covariance of333

each trait with relative fitness ∆z̄ = σ2
a(z, w) (Morrissey et al., 2010; Robertson, 1966). I334

estimated G (broad-sense genetic variances and covariances) as the among-line covariance335

matrix using a multi-response mixed model treating the six traits other than fitness (for the336

Lande equation) or all seven traits (for the secondary theorem of selection) as dependent337

variables.338

All three systems of evolutionary prediction yield qualitatively similar results (figure339

4). Based on all three systems of prediction, little evolution of days to germination and340

mass at day 60 is expected, days to first flower is expected to advance, a modest increase341
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in total mass is expected, and finally, substantial evolution of greater number and mass of342

reproductive tillers is expected. In general, the predictions based on the Lande equation343

and the secondary theorem of selection are greater in magnitude than those based on344

the path analysis of extended selection gradients (figure 4). The smaller predictions of345

evolutionary change based on the path model seem to be due to lower path model-based (co)346

variance estimates (supplemental tables S2 and S3), rather than any substantial differences347

in trait-fitness relationships (table 3).348

Discussion349

Extended selection gradients provide a means of quantitatively sumarizing selection that350

reflects the concept of “selection for” (Endler, 1986; Sober, 1984), i.e., they reflect the351

total dependence of relative fitness on variation in a trait. The example analyses of Soay352

sheep and wild oat data illustrate scenarios where total and direct effects of traits on353

fitness differ in important ways. The inferred effect of sheep birth mass on fitness might354

be relegated to indirect selection of a mere correlated trait, if only β was considered.355

Similarly, the positive covariance of oat plant mass and fitness might also be relegated to a356

case of indirect selection where the positive relationship is an indirect result of selection for357

reproductive traits. Such conclusions would represent, at best, incomplete interpretations358

of the selective consequences of variation in Soay sheep birth weight and wild oat plant359

mass.360

Direct integration of an hypothesis about the mechanism of selection into the statistical361

mechanics of the estimation of genetic and phenotypic variances and covariances has several362

potential benefits, but also necessitates careful interpretation and explicit consideration363

of the associated assumptions. First, two potential misconceptions must be addressed.364

Extension of a causal model of phenotypic covariance among traits to the genetic level does365

not require any additional assumptions beyond those that are involved in application of366

path analysis at the phenotypic level. If trait A causes variation in trait B, then the partial367
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genetic and phenotypic regressions of B on A are the same (see Hadfield 2008; Morrissey368

et al. 2010; Queller 1992; Robertson 1966 for further discussion of the manifestation of369

causation as equivalent genotypic and phenotypic partial regressions). Note that this is370

only true for the partial regressions - the action of other traits or of environmental variation371

might make the total genetic and phenotypic regressions different, and failure to account372

for all the contributors to covariances among traits may result in erroneous estimation of373

any focal partial regression parameters, just as in any selection analysis (Hadfield, 2008;374

Morrissey et al., 2010; Rausher, 1992; Robertson, 1966).375

Second, equivalence of phenotypic and genetic partial regressions does not imply equiv-376

alence, or even common signs, of phenotypic and genetic covariances and correlations. The377

magnitudes and signs of phenotypic and genetic correlations are determined jointly by378

the partial regressions and the relative magnitudes of the genetic and non-genetic compo-379

nents of the exogenous (co)variances of traits. Consider, for example, a situation in which380

a trade-off occurs between two heritable traits (perhaps a trade-off between life history381

traits). This could be manifested as a negative partial regression of one trait on the other.382

However, if the values of the two traits are both partially determined by a third trait383

(perhaps resource availability or acquisition rate; this generates a model very similar to de384

Jong and van Noordwijk’s (1992) model of resource acquisition and allocation), then they385

may covary positively despite the inherent trade-off. In a situation where the third trait386

is highly variable but not heritable, it could cause a positive overall phenotypic covariance387

between the first two traits while they could covary negatively at the genetic level, even388

though the phenotypic and genetic partial regressions among all the traits are equal.389

Path-analytic estimates of genetic variance-covariance matrices will generally be (sta-390

tistically) more precise than unconstrained estimates of genetic parameters. Consequently,391

evolutionary predictions based on η will be estimable with less sampling variance (i.e.,392

smaller standard errors). This effect may generally be dramatic, because path-based es-393

timation of G uses information about the partial regressions of traits on one another,394

obtained from phenotypic data in conjunction with an a priori causal model of trait co-395
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variance. The extent to which the statistical precision of path-based estimation of G is396

justified depends on the validity of the path model. Essentially, statistical uncertainty is397

traded against the validity of assumptions. Under the assumption that the wild oat path398

model (figure 3, equation 6) represents a valid causal explanation of the covariances among399

the traits, the standard deviations of the posterior distributions (interpretable as similar400

to standard errors) of the elements of G (supplemental table S2a) are about half of what401

they are based on unconstrained estimation of G (supplemental table S3), and uncertainty402

in evolutionary predictions based on η is correspondingly smaller as well (figure 4).403

Incorporation of path analysis into evolutionary quantitative genetic theory generates404

a new system of evolutionary prediction that is statistically and philosophically distinct405

from the breeder’s and Lande equations (Lande, 1979; Lush, 1937), and from the secondary406

theorem of selection (Robertson, 1966). Path analysis-based evolutionary prediction relies407

most heavily on a priori assumptions of the causal nature of phenotype-fitness covariance.408

Evolutionary prediction based on the breeder’s equation assumes that all traits directly409

responsible for multivariate phenotype-fitness covariances are identified, meaningfully mea-410

sured, and adequately modelled, but makes no assumptions about the causal structure of411

phenotypic and genetic relationships among traits. Finally, evolutionary prediction based412

on the secondary theorem of selection (Etterson and Shaw, 2001; Morrissey et al., 2010,413

2012; Price, 1970; Robertson, 1966, 1968) does not require that all, or indeed any, causal414

sources of trait-fitness covariance are identified, nor does it make any assumptions about415

the causal structure of phenotypic or genetic covariation among traits or between traits416

and fitness.417

The three systems for evolutionary prediction (ordered as above, i.e., path, breed-418

ers/Lande, and secondary theorem) vary in three more practical aspects: (1) This order419

represents decreasing statistical precision of evolutionary predictions when all the assump-420

tions of each system are met. (2) This order represents decreasing risk of erroneous pre-421

dictions when the assumptions are not met. And (3), this order represents decreasing422

level of insight into the mechanisms of natural selection. In fact, the secondary theorem423
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of selection provides a prediction of evolutionary change, but yields almost no insight into424

natural selection: genetic covariances of a trait and fitness may be due to selection of those425

traits, selection of other genetically correlated traits (measured or not), or may be due to426

drift, population structure, or variation in accumulated mutation (in the last two cases427

the covariation of traits with fitness may nonetheless be reasonably characterized as selec-428

tion). Robertson’s theorem could be considered a primary quantitative genetic theorem of429

evolution, neither necessarily nor specifically of selection.430

Issues pertaining to fundamental meaning, as opposed to the inference, of causal mecha-431

nisms of selection must be kept distinct. First, understanding the mechanistic, i.e., causal,432

basis of natural selection can bring an understanding of natural selection that statistical433

quantification of trait fitness relationships cannot provide alone. Whether one is interested434

in direct selection gradients (direct causal effects), extended selection gradients (total causal435

effects), or selection differentials (covariance arising from selective processes), each of these436

parameters is in some way a reflection of a causal process (Godfrey-Smith, 2007; Sober,437

1984). Inference of selection gradients relies on the existence of a correct causal model438

of the mechanism underlying trait-fitness covariance. For direct selection gradients, this439

model of direct effects of traits on fitness is implicit in the concept of partial derivatives440

of relative fitness with respect to phenotype, which in practice is normally assessed by441

multiple regression. Failure to include traits that covary with focal traits, and that cause442

fitness variation amounts to applying an incorrect model of direct effects of traits on fitness.443

This type of ‘wrong model’ problem, arising from missing traits, is well discussed (Had-444

field, 2008; Kruuk et al., 2003; Morrissey et al., 2010; Rausher, 1992; Robertson, 1966).445

Inference of extended selection gradients similarly requires that all factors that ultimately446

cause focal traits to covary with fitness be measured, and additionally, requires that a valid447

scheme by which to relate their causal effect on one another and on fitness is available.448

It must be kept in mind that the fit of observational data to a causal model of any kind449

(whether it be a multiple regression model, or a more complex causal hypothesis) provides450

only the weakest kind of inference about the validity of the model. Wright (1934) describes451
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this very well:452

“In considering the reliability of path coefficients there are two questions which453

must be kept distinct. First is the adequacy of the qualitative scheme to which454

the path coefficients apply and the second is the reliability of the coefficients, if455

one accepts the scheme as representing a valid point of view. The setting up of456

a qualitative scheme depends primarily on information outside of the numerical457

data and the judgement as to its validity must rest primarily on this outside458

information. One may determine from standard errors whether the observed459

correlations are compatible with the scheme and thus whether it is a possible460

one, but not whether it correctly represents the causal relation.”461

The current work (i) highlights why the causal structure of trait-fitness relationships mat-462

ters for making inferences about natural selection, and (ii) derives the statistical quan-463

titative genetic mechanics that relate causal schemes to selection, genetic variation, and464

evolutionary change. The current work does not provide any recipe for determining the465

causal structure of trait-fitness relationships. Inferences of η in any given application will466

vary with different assumed causal structures, but this does not mean that η is in any way467

arbitrary: there will be a correct causal structure that yields correct inference of extended468

selection gradients. As Wright points out (quote above), observational data such as that469

typically used for quantitative genetic inference of selection provides only the weakest kind470

of test of the adequacy of causal hypotheses. However, the necessity of understanding the471

causal structure of trait-fitness covariance could indeed benefit from a range of different472

kinds of information about causal relationships. Logical decisions based on chronology,473

natural history, existing theory, and experiment could all in principle be brought to bear.474

For example, in the sheep example, I considered all relationships among traits plausible;475

some effects may be small, but rather than exclude them a priori, I allowed them to be476

estimated as small values. As such the sheep analysis can be seen as a contrivance to477

exploit the least restrictive possible path model, guided only by a linear view of time and478
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causality.479

It is unlikely that relationships among measured variables in any study system will ever480

completely reflect all causes of covariance. With careful consideration of the biology of481

any given study system, it is plausible that relationships among measured variables could482

often reflect the major causes of covariance, but in general, unmeasured traits and aspects483

of the environment will generally also cause covariance among measured quantities. The484

consequences of this simple and realistic view of empirical data have profound implications485

for what can be achieved using the many existing procedures in the path analysis liter-486

ature for assessing the fit of different models to the same dataset. In particular, in the487

presence of modest effects of unmeasured variables, essentially correct causal structures488

(among measured quantities) may appear to be preferred when modest amounts of data489

are available, but with increasing data, there will be a tendency for indices of statistical fit490

to lead to preference of more complicated models, i.e., models that contain effects that do491

not exist, but reflect spurious associations due to unmeasured quantities. This principle,492

where data-driven analytical decisions, especially in frequentist analytical frameworks, will493

generally result in preference for overly complex and wrong models, applies to statistical494

modelling in general, not just to path analysis.495

This is not to say that assessing fit is irrelevant. Rather, what one does with information496

about fit is what matters. Under the assumption that each wild oat plant is independent497

(it is not, as each belongs to an inbred line), the residual mean squared error of approxi-498

mation (Steiger, 1990) is 0.109 (90% CI: 0.085-0.133), which by most arbitrary thresholds499

indicates a marginal fit, and Bentler’s (1990) comparative fit index is 0.966, which is quite500

good (indices of fit from sem Fox 2006, based on fitting the model in equation 6, but501

without accounting for inbred line). The χ2 value arising from the difference between the502

covariance structure implied by the fitted path model, and the observed covariances is 80.0,503

which on 11 degrees of freedom (the covariance matrix of the seven variables has 28 unique504

elements, minus the number of free parameters, which include 7 exogenous variances and505

10 partial regression coefficients) indicates that a more complex model could provide highly506
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statistically significantly better fit. Note that assessment of fit in these ways is not relevant507

to the Soay sheep example, as it is based on a saturated model. Imperfect fit may indicate508

that there are paths that should be added to the model, or it may indicate the presence509

of some unmeasured variable. If a path model is well considered, the latter will often be510

the case. A statistical solution will sometimes be available via fitting latent variables. La-511

tent variables are not directly considered here, but their use is common in path analysis,512

and the quantitative genetic principles pertaining to systems of causally covarying traits513

should be relatively easily extended to models that include latent variables. More usefully,514

imperfect fit could be used to inform future data collection, or could motivate experiments.515

In the wild oat example, a saturated path model (detailed in the supplemental material),516

ordered chronologically, yields the extended selection gradients (SD of posterior distribu-517

tion): dgerm, 0.021 (0.026); m60, 0.351 (0.076); dtf, -0.0232 (0.001); mass, 0.033 (0.005);518

rpt, 0.033 (0.002); and mrt, 0.086 (0.006). These inferences of selection based on a satu-519

rated model, which by definition fits the data perfectly, represent only small quantitative520

differences from those based on the original model (table 3b and figure 3). The main differ-521

ence is the slightly more negative selection of days to first flower (see also table 3c, which522

shows a potential direct component of the effect of dtf on fitness, over and above the effects523

included in the path model). The addition of such a direct effect to the path model may524

be justified on the (data-driven, post-hoc) argument that advanced phenology gives more525

time for optimal allocation of resources to different aspects of reproduction. However, for526

the present illustrative purposes, I have deferred to the expert opinion that contributed to527

the original publication of the Avena path model (Latta and McCain, 2009). Inferences528

of extended selection gradients and associated evolutionary predictions based on another529

alternative (highly post hoc) path model are presented in the supplemental material, and530

generate very similar results.531

Experimental data may in principle be more powerful for testing causal hypotheses532

(Fisher, 1935), though experimentalists know that specific causal inference from any kind533

of data can be difficult! Manipulations of traits, or of the selective context in which traits534
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are expressed, are under-used approaches to characterizing mechanistic basis of natural se-535

lection. The concept of extended selection gradients may greatly facilitate the experimental536

verification of observational inferences about natural selection, especially for approaches537

based on trait manipulation. Developmental associations among traits make experimental538

verification of β notoriously difficult. The basic experiment to verify or quantify a direct539

selection gradient requires that a trait be manipulated independently of other traits, to540

test whether relative fitness changes by β · ∆zexperimental. However, developmental asso-541

ciations of traits - which may themselves be part of the casual structure of selection -542

generally make independent manipulation of traits difficult if not impossible or irrelevant.543

In contrast, experimental verification of extended selection gradients is not in principle544

opposed to the existence of developmental relationships among traits. Importantly, exper-545

imentation should be seen not only as a means of qualitatively verifying causal hypotheses,546

but also of quantitatively parameterizing mechanistic models. The statistical mechanics547

presented here for relating extended selection gradients to genetic variation and evolution548

are equally applicable using inferences from observational or experimental data, separately549

or in combination.550

Perhaps the most important conceptual contribution in Arnold’s (1983) paper is the551

demonstration of how to link theoretical and empirical perspectives on relationships among552

traits and relationships among traits and fitness in a quantitative framework. To date,553

applications of path analysis in studies of natural selection have relied almost entirely554

on observational data. In some cases, this includes complete life history data, which555

entirely determines fitness. Analyses are then conducted treating fitness as a (statistically)556

independently observed variable, when in fact it is derived entirely from other observed life557

history variables; van Tienderen (2000)’s methods provide the mathematical machinery to558

combine evolutionary demographic theory with path analytic approaches, but the method559

has been surprisingly little used (but see Coulson et al. 2003). The generalization of560

evolutionary demographic theory of quantitative traits provided by integral projection561

models (Coulson et al., 2010; Ellner and Rees, 2006) should provide a general means of562
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integrating demographic perspectives on fitness variation into path analysis and empirical563

studies of selection. Integration of path analytic approaches to characterizing natural564

selection into integral projection models will provide the analytical tools to model the565

consequences of non-linear causal effects of traits on one another and on fitness3, and to566

rigorously model non-normal distributions of traits. Also, Rice (2002, 2004) provides a567

complimentary set of theoretical principles by which a more comprehensive quantitative568

genetic theory of the selection, genetics, and evolution of non-normal and non-linearly569

causally-covarying traits could be developed. By these approaches, more theoretically and570

statistically-sound inference of causal relationships, and corresponding path coefficients571

and extended and direct selection gradients, among traits and fitness could be obtained572

directly from life history theory. In this context, life history and demographic theory573

can also be exploited to provide robust inference of path coefficients when traits interact574

multiplicatively.575

Summary576

Given a priori assumptions about causal relationships among traits and between traits and577

fitness, path analysis can provide inference of the total causal effects of traits on fitness.578

Formalization of such characterizations of selection as extended selection gradients, and579

consideration of how these coefficients relate to quantitative genetic variation and evolu-580

tionary change, provides the basis for incorporation of path analysis into the theoretical581

and empirical evolutionary quantitative genetics tool box. In particular, extended selection582

gradients may prove to be particularly useful for comparisons of selection across studies.583

While traditional, direct selection gradients provide entirely valid evolutionary predictions584

when used with their associated statistical quantitative genetic machinery (Lande, 1979),585

their biological interpretation is hindered by the fact that they do not describe the total586

3The direct application of path rules to squared deviations of trait values from population means (e.g., as advocated by
Scheiner et al. 2000) does not generally yield quantitatively or qualitatively correct inference of non-linear selection. It is not
clear whether or not general analytical expressions for path-based inference of non-linear selection will be tractable, except in
very simple restrictive cases. Outside of an integral project model framework, path-based inference of compound non-linear
selection gradients could be obtained by numerical techniques.
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causal effects of traits on fitness, and that their (correct) values vary arbitrarily as func-587

tions of what traits are studied. This statistical, rather than biological, definition can lead588

to trivialization of the mechanism of selection. In particular, evolution of traits that cause589

fitness variation indirectly, and traits that are incidentally correlated with selected traits,590

are both treated as cases of evolution due to genetic correlations in microevolutionary stud-591

ies based only on direct selection gradients. Empirical extended selection gradient-based592

inferences of microevolutionary processes rely heavily on a priori assumptions about cau-593

sation, or in other words, on additional information about the mechanism of selection, but594

perhaps only slightly more so than the use of direct selection gradients (Morrissey et al.,595

2010). The validity of such assumptions cannot be comprehensively assessed with obser-596

vational data (Wright, 1934) alone, such as that with which path-based studies of natural597

selection are typically parameterized. However, a priori biological knowledge can be used598

to construct plausible causal schemes. Furthermore, the clarification provided herein of599

how hypotheses about the organismal biology underlying trait-fitness relationships relate600

to selection gradients in a formal quantitative genetic sense should motivate and facili-601

tate further use of experimental approaches to understanding selective mechanisms. Path602

model-based thinking about natural selection should provide the means for formally link-603

ing observational, theoretical, and experimental inferences (Arnold, 1983), and this will604

greatly complement application of the statistical quantitative genetic principles pertaining605

to extended selection gradients.606
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Table 1: Variances (diagonal), covariances (below diagonal) and correlations (above diagonal) of lamb
traits and relative fitness (based on first year over-winter survival) in female Soay sheep. Traits are Julian
birth date bdy, twin status twn, birth weight bwt (kg), weight in August awt (kg), and relative fitness is
denoted w (first year survival scored as 0 and 1, divided by annual mean survival). Values are the modes of
the posterior distribution of the (co)variances or correlations and bracketed values are standard deviations
of the posterior distribution, interpretable similarly to standard errors.

bdy twn bwt awt w

bdy 61.19 (2.41) -0.040 (0.028) 0.143 (0.028) -0.084 (0.028) 0.040 (0.028)
twn -0.134 (0.092) 0.176 (0.007) -0.398 (0.023) -0.243 (0.027) -0.136 (0.026)
bwt 0.629 (0.127) -0.094 (0.007) 0.3191 (0.013) 0.390 (0.023) 0.169 (0.027)
awt -2.54 (0.871) -0.399 (0.049) 0.877 (0.067) 15.561 (0.608) 0.282 (0.026)
w 0.208 (0.154) -0.038 (0.008) 0.067 (0.011) 0.779 (0.081) 0.492 (0.020)

Table 2: Standardized (a) path coefficients, and (b) compound path coefficients, i.e., ηij based on the
fitted path model relating sheep neonatal and lamb traits to relative fitness during the first year of life.
The bottom row of (a) are equivalent to direct selection gradients, and the bottom row of (b) are path
model-based extended selection gradients. Units are: birth day, days; twin status ∈ [0, 1], birth and August
weights, kg. Values are the modes of the posterior distribution estimates and bracketed values are standard
deviations of the posterior distribution, interpretable similarly to standard errors.

(a) path coefficients (b, bottom row are path-based β)
birth day twin status birth weight August weight

birth weight 0.126 (0.026) -0.396 (0.026)
August weight -0.139 (0.025) -0.103 (0.028) 0.363 (0.027)
w 0.036 (0.019) -0.028 (0.021) 0.033 (0.021) 0.174 (0.021)
(b) compound path coefficients (Φ, bottom row are η)

birth day twin status birth weight August weight

birth weight 0.126 (0.026) -0.396 (0.026)
August weight -0.100 (0.027) -0.254 (0.028) 0.363 (0.027)
w 0.022 (0.019) -0.092 (0.020) 0.096 (0.021) 0.174 (0.021)
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Table 3: Unstandardized (a) path coefficients, (b) compound path coefficients, i.e., ηij based on the fitted path model, and (c) unstandardized,
unconstrained direct selection differentials, of phenological, vegetative, and reproductive traits in a greenhouse experiment with a population of
recombinant inbred lines of wild oat Avena barbata derived from contrasting ecotypes. Traits are days to germination dgerm, mass at day 60 m60

(g), days to first flower dtf, total final mass mass (g), number of reproductive tillers rpt, mass of reproductive tillers mrt (g), and relative fitness
w. The bottom row of (a) are path model-based direct selection gradients, and the bottom row of (b) are path model-based extended selection
gradients. The unconstrained direct selection gradients in (c) are obtained by the multiple regression of relative fitness on all six traits. Values are
the modes of the posterior distribution estimates and bracketed values are standard deviations of the posterior distribution, interpretable similarly
to standard errors.

(a) path coefficients (b, bottom row are path-based β)
dgerm m60 dtf mass rpt mrt

m60 -0.004 (0.014)
dtf -12.707 (2.174)
mass 3.966 (0.517)
rpt -0.265 (0.018) 0.303 (0.075)
mrt -0.125 (0.006) 0.401 (0.023)
w -0.014 (0.004) 0.029 (0.002) 0.098 (0.005)
(b) compound path coefficients (Φ, bottom row are η)

dgerm m60 dtf mass rpt mrt

m60 -0.004 (0.014)
dtf 0.058 (0.188) -12.707 (2.174)
mass -0.019 (0.056) 3.966 (0.517)
rpt -0.022 (0.067) 4.791 (0.683) -0.265 (0.018) 0.303 (0.075)
mrt -0.014 (0.045) 3.239 (0.353) -0.125 (0.006) 0.401 (0.023)
w -0.002 (0.006) 0.412 (0.049) -0.020 (0.001) 0.034 (0.005) 0.029 (0.002) 0.098 (0.005)
(c) unconstrained direct selection gradients (β)

dgerm m60 dtf mass rpt mrt

w 0.014 (0.013) 0.032 (0.043) -0.0033 (0.0011) -0.012 (0.0045) 0.027 (0.002) 0.086 (0.0064)
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Figure 1: A hypothetical relationship between a morphological trait (m), and aspect of organismal per-
formance (p), and fitness (w). Arrows indicate hypothesized causal relationships. Path coefficients, bpm
and bwp are the regression coefficients of performance on morphology, and relative fitness on performance,
respectively. σ2

ǫ are exogenous variances, i.e., variation in endogenous variables beyond that attributable
to causal effects in the path model.
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Figure 2: Parameterized path diagram representing relationships among lamb traits, and among lamb
traits and relative fitness (w, based on first year over-winter survival), in female Soay sheep. Traits are
Julian birth date bdy, twin status twn, birth weight bwt, weight in August awt. Path coefficients among
traits are standardized, i.e., they represent partial correlations, and path coefficients between traits and
relative fitness represent unit variance-standardized partial regression coefficients. The thickness of arrows
represents the strength of the corresponding path coefficients. Solid arrows represent positive relationships
and dashed arrows represent negative relationships. Exogenous inputs of variance are omitted for clarity.
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Figure 3: Parameterized path diagram representing relationships among phenological, vegetative, and
reproductive traits in a population of recombinant inbred lines derived from contrasting ecotypes and
raised under greenhouse conditions. The traits are days to germination dgerm, mass at day 60 m60, days
to first flower dtf, final total mass mass, mass of reproductive tillers mrt, number of reproductive tillers rpt,
and relative fitness w, as assessed via variation in fecundity. Path coefficients among traits are standardized,
i.e., they represent partial correlations, and path coefficients between traits and relative fitness represent
unit variance-standardized partial regression coefficients. The thickness of arrows represents the strength
of the corresponding path coefficients. Solid arrows represent positive relationships and dashed arrows
represent negative relationships. Exogenous inputs of variance are omitted for clarity.
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Figure 4: Evolutionary prediction for vegetative and reproductive traits from a laboratory experiment on a
population of recombinant inbred lines of wild oat Avena barbata using extended selection gradient-based
evolutionary prediction, the breeder’s equation (specifically, Lande’s formulation based on direct selection
gradients, β), and the secondary theorem of selection, i.e., the genetic covariance of each trait with relative
fitness, σg(z, w). Traits are (a) days to germination, (b) mass at day 60, (c) days to first flower, (d) final
total mass, (e) number of reproductive tillers, and (f) total mass of reproductive tillers. Points are mean
values of the posterior distribution of the evolutionary prediction based on each predictive framework
(path-based extended selection gradients: η, multiple regression-based application of the Lande equation:
β, and application of the secondary theorem of selection: σg(z, w)), and the error bars denote 95% credible
intervals.


