
IP-Layer Soft Handoff Implementation in ILNP

Ditchaphong Phoomikiattisak
School of Computer Science
University of St Andrews, UK
dp32@st-andrews.ac.uk

Saleem N. Bhatti
School of Computer Science
University of St Andrews, UK

saleem@st-andrews.ac.uk

ABSTRACT

We present the first results of an implementation of IP-layer
soft handoff, based on the Identifier Locator Network Pro-
tocol (ILNP). In our testbed experiments, we show minimal
gratuitous packet loss in vertical handoff scenarios (WiFi-
3G). Unlike the IETF Mobile IP proposals, the ILNP uses a
purely end-to-end architecture, and does not require proxies,
middleboxes or tunnelling to support mobility. Our testbed
is based on an in-kernel implementation using a modified
Linux IP stack.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols

Keywords

Mobility Management; Vertical Handoff; Identifier-Locator
Separation; Linux Kernel

1. INTRODUCTION
Seamless mobility is increasingly desired today. Lower

level network technologies, such as 3G/4G networks or wire-
less LAN (WLAN or WiFi) networks already enable mobil-
ity support, by allowing mobility within the same underlying
technology, horizontal handoff. However, effective solutions
to enable seamless vertical handoff across different wireless
technologies are still developing. In this paper, the term
handoff always means a vertical handoff.
The problem of mobility in an IP network can be described

with the help of Table 1. As shown in the second column,
an IP address is used to bind state in the transport layer,
but is assigned to a specific physical interface – it acts as
an identifier at the transport and physical layer. However,
the IP address is also used at the network layer for routing
– it acts as a locator. As a locator could change when a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiArch’14, September 11, 2014, Maui, Hawaii, USA.

Copyright 2014 ACM 978-1-4503-3074-9/14/09 ...$15.00.

http://dx.doi.org/10.1145/2645892.2645895.

node moves to a new IP network, changing an IP address
would alter the end-to-end transport layer state. However,
an identifier should remain stable during handoff. This se-
mantic overloading of the IP address requires special treat-
ment enable mobility in IP today. This use of IP addresses
also impacts many other IP operations such as multihom-
ing, failover, concurrent sessions via multiple interfaces, and
roaming [11].

Table 1: Use of names in IP and ILNP.
Protocol layer IPv4 and IPv6 ILNP (ILNPv6)

Application FQDN, IP address FQDN or app.-specific
Transport IP address Node Identifier (NID)
Network IP address Locator (L64)
(interface) IP address dynamic binding

1.1 Naming in ILNP
The third column of Table 1 shows the use of names

in ILNPv6 (the Identifier-Locator Network Protocol (ILNP)
[2,3,5] implemented as a superset of IPv6 [4,6–8]). ILNPv6
uses distinct namespaces with dynamic bindings to imple-
ment mobility. Application level protocols can use their
own namespace, but default to using fully-qualified domain
names (FQDNs), consistent with an Internet Architecture
Board (IAB) Recommendation from 1996 [10]. Transport-
layer protocols should use only a Node Identifier (NID),
which has no topological significance. The NID always rep-
resents a (logical, virtual or physical) node rather than a spe-
cific interface on a node. Another topologically-significant
namespace called the Locator (L64), is used at the network
layer for routing and forwarding. In addition (not visible in
Table 1), there are one-to-many dynamic bindings between
NID and L64 values, as well as a separate dynamic bindings
between physical interfaces and L64 values. So, mobility
in ILNP is simply implemented by changing these dynamic
bindings between NID and L64 values, and between L64
values and interfaces. When the node is mobile, the L64
values can change without impacting end-to-end state in-
variance, as the NID value does not change once a session is
in progress. Mobile nodes can have multiple NID and L64
values and use multiple interfaces simultaneously, by adjust-
ing dynamic bindings between them as required. From an
engineering viewpoint, an NID value can be derived in the
same way as IPv6 host-ID, and the L64 value is an IPv6
routing prefix [16].

1.2 Structure of this paper
Our contributions in this paper is the first presentation

of a performance evaluation of a prototype implementation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/30318839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of the ILNPv6 mobility in the Linux kernel. After overview
of some related work in Section 2, we briefly describe an
implementation of our ILNPv6 prototype in Section 3. We
then present our evaluation and results in Section 4, followed
by a conclusion in Section 5.

2. RELATED WORK
To the best of our knowledge, there is no other end-to-end

(host-to-host) IP-layer soft handoff mechanism available at
the time of writing. Our previous overlay-emulation results
show the potential for good performance from ILNP [26].
However, we present a summary of some related work, fo-
cussing on those solutions that have been reviewed by the
IETF or the IRTF. A more comprehensive list of IP mobility
solutions can be found in [30].

2.1 Network-based Mobility Solutions
This type of solution uses new network entities, e.g. prox-

ies or middleboxes, to help manage mobility. Sometimes
tunnelling is also used for communication between those
proxies, increasing packet overhead and potentially impact-
ing the MTU size that is available to the application.
Use of Middleboxes. This could become a single point

of failure and performance bottlenecks, and also poses an
attractive target for for a malicious user to perturb the op-
eration of the mobility mechanism. End-to-end integrity for
the transport layer connections is lost, and so other func-
tions, such as IPsec, may not be possible without further
modifications.

• IETF Mobile IPv4 (MIPv4) [24] use a Home Agent
(HA) and Foreign Agent (FA) to map between a Home
Address (an identifier for the node) and Care-of-Address
(locator for the node), while Mobile IPv6 (MIPv6) [25]
require only a HA. MIPv4 and MIPv6 have the prob-
lem of high packet loss during handoff because they
use the hard handoff model, and handoff delay is high.

• Hierarchical Mobile IPv6 (HMIPv6) [29] uses a proxy
called a Mobility Anchor Point (MAP) to manage local
mobility in addition to an HA to reduce handoff delay.

• Proxy Mobile IPv6 (PMIPv6) [15] use Mobile Access
Gateway (MAG) and Local Mobility Anchor (LMA)
for mobility management hiding the mobility process
from mobile nodes.

• Locator Identifier Separation Protocol (LISP) [14] and
its extension for mobility support, LISP mobile node
(LISP-MN) [28], use a mapping system to map IP ad-
dresses into different schemas: Endpoint Identifier (EID)
and Routing Locator (RLOC).

Use of Tunnelling. This impacts per-packet performance,
and could create sub-optimal routing. The additional packet
overhead will also reduce the MTU seen by the application.
There will be extra signalling needed to manage the tunnels.

• MIPv4 use tunnelling between HA and FA, while MIPv6
eliminates tunnelling by Route Optimisation using a
Binding Update.

• Fast Handover for Mobile IPv6 (FMIPv6) [18] use tun-
nelling between the Previous Access Router (PAR) and

the New Access Router (NAR) to forward packets ar-
riving at the previous location to minimise gratuitous
packet loss during handoff [17].

• PMIPv6 use tunnelling between MAG and LMA.

• LISP, including LISP-MN, use tunnelling to encapsu-
late packets between LISP routing nodes.

2.2 Host-based Mobility Solutions
The mobility management of this type of solution is han-

dled by end hosts, without requiring additional middleboxes.
So, the end-system protocol stack requires updates.

• Level 3 Multihoming Shim Protocol for IPv6 (SHIM6)
[23] separates identifier and locator from a single IP
address by introducing a new ‘shim’ layer between
the network and the transport layer. Mobility using
SHIM6 has a problem of high handoff latency [13]; op-
timisation is in-progress [20]. Mobility support for a
multihomed mobile node is also possible [1].

• Host Identity Protocol (HIP) [19, 22] uses public and
private key pairs to manage identifier and locator of a
mobile host. An optional, additional middlebox, a ren-
dezvous server (RVS), is recommended to be deployed
for better performance of session initiation.

3. ILNPV6 PROTOTYPE IN LINUX
We have implemented a prototype of ILNPv6 (ILNP as a

superset of IPv6) in Linux kernel v3.9.0. L64 and NID values
are encoded into the IPv6 address space – see Figure 1 [6].
The top 64 bits, L64 , have the same syntax and semantics as
a routing prefix in IPv6. Its value is obtained from a normal
IPv6 Router Advertisement (RA). The lower 64 bits, NID
, has the same syntax as the IPv6 Interface Identifier, but
different semantics i.e. it represents a whole node, not a
specific interface of the node, and is not used for routing
in the core network. For convenience, our implementation
uses an NID value derived from the MAC address of the
first active interface. To improve security and privacy, the
NID values could be randomly generated similar to a privacy
extensions for IPv6 addresses [21].

IPv6 (RFC3587 and RFC4291):

| 64 bits | 64 bits |

+--------------------------------+------------------------------+

| Unicast Routing Prefix | Interface Identifier |

+--------------------------------+------------------------------+

ILNPv6 (RFC6741):

| 64 bits | 64 bits |

+--------------------------------+------------------------------+

| Locator (L64) | Node Identifier (NID) |

+--------------------------------+------------------------------+

Figure 1: Encoding of NID and L64 values into the
IPv6 address bits. An ILNPv6 L64 value has the
same syntax and semantics as an IPv6 routing pre-
fix. An ILNPv6 NID value has the same syntax as
an IPv6 Interface Identifier, but different semantics

as it represents the node not an interface.

The Linux system library (eglibc for handling names from
/etc/hosts) and kernel code were modified to enable mobility
support. We summarise the changes below.

3.1 Name resolution
Rendezvous concerns how correspondent nodes initiate

connections to a mobile host. ILNP can use DNS [5, 8] just
like IPv6 and MIPv6. However, our focus here is to study
the handoff performance, so we ignore DNS and use a mod-
ified version of /etc/hosts for mapping names to initial NID
and L64 values.
The list of ILNPv6 hosts along with their NID and L64

value is presented in the /etc/hosts file with a new syntax:
L64|preference,NID hostname

The getaddrinfo() networking API is modified to inter-
pret this new entry in the file. When getaddrinfo() detects
a “,” in an address field, it extracts an Identifier, Locator
and preference value (ignored for now) and passes them to
the kernel via the Netlink Socket to store in an Identifier-
Locator Vector (I-LV) cache. Then, an ILNPv6 ‘address’,
which looks similar to a traditional IPv6 address, is built
from those NID and L64 value and is returned to the caller.
This allows the current socket() API to be re-used. Hence,
well-behaved legacy applications (those that use the socket
descriptor only, and do not use address bits for application
state) should work with ILNPv6 just like they would with
IPv6. By checking the I-LV cache, the kernel can identify
if the provided sockaddr structure contains an IPv6 address
or ILNPv6 address. Internally, a new ‘is ilnp’ flag is used
in the socket data structure (struct sock) so that the kernel
can distinguish ILNPv6 sockets from IPv6 sockets.

3.2 ILNPv6 packets
For each incoming and outgoing packet, the kernel must be

able to detect if it is an ordinary IPv6 packet or an ILNPv6
packet. For outgoing packets, the destination IP address is
checked against the I-LV cache. If the address is found in
the cache, the destination is an ILNP node. The sender then
adds a nonce value [7] and, for convenience in our prototype
implementation only, sets the flowlabel in the IPv6 header to
0x0800. For each incoming packet, the flowlabel is checked.
If the flag is set to 0x0800, then this is an ILNP packet, and
additional operations for ILNPv6 are performed including
validation of the NID and L64 of the sender, checking the
nonce value, and updating information in the ILNP Com-
munication Cache (ILCC) which is, effectively, a table of
ILNP sessions.

3.3 ILNP Communication Cache (ILCC)
The ILCC stores information of all active ILNPv6 com-

munication sessions of the mobile host. It is implemented
in the kernel as a combination of a hash table and linked
list. Important members of each ILCC element are shown
in Table 2. Each element contains remote and local L64 val-
ues implemented as a linked list of struct l64 info, which has
important members shown in Table 3. The nonce value rep-
resent a unique communication session. In this initial eval-
uation, we use the bidirectional nonce value – both commu-
nication ends use the same nonce value. The sender would
use the nonce value presented in the ILCC or generate a new
one, if the value is not set (i.e. a new session is initiated).
For a new session, the receiver would obtain the nonce value
from the nonce option in the first received packet. For each
session, there is only one ‘active’ local L64 and one ‘active’
remote L64 at the same time. The ‘active’ local/remote L64
is changed when handoff, see Section 3.4 for more details.

Table 2: Important members of an ILCC entry.

Name Type Description

Remote L64 struct l64 info List of remote L64

Remote NID 64-bit int Value of remote NID

Remote Nonce 32-bit int Remote nonce of this session
Local L64 struct l64 info List of local L64
Local NID 64-bit int Value of local NID

Local Nonce 32-bit int Local nonce of this session
Session Timer struct timer list Timer to clear nonce values

after session timeout

Table 3: Important members of struct l64 info.
Name Type Description

L64 value 64-bit int Value of L64
flag 32-bit int status of this L64 (active,

valid, aged, or expired)
lifetime 32-bit int Duration that this L64 stay

valid
Timer struct timer list Timer to set flag to ‘expired’

for stale L64

3.4 Handoff Management
In ILNP, handoff is implemented by manipulating the dy-

namic bindings between NID and L64 values. A mobile host
detects a location change when receiving a new prefix i.e. it
moves to a new network and picks up a new prefix from the
IPv6 RA sent by a new access router. Once a new prefix
is received, a new ILNPv6 address is configured. For IL-
NPv6, the new address is built from a new prefix (L64) and
the NID , not the interface identifier like ordinary IPv6 ad-
dresses. The mobile node would then notify a change of L64
value using Locator Update (LU) message [4] to all active
correspondent nodes listed in the ILCC.

There are two types of handoff in ILNP: hard handoff
and soft handoff. For hard handoff, the mobile host always
uses only one L64 value at a time. Soft handoff allows the
mobile host to use more than one L64 values (e.g. an ‘active’
one and a ‘valid’ one), which means that a mobile host can
belong to two IP networks simultaneously.

In Figure 2, once the mobile host, X, obtains a new L64
value (L2X), it updates the current ‘active’ local L64 value
in ILCC and could (i) set the flag of previously active L64
(L1X) to ‘aged’ – hard handoff; or (ii) maintain bindings
with both L1X and L2X when it stays in an overlap region
between the two networks (e.g. through radio-cell coverage)
i.e. the flag of the previously active L64 (L1X) is changed to
‘valid’ – soft handoff. With hard handoff packet loss could
occur because the correspondent node, Y, still using the old
L64 value, where the packets sent to the ‘aged’ destination
L64 value. With soft handoff, the packet loss during handoff
is minimised, and may be close to zero because the previous
L64 value is still ‘valid’ for the mobile node, as long as it
stays in the overlap area. For Y, once a LU is received, the
‘active’ destination L64 would be updated to the new value
and the LU-ACK would be sent back to the sender.

3.5 Modification of UDP
We use a UDP application for evaluation, hence the pro-

tocol needs to be modified to support ILNPv6. Unlike TCP,
UDP is a connectionless protocol – there is no session bind-
ing. Therefore, the only modification we make is to ensure
that the source address and the destination address that will

X Y

<IP: L1X, LY> <IP: LY, L1X>

<IP: L2X, LY>

locator

change

triggered
LU (L2

X)

<IP: LY, L2X>

LU-ACK (L2X
)

Hard handoff

X Y

<IP: L1X, LY> <IP: LY, L1X>

<IP: L1X, LY>

<IP: L2X, LY>

locator

change

triggered
LU (L2

X)

<IP: LY, L2X>

<IP: L2X, LY>

LU-ACK (L2X
)

Soft handoff

Handoff

Delay

Handoff

Delay P
o

ss
ib

le

p
ac

k
et

 l
o

ss

Figure 2: A comparison of hard handoff and soft handoff. Once a mobile node X enters a new network,
it receives a new L64 value:L2X . In hard handoff (left), X simply switch to use the new L64 (L2X) and
stops using the old one (L1X). Packet loss (red/dotted arrows) could occur until the correspondent node Y
learns the updated L64 value, from the Locator Update (LU) sent by X, subsequent packets will be accepted
(green/dashed arrows). In soft handoff (right), X uses both L1X and L2X simultaneously until it receives the
LU-ACK sent by Y, minimising packet loss during the handoff.

be used for building an IP header are up-to-date (i.e. stale
values after a location change are not used). The kernel al-
ways selects the current ‘active’ L64 value from the ILCC to
derive the source/destination IPv6 address instead of using
the values provided from user space (passed to the socket()
call after using getaddrinfo()), which may now be stale.

4. EVALUATION
We examine the handoff performance comparing hard hand-

off and soft handoff, by considering: (i) the impact on UDP
application flows; and (ii) the handoff mechanism based on
the LU/LU-ACK exchange.

4.1 Experiment Configuration
Our testbed is configured as in Figure 3. All connections

are wired Ethernet 1Gbps connections: we emulate WiFi
network and 3G network behaviour in terms of loss and delay
by using netem1, a popular Linux network emulation tool.
Table 4 summarises the characteristic of the WiFi network
and the 3G network, and Figure 4 presents the cumulative
frequency distribution of the one-way delay. These profiles
were obtained from real pingmeasurements of our local office
WiFi network and a 3G network from an Apple iPhone 5,
over a 40 minute period for each network.

Table 4: Network characteristics of WiFi and 3G.

Connection
Packet One-way Delay [ms]
Loss [%] mean stdev 95% 99%

WiFi 0.26 33 26 76 180
3G 10.10 112 50 140 276

The routers, R1 and R2, are unmodified Linux machines
running radvd2 to announce prefixes for the site networks
L1, L2 and L3. To allow the mobile host to pick up new
prefixes quickly once it enters a new network, we configure
radvd to generate RAs every 1s-2s.
We used a simple UDP/IPv6 application to generate two

kinds of traffic between H1 and H2: Voice over IP (VoIP)

1http://www.linuxfoundation.org/collaborate/
workgroups/networking/netem/
2http://http://www.litech.org/radvd/

R1 H1

site

network L
1

site

network L
2

H2

site

network L
3

H2

R2

R router

H physical device / host

H2

Emulated Loss and

Delay for WiFi

Emulated Loss and

Delay for 3G

Figure 3: The topology for the experiment. The
hosts H1 and H2 reside in different networks, with
Locator values of L1 and L2, respectively. The green
/ dashed arrows identify movements of H2 between
site networks generating a handoff.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
u
m

u
la

ti
v
e

F
re

q
u
en

cy

Delay [ms]

Measured delay for 3G and WiFi

3G
WiFi

Figure 4: The cumulative frequency distribution of
one-way delay of WiFi network and 3G network.

flows and streamed video flows. The VoIP flows are gener-
ated based on characteristics of Skype traffics [9, 12], using
a packet size of 300 bytes to generate a 64kbps flow. We use
1 Kbyte packets to generate 250 kbps video (ViIP) flows,
as an emulation of mobile YouTube traffic [27]. For both
flows, an acknowledgement is sent for each packet, so, the
sender can evaluate loss.

We emulated a mobile node moving betweenWiFi to/from
3G while each of the two flow types was in progress. Handoff

was emulated by turning interfaces on and off between the
emulated WiFi network and the emulated 3G network. The
handoff is triggered when a new interface of H2 comes up
and receives a new L64 from an IPv6 RA. The handoff is
completed by an LU/LU-ACK handshake as: (i) H2 updates
new L64 value to H1 by sending a LU messages, (ii) H1
responds with an LU-ACK to H2. If H1 did not receive
the LU-ACK within in 1 second, the LU was retransmitted.
The retransmissions stop after 5 attempts. The handoffs
were made every 9 seconds, with 5 seconds in the overlap
area (i.e. both interfaces of H2 were on).
Each flow was 75 seconds long. We performed 10 repeti-

tions for each of the scenarios above using hard handoff and
soft handoff.

4.2 Results
Packet delay is the application level packet delay. This

is the time taken to deliver a packet to another end host.
The values are measured using half of the round-trip time
(RTT/2) of each acknowledged packet, as the path was sym-
metric. The closer this is to the natural value, the better.
(Figure 5a.)
Handoff delay is the time taken for a mobile host to com-

pletely switch to use a new L64 , i.e. the duration of the
LU/LU-ACK handshake. The closer this value is to the
RTT, the better. (Figure 5b.)
Overhead is the number of LU / LU-ACK handshakes that

are required in order to complete a handoff process. The
closer the number is to 1, the better. (Figure 5c.)
Gratuitous packet loss is the application level packet loss

additional to the natural network loss, i.e. loss caused by
the handoff mechanism. The values are the differences of
overall loss (calculated from the number of sent packets and
the number of acknowledged packets) and natural loss (see
below). The closer this is to zero, the better. (Figure 5d.)
The main finding is that, for our experimental configu-

ration, soft handoff minimises gratuitous loss (Figure 5d),
while having similar performance to hard handoff in terms
of packet delay (Figure 5a), handoff delay (Figure 5c), and
signalling overhead (Figure 5c).
Figure 5d shows that gratuitous packet loss was min-

imised, and was almost zero. Hard handoff incurred gratu-
itous packet loss, as expected from our discussion in Section
3.4 and Figure 2, as some packets were transmitted with the
incorrect L64 value while the LU/U-ACK handshake was in-
complete. As the mobile host started in the WiFi network
and handed-off every 9 seconds, it spent 36 seconds (48%) in
the 3G network and 39 seconds (52%) in the WiFi network.
Hence, the ‘natural’ loss is calculated from the Eqn. (1), use
LossWiFi = 10.10 and Loss3G = 0.26 (from Table 4), giving
a value of 4.98%.

Loss = (52LossWiFi/100) + (48Loss3G)/100) (1)

The measured delay, for both hard handoff and soft hand-
off, is slightly higher than the emulated values in every case
by (∼20ms) (see Figure 5a) due to the cumulative processing
delays in the end systems and netem. The ‘natural’ delay
can also be calculated from Eqn. (1): by replacing LossWiFi

with DelayWiFi (33ms) and Loss3G with Delay3G (112ms),
the natural delay is 70.92ms.
The minimum value of the mean handoff delay (Figure

5b) would be the RTT – 66ms when handing off to WiFi
(4 times) and 224ms when handing off to 3G (4 times). So,

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

VoIP Video

E
x
p
er

ie
n
ce

d
 D

el
ay

 (
m

s)

Test Scenario

The mean packet delay of WiFi/3G-A network

Emulated Delay
Hard Handoff
Soft Handoff

(a) Packet delay.

 0

 100

 200

 300

 400

 500

 600

VoIP Video

H
an

d
o
ff

 D
el

ay
 (

m
s)

Test Scenario

The mean hand-off delay

RTT
Hard Handoff
Soft Handoff

(b) Handoff delay.

 0

 0.5

 1

 1.5

 2

VoIP Video

N
u
m

b
er

 o
f

se
n
t

L
U

 (
ti

m
es

)

Test Scenario

The mean sent LU per hand-off

Hard Handoff
Soft Handoff

(c) Overhead.

 0

 1

 2

 3

 4

 5

VoIP Video

E
x
p
er

ie
n
ce

d
 G

ra
tu

it
o
u
s

L
o
ss

 (
%

)

Test Scenario

The mean gratuitous packet loss

Hard Handoff
Soft Handoff

(d) Gratuitous packet loss (Overall loss – Natural loss).

Figure 5: Performance of hard and soft handoff. Er-
ror bars at 95% confidence from 10 runs. Horizon-
tal/bue lines are ‘natural’ values (see Section 4.2).

the mean RTT for the duration of the flow is 145ms. The
observed handoff delays are higher than RTT because of
some LU/LU-ACK loss which meant handoffs may have had
more than one attempt to complete (see the larger error
bars). However, the mean value is still low (less than 2

RTT), and we can see that the mean number of LUs sent
(i.e. handovers attempted) is low (Figure 5c).

5. CONCLUSION
Our in-kernel Linux implementation of ILNPv6 shows that

soft handoff with ILNP minimises gratutous packet loss dur-
ing handoff, while maintining similar performance to hard
handoff in terms of handoff delay, application level packet
delay and signalling overhead. We believe that ILNPv6,
with soft handoff, could work well in a range of wireless net-
work scenarios including WiFi networks and 3G networks
(see our previous work [26]).
The ILNP mobility model is purely end-to-end, not requir-

ing middlesboxes, proxies or tunnelling, and has low over-
head. Not requiring middleboxes or proxies also obviates
performance bottlenecks, single points of failure and targets
for attack by malicious users.
For the future, we plan to complete the ILNPv6 prototype

and test against various existing mobility solutions, includ-
ing Mobile IPv6 and, in a range of scenarios and including
with the use of real applications.

6. REFERENCES

[1] A. Achour, B. Kervella, and G. Pujolle. SHIM6-based
mobility management for multi-homed terminals in
heterogeneous environment. In WOCN 2011 - 8th Intl.
Conf. Wireless and Optical Communications
Networks, pages 1–5, May 2011.

[2] R. Atkinson, S. Bhatti, and S. Hailes. ILNP: Mobility,
Multi-homing, Localised Addressing and Security
Through Naming. Telecommunication Systems,
42(3):273–291, Dec 2009.

[3] R. Atkinson, S. Bhatti, and S. Hailes. Evolving the
Internet Architecture Through Naming. IEEE JSAC,
28(8):1319–1325, Oct 2010.

[4] R. Atkinson and S. N. Bhatti. ICMP Locator Update
Message for the Identifier-Locator Network Protocol
for IPv6 (ILNPv6). RFC 6743, IRTF, Nov 2012.

[5] R. Atkinson and S. N. Bhatti. Identifier-Locator
Network Protocol (ILNP) Architectural Description.
RFC 6740, IRTF, Nov 2012.

[6] R. Atkinson and S. N. Bhatti. Identifier-Locator
Network Protocol (ILNP) Engineering Considerations.
RFC 6741, IRTF, Nov 2012.

[7] R. Atkinson and S. N. Bhatti. IPv6 Nonce Destination
Option for the Identifier-Locator Network Protocol for
IPv6 (ILNPv6). RFC 6744, IRTF, Nov 2012.

[8] R. Atkinson, S. N. Bhatti, and S. Rose. DNS Resource
Records for the Identifier-Locator Network Protocol
(ILNP). RFC 6742, IRTF, Nov 2012.

[9] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and
P. Tofanelli. Revealing Skype traffic: when
randomness plays with you. In Proc. SIGCOMM 2007,
pages 37–48, New York, NY, USA, 2007. ACM.

[10] B. Carpenter. Architectural Principles of the Internet.
RFC 1958, IAB, Jun 1996.

[11] B. E. Carpenter. IP Addresses Considered Harmful.
SIGCOMM Comput. Commun. Rev., 44(2):65–69,
Apr. 2014.

[12] K. Chen, C. Huang, and C. Huang, P.and Lei.
Quantifying Skype user satisfaction. In Proc.

SIGCOMM 2006, pages 399–410, New York, NY,
USA, 2006. ACM.

[13] A. Dhraief and N. Montavont. Toward Mobility and
Multihoming Unification - The SHIM6 Protocol: A
Case Study. In IEEE WCNC 2008 - Wireless Comms.
and Networking Conf., pages 2840–2845, March 2008.

[14] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The
Locator/ID Separation Protocol (LISP). RFC 6830,
IETF, Jan 2013.

[15] S. Gundavelli, K. Leung, V. Devarapalli,
K. Chowdhury, and B. Patil. Proxy Mobile IPv6. RFC
5213, IETF, Aug 2008.

[16] R. Hinden and S. Deering. IP Version 6 Addressing
Architecture. RFC 4291, IETF, Feb 2006.

[17] E. Ivov and T. Noel. An experimental performance
evaluation of the IETF FMIPv6 protocol over IEEE
802.11 WLANs. In Proc IEEE WCNC 200, volume 1,
pages 568–574, April 2006.

[18] R. Koodli. Mobile IPv6 Fast Handovers. RFC 5568,
IETF, July 2009.

[19] R. Moskowitz, P. Nikander, P. Jokela, and
T. Henderson. Host Identity Protocol. RFC 5201,
IETF, Apr 2008.

[20] M. Mudassir Feroz and A. Kiani. SHIM6 Assisted
Mobility Scheme, an intelligent approach. In IEEE
CCNC 2013 - Consumer Comms. and Networking
Conf., pages 725–728, Jan 2013.

[21] T. Narten, R. Draves, and S. Krishnan. Privacy
Extensions for Stateless Address Autoconfiguration in
IPv6. RFC 4941, IETF, Sep 2007.

[22] P. Nikander, T. H. (Ed), C. Vogt, and J. Arkko.
End-host mobility and multihoming with the host
identity protocol. RFC 5206, IETF, Apr 2008.

[23] E. Nordmark and M. Bagnulo. Shim6: Level 3
Multihoming Shim Protocol for IPv6. RFC 5533,
IETF, Jun 2009.

[24] C. Perkins. IP Mobility Support for IPv4, Revised.
RFC 5944, IETF, Nov 2010.

[25] C. Perkins, D. Johnson, and J. Arkko. Mobility
Support in IPv6. RFC 6275, IETF, Jul 2011.

[26] D. Phoomikiattisak and S. N. Bhatti. Network Layer
Soft Handoff for IP Mobility. In Proc. PM2WH2N
2013 - 8th ACM Wrkshp. Perf. Monitoring and
Measurement of Heterogeneous Wireless and Wired
Networks, pages 13–20, Nov 2013.

[27] J. Ramos-munoz, J. Prados-Garzon, P. Ameigeiras,
J. Navarro-Ortiz, and J. Lopez-soler. Characteristics
of mobile youtube traffic. Wireless Communications,
IEEE, 21(1):18–25, February 2014.

[28] A. Rodriguez Natal, L. Jakab, M. Portoles,
V. Ermagan, P. Natarajan, F. Maino, D. Meyer, and
A. Cabellos Aparicio. LISP-MN: Mobile Networking
Through LISP. Wireless Personal Communications,
70(1):253–266, 2013.

[29] H. Soliman, C. Castelluccia, K. ElMalki, and
L. Bellier. Hierarchical Mobile IPv6 (HMIPv6)
Mobility Management. RFC 5380, IETF, Oct 2008.

[30] Z. Zhu, R. Wkaikawa, and L. Zhang. A Survey of
Mobility Support in the Internet. RFC 6301, IETF,
Jul 2011.

