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Abstract: We demonstrate site-controlled InAs/GaAs quantum dot emission at 1.3 µm 

telecommunication wavelength. The samples were fabricated by molecular beam epitaxy on 

patterned substrates, which have been prepared by electron beam lithography and wet 

chemical etching. By embedding a single layer of positioned quantum dots in a strain 

reducing InGaAs quantum well layer, we successfully shifted the emission band beyond the 

important telecommunication wavelength of 1.3 µm. Furthermore, the resulting deep 

carrier confinement allowed us to preserve strong quantum dot luminescence up to room 

temperature.  

Semiconductor quantum dots (QDs) have been established as solid-state sources of non-classical light 

due to their capability to emit single photons with high purity on demand1, even under electrical 

injection2. Such sources are in particular desirable for applications in the field of quantum key 

distribution (QKD)3. However, long-distance quantum communication requires emitters matching the 

absorption and dispersion minimum of optical fibers, i.e. 1.3 µm and 1.55 µm. In fact, first 

demonstrations of QKD using QD sources in the telecommunication windows have already been 

demonstrated4,5. However, one persisting problem of solid state single photon sources based on QDs is 

the source brightness, which hardly exceeds 2-4 % for a single QD embedded in bulk material. This can 

be significantly improved by embedding the QD in an engineered photonic environment, such as a 

photonic waveguide or a microcavity, where extraction efficiencies in excess of 70 % have been 

demonstrated6. A scalable and parallel fabrication routine of such bright sources, in particular emitting at 

telecommunication wavelength, is highly desirable, yet a very challenging task. Site-controlled quantum 

dots (SCQDs) are very promising candidates to realize such a system, since they can be integrated in 

photonic structures in a scalable manner without the necessity to retrieve individual emitters after 
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growth. Several approaches were attempted to push the emission band of InAs/GaAs QDs towards the 

telecommunication wavelength range. Single InAs QDs on GaAs emitting at 1.3 µm were fabricated by 

using strain reducing layers7,8 and employing dilute nitrite materials9. However, a scalable system with 

InAs SCQDs at telecommunication wavelength has so far only been shown on InP substrate10,11.  

In this paper we show emission at 1.3 µm from InAs SCQDs on GaAs substrate at room temperature. Our 

samples are grown via molecular beam epitaxy (MBE) on pre-patterned substrates. The substrates 

contain an array of nanoholes, which were fabricated by the means of electron beam lithography and 

wet chemical etching12. These substrates were overgrown with a 5 nm GaAs buffer layer, a 3 nm AlAs 

diffusion barrier and a 4 nm GaAs smoothing layer, as schematically depicted in Fig. 1(a). For the SCQDs a 

dot-in-a-well (DWELL) structure is used. The InAs SCQDs (1.1 nm InAs) are grown on 1 nm In0.2Ga0.8As and 

are capped with 5 nm In0.2Ga0.8As and 50 nm GaAs at a substrate temperature of 520°C. The quantum 

well (QW) serves as a strain reducing layer so that the QD size and the indium content can be enlarged13. 

As QDs are likely to nucleate at crystal defects, the positioning is ensured by the nanoholes.  

 

 

Fig. 1. (a) Schematic drawing of the sample layout. b) AFM image of 4x4 SCQDs with a pitch of 500 nm. c) Detailed 

AFM image of a single SCQD. (d) Detailed AFM image of a QD molecule. 



Fig. 1(b) shows an atomic force microscopy (AFM) image of a sample of uncapped SCQD grown on 1 nm 

In0.2Ga0.8As with a 500 nm pitch between the SCQDs. The initially circular shaped nanoholes with a 

diameter of about 100 nm and a depth of 20 nm after wet chemical etching evolve to elongated holes 

during overgrowth. AFM investigations after the QD growth reveal that the nanoholes are elongated in 

(011) direction with dimensions of about 120 nm length and 60 nm width. All nanoholes are occupied by 

well positioned QDs or QD molecules and there are only few interstitial QDs with a very small size. The 

formation of single SCQDs versus QD molecules strongly depends on the growth conditions, the amount 

of deposited indium, the growth dynamics and the size and shape of the nanoholes14,15. In our specific 

case we had to find a compromise for the substrate temperature (520°C): Higher substrate temperatures 

result in a larger migration length during the InAs deposition process, leading to a suppression of 

molecule formation. However, Indium desorption and inter-diffusion processes with the barrier material 

become strongly pronounced, leading to a reduction of the indium content which results in a blue-

shifted QD emission. Furthermore the elongated shape of the nanoholes facilitates QD molecule 

formation. These conditions cause QD molecule formation in 55% of the nanoholes in good accordance 

with previous reports on similar sample layouts and growth conditions16. A representative single SCQD is 

shown in Fig. 1(c) with dimensions of about 60 nm in length, 40 nm in width and 9 nm in height. In  

Fig. 1(d) an AFM image of a QD molecule is depicted, consisting of two QDs with approximately 35 nm in 

length, 20 nm in width and 7 nm in height. Both, the site-controlled QDs and the QD molecules are 

elongated in the (0-11) direction with an angle of about 20°. A detailed analysis of the particular shape, 

crystalline core and stain for single quantum dots and quantum dot molecules can be found in previous 

reports17. For single quantum dots and molecules a strong similarity in these characteristics was found, 

resulting in similar photoluminescence spectra18. However the smaller size of the QD molecules causes a 

spectral blue-shift which we believe contributes to the spectral ensemble broadening of the QD emission 

in our spectra. 

On an as-grown sample that was capped with 5 nm In0.2Ga0.8As and 50 nm GaAs, the photoluminescence 

(PL) of the SCQD ensemble was measured with an InGaAs charge-coupled device detector under above 

bandgap excitation (532 nm). For each single spectrum the temperature of the sample in the cryostat 

was raised from 4 K up to 290 K. In the waterfall plot of Fig. 2(a) the temperature dependent PL spectra 

are depicted. The PL peak intensity of the SCQDs is about a factor of 3 smaller than the peak intensity of 

self-assembled In(Ga)As QDs in the same spectral range at cryogenic temperatures. We attribute this to 

a reduced quantum efficiency caused by non-radiative carrier escape, as previously reported on similar 

structures emitting at 950 nm19. 



 

 

Fig. 2. (a) Waterfall plot of the temperature dependent PL spectra. (b) Varshni fit of the temperature dependent 

peak-wavelength. (c) Relative change of the emission energy ∆𝐸 of the measured data, GaAs bulk and InAs bulk 

material. (d) Arrhenius plot of the temperature dependent PL intensity. 

 

The temperature dependent redshift of the peak-wavelength follows the empirical Varshni equation20 

𝐸(𝑇) = 𝐸0 − (𝐴 ∙ 𝑇2) ∙ (𝐵 + 𝑇)−1 as shown in Fig. 2(b). The data can be well reproduced with  

𝐸0 = 1.04 𝑒𝑉 (corresponding to the emission energy at 0 K), 𝐴 = 5.98 ∙ 10−4 and 𝐵 = 219.45. At a 

temperature of 270 K the emission wavelength passes 1.3 µm what constitutes the first experimental 

measurement of SCQD emission at telecom wavelength on this material system. Fig. 2(c) shows the 

relative temperature dependent emission energy of the measured data, GaAs bulk and InAs bulk 

material referring to the particular band gap at 0 K. The redshift of the data follows the shape of the 

branch of GaAs. The intensity decrease of the QD emission at higher temperatures due to thermal 

quenching can be analyzed by calculating the activation energies. A simple rate model21 with two 

activation energies is used to fit the experimental data: 



𝐼(𝑇) =
𝐼0

1 + 𝐶1 ∙ 𝑒
− 

𝐸1
𝑘𝑏∙𝑇 + 𝐶2 ∙ 𝑒

− 
𝐸2

𝑘𝑏∙𝑇 

                          (1) 

In Eqn. (1) the temperature dependent intensity 𝐼(𝑇) is described by 𝐼0, the extrapolated intensity at  

0 K, two activation energies 𝐸1 and 𝐸2 and two parameters 𝐶1 and 𝐶2, which represent the strength of 

the two loss channels. The Arrhenius plot in Fig. 2(d) reveals the activation energies 𝐸1 = 25 𝑚𝑒𝑉 for 

lower temperatures and 𝐸2 = 137 𝑚𝑒𝑉 for the high temperature regime. These values are comparable 

with values in previous reports on self-assembled InAs QDs in DWELL structures with values of  

25 - 80 meV22-26 for low temperatures and 170 - 289 meV24-26 for high temperatures. The lower activation 

energy  𝐸1 can be attributed to nonradiative recombination of excitons in QDs due to defects in close 

proximity23. Such a defect can be introduced via the etched surface below the SCQDs and is a possible 

reason that 𝐸1 ranges at the lower end of the reported values. For the high temperature region the 

dominating loss channel is a reduced exciton capturing in the QDs, which is limited by thermal escape 

from the surrounding In0.2Ga0.8As QW into GaAs bulk26. A simple calculation shows that 𝐸2 nearly 

matches the difference of the binding energies  ∆𝐸 = 145 𝑚𝑒𝑉 for a 6 nm In0.2Ga0.8As QW (1.358 eV) 

and the GaAs bulk exciton (1.503 eV) at 80 K. 

 

In conclusion, we described the fabrication and morphological analysis of site-controlled InAs QDs on 

GaAs substrate in a DWELL structure. This design allows an enlargement of the QD size and the indium 

content. Temperature dependent photoluminescence measurements were performed followed by a 

detailed analysis of the loss channels. For the first time PL emission of site-controlled InAs QDs at a 

telecommunication wavelength of 1.3 µm could be shown on this material system. This result is an 

important step towards a scalable system of InAs QDs for the use in semiconductor devices aiming for 

the application in telecommunication systems. 
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