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We use a picosecond acoustics technique to modulate the laser output of electrically pumped GaAs/

AlAs micropillar lasers with InGaAs quantum dots. The modulation of the emission wavelength

takes place on the frequencies of the nanomechanical extensional and breathing (radial) modes of the

micropillars. The amplitude of the modulation for various nanomechanical modes is different for

every micropillar which is explained by a various elastic contact between the micropillar walls and

polymer environment. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906611]

Micrometer-sized pillars obtained by lateral patterning of

vertical cavity surface emitting lasers (VCSELs) with quan-

tum dots (QDs) as optically active medium provide an ideal

platform for cavity quantum electrodynamical effects.1–4

Besides this fundamental interest, such micropillar structures

are prospective devices as emitters of single or entangled pho-

tons for quantum information technology if electrically

pumped.5,6 Recently, it was demonstrated that the nanome-

chanical properties of VCSELs may be exploited for ultrafast

modulation of the laser output of VCSELs.7,8 These experi-

ments were performed on optically pumped planar VCSELs.

For applications, electrical pumping is essential, for which the

VCSELs have to be patterned laterally for electrical injection.

This patterning changes also their nanomechanical properties

which vice versa may be even tailored by the structuring.

Exploiting nanomechanical effects in electrically pumped
micropillar VCSELs would be a significant step forward

towards applications of cavity opto-nanomechanics.9

The mechanical (i.e., acoustic or phononic) properties of

passive micropillars and similar nanoobjects (e.g., nanorods)

have been studied experimentally and theoretically in a num-

ber of works during the last decade.10–13 The mechanical res-

onance frequencies for micropillars can be easily calculated

using numerical techniques, e.g., finite element simulations.

In some cases, like free standing nanorods with the length

much bigger than the radius, the eigenfrequencies can be

even determined analytically.11–14 Typical micropillars with

radii between 1 and 10 lm possess gigahertz (GHz) funda-

mental vibrational modes, which are the challenging fre-

quency range for laser applications, such as optical data

transmission.15 The focus of the present work is to under-

stand the impact of such nanomechanical modes on the laser

emission from micropillar VCSELs that are electrically

pumped.

The electric contacts lead to specific differences in the

nanomechanical properties in comparison to free-standing

micropillars. These differences arise from the planarization

of the structure by a polymer surrounding the pillars and

coming thereby in touch with them.4 Polymer and semicon-

ductor have different acoustic impedances. The contact

between them is expected to lead to changes of the nanome-

chanical properties which govern the modulation of laser

emission. The detailed changes depend on the quality of the

elastic contact between micropillar and polymer.

In the present work, we study the temporal evolution of

the laser emission in a number of electrically pumped VCSELs

after the impact of a picosecond strain pulse, which excites

nanomechanical micropillar modes. We observe that the

excited nanomechanical vibrations modulate the wavelength

and intensity of the laser output. The modulation spectrum

covers a wide frequency range from 0.1 to 1.2 GHz, while the

spectral position of the maximum depends on the particular

VCSEL. From analyzing the nanomechanical spectrum of the

micropillars numerically, we suggest a qualitative explanation

for the experimental observations that is based on the different

quality of the elastic contact between micropillar and polymer

environment in the different studied VCSELs.

The sample used hosts several arrays of electrically

pumped micropillar VCSELs, and a corresponding scanning

electron microscopy image of a micropillar cross-section is

shown in Fig. 1(a). These micropillars are based on a planar

microcavity structure consisting of two distributed Bragg

reflectors (DBRs) formed by alternating layers of GaAs and

AlAs with layer thicknesses of 68 nm and 77 nm, respec-

tively. The bottom DBR at the (100)-orientated GaAs sub-

strate side consists of 27 double-layers, while the top DBR is

made of 23 double layers. A GaAs k-cavity layer is placed

between the bottom and top DBRs. This layer contains a

sheet of Ga0.7In0.7As QDs in the center that serve as the opti-

cally active medium. In order to electrically inject electron-

hole pairs into the QDs, the substrate and the bottom DBR

are n-doped, while the top DBR is p-doped. Arrays of micro-

pillars with diameters of d¼ 3 lm and d¼ 4 lm are etched

out of this planar structure that is afterwards filled up witha)Thomas.Czerniuk@tu-dortmund.de
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the polymer benzocyclobutene (BCB). The polymer filling

mechanically supports gold rings on top of the micropillars

used as the electric contacts to the micropillars. The length

of the micropillars is l¼ 6.6 lm. More details about fabrica-

tion, electrical and optical characteristics of the used micro-

pillar VCSELs can be found in an earlier publication.16 A

100 nm thin Al film is deposited on the polished substrate on

the backside of the sample, which allows the generation of

the acoustic pulse and serves as the second electric contact

as well.

Figure 1(b) shows the scheme of the experiment. The

picosecond strain pulses with an amplitude of �10�3 are

excited by femtosecond laser pulses hitting the Al film.17

The pulses propagate with the sound velocity through the

GaAs substrate and hit the micropillars about t0� 19 ns after

their generation, thereby coherently exciting resonant elastic

(nanomechanical) modes in the pillars. In the experiment,

we study the temporal/spectral evolution of the laser output

in the 12.5 ns time interval after the impact of the picosecond

strain pulse at t0. For this purpose, we use a spectrometer and

a streak camera with spectral and temporal resolutions of

0.05 nm and 50 ps, respectively.

The experiment is carried out at a cryogenic temperature

of T¼ 8 K. Under electrical excitation, a VCSEL emits laser

light with a central wavelength k0 that is determined by the

photonic resonance of the structure. For the experiment, we

selected different micropillar VCSELs which show a similar

laser threshold bias. Emission spectra for three different

VCSELs electrically driven well above the laser threshold

are shown in Fig. 1(c). VCSEL1 shows the smallest laser

linewidth with a full width at half maximum (FWHM) of

Dk1¼ 0.07 nm. The two other VCSELs demonstrate a much

broader emissions with Dk2¼ 0.12 nm and Dk3¼ 0.15 nm

for VCSEL2 and VCSEL3, respectively.

All VCSELs show a modulation of the laser emission

I(t,k) as result of the picosecond strain pulse impact, but the

modulation amplitude and frequency depend strongly on the

particular VCSEL. In the following, we will concentrate on

the results obtained for three VCSELs which spectra are

shown in Fig. 1(c). Streak camera images of the measured

I(t,k) are shown in the left panels of Fig. 2 and correspond to

VCSELs 1 and 3 with d¼ 3 lm and VCSEL 2 with d¼ 4 lm.

The temporal evolutions of the central wavelength kc(t) of

the laser emission are shown in the streak camera images by

the solid black lines and the right panels in Fig. 2 show the

fast Fourier transforms (FFT) of kc(t).
It is seen from Fig. 2 that the laser output of all VCSELs

undergoes oscillations of kc, but the spectra of these oscilla-

tions are very different. Indeed, for VCSEL1 the spectrum of

the oscillations of kc(t) [right panel in Fig. 2(a)] shows three

lines with maxima at f0¼ 0.18 GHz, f1¼ 0.47 GHz, and

FIG. 1. Experimental arrangements. (a) Scanning electron microscopy

image of the micropillar cross-section; the defect interface (marked by white

arrows) between the micropillar wall and polymer environment is seen on

the image as a light gray strip. (b) Scheme of the experiment with the pico-

second strain pulses excited by a femtosecond laser in the Al film deposited

on the side of the GaAs substrate opposite to the VCSELs. (c) The laser

emission spectra of three studied VCSELs showing different laser line

widths.

FIG. 2. Laser wavelength modulation. Streak camera images (left panels) of

the laser emission of the three studied VCSELs. Red color corresponds to

maximum intensity, and the evolution of the central emission wavelength

kc(t) is shown by solid black lines. Right panels show fast Fourier transforms

kc(t) for kc(t). Vertical arrows in right panels indicate the numerically (solid

arrows) and analytically (dashed arrows) calculated frequencies of the exten-

sional (E) and breathing (B) modes.
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f2¼ 0.77 GHz from which the maximum at f0 is the dominant

one. The VCSEL2 and VCSEL3 spectra [Figs. 2(b) and 2(c),

respectively] show maxima at f¼ 0.90 GHz and 1.24 GHz,

respectively. This high-frequency line is to a good approxi-

mation the only one for the micropillar with d¼ 3 lm

[Fig. 2(c)] so that in this case the oscillation of kc(t) for

VCSEL3 can be considered as single harmonic with a quality

factor �10.

The temporal evolution of the spectrally integrated in-

tensity I(t) of the laser emission also shows oscillations as

demonstrated in Fig. 3(a). These oscillations are weak in

VCSEL1 but reach 40% in VCSEL2. The FFT of I(t) from

VCSEL2 and VCSEL3 shown in Fig. 3(b) exhibit single

spectral lines with maxima at the frequencies f¼ 0.90 GHz

and 1.24 GHz, respectively, exactly as in the FFT of kc(t) in

Figs. 2(b) and 2(c).

For understanding the experimental results, we consider

the nanomechanical properties of micropillar VCSELs. The

picosecond strain pulse arriving at the VCSEL array from

the backside of the sample excites coherent vibrations that

result in a dynamical atom displacement accompanied by

mechanical strain in the micropillars. The displacement

along the z-direction (i.e., parallel to the micropillar axis)

modulates the thickness of the layers while dynamical strain

tensor components eij may affect the dielectric permittivity

tensor in the DBRs and the laser cavity.18 Both effects can

result in a modulation of the VCSELs output I(t,k). The first

step in our analysis is to calculate the frequencies of the

localized nanomechanical eigenmodes in the studied micro-

pillars and compare them with the values measured experi-

mentally. The eigenfrequency calculation for a VCSEL

with length l and diameter d is performed by using the finite

element method, taking into account the GaAs substrate but

omitting the polymer which surrounds the micropillar. The

results of the calculations are shown in the right panels of

Fig. 2 by the vertical solid arrows. These numerically cal-

culated values are close to the values obtained analytically

for the extensional (E) and breathing (B) vibrational modes

of a cylinder with l� d/2 (for the extensional modes

one end of the cylinder is assumed to be fixed). The E- and

B-modes have very different characteristics for the dis-

placement and strain distributions in the micropillars:

E-modes correspond to localized longitudinal vibrations

along the z-direction; B-modes are radial modes for which

the strain tensor component ezz¼ 0. The analytical expres-

sions for the frequencies fEn and fBn of the nth E- and B-

mode are11–14

fEn ¼
2nþ 1

4l

ffiffiffi
Y

q

s
; fBn ¼

sns

pd
; (1)

where Y is Young’s modulus along the axis of the micropillar,

q is the density, s is the longitudinal sound velocity, and

sn� 1 is a dimensionless parameter determined by a transcen-

dental algebraic equation, see Ref. 12. For all material param-

eters, we used the mean values of GaAs and AlAs weighted

by their content within the micropillar: Y¼ 84.34 GPa,

s¼ 5219 m/s, and q¼ 4.50 g/cm3.

The dashed vertical arrows in the right panels of Fig. 2

show the values for fE0, fE1, fE2, and fB0 calculated using

Eq. (1). Since the analytical and numerical calculations

(compare the positions of the solid and dashed arrows) give

similar values for the vibrational frequencies, we can iden-

tify whether a numerically calculated frequency corresponds

to an E- or a B-mode. The validity of this classification has

also been confirmed by varying micropillar height l and di-

ameter d in the calculations. The numerically calculated val-

ues of fEn and fBn show a linear dependence on l�1 and d�1,

respectively, which is in full agreement with the analytical

expression in Eq. (1).

Furthermore, the right panels of Fig. 2 show good agree-

ment between the experimental and calculated values of the

mode frequencies. For instance, the calculated values of fE0,

fE1, and fE2 marked by arrows fit well the measured spectral

positions of the maxima in VCSEL1. The calculated values

of fB0 match the maxima of the measured spectral lines in

VCSEL2 and VCSEL3 with d¼ 4 and 3 lm, respectively.

This agreement validates the appropriateness of our theoreti-

cal approach and allows us to attribute the experimentally

measured spectral lines in the different micropillars to the

E- or B-modes.

The main result of the experiment and the corresponding

analysis is that the resonant nanomechanical vibrations at the

frequencies of the E- and B-modes distinctly appear in the

modulation of the central wavelength of the laser output.

However, the question that obviously arises from the set of

experimental data is why in different VCSELs, even with

nominally identical geometries, maximum modulation am-

plitude occurs at different nanomechanical modes with

respect to character and frequency: VCSEL1 does not show

a distinct B-mode as can be seen in Fig. 2(a); the FFT of

kc(t) in Fig. 2(b) for VCSEL2, on the other hand, exhibits

well defined spectral lines for both E- and B-modes; and in

VCSEL3 the B-mode strongly dominates the FFT spectrum

in Fig. 2(c).

FIG. 3. Intensity modulation. (a) The temporal evolutions of the laser output

modulation of the intensity I(t) integrated over the spectral range, obtained

from the streak camera images (left panels of Fig. 2) for the three VCSELs.

(b) Fast Fourier transforms of I(t) for VCSEL2 and VCSEL3, which show

the spectral peak at the frequency of the nanomechanical B-mode. The verti-

cal arrows show the numerically (solid arrows) and analytically (dashed

arrows) calculated frequency fB0 for the B-mode.
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To explain the difference of the modulation spectra in

the different VCSELs, we discuss on a qualitative level the

efficiency of the excitation of E and B-modes by a picosec-

ond strain pulse incident from the substrate side. A purely

compressive (longitudinal) elastic wavepacket, which propa-

gates through bulk GaAs, is transformed at the interface into

a number of bulk and surface modes due to the diffraction at

the micropillar edges.19 The amplitudes of the E- and

B-modes are strongly influenced by the elastic contact

between the GaAs-based micropillars and the surrounding

BCB polymer. This contact may vary strongly between dif-

ferent VCSELs, because the process of etching the micropil-

lars out of the initially planar structure results in pillar

sidewalls of different quality and also the polymer planariza-

tion may show different quality. In the case of perfect elastic

contact, E-modes are easily excited in the micropillars by a

strain pulse propagating in the BCB film in z-direction, but

B-modes are difficult to launch due to the micropillar

walls being covered by the BCB, despite of some acoustic

impedance mismatch between the materials. Applying this

qualitative model to the experimental results, we may attrib-

ute the case of perfect elastic contact to VCSEL1, where

only E-modes are observed in the spectrum in Fig. 2(a).

Alternatively, in the case of a loose elastic contact with the

BCB, B-modes excited at the basis of the micropillars may

become the dominant ones in the spectrum, because they are

then not expected to leak into the BCB and therefore should

have a long lifetime in the micropillars. This extreme case

may be attributed to VCSEL3 where only the B-mode is

detected [see Fig. 2(c)]. VCSEL2, which shows both E- and

B-modes [see Fig. 2(b)], may be attributed to the intermedi-

ate case between perfect and loose elastic contact of the

micropillar and the BCB environment.

It is interesting that the amplitude of the B-mode in the

spectrum of the laser output modulation increases as the

emission becomes broader [compare the optical and modula-

tion spectra in Figs. 1(c) and 2]. Based on our results for sev-

eral VCSELs, it is difficult to say whether this observation is

incidental or regular. If the latter is true, the elastic contact

with the BCB and the laser linewidth may be related via the

micropillar cavity Q-factor: an inhomogeneous micropillar

environment may lower the symmetry of the resonator and

lead to optical loss channels due to the polymer/air interfaces

at the micropillar sidewalls (see Fig. 1(a)). Moreover, a loose

elastic contact may be accompanied by an inefficient heat

sink and correspondingly a low Q-factor when the VCSEL is

electrically pumped.

Finally, we discuss the effects of the nanomechanical

resonances on the modulation of the laser intensity output

I(t) as demonstrated in Fig. 3. It was shown earlier that dy-

namical strain can modulate the output intensity in optically

excited QD lasers.7 The effect is strong only for high modu-

lation frequencies f when f� s�1
s , where ss � 1 ns is the

spontaneous lifetime of an electron-hole pair in a QD. In

agreement with this statement, we observe a strong modula-

tion of the intensity only by the B-modes with a frequency of

f� 1 GHz in VCSEL2 and VCSEL3 while the low frequency

E-modes do not induce a notable modulation of I(t).
In conclusion, we have shown that electrically pumped

micropillar VCSELs affected by a picosecond strain pulse

show GHz oscillations of the laser output. The modulation

spectrum is well described by the extensional (E) and the

breathing (B) nanomechanical modes of the micropillars.

Which modes contribute to the laser output modulation

depends on the particular VCSEL: we explain the difference

in the modulation spectra of the studied VCSELs by the vari-

ation of the elastic contact between the micropillar and the

surrounding polymer.

The potential applications of nanomechanical resonances

in micropillar VCSELs go far beyond sole modulation of the

laser emission, which may be achieved also by other estab-

lished techniques.15,20 Exploitation of opto-nanomechanical

and cavity quantum electrodynamical effects in quantum in-

formation technologies is widely discussed nowadays. Our

work demonstrates that the impact of nanomechanical

resonances in electrically pumped VCSELs is much stronger

than in passive optomechanical devices. Electrical pumping of

VCSELs provides a step forward towards usage of optome-

chanical properties in a single compact chip with integrated

nanophotonic and phononic circuits without external optical

sources. For the excitation of phonon resonance at GHz fre-

quencies, it is realistic nowadays to use short electrical pulses

applied to the VCSEL. The efficiency of electrical excitation

can be enhanced in micropillars grown on substrates along a

piezoelectric active orientation. Achieving a breakthrough in

high-frequency (1011–1012 Hz) nanomechanics with electri-

cally pumped VCSELs will be to excite nanomechanical

resonances in the way how it is done in passive superlattices21

and phonon microcavities with optical DBRs.22
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