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We examine the form, properties, stability and evolution of simply-connected
vortex-patch relative quasi-equilibria in the single-layer f -plane shallow-water model
of geophysical fluid dynamics. We examine the effects of the size, shape and
strength of vortices in this system, represented by three distinct parameters completely
describing the families of the quasi-equilibria. Namely, these are the ratio γ = L/LD
between the horizontal size of the vortices and the Rossby deformation length;
the aspect ratio λ between the minor to major axes of the vortex; and a potential
vorticity (PV)-based Rossby number Ro = q′/f , the ratio of the PV anomaly q′
within the vortex to the Coriolis frequency f . By defining an appropriate steadiness
parameter, we find that the quasi-equilibria remain steady for long times, enabling
us to determine the boundary of stability λc = λc(γ , Ro), for 0.25 6 γ 6 6 and
|Ro| 6 1. By calling two states which share γ , |Ro| and λ ‘equivalent’, we find
a clear asymmetry in the stability of cyclonic (Ro > 0) and anticyclonic (Ro < 0)
equilibria, with cyclones being able to sustain greater deformations than anticyclones
before experiencing an instability. We find that ageostrophic motions stabilise cyclones
and destabilise anticyclones. Both types of vortices undergo the same main types of
unstable evolution, albeit in different ranges of the parameter space, (a) vacillations
for large-γ , large-Ro states, (b) filamentation for small-γ states and (c) vortex splitting,
asymmetric for intermediate-γ and symmetric for large-γ states.
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1. Introduction
The study of vortex equilibria, vortices which do not change in shape in an

appropriately chosen frame of reference, is of fundamental interest in geophysical
fluid dynamics. It provides insight into the nature of the long-lived vortical structures
found not only in the oceans (Olson 1991; Carton 2001) and the Earth’s and
planetary atmospheres (Waugh & Polvani 2010; Garate-Lopez et al. 2013), but also in
simulations of geophysical turbulent flows (McWilliams 1984; Polvani, McWilliams,
Spall & Ford 1994). These coherent structures persist despite external factors, and
often dominate late-time turbulent flows.

The equilibrium forms of vortices were first studied by Deem & Zabusky (1978a,b),
who considered one- and (translating) two-vortex configurations in the (barotropic)
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two-dimensional Euler equations. Since then, a number of other studies have
examined various equilibrium configurations in the barotropic context. Luzzatto-Fegiz
& Williamson (2010, 2011) considered a single-vortex (simply-connected) system and
used an energy-based argument following Kelvin’s variational principle (Thomson
1875) to find equilibrium solutions bifurcating from the Kirchhoff elliptical solution
branch. Various two-vortex (doubly-connected) configurations have also been
examined. Saffman & Szeto (1980) and Pierrehumbert (1980) found solutions for
symmetric corotating and translating states, respectively, while Dritschel (1995)
examined asymmetric (in size) like- and opposite-signed vortices. Makarov & Kizner
(2011) further examined doubly-connected equilibria having an asymmetry in size
and vorticities. Multiple-vortex equilibria have been studied by Dritschel (1985), who
examined states composed of two to eight like-signed vortices.

A number of works have extended these barotropic studies, and examined how
vortex equilibria are affected by a finite Rossby deformation length LD, and the
quasi-geostrophic shallow-water (QGSW) model is one of the simplest models in
which it appears. Polvani (1988) and Polvani, Zabusky & Flierl (1989) examined
simply- and doubly-connected equilibria, and Płotka & Dritschel (2012, 2013) also
studied the stability of such states. Makarov, Sokolovskiy & Kizner (2012) examined
two-vortex like-signed doubly-symmetric equilibria, with each vortex in a different
layer of a two-layer rotating fluid. Further studies, both experimental (Griffiths &
Hopfinger 1986, 1987) and numerical (e.g. Waugh 1992; Waugh & Dritschel 1991;
Yasuda 1995), have found that finite-LD effects result in qualitative changes in the
behaviour of vortices.

The aforementioned studies all pertain to geostrophically-balanced systems, and
therefore neglect aspects of realistic geophysical motions, which are not devoid of
ageostrophic effects occurring at finite Rossby number. The study of vortex equilibria
in an ageostrophic context is significantly more challenging. As a stepping stone
for the highly complex, three-dimensional system, the two-dimensional shallow-water
(SW) model may be considered. It is the simplest model which permits ‘balanced’
vortical motions, ageostrophic effects, and ‘unbalanced’ inertia-gravity waves
(IGWs). Here, unlike in geostrophically balanced systems, the symmetry between
anticyclonic and cyclonic motions, or motions in opposite directions (in the northern
hemisphere, the clockwise and counterclockwise directions, respectively), is broken.
This further allows insight into the well-known asymmetry which exists in both
realistic geophysical flows (McWilliams 1985) and in their numerical simulations
(Cushman-Roisin & Tang 1990; Arai & Yamagata 1994; Polvani et al. 1994, and
others).

Despite being the simplest unbalanced model, the SW model still presents
significant challenges for both analytical and numerical study. As a result, to date,
only a few studies have examined SW equilibria. In fact, due to the spontaneous
emission of IGWs, SW equilibria are not strictly steady, but radiate such weak IGWs
that they may be deemed steady for all practical purposes. Cushman-Roisin, Heil
& Nof (1985) found exact analytical solutions for time-dependent cyclonic elliptical
SW vortices, Cushman-Roisin (1987) did the same for anticyclonic ones, and Ripa
(1987) developed a stability criterion for SW equilibria. However, this criterion is not
applicable to isolated vortices. Stegner & Dritschel (2000) numerically investigated
the effects of size, the steepness of the vorticity profile and strength (Rossby number)
on the stability of both cyclonic and anticyclonic isolated circular vortices. In the
limit when the Rossby deformation length is large, Ford (1994) found peanut-shaped
equilibria analogous to those found in the QGSW context by Polvani et al. (1989).
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Kizner, Berson & Khvoles (2002) numerically constructed barotropic dipole equilibria,
while Kizner et al. (2008) found exact, analytic solutions for steadily translating
dipolar structures.

In this study, by using the SW model, we extend the work of Polvani et al. (1989)
and Płotka & Dritschel (2012), who studied dumbbell-shaped QGSW vortex-patch
equilibria, which bifurcate from the Kirchhoff elliptical vortex (Kirchhoff 1876)
at finite Rossby deformation lengths. In QGSW, the families of these states are
completely spanned by two parameters: their aspect ratio λ, namely the ratio
between their minor to major axes, and their horizontal size L relative to the Rossby
deformation length, γ = L/LD. Note that γ −2 is equivalent to the Burger number. In
SW, only one additional parameter, the Rossby number Ro, is required. The Rossby
number is a dimensionless measure of the strength of a vortex, defined by the ratio of
the vortex potential vorticity (PV) anomaly q′ to the Coriolis frequency f , Ro= q′/f .
In balanced systems, Ro≡ 0; for cyclones Ro> 0, whereas anticyclones have Ro< 0.
Our aim is to see to what extent the known QGSW equilibria are steady when
extended into the SW context, and how their stability is affected by their size and
strength. In addition, we aim to classify the types of instabilities near the boundary of
stability, and to explore what role the ageostrophic component plays during instability.
Note that in SW LD= c/f , where c is the short-scale gravity wave speed and f is the
Coriolis frequency (twice the background rotation rate).

This paper is organised as follows. In § 2 we describe the model formulation used
and provide an overview of the numerical method and the flow initialisation procedure.
In § 3 we discuss how we quantify the degree of steadiness, while in § 4 we present
the extent to which the stability of the equilibria is affected by vortex strength and
size, and in so doing address the cyclone–anticyclone asymmetry. Examples of the
types of unstable evolution we find near the boundary of stability for various γ and
Ro are shown in § 5. We end with some conclusions in § 6.

2. Model formulation
Below, in § 2.1, we start by describing the theoretical framework used in this study:

the SW model. In § 2.2 we discuss how we set up the flow in this system, providing
details about the initial conditions used. Then, in § 2.3 we give an overview of the
contour advective semi-Lagrangian (CASL) numerical algorithm used for evolving the
flow.

2.1. The SW model and the concept of balance
In this study, we use the full SW model (see e.g. Pedlosky 1979), which describes
the motion of an incompressible fluid subject to planetary rotation and gravity effects.
We use the single-layer, constant-density form of the model on the f -plane, which is
expressed by the SW equations

Du
Dt
− fv = −c2 ∂h

∂x
, (2.1a)

Dv
Dt
+ fu = −c2 ∂h

∂y
, (2.1b)

∂h
∂t
+∇ · ((1+ h)u) = 0, (2.1c)

where u = (u(x, y, t), v(x, y, t)) is the (horizontal) velocity, h(x, y, t) is the
dimensionless fluid depth (or height) anomaly and c = √gH is the short-scale
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gravity-wave speed, with g being gravity and H the mean fluid depth. The operator for
the material derivative acting on a scalar a is defined to be Da/Dt= ∂a/∂t+ u · ∇a.

The flow described by the SW equations may be decomposed into two parts:
the dominant, low-frequency ‘balanced’ component relating to vortical motions, and
a faster, relatively short-lived ‘unbalanced’ component consisting of ageostrophic
motions such as IGWs. It is beneficial to view the balanced, vortical motions as local
concentrations of PV, a scalar, which in the absence of viscous and diabatic effects
is materially conserved by fluid particles. In SW, the PV q is defined to be

q= ζ + f
1+ h

, (2.2)

where ζ = ∂v/∂x − ∂u/∂y. The statement of conservation of PV, Dq/Dt = 0, is a
direct result of (2.1), and can also be made for its anomaly relative to a constant
background value, q′= q− f . In QGSW, in which the unbalanced component has been
completely filtered out, it is possible to determine exactly all dynamical fields from
the instantaneous distribution of (quasi-geostrophic) PV. In SW, the exact separation
of a flow into a balanced and an unbalanced component is not possible, as the ‘slow
manifold’ completely devoid of IGWs does not exist (Ford, McIntyre & Norton 2000).
Instead it makes sense to speak of ‘minimally-unbalanced’ flows, which are set up in a
way to contain as few IGWs as possible. For such minimally-unbalanced flows it is no
longer possible to determine exactly the dynamical fields from the distribution of PV.
Nevertheless, through what is known as the ‘invertibility principle’ (Hoskins, McIntyre
& Robertson 1985) various, sometimes very accurate, methods for approximating them
do exist (McIntyre & Norton 2000; Mohebalhojeh & Dritschel 2000; Mohebalhojeh
2002; Dritschel & Viúdez 2003; McKiver & Dritschel 2008, and others). These enable
one to estimate the ageostrophic part of the flow arising from PV, as well as the
proportion of IGWs in a flow.

2.2. Flow initialisation
The solutions of the SW equations can describe a variety of realistic geophysical
motions. Here, we seek those which represent relative vortex equilibria (referred
to as just ‘equilibria’). We do this by making use of the simply-connected two-fold
symmetric relative equilibria generated by Polvani et al. (1989) and Płotka & Dritschel
(2012). In the QGSW model of the aforementioned studies, these states consist of a
patch of constant QGPV in a background of zero PV, and are fully described by two
parameters: their size relative to the Rossby deformation length, γ , and their aspect
ratio, λ. In SW, only one additional parameter, the Rossby number Ro, is necessary
to describe the vortex-patch equilibria. The PV anomaly inside the vortex patch is
then defined in terms of the Rossby number by q′ = Ro f .

We generate SW equilibria from QGSW ones (formally at Ro = 0) by using a
modification of the ‘optimal PV balance’ procedure of Viúdez & Dritschel (2004), in
which the PV anomaly is ramped up to a prescribed value over a sufficiently long
ramping period (here taken to be 10Tip, where Tip = 2π/f is the inertial time period).
Further details of the flow initialisation are given in the Appendix.

Note that as mentioned in the introduction, there is always a small amount of IGW
radiation from SW vortices (see Ford et al. 2000, and references therein for a brief
review of the topic of spontaneous gravity wave emission), so the states we generate
are not strictly equilibria, but rather quasi-equilibria. However, as discussed in the next
sections, by initialising the flow with only minimal amounts of imbalance, it is still
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useful to view the states as equilibria. Here, we call our states ‘equilibria’ in order to
avoid the more cumbersome ‘quasi-equilibria’ term.

In order to provide an overview of the parameter space of realistic flows, we
generate equilibria for both small and large γ , namely for γ = 0.25, 1, 2, 3, 4 and
6 (this gives a range of Burger numbers between 16 and 0.028). We examine both
cyclonic (Ro> 0) and anticyclonic (Ro< 0) states with Rossby numbers |Ro|6 1.0 at
1Ro= 0.1.

2.3. Flow evolution
Having generated equilibria with non-zero Ro, we solve the SW equations using the
CASL algorithm (Dritschel & Ambaum 1997; Dritschel, Polvani & Mohebalhojeh
1999). The algorithm keeps track of PV contours (across which q jumps by a
prescribed increment 1q), and of the velocity and height field on a grid. Note that
here we have only one contour defining the boundary of the equilibrium, with the
jump 1q = q′ = Ro f . To improve the accuracy of simulating both the balanced
and unbalanced components of the flow, a variable transformation is made from the
standard set (u, v, h) to (q, δ, χ), where δ and χ are the divergence of the velocity
and acceleration, respectively. Note that on the f -plane, χ/f is the ageostrophic
vorticity. The primitive variables are then recovered from (q, δ, χ) via an inversion
procedure so that PV contours can be advected, and the field tendencies calculated.
The variable transformation results in a demonstrably more accurate representation
of IGWs and vortical motions (Mohebalhojeh & Dritschel 2000; Smith & Dritschel
2006). We evolve q using contour advection, while δ and χ are evolved using standard
pseudo-spectral methods in a square doubly-periodic domain of side length 2π at a
resolution of 2562. The time stepping is carried out using a fourth-order Runge–Kutta
scheme, with a time step chosen to marginally resolve the fastest gravity wave,
i.e. 1t=1x/c, where 1x is the grid spacing.

We use the CASL algorithm to evolve members of the families of equilibria for a
range of γ and Ro. We aim to determine the critical aspect ratio λc = λc(γ , Ro) at
which the equilibria cease to be stable, and to describe their unstable evolution near
the boundary of stability. As a first guess for λc at |Ro| = 0.1, we use the known
QGSW value of λc(γ , 0) determined by Płotka & Dritschel (2012). Increasing the
Rossby number by a small amount only slightly modifies the form of the equilibria,
and so too (it is found) the location of the boundary of stability. Once we determine
λc(γ , |Ro| = 0.1), we continue to seek equilibria for progressively larger Ro = ±0.1,
using λ= λc(γ , Ro− 0.1) (for cyclones) or λ= λc(γ , Ro+ 0.1) (for anticyclones) as
a guess for λc(γ , Ro). We determine the location of λc within an accuracy of 1λ=
0.005.

We evolve each steady state for at least 100 particle rotation periods Tp after
the ramping of the PV anomaly has been completed. One Tp is the amount of
time taken by a fluid particle to circuit the boundary of the equilibrium. In QGSW,
TQGSW

p = 2π/Ωp, where Ωp is the particle rotation rate of the equilibrium, the values
of which are shown in figure 1 in the γ − λ parameter plane, as calculated by Płotka
& Dritschel (2012). In SW, increasing the Rossby number increases particle velocities,
and so we scale Tp accordingly by setting Tp = TQGSW

p /Ro.

3. Quantifying the degree of steadiness
The long-time persistence of the SW equilibria we generate testifies to their

steadiness, and thus their stability. However, we seek a more quantitative measure to
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FIGURE 1. The particle rotation rate Ωp (contour interval 0.005) of QGSW equilibria in
the γ −λ parameter plane. This figure is reproduced from Płotka & Dritschel (2012, figure
6(d)).

verify this, and begin by noting that the Bernoulli pressure B and the PV are both
functions of the streamfunction for steady (or steadily rotating) solutions of the SW
equations (Malanotte-Rizzoli 1982; Baey & Carton 2002; Kizner et al. 2008). This
means that in a steady flow, B is a constant on contours of PV, for an appropriately
chosen frame of reference. In rotating SW, the Bernoulli pressure function takes the
form

B= hc2 + 1
2 |u′|2 − 1

2Ωf (x2 + y2), (3.1)

with the velocity in the rotating reference frame u′ = (u + Ωy, v − Ωx) and Ω the
rotation rate. Note that B reduces to the quasi-geostrophic streamfunction ψ multiplied
by f in the limit Ro→ 0. Note that the rotation rate can be calculated following
Dritschel (1995) by minimising the variance of the normal velocity along the PV
contour. Figure 2 shows an example of the extent to which the contours of constant
B (shown in grey) and PV (shown in black) are aligned for a steady, stable state (a)
and an unstable one (b) near λ = λc. We see that for the stable state, the contours
closely correspond, while crossing is apparent in the unstable one.

We check how close we are to a steady solution of (2.1) by defining the non-
dimensional steadiness parameter εb, which measures how closely aligned the contours
of PV and B are in a reference frame rotating with the equilibrium:

εb =
√

1
P

∮
C
(B− B̄)2 ds

B̄
, (3.2)

where P = ∮
C

ds is the perimeter of the PV contour C , and B̄ = (1/P) ∮
C

B ds is
the mean Bernoulli pressure around the PV contour. Figure 3 shows how εb changes
through time for both stable, anticyclonic states (a) and unstable ones (b) near the
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FIGURE 2. PV contours (black) and contours of the Bernoulli pressure function (grey) in
the x–y plane. We see (a) a stable state with (γ , Ro) = (3, 0.1) at t = 53.08Tp (contour
interval 0.1) and (b) an unstable state with (γ , Ro) = (1, 0.3) at t = 25.97Tp (contour
interval 0.5), both near λ= λc.

Tp

0 20 40 60 80 100

0.005

0.010

0.015(a) (b)

0 20 40 60 80 100

0.05

0.10

0.15

0.20

0.25

Tp

FIGURE 3. The value of εb as a function of time. Here, we show γ = 0.25 (black) and
γ = 6 (grey) for Ro = −0.1 (thin lines) and Ro = −0.5 (bold lines) near the boundary
of stability for steady, stable states (a) and unstable ones (b). We show how the flow
develops for 100Tp once the PV ramping period has been completed, so ‘t= 0’ occurs at
the end of the ramping period.

boundary of stability. In each panel of the figure, we show how γ and Ro affect the
value of εb by examining states having γ = 0.25 at Ro=−0.1 and −0.5 with black
thin and bold lines, respectively, and for states having γ = 6 at the same Ro with
grey thin and bold lines. We see that the εb values are consistently small for both
the cyclonic and anticyclonic stable states, but also initially in the unstable states.
In addition, for the stable states, changing the Rossby number does not affect the
values of the steadiness parameter at γ = 6, whereas even though εb remains small for
all time, the effects of increasing |Ro| are noticeable at γ = 0.25 (we return to this
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point in § 4). On the other hand, the effects of |Ro| are not visible in the unstable
states, where the value of εb instead seems to depend on γ , with small-γ vortices
having larger εb values than large-γ vortices. This mainly results from the difference
in the types of unstable evolution small and large vortices undergo (see § 5). After an
instability has taken place, the flow returns to a quasi-steady state, with the value of
εb falling again. This return to steadiness is quicker and more pronounced at small γ ,
but a downward trend is also visible for states at higher γ .

Throughout this paper we refer to states which are ‘steady’, and ones which are
‘stable’ and ‘unstable’. After the initial PV ramping procedure is completed, the values
of εb for all of the states considered in this study are low. This is true for both the
‘stable’ and ‘unstable’ states (cf. figure 3, especially at early times for the unstable
states). For the ‘stable’ ones, εb stays small for the entire duration of the simulation,
while for the ‘unstable’ states there is a sudden spike in εb at some time t, during
which the vortex undergoes unstable evolution. We do not attempt to perform a formal
linear stability analysis of our equilibria, as doing so in SW is extremely difficult.
However, we do determine a boundary of ‘stability’ at λ= λc, such that for λ> λc, if
left undisturbed, the vortex persists for long times without change in shape, and for
λ< λc it undergoes unstable evolution. Hence, when ‘stable’ states are referred to in
this paper, these are states which do not change in shape throughout the (sufficiently
long) duration of the simulation, while ‘unstable’ states are ones which do change in
shape significantly.

The steadiness parameter εb is a good measure for determining the critical aspect
ratio λc at which there is a sharp spike in εb. However, for states with γ > 1,
through a visual examination of the equilibria, we find weakly-unstable states for
which εb has low values for all time. Unlike the states having λ < λc, these states
do not undergo major changes in shape, and instead exhibit quasi-steady vacillations,
during which their aspect ratio goes through cycles of increasing and decreasing
its value. This process is sufficiently slow that the Bernoulli pressure B is able to
adjust itself about the vortex, and no signal of the weak instability is apparent in εb.
We introduce the vacillating aspect ratio λv, such that for any λc < λ < λv the state
undergoes vacillations, while for λ > λv it is stable. Determining the exact location
of λv is difficult, as for λ ranging from λc to λv the change in aspect ratio during
one vacillation cycle, 1λcyc, decreases. We define λv to be the smallest aspect ratio
at which, for an appropriate choice of b, ¯1λcyc/λi < b, where λi is the initial aspect
ratio of the state. We take the average of 1λcyc throughout the simulation, ¯1λcyc, and
scale it by λi to account for the wide range of λi considered. We set b= 0.05 since in
SW even balanced, steady states generate a small amount of IGWs, and hence there
is always some deformation to the shape (and mass) of the state. We have deemed
that an average change of less than 5 % in the initial aspect ratio is sufficiently small
for a state to be termed steady. In addition, as λv only exists for states with γ > 1,
we introduce the steady aspect ratio λs such that all states with λ > λs are steady;
then λs = λc when vacillations do not occur, and λs = λv when they do. The location
of λc and λv in the parameter space considered is discussed in detail in § 4, of which
a summary is presented in figure 6. However, before discussing the stability of the
equilibria, we first examine a few of their properties.

At a fixed (γ , Ro), figure 4 shows ε̄b, the time average of εb (over the duration
of a simulation) for the stable states near λs. We see that in general, at a fixed
γ , states with smaller |Ro| have lower values of ε̄b than do states with larger |Ro|.
This is to be expected, as the amplitude of the free-surface deformations caused by
the vortex increases with |Ro|. The cyclone–anticyclone asymmetry is also apparent
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FIGURE 4. The time average (over the duration of the simulation) of the steadiness
parameter, ε̄b, at a fixed (γ , Ro) for the range of γ and Ro considered. Here, we show
the average of ε̄b for stable states with λ− λs < 0.020. The values at Ro= 0 are obtained
from evolving QGSW states with a quasi-geostrophic version of CASL.

from the figure, where for all γ , at a fixed |Ro|, cyclones have lower values of ε̄b
than anticyclones. This asymmetry is strongest for small-γ states, and weakens as γ
increases for small |Ro|. In addition, we see that for large-γ cyclonic states, the value
of ε̄b becomes Ro-independent, while for anticyclones there is a strong variation with
Ro. Finally, we note that when the QGSW states are evolved using a doubly-period
quasi-geostrophic version of CASL, despite being balanced, they too have non-zero
values of ε̄b which grow with γ (shown for γ > 1). This residual unsteadiness is the
result of placing the vortex in a finite periodic box and using a much lower effective
resolution than afforded by the contour dynamics method used in the QGSW study
(Płotka & Dritschel 2012).

In figure 5 we show M/H, where

M =H
∫∫

D

(1+ h) dx dy, (3.3)

is the mass contained within the equilibria at the end of the PV ramping period, as
a function of Ro for the range of γ considered near λ= λs. For simplicity, we only
describe the anticyclonic case, though the same arguments can be made for cyclones
which have a negative, rather than positive, depth anomaly h, and at small |Ro| are
antisymmetric to the anticyclonic states. We see that for the anticyclonic states, as |Ro|
increases, so does the amount of mass contained within the vortex, as h also increases.
In addition, at a fixed Ro, vortices with larger γ contain greater mass. Larger vortices
(having larger γ ) also feel the effects of increasing |Ro| more. The mass contained by
the γ = 0.25 equilibria at Ro=−0.1 and Ro=−0.6 differs by around 1 %, whereas
for the γ = 6 equilibria this difference is about 36 %.

We note that for both cyclones and anticyclones, at small |Ro|, there appears to
be a linear relationship between M and Ro. We attempt to explain this as follows.
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FIGURE 5. The mass M/H of the equilibrium at the end of the PV ramping period, shown
as a function of Ro for the steady states near λ = λs. The filled in point indicates the
QGSW mass M =πH.

It is known that in SW, near the quasi-geostrophic limit (for small |Ro|), the mass
anomaly (the difference from the QGSW mass) scales like m′ ∼ Fr2/Ro (see e.g.
Vallis 2008), where Fr = U/c is the Froude number, with U being the characteristic
horizontal velocity scale. For large γ , the maximum speed on the vortex edge scales
like U∼ Ro fLD (Nycander, Dritschel & Sutyrin 1993). Hence, since c= fLD, Fr∼ Ro
which implies m′ ∼ Ro as observed. We find in fact that this scaling holds for all of
the γ considered (including γ < 1), and for values of |Ro| up to 0.4. The departures
from this linear relationship are less than 0.07 at large γ and up to two orders of
magnitude smaller at small γ . Note that the amount of mass added (subtracted) by
anticyclones (cyclones) is not symmetric, and at a fixed |Ro|, anticyclones contain
more mass than cyclones are able to displace. Finally, we note that as we are
considering quasi-equilibria which are not strictly steady, small fluctuations in mass
do occur for the stable states during evolution. However, these are �1 % of the total
mass for states with γ . 3 and no more than 2.4 % for large-γ states.

4. Stability
We next discuss how the stability of the equilibria discussed above varies with

γ and Ro, and thus study the naturally-occurring asymmetry between cyclonic and
anticyclonic vortices. We say that a vortex is stable (sometimes also weakly unstable)
when it undergoes no major structural changes for at least 100Tp after the end of
the PV ramping period. We measure this via the steadiness parameter εb, in which a
clear jump is visible during the onset of instability (cf. figure 3) providing us with
the location of the critical aspect ratio λc(γ ,Ro). In addition, at larger γ , we find the
location of the vacillating aspect ratio λv(γ , Ro), and thus find λs(γ , Ro), such that
at a fixed (γ , Ro), all states having λ> λs are stable. The different types of unstable
behaviour are discussed in the next section, and here we focus on the location of the
boundary of stability λs(γ , Ro). Note that at some (γ , Ro) only one of λc or λv may
exist.

Figure 6 shows the location of λc (marked by filled-in circles in the figure) and λv
(marked by empty circles) as a function of Ro for various γ . We also indicate states
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FIGURE 6. The location of λc (filled-in circles) and λv (empty circles) as a function of
Ro for various γ , as labelled. The filled-in triangle in each plot shows the location of
the QGSW λc, and the asterisk indicates a vacillating state with the smallest λ we have
been able to generate, which is weakly-unstable. The triangle in the γ = 4 panel marks
the location of λc found by the quasi-geostrophic CASL code. We determine λc and λv
to within 1λ= 0.005.

for which we do not find λc (marked by asterisks). These results offer the clearest
picture of the cyclone–anticyclone asymmetry. Cyclones are generally more stable in
that they remain stable for smaller λ than anticyclones. The difference is immediate
even at small Ro.

For γ . 2, the location of λc varies nearly linearly with Ro, and includes the QGSW
limit λc(γ , 0) found by Płotka & Dritschel (2012). For larger γ however, the QGSW
limit value appears to depart from the collection of nearby points with Ro 6= 0. That
is, the QGSW state at Ro = 0 can become noticeably more deformed before losing
stability than nearby small |Ro| states. The effects of a doubly-periodic domain and
finite resolution provide perturbations leading to instability which are absent in the
QGSW study, in which an infinite domain and much higher effective resolution was
used. As discussed in § 3, when the QGSW states are placed in a periodic box at
finite resolution and evolved using a quasi-geostrophic version of CASL, the average
steadiness parameter ε̄b is non-zero and increases with γ . In fact, for large γ , using a
finite resolution to evolve the QGSW states leads to a small increase in λc, bringing
it into line with the values found at small Ro for the SW states, as shown by the
triangle for γ = 4 in figure 6.

From figure 6 we also see that at large γ there is a change in slope in the line
fitted through the values of λc for anticyclonic states, where it is shallower for small
|Ro|, and steeper for large |Ro|. For example, at γ = 4, the slope of the line predicting
the location of λc for |Ro|. 0.5 is −0.11, while for |Ro|& 0.5 it is −0.29. For larger
γ , this change occurs at higher |Ro|: at γ = 3, it happens at Ro ≈ −0.5, while for
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γ = 6, at Ro≈−0.9. If we once again compare this behaviour to the results presented
in figure 4, we see that at large γ , for states with Ro . −0.5 the slope of the line
fitted through the ε̄b values steepens compared with the slope of the line fitted through
values with Ro&−0.5. Higher values of ε̄b mean that states become less steady, which
in turn explains why the slope of the line through λc steepens. We do not see this
behaviour in cyclonic states, where the slope of the line fitted through ε̄b values does
not change. However, for large-γ cyclones, at large Ro, strong instabilities cease to
occur. The value of Ro at which this happens increases with γ .

For small-γ states, the location of λc coincides with the location λs, in contrast to
large-γ states (γ & 1), where a region of weakly unstable states occurs. For γ = 2,
vacillations only occur for cyclonic states, and although variations in the exact location
of λv at different Ro are small, it appears that states with Ro . 0.6 need to increase
their aspect ratios for stability, and states with Ro & 0.6 can once again decrease it
while retaining their stability. As γ increases, vacillations occur not only for smaller
values of Ro, but also for a wider range of λ. In fact, for γ > 2, at large Ro> 0.4 this
is the only type of instability which occurs. For cyclones, across all γ , the vacillating
region expands as Ro increases, and states need to be less deformed in order to be
stable. The same is true for anticyclones at small |Ro|, but as |Ro| increases, for
large enough λc no vacillations occur. This is most visible for γ = 3, where for
−0.5 6 Ro 6 −0.3 the vacillating aspect ratio λv ≈ 0.130, and as |Ro| increases it
converges to λc. Similarly as with λc, at large γ , the location of λv appears to be
converging towards λc(γ , 0) in a nonlinear way. Note that apart from at certain λ
values at γ = 5 and 6, Płotka & Dritschel (2012) found no evidence for vacillations
in QGSW.

We see that regardless of Ro, large-scale effects tend to stabilise states, especially
strongly cyclonic ones. In addition, we see that for large-γ states, the location of λs
becomes γ -independent.

The determination of λs for anticyclonic states at γ = 0.25 has proved difficult, as
in addition to being affected by an elliptical wavenumber-3 instability (hereafter the
mode-3 instability, see Dritschel 1986) which leads to the state shedding a filament
from one of its tips, small-scale disturbances may develop on the vortex boundary,
which grow in time and eventually lead to the state becoming unstable. The form of
εb(t), shown in figure 7, is very different for such states. As seen from the thin line
in the figure, unstable states have a sharp, clearly defined jump in εb, while weakly-
unstable states exhibit a slow growth of εb up to and after the time the first filament
is shed, which is marked by the thin and bold dashed vertical lines. A jump in εb may
occur in the weakly-unstable state once the small-scale filaments shed by the vortex
have interacted with its boundary to such an extent that a larger filament is shed. For
comparison, in the figure we also show εb for a state which is stable for all time
(grey line), and we see that the weakly-unstable state very gradually begins to depart
from these values before a filament is shed. We find this type of ‘weak’ instability
occurring even at large aspect ratios, and it may be surrounded by extensive regions
of stable aspect ratios. We therefore classify these weakly-unstable states as stable.

A clear difference in the stability of cyclones and anticyclones is visible in figure 6.
Many previous studies have examined the cyclone–anticyclone asymmetry, and it has
been reported that in decaying SW turbulence and in more realistic oceanic flows,
large anticyclonic structures are more prevalent than their cyclonic counterparts
(Olson 1991; Arai & Yamagata 1994; Polvani et al. 1994). Furthermore, cyclones
are generally found to be more deformed than anticyclones (Aristegui et al. 1994).
Although anticyclones appear to be more long-lived, there is no evident asymmetry
between the distribution of cyclones and anticyclones (Olson 1991). The results of
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FIGURE 7. The steadiness parameter εb as a function of time for the case (γ , Ro) =
(0.25,−0.1) near λ= λc. We see an unstable state at λ= 0.315 (thin line), a stable state
with a weak instability at λ= 0.325 (bold line) and a state stable for all time at λ= 0.340
(grey line). The times at which the first filament is shed are indicated with the two dashed
lines.

our study confirm these observations. Across all γ , we find that cyclones are able to
sustain greater deformations than anticyclones while remaining stable.

Anticyclones are in general believed to be more ‘stable’ than cyclones (see
e.g. Stegner & Dritschel 2000; Baey & Carton 2002). We find the opposite:
ageostrophic effects tend to stabilise cyclones and destabilise anticyclones. However, it
is important to keep in mind that when comparing cyclonic and anticyclonic motions,
it is necessary to define what is meant by two states which are ‘equivalent’, as
cyclones and anticyclones cannot simultaneously have identical (but oppositely-signed)
velocities, PV and height anomalies.

Here, we say two states are ‘equivalent’ when they have the same magnitude of
Rossby number |Ro| (which defines the PV anomaly), size relative to the Rossby
deformation length and aspect ratio λ. Note that the size of the vortex L is calculated
from the size it has in QGSW, where it has a prescribed area of π, giving L = 1.
After the initial ramping of the PV anomaly, the vortex area generally differs from
π, though never by more than a few per cent across the entire parameter space
investigated. The important point is that the vortex shape, circulation and mass
distribution is uniquely determined from the QGSW state and the PV ramping, and
hence these vortex properties are reproducible. Stegner & Dritschel (2000) studied
circular, isolated, distributed SW vortices and chose to examine ‘equivalent’ vortices
which shared the Burger number (recall that this is our γ −2) and (oppositely-signed)
relative vorticity profiles, hence the differences in their conclusions.

To the best of the authors’ knowledge, a careful study of the cyclone–anticyclone
asymmetry, which spans a wide parameter space and where the ‘equivalence’ between
two states is clearly defined has not been previously performed. We find that cyclones
are stable for a wider range of the parameter regime than anticyclones, and that large-
scale effects tend to stabilise them more easily than anticyclones. We also find that
for cyclones, a strong instability which results in the break-up of the vortex may not
exist at all, and instead only a weak instability in the form of vacillations occurs.
Anticyclones on the other hand are stable for a smaller portion of the parameter space,
and, especially at large |Ro|, are less likely to experience vacillations.

For completeness, in figure 8 we show the asymmetries which arise in the height
field for vortices which we call ‘equivalent’. We see that at small γ = 0.25 (a),
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FIGURE 8. The cross-section of the height anomaly −h for cyclonic (thin lines) and h
for anticyclonic (dashed lines) states at λ= 0.5. Here, we show the value at y= 0 between
−π6 x6π of states which have been rotated to be aligned with the x-axis at the end of
the PV ramp period. We see γ = 0.25 (a) and γ = 6 (b), each at |Ro| = 0.1, 0.5 and 1,
with lower |Ro| states having smaller h (states at |Ro| = 0.1 are nearly indistinguishable).
Note the different scales of the vertical axis in each of the panels.

cyclones (thin lines) have larger height anomalies than anticyclones (dashed lines),
and although the shapes of the height cross-sections are similar between the two types
of motion, anticyclones are more ‘sprawled’ than cyclones. (Note that in the figure
we plot −h for anticyclones.) On the other hand, for large γ = 6 (b) anticyclones
have larger height anomalies, and there is a difference in shape between the two
types of motions. Cyclones have a flat height profile in the middle with a steep rise
near their edge, whereas anticyclones have a parabolic cross-section. These difference
are most pronounced at large |Ro|, at which also the asymmetries in the stability of
the two types of motion are most apparent. See also figure 5 for an illustration of the
asymmetries in the masses of cyclones and anticyclones at the boundary of stability.

5. Types of evolution
Below, we describe the types of unstable evolution that vortices exhibit near λc,

and where they occur in the γ − Ro parameter space. We find four distinct types
of instability regimes, which, following the classification made by Płotka & Dritschel
(2012) in QGSW, we call type 1 instability for vacillating states, type 2 instability for
states which shed a filament and type 3i and 3ii instabilities for states which split into
two vortices of unequal or equal size, respectively.

We first show a few examples of the evolution of each of the instability types. In
figure 9 an example of the type 1 instability is shown: a weakly unstable, vacillating
state having (γ , Ro) = (6, 0.8) at λ = 0.005, the smallest aspect ratio examined. As
time progresses, we see that the state increases its initial aspect ratio λi (figure 9a)
until some maximum value of a vacillation cycle λcyc

max (figure 9b), before decreasing it
again to λcyc

min (figure 9c). After the first few vacillation cycles where it is comparable to
λi, λ

cyc
min settles down to a constant value which is larger than λi, while the value of λcyc

max
has similar values for the entire duration of the simulation. As visible in figure 9(b)
there are large-amplitude waves travelling on the boundary of the equilibrium, which
obey a modified Korteweg–de Vries equation to leading order in LD (Nycander et al.
1993). The behaviour described above is typical of all vacillating states, although as
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(a) (b) (c)

FIGURE 9. An example of a vacillating state (type 1 instability) having (γ , Ro, λ) =
(6, 0.8, 0.005). We see time t= 0.84Tp after the PV ramping period has finished (a), and
times t= 19.49Tp and t= 22.85Tp when the state reaches a maximum (b) and minimum
(c) aspect ratio during a vacillation cycle. Here and in subsequent figures we see contours
of the PV anomaly q′, with |x|, |y|6π.

(a) (b) (c)

(d) (e) ( f )

FIGURE 10. An example of a state having (γ , Ro, λ) = (0.25, 0.7, 0.310), which sheds
a filament (type 2 instability). We see the state at times (a) t= 21.22Tp, (b) t= 21.73Tp,
(c) t= 22.24Tp, (d) t= 22.50Tp, (e) t= 23.52Tp and (f ) t= 30.68Tp.

λi increases towards λs, both the amplitude of the vacillation and that of the waves
travelling on the equilibrium boundary decreases. As seen in figure 6 in the previous
section, this sort of instability occurs only in states having γ > 1.

Figure 10 shows an example of the type 2 instability: for a state having (γ , Ro)=
(0.25, 0.7) at λ= λc= 0.310, which sheds a filament in a mode-3 instability. As seen
from figure 10(d,e), further interactions between the original state and the filamentary
debris can occur after the filament has been shed. The state eventually evolves towards
a quasi-steady state, which has small values of εb, albeit larger ones than initially, as
discussed in § 3.

Parts of the filament may roll up to form small satellite vortices (figure 10f ). For
states with γ = 0.25, these satellite vortices are negligible in size and make up less
than 0.3 % of the total mass held by vortices in the domain. At higher γ where this
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FIGURE 11. An example of a state having (γ ,Ro, λ)= (4,−0.8, 0.150), which undergoes
a split into two asymmetric vortices (type 3i instability). We see the state right before the
split at t= 22.93Tp (a), during the split at t= 23.07Tp (b) and what the state looks like
at a late time t= 54.93Tp (c).

instability occurs, the largest of the small vortices can hold up to 2.8 % of the mass,
and the state resembles one having undergone the type 3i instability.

There is a smooth transition between the different types of instabilities occurring,
as seen in figure 13 showing that more than one type of instability may occur at a
fixed (γ , Ro) at different nearby λ (this is discussed further below). In addition, our
results are consistent with those of Waugh & Dritschel (1991), who found that strips
of PV are more likely to roll up to form vortices as the interaction range decreases,
i.e. for increasing γ .

In figure 11 we show an example of the type 3i instability for an anticyclonic
state having (γ , Ro) = (4, −0.8) at λ = λc = 0.150, which splits into two vortices
of unequal size. During the onset of instability, the state exhibits behaviour similar
to that of the type 2 instability, where it looks like it is about to shed a filament.
There is a competition between the mode-3 and mode-4 instabilities, and the state
pinches off a small vortex, which, especially for 16 γ < 3, may further interact with
the larger vortex before reaching a final quasi-steady state in which the two vortices
corotate. Although not occurring in the case shown in the figure, as in the type 2
instability regime, small satellite vortices may roll up from the filaments shed during
the split. Apart from the case (γ , Ro, λ)= (1,−0.1, 0.230) where the largest satellite
vortex contains 3.5 % of the total mass held by the vortices in the domain (this is
compared with 5 % of the mass held by the second-largest vortex in the domain),
satellite vortices normally contain less than 0.6 % of the mass.

Finally, in figure 12 we show an example of a state having (γ , Ro)= (4,−0.2) at
λ=λc=0.065, which splits into two vortices of equal size. The state rapidly decreases
its aspect ratio and splits, shedding tiny filaments which, as seen in figure 12(c), roll
up into very small vortices containing �1 % of the total mass held by vortices.
Because of its resemblance to type 3i instability, we call this type 3ii instability.

We next present a quantitative measure for dividing unstable vortex behaviour into
the four instability regimes described above. In § 3 we have already discussed how we
determine whether a state is vacillating, and here we instead focus on the evolution
types of states which undergo break-up. As the end state is generally composed
of two larger vortices in a sea of filamentary debris, we perform the classification
based on the ratio of the masses of the two largest patches of PV in the domain
at the end of the simulation, Mr =M2/M1, where the subscripts 1 and 2 denote the
largest and second-largest vortices in the domain, respectively. We say that a state
undergoes type 2 instability, filamentation, when Mr < 0.03. The type 3i and 3ii
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(a) (b) (c)

FIGURE 12. An example of a state having (γ ,Ro, λ)= (4,−0.2, 0.065), which undergoes
a split into two symmetric vortices (type 3ii instability). We see two times right before
the split, t = 2.15Tp (a) and t = 2.28Tp (b), and what the state looks like at a late time
t= 38.50Tp (c).
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FIGURE 13. A summary of the instability types at each γ classified by their end mass
shown at each Ro for aspect ratios near λc. The instability types shown are: type 1,
vacillations (asterisks); type 2, filamentation with Mr < 0.03 (circles); type 3i, asymmetric
split with 0.036Mr < 0.99 (empty squares); and type 3ii, symmetric split with Mr > 0.99
(filled-in squares). Note that at each γ and Ro multiple instability mechanisms may be
possible, which are shown on separate lines at each γ . We also show the Ro= 0 results,
as found by Płotka & Dritschel (2012).

instability regimes, asymmetric and symmetric splitting, occur if 0.03 6 Mr < 0.99
and Mr > 0.99, respectively.

Figure 13 shows a summary of where the different instabilities occur in the γ −Ro
parameter plane, with type 1 instability marked by asterisks, type 2 instability by
circles, and types 3i and 3ii by empty squares and filled-in squares, respectively. Note,
several types of instability can occur at the same (γ , Ro) value; these instabilities
occur on vortices with different λ near λc. We see that for states with γ < 1, the
type 2 instability is the only one occurring, while at large γ > 2 it is completely
absent. In the intermediate vortex-size range 1 6 γ 6 2, this type of instability only
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occurs in anticyclones, and only for increasingly large |Ro| as γ increases. The type 1
and 3 instabilities are typical of the large-γ states. Type 3i instability occurs at smaller
γ , where it is more common in cyclones, but as γ increases, it starts affecting a
narrower range of increasingly small Ro: at γ = 1 it affects states with −0.56Ro6 1,
whereas at γ = 6 it only affects states with −1 6 Ro 6 −0.8. Type 3ii instability
occurs only for large γ > 3, and similarly to type 3i instability, at smaller γ it occurs
mainly in cyclones, and in anticyclones with small |Ro|. As γ increases it begins
to affect states with larger |Ro|. This is also true of the type 1 instability, which,
as γ increases, begins to affect a wider range of Ro. As mentioned above, as γ
increases, there is a smooth transition from the type 2 to type 3i instabilities, with
the filaments shed rolling up to form increasingly large vortices, and from the type 3i
to 3ii instabilities, with the smaller vortex gradually becoming larger until the mode-4
instability, resulting in a symmetric split of the state, dominates over the mode-3 one
which causes a filament to be shed from one of the tips of the vortex.

6. Conclusions

We have examined the form and stability of vortex-patch relative quasi-equilibria
in the single-layer f -plane SW model of geophysical fluid dynamics. These states
depend on three parameters: the ratio γ between their mean radius L and the
Rossby deformation length LD, their aspect ratio λ and their strength relative to the
background rotation, measured by the PV-based Rossby number Ro= q′/f .

The states we generate in this model problem are not strictly in equilibrium, since
in SW, even in initially well-balanced flows, there is always some degree of IGW
generation. By defining a ‘steadiness’ parameter, which measures how closely aligned
the contours of PV (defining the boundary of the vortex) and those of the Bernoulli
pressure function are, we show that both the stable and unstable states generated are
steady, which is further confirmed by the long times for which the stable states remain
unchanged in shape; indeed, they have less than a 5 % average variation in λ over
the duration of the simulation. For simplicity, we refer to the quasi-equilibria as just
equilibria.

We find the stable aspect ratio λs, depending on both γ and Ro, at which equilibria
cease to be steady. The instability can either be weak, occurring at λs = λv, where
the state vacillates around the steady state by going through cycles of increasing and
decreasing aspect ratio, or strong, at λs = λc, where the vortex undergoes a drastic
change in shape, often involving a break-up into two or more parts. For both the
weakly-unstable vacillating states, and for the strongly unstable ones after they have
settled down following instability, the flow is often close to equilibrium. States for
which λs = λv may still exist nearby states having λ = λc such that for any λ < λc

the vortex experiences a strong instability. Multiple forms of instability may occur for
nearby values of λ.

Large-scale effects (large γ values) stabilise vortices, regardless of their strengths
(Ro). These large-scale stabilising effects are most pronounced for large-Ro states,
where the location of λs for states with γ & 1 becomes γ - and Ro-independent.
We find that for states with γ & 3 and Ro & −0.6, the location of λs becomes
γ -independent, and for Ro & 0.8 also Ro-independent. This difference in behaviour
between small-γ and large-γ states is also visible in the types of unstable evolution
they undergo near λc: small-γ states are affected by the mode-3 instability, which
causes them to shed a filament from one of the tips of the vortex, whereas for large-γ
states the most unstable mode is mode-4, which causes a nearly-symmetric split of
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the vortex. In the intermediate-γ range there is a competition between the two modes,
resulting in a split of the vortex into two parts of unequal size.

By calling two states which share γ , |Ro| and λ ‘equivalent’, we find a clear
asymmetry in the stability of cyclonic (Ro > 0) and anticyclonic (Ro < 0) equilibria.
Cyclones can sustain greater deformations than anticyclones before experiencing an
instability. In fact, for large enough γ and Ro (i.e. γ & 2, Ro & 0.5) they may not
experience a ‘strong’ instability at all, even for λ close to 0. They rather undergo
a weak instability, vacillating around an underlying equilibrium state. In general,
cyclones are more prone to experiencing such a weak instability, with it being
completely absent for anticyclones with large enough |Ro| at γ between 2 and 4.
In short, ageostrophic motions stabilise cyclones and destabilise anticyclones. Both
types of vortices undergo the same main types of unstable evolution, although the
mode-4 instability dominates over the mode-3 one in cyclones at smaller γ than
in anticyclones. This cyclone–anticyclone asymmetry is the opposite of what is
generally reported in the literature. This, we believe, is due to the difficulty in
defining ‘equivalent’ cyclones and anticyclones.

We have found a rapid return of the flow to a quasi-steady state after an instability
has taken place. This quasi-steady state often has the form of two corotating vortices
of equal or unequal size. Płotka & Dritschel (2013) studied equilibrium forms of such
structures in the fully-balanced QGSW context, and it would be of interest to extend
their work to SW to see what role ageostrophic effects play in the (quasi-)equilibrium
forms of such states. This would also allow us to gain insight into the nature of
the quasi-steady states arising in this study, and to check whether transitions between
equilibrium solutions take place.

Although the single-layer SW approximation provides insight into realistic
geophysical motions, the assumption of a lower layer of infinite depth may not
always be physical. Polvani et al. (1989) has shown that a finite-depth lower layer
greatly influences the form of QGSW equilibria, with large-scale effects not playing
such an important role in this set-up. It would be of interest to see how this is
affected in a model which allows ageostrophic motions.
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Appendix
The ‘optimal PV balance’ procedure Viúdez & Dritschel (2004) starts with a

flow at rest, and artificially ramps up the PV anomaly of each fluid particle by
multiplying it by a ramp function T(τ ) = (1/2)[1 − cos(πτ/∆τ )], which varies
smoothly between 0 and 1 from the beginning (τ = 0) to the end (τ = ∆τ ) of the
ramping period. Apart from the ramping of PV, the full SW equations are solved.
The ‘target configuration’, having only minimal amounts of imbalance if a sufficiently
long ∆τ is considered (in practice, exceeding 3 inertial time periods Tip = 2π/f ), is
determined through a series of backward and forward iterations, where τ plays the
role of the iteration parameter. The procedure does not enforce any specific balance
conditions (such as e.g. geostrophic balance), but does depend on the choice of
∆τ . Because of the sometimes very large q′ considered in this study, convergence
to the target configuration for long enough ∆τ to truly minimise the presence of
IGWs is not possible. Therefore, instead of performing a series of iterations until the
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FIGURE 14. PV contours of states with γ = 1 and λ = 0.400 at time t = ∆τ = 10Tip
at the end of the ramping period. We show equilibria with three different Ro: the initial
QGSW state with Ro= 0 (grey line), a cyclonic state with Ro= 0.5 (dashed black line)
and an anticyclonic state with Ro = −0.5 (solid black line). Note that the cyclonic and
anticyclonic states have been rotated to be aligned with the x-axis.

target configuration in which the ‘balanced’ PV contours coincide exactly with those
specified initially, we perform only one forward iteration, allowing the initial contours
to adjust to the flow. This allows us to consider ∆τ = 10Tip, which is sufficiently
long for the generation of IGWs to be kept to a minimum while the flow adjusts
itself around the PV anomaly. Once the prescribed PV anomaly is reached, the PV
is thereafter conserved and allowed to evolve freely. The minimally-unbalanced flows
initialised in this way allow for the study of equilibria, and any destructive effects of
artificially generated IGWs are attenuated.

Figure 14 shows the original contours of PV for a QGSW state (the grey line in the
figure) and those of a cyclonic (dashed black line) and anticyclonic one (solid black
line) with (γ , |Ro|) = (1, 0.5) and λ = 0.400 at t = ∆τ at the end of the ramping
period. During the ramp, the SW states undergo rotation and are here shown rotated
back to be aligned with the x-axis. For clarity, in the figure we only show the form of
the contours in the first quadrant, but qualitatively they look similar in the remaining
three quadrants. From figure 14 we see that at the end of the ramping period, despite
being allowed to evolve freely, the SW contours still closely resemble the QGSW
one. This is especially so for the cyclonic state. Despite over-estimating the locations
of the extrema of the contour, the anticyclonic state is still remarkably close to the
QGSW one. This is especially astonishing since we are considering Ro=−0.5, where
a considerable free-surface deformation (of over 15 % of the fluid depth) has taken
place. Therefore, we henceforth make the approximation that the QGSW value of λ
is the same as the SW one at the end of the ramping period.
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