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Two-photon interference from a quantum dot microcavity:
Persistent pure dephasing and suppression of time jitter
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We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupled
quantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing the
sample temperature allows us to vary the quantum dot–cavity detuning and, on spectral resonance, we observe
a threefold improvement in the Hong-Ou-Mandel interference visibility, reaching values in excess of 80%. Our
measurements off-resonance allow us to investigate varying Purcell enhancements, and to probe the dephasing
environment at different temperatures and energy scales. By comparison with our microscopic model, we are
able to identify pure dephasing and not time jitter as the dominating source of imperfections in our system.
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I. INTRODUCTION

Single indistinguishable photons are key to applications in
quantum networks [1], linear optical quantum computing [2,3],
and quantum teleportation [4,5]. One of the most promising
platforms for single-photon sources is solid-state quantum dots
(QDs) [6–10]. Compared to alternative platforms, such as cold
atoms or trapped ions, single QDs offer several advantages:
they can be driven electrically, which is of crucial importance
for compact future applications [11–13], and, in principle, can
be integrated in complex photonic environments and architec-
tures, such as on-chip quantum optical networks [14,15]. When
embedded in a bulk semiconductor, however, QDs suffer from
poor photon extraction efficiencies, since only a minor fraction
of the photons can leave the high refractive index material.
This problem can be mitigated by integrating QDs into optical
microcavities [12,16–18] or photonic waveguides [19–21],
which can enhance extraction efficiencies to values beyond
50%.

In addition to increased extraction efficiencies, exploiting
cavity quantum electrodynamics (cQED) effects in QD-
based sources can have a positive effect on the interference
properties (and hence the indistinguishability) of the emitted
photon wave packets. Ideally, the wave packets emitted by
an indistinguishable photon source are Fourier limited, with
a recombination time T1, and temporal extension of the
wave packet given by T2 = 2T1 [22]. If additional dephasing
channels with a characteristic time 1/γ exist, such as coupling
to phonons or spectral diffusion, the coherence time is reduced
according to 1

T2
= 1

2T1
+ γ , which consequently leads to a

reduction of the two-photon interference (TPI) visibility. It
was theoretically shown that pure dephasing strongly affects
the detuning dependence of the relative strength of the cavity
and QD-emission peaks [23,24]. In the regime of cQED,
the lifetime of the QD excitons can be manipulated via the
photonic density of states in the cavity (the Purcell effect).
If the timing of emission events is precisely known, and
γ is constant, shortening of the emitter lifetime T1 via the
Purcell effect leads to an improved interference visibility as the

condition T2 = 2T1 can be approximately restored [7,17,25].
This simple picture, however, is known to break down if
there are uncertainties in the timing of emission events (time
jitters) [26–28] or if the dephasing environment gives rise to
more than a simple constant pure-dephasing rate, as is known
to be the case for phonons [28–32]. As such, with the aim of
designing improved single indistinguishable photon sources,
it is crucially important to first establish the magnitude of time
jitters and the nature of any dephasing environments.

In this work, we exploit a microcavity with a high Purcell
factor and weak nonresonant contributions of spectator QDs
to probe the interference properties of photons emitted from a
single QD as a function of the QD-cavity detuning. In contrast
to previous studies, where nonresonant coupling to spectator
QDs [33] or strong temperature-induced dephasing [25]
dominated the experiments, we observe a strong improvement
of the two-photon visibility on resonance, which exceeds a
factor of three compared to the off-resonant case. We extend
the theoretical model of Ref. [28] to derive an expression
for the Hong-Ou-Mandel dip, including the effects of both
time jitter and pure dephasing on- and off-resonance. This
allows us to reject timing jitter and definitively attribute
sources of pure dephasing as the dominant factor limiting the
indistinguishability of our photons. Furthermore, we show that
the degree of symmetry we observe for positive and negative
detuning suggests pure dephasing caused by both phonon
coupling and spectral diffusion.

II. QUANTUM DOT–CAVITY SYSTEM

The device under investigation comprises a QD embedded
in a micropillar cavity with a quality factor of Q = 3200.
The layer structure consists of 25 (30) alternating λC

4·n -thick
GaAs/AlAs mirror pairs which form the upper (lower) dis-
tributed Bragg reflector (DBR). The cavity region is composed
of six alternating GaAs/AlAs layers with decreasing (lower
part) and increasing (upper part) thickness. A single layer
of partially capped and annealed InAs QDs is integrated
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FIG. 1. (Color online) (a) Temperature-dependent intensity map
of the QD-cavity system. The QD reaches spectral resonance with
the cavity mode at T = 17.5 K. (b) QD lifetime as a function
of QD-cavity detuning. The fit is a Lorentzian profile where the
linewidth is fixed to the cavity linewidth. A Purcell enhancement of
FP = 7.8 ± 2.3 is extracted.

in the central layer of the tapered segment, i.e., in the
vertical maximum of the optical field [34]. Micropillars with
varying diameters were etched into the wafer (the pillar under
investigation has a diameter of 1050 nm) to provide zero
dimensional mode confinement. As a result of the Bloch mode
engineering [34], our micropillars support optical resonances
with comparably large quality factors down to the submicron
diameter range, which yields the possibility to significantly
increase the Purcell factor in such microcavities compared to
conventional DBR resonators based on λ-thick cavity spacers.
The sample was placed inside an optical cryostat, and the
QD was excited via a picosecond-pulsed Ti:sapphire laser
with a repetition frequency of 82 MHz (pulse separation
12.2 ns). The laser beam was coupled into the optical path via
a polarizing beam splitter, which also suppresses the scattered
laser light from the detection path of the setup. Further
filtering was implemented by a long-pass filter in front of the
monochromator. After spectral filtering, the emitted photons
were coupled into a polarization maintaining single-mode fiber
followed by a fiber-coupled Mach-Zehnder interferometer
(MZI) with a variable fiber-coupled time delay in one arm
to measure the TPI in a Hong-Ou-Mandel (HOM) setup. The
second beam splitter of the MZI can be removed to directly
measure the autocorrelation function of the signal.

Figure 1(a) shows the temperature-dependent micropho-
toluminescence (μ-PL) map of the investigated QD-cavity
system, which was recorded under nonresonant excitation
conditions. The QD-emission line, which we attribute to the
neutral exciton, can be tuned through the cavity mode by
changing the sample temperature. Spectral resonance with the
fundamental cavity mode is achieved at T = 17.5 K. Due
to the Purcell enhancement, the integrated intensity of the
QD increases by a factor of more than three when the QD
and cavity are tuned into resonance. In order to directly and
accurately extract the Purcell factor of our coupled system,
we measured the exciton lifetime via time-resolved μ-PL as
a function of the QD-cavity detuning (see Appendix A 2). As
seen in Fig. 1(b), we observe a strong decrease of the lifetime
when the QD is tuned into resonance as a result of the Purcell
effect. The Purcell factor FP = T1(�→∞)

T1(�→0) − 1 [35] is extracted
by fitting the data with a Lorentzian profile (the width being
fixed to the cavity linewidth κ = 0.42 meV), and we find a
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FIG. 2. (Color online) (a) Autocorrelation histogram on QD-
cavity resonance, from which we extract g(2)(0) = (0.058 ± 0.006).
(b) Autocorrelation function as a function of QD-cavity detuning
(the inset shows a zoom-in of the y axis).

value as high as FP = 7.8 ± 2.3 as a result of the small mode
volume of our microcavity.

We now study the single-photon emission properties of
our system, which is particularly important on-resonance,
where the single-photon characteristics can be deteriorated by
nonresonant contributions to the cavity from spectator QDs, or
luminescence from the background continuum funneled into
the cavity mode [36]. The second-order photon autocorrelation
was probed under quasiresonant excitation conditions, with a
laser tuned 32 meV to the high-energy side of the single-
exciton emission feature, with a (below-saturation) power
of 311 μW. The on-resonance (T = 17.5 K) autocorrelation
histogram is shown in Fig. 2(a). The strongly suppressed peak
around τ = 0 is a clear signature of single-photon emission.
We extract the g(2)(τ = 0) value by dividing the area of
the central peak by the average area of all the side peaks,
leading to g(2)(0) = 0.058 ± 0.006, reflecting the high purity
of our cavity-enhanced single-photon source. Off-resonance
we find a minimum value of g(2)(0) = (0.036 ± 0.005) at
� = −0.28 meV (T = 6.4 K). For increasing temperatures,
we note a modest increase up to g(2)(0) = (0.11 ± 0.01) for
� = 0.61 meV (T = 25.5 K). This value is still close to perfect
single-photon emission, and we attribute the slight rise to a
lowered signal to background ratio between QD and cavity
emission. We note that no deterioration of the g(2)(0) value can
be observed on spectral resonance, which suggests only very
weak contributions from spectator QDs to the cavity signal.

III. PHOTON INDISTINGUISHABILITY

We now assess the indistinguishable nature of the emitted
photons, which we probe in the HOM interferometer under
the same pulsed quasiresonant excitation conditions. The
second-order correlation histogram for zero time delay in
the MZI for the resonant case is shown in Fig. 3(a). Strong
suppression of the central correlation peak directly reflects
a strong degree of photon indistinguishability. The black
markers in Fig. 3(b) are obtained by dividing the area of the
peak centered around τ = 0 by that centered around τ = 24 ns
for various time delays τD , and we observe a clear HOM
dip. For large time delays τD , the correlation values slightly
exceed 0.5 as a result of the finite two-photon emission
probability, as seen in Fig. 2. We correct the interference
data by subtracting half the corresponding experimentally
extracted on-resonance value of g(2)(0) = (0.058 ± 0.006)
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FIG. 3. (Color online) (a) Histogram of the TPI for zero time
delay between the two arms of the interferometer, from which we ex-
tract g

(2)
HOM(0) = 0.17 ± 0.02. (b) Measured two-photon interference

vs the time delay. The measurement shows the clear HOM dip (black
dots). Due to a nonvanishing two-photon probability, the data points
go slightly above 0.5 for large τD . These are corrected by subtracting
half the measured g(2)(0) value on resonance shown in Fig. 2 (red
markers). These corrected data were fitted to extract a visibility of
ν = (83 ± 5)%.

(red markers) (see Appendix B 2). We then fit our data
to the function g

(2)
HOM(τD) = 0.5(1 − ν exp[−|τD|/T1]), where

we set T1 = 67 ps [see Fig. 1(b)], and we find a visibility of
ν = 83 ± 5%. This high value is a direct consequence of the
large Purcell factor in our high-quality QD-cavity system.

To further analyze our experimental data and, in particular,
to determine the relative influences of time jitter and pure
dephasing on the indistinguishability of the emitted photons,
we extend the theory of Ref. [28] to derive an expression for
the TPI as a function of both time delay τD and detuning.
Dephasing caused by coupling to phonons is known to
affect the TPI properties of the emission from a QD-cavity
system in a highly nontrivial way, giving rise, for example,
to pronounced asymmetries for positive and negative QD-
cavity detunings [28–30]. We find, however, that nearly all
features seen in our data can be well reproduced by a model
assuming a simple constant pure-dephasing rate. We present
this simplified model first, and then go on to show that by
including phonons in a rigorous manner at a Hamiltonian
level, the behavior off-resonance allows us to approximately
determine the relative influence of phonons as compared to
other sources of dephasing.

We model the QD as a three-level system, and consider the
vacuum and single-photon Fock states of the cavity. Provided
the QD-cavity coupling strength is sufficiently weak and/or
the cavity decay rate is sufficiently large, the cavity degrees of
freedom can be adiabatically eliminated from the equations of
motion for the QD-cavity system [28]. The result is a master
equation of the form (see Appendix B 3)

dρ

dt
= − i

�
[� |E〉〈E| ,ρ] + (L	(|G〉〈E|)

+ L2γ (|E〉〈E|) + Lα(|E〉〈P |))ρ, (1)

where the states |E〉 = |e,n = 0〉, |G〉 = |g,n = 1〉, |P 〉 =
|p,n = 0〉 represent the QD in ground (g), single-exciton
state (e), or pump level (p), with the cavity containing zero
or one excitation. The QD-cavity detuning is �, while γ

is the pure-dephasing rate, and α is the rate at which the
pump level decays into the single-exciton state, with Tα = 1/α

determining the magnitude of the time jitter (i.e., Tα = 0

Tα = 3.2 ps,  = 1.6 μeV

Phonon model
Tα = 21.5 ps,  = 0

(a) (b)

FIG. 4. (Color online) (a) HOM dip and HOM-dip depth as a
function of detuning (b). The dashed blue curves correspond to a
parameter set for which time jitter dominates, which we find to be
inconsistent with the data off-resonance shown in (b). The dotted
green curves correspond to a parameter set for which pure dephasing
dominates, which is able to consistently reproduce all data. The solid
orange curves again correspond to a parameter set dominated by pure
dephasing, but where 40% of the dephasing on-resonance is caused
by coupling to phonons.

represents the ideal case in which there is no time jitter). The
Purcell enhanced spontaneous-emission rate is

	 = T −1
1 = 	B + 2g2 γtot

γ 2
tot + �2

, (2)

with 	B the background decay rate, g the QD-cavity coupling
strength, and γtot = γ + 1

2 (κ + 	B) with κ the cavity decay
rate. The validity of Eq. (1) relies on the condition γtot �
�,	,g, which is satisfied in all our experiments.

Equation (1) can then be used to derive an expression for
the normalized coincidence events in the TPI measurements
(for details, see Appendix B 3). The second-order correlation
function for the HOM interference measurements is found to
read

g
(2)
HOM(τD) = 1

2

(
1 − ν

	 − α
[	e−|τD |α − αe−|τD |	]

)
, (3)

where the detuning dependence enters through 	 [see Eq. (2)],
and ν = [	/(	 + 2γ )][α/(	 + α)] is the visibility. We note
that while the expression for ν has been derived before [28],
Eq. (3) is able to describe the full behavior of the HOM dip for
nonzero values of τD including time jitter and pure dephasing.
This model provides us with simple analytical expressions with
which we can fit the experimental TPI data. Crucially, it allows
us to explore how a given set of parameters simultaneously
affects the HOM dip and the TPI visibility as the QD and
cavity are moved off-resonance.

In Fig. 4(a), we show again the HOM dip, while in
Fig. 4(b), we show the depth of the HOM dip as a function
of detuning. We see a pronounced rise of the HOM dip as the
QD is brought out of resonance, corresponding to visibilities
on- and off-resonance which differ by more than a factor
of three. The dashed blue curves in Fig. 4 show a fit to
Eq. (3) where only the data in Fig. 4(a) (the HOM dip)
are considered. Fitting parameters Tα = 1/α = 21.5 ps and
γ = 0 μeV are found, corresponding to a regime where time
jitter dominates. These parameters are able to reproduce the
HOM dip well, but fail to describe the data off-resonance.
Indeed, we find that if we simultaneously fit all the data
shown in Fig. 4, we find parameters Tα = 1/α = 3.2 ps and
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γ = 1.6 μeV, corresponding to a regime for which pure
dephasing dominates. These parameters are shown by the
dotted green curves, and much better agreement is found.
These two fits show that while both time jitter and pure
dephasing affect the shape of the HOM dip in a similar
way, the reduction in the visibility seen off-resonance can
only be explained by a system in which pure dephasing
dominates. As the QD and cavity are moved off-resonance, the
Purcell effect weakens (see Fig. 1) and 	 = 1/T1 decreases.
For a source dominated by pure dephasing, the visibility is
given by ν ≈ 	/(	 + 2γ ), and a reduction in 	 causes a
reduction in ν. For a source dominated by time jitter, the
visibility instead follows ν ≈ α/(	 + α), and a reduction in 	

increases ν. We stress that which of the two regimes is relevant
for a particular system has important consequences for how
experimental modifications will translate to improvements
in photon indistinguishabilities. In the present case, since
pure dephasing dominates, a complete elimination of time
jitters (achieved, for example, via strictly resonant excitation
conditions) will lead to only a modest 4% increase in the
visibility, while an elimination of sources of pure dephasing
will lead to an increase of 20% up to ν = 95%.

IV. DISCUSSION

The low value of Tα = 3.2 ps implies that our quasires-
onant excitation scheme leads to a very fast relaxation
to the desired single-exciton state. This is also supported
by the laser detuning we use (32 meV), which corresponds
to the energy of a longitudinal optical phonon, known to relax
on this time scale [37]. We attribute pure dephasing in our
sample as caused by exciton-phonon coupling and spectral
fluctuation of the QD energy levels on a time scale shorter than
the pulse separation of 12.2 ns. The constant pure-dephasing
rate used in our theory is expected to well approximate
the spectral fluctuations, but the influence of phonons is
known to give rise to more complicated behavior [28–31].
In particular, differing phonon absorption and emission rates
at low temperatures are expected to lead to asymmetries for
positive and negative detuning [29]. By including phonons
using a time-convolutionless master-equation technique (see,
e.g., Ref. [28] or Appendix B 5), we find that these asymmetries
can improve our fits. The solid orange curves in Fig. 4 show
the predictions of a parameter set similar to that of the dotted
green curve, but where we have included phonons with a
strength corresponding to approximately 40% of the total
pure-dephasing on-resonance [38], and it can be seen that
the phonon contribution improves the fits to the data. We
note, however, that when increasing the phonon contribution
even further, the fits become worse as the asymmetry becomes
too strong. The relatively strong symmetry seen in Fig. 4(b)
therefore leads us to conclude that both phonons and additional
sources of constant pure dephasing (such as a spectral
diffusion) are present in our system.

In conclusion, we have demonstrated the feasibility of our
cavity design to enhance the emission of indistinguishable
single photons generated in epitactically grown InAs QDs.
Using a quasiresonant excitation scheme, we were able to show
a TPI visibility as high as ν = (83 ± 5)% and a two-photon
emission probability as low as g(2)(0) = (0.036 ± 0.005). We

studied the influence of the QD-cavity detuning on both the
two-photon probability and the degree of indistinguishability
of the emitted photons. The TPI measurements are explained
by our theory, which takes the QD-cavity detuning, time
jitter, and pure dephasing into account, and which identifies
sources of pure dephasing as the ultimate factor limiting the
indistinguishably of emitted photons.
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APPENDIX A: EXPERIMENTAL METHODS

1. Coherence measurements

In addition to the Hong-Ou-Mandel (HOM) interference
measurements, the coherence of the emitted photons was
measured using a free-beam unbalanced Michelson interfer-
ometer. One mirror is mounted on a 300-mm-long linear
stage, which defines the path-length difference between both
optical arms, and, by using an additional implemented piezo
crystal at one mirror, the interference fringe contrast from the
emitted photons is measured as a function of the path-length
difference. The measurements (black data points) are shown in
Fig. 5(a) for a QD in spectral resonance with the cavity mode.
Fitting these data points to a Gaussian function of the form
A + B ∗ exp[−(π/2)(τ/T2)2], we extract a coherence time of
T2 = (93 ± 3) ps. This value in slightly lower than the coher-
ence time extracted from the HOM dip in Fig. 3, for which

Time (ns)
0 2 4 6 8 10

A
P

D
 S

ig
n

al
 (

a.
u

.)

10

10

10

10

0 100-100

C
o

n
tr

as
t

Path length difference (ps)

1.0

0.75

0.50

0.25

0.0

(a) (b)

FIG. 5. (Color online) (a) Coherence length measurement using
a free-beam unbalanced Michelson interferometer. Fitting the data
points with a Gaussian distribution (red solid curve), we extract
a coherence time of T2 = (93 ± 3) ps. (b) Time-resolved μ-PL
measurements. The blue dotted data points correspond to spectral
resonance between the QD and fundamental cavity mode (� = 0
meV), while the red square points were taken for a detuning of
� = 0.61 meV. The solid curves correspond to fits to a biexponential
function, from which we extract T1 = (67 ± 8) ps on-resonance and
T1 = (306 ± 13) ps off-resonance.
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T2 = 111 ps. We attribute this slight discrepancy to a long-term
spectral jitter which affects the QD emission energy on time
scales which are longer than the pulse separation. In the HOM
measurement, only subsequently emitted photons separated by
12.2 ns (the laser pulse separation) contribute to the measured
indistinguishability, and hence the inferred coherence time of
T2 = 111 ps. The HOM measurements therefore include an
effective time filter. In contrast, the measurements made using
the Michelson interferometer are time integrated and, as such,
long-term drifts and spectral diffusion result in a deterioration
of the extracted T2 value [7,9,39].

2. Lifetime measurements

In order to measure the lifetime of the QD emission, we
couple the spectrally filtered photons into a single-mode fiber
attached to an avalanche photodiode (APD) with resolution
∼40 ps. Figure 5(b) shows two representative time-resolved
measurements of the QD emission under quasiresonant ex-
citation. The blue round data points correspond to spectral
resonance between the QD and fundamental cavity mode
(� = 0 meV), while the red square data points correspond to a
detuning of � = 0.61 meV. The measurements (time window
100 ns) each contain six complete decay curves similar to
those shown in Fig. 5(b), which we fit to a biexponential decay
function. The shorter time constant represents the lifetime of
the bright exciton, while the longer time originates from a
dark exciton effect. For the decay curves in Fig. 5(b), we find
T1 = (67 ± 8) ps on-resonance and T1 = (306 ± 13) ps for
� = 0.61 meV.

APPENDIX B: TWO-PHOTON INTERFERENCE THEORY

Here we provide the necessary background for the theoret-
ical analysis of the data presented in the main text.

1. Hanbury Brown and Twiss measurements

We first consider the Hanbury Brown and Twiss (HBT)
experimental setup used to measure the two-photon emission
probability of our source. Emission from the source is incident
upon a 50:50 beam splitter, and two detectors are placed
equidistantly on the two output arms. We label t1 the time
of the detection event at detector 1, and t2 that of detector 2.
The probability of detecting a photon at detector 1 at t1, and
at detector 2 at t2, is proportional to the second-order field
correlation function,

G(2)(t1,t2) = 〈b†1(t1)b†2(t2)b2(t2)b1(t1)〉, (B1)

where b
†
1(t) is the creation operator for the mode propagating

to detector 1 in the Heisenberg picture, and similarly for
b
†
2(t). We relate these modes to those on the input arms,

described by creation operators a
†
1 and a

†
2, using the unitary

mode transformation [26],(
b
†
1(t)

b
†
2(t)

)
= 1√

2

(
1 1

−1 1

) (
a
†
1(t − τD)

a
†
2(t)

)
, (B2)

where τD is the delay introduced between arrival times at the
beam splitter. For the HBT measurement, there is no input in

arm 1, and we simply have G(2)(t1,t2) → G
(2)
HBT(t1,t2), with

G
(2)
HBT(t1,t2) = 1

4 〈a†(t1)a†(t2)a(t2)a(t1)〉, (B3)

where the subscripts on the operators have been dropped since
they are all equal.

To measure the two-photon emission probability g(2)(0), we
integrate Eq. (B3) over all t1 and t2, and divide this area by
an adjacent peak. The adjacent peaks correspond to Eq. (B3),
but where t1 and t2 differ sufficiently that mode operators
at these times are completely uncorrelated. This gives the
uncorrelated coincidence probability in the HBT measurement
G

(2)
HBT,UC(t1,t2) = (1/4)G(2)(t1,t2), with

G(2)(t1,t2) = 〈a†(t1)a(t1)〉〈a†(t2)a(t2)〉. (B4)

The normalized autocorrelation function is then defined as

g(2)(0) =
∫ ∞
−∞ dt1

∫ ∞
−∞ dt2G

(2)
HBT(t1,t2)∫ ∞

−∞ dt1
∫ ∞
−∞ dt2G

(2)
HBT,UN(t1,t2)

=
∫ ∞
−∞ dt1

∫ ∞
−∞ dt2〈a†(t1)a†(t2)a(t2)a(t1)〉∫ ∞

−∞ dt1
∫ ∞
−∞ dt2〈a†(t1)a(t1)〉〈a†(t2)a(t2)〉 , (B5)

which is equal to zero for 〈a†(t1)a†(t2)a(t2)a(t1)〉 = 0.

2. Hong-Ou-Mandel experiment

We now consider the Hong-Ou-Mandel (HOM) experi-
mental setup used to measure the indistinguishable nature
of the emitted photons. Two emission events are incident
on a 50:50 beam splitter, with a delay τD introduced into
input arm one. The unnormalized probability of a coincidence
event is again given by Eq. (B1), and the beam splitter is
described by Eq. (B2). Upon combining these equations, we
find 16 terms. These can be simplified by assuming that
modes 1 and 2 are identical but statistically independent,
which allows us to write 〈A1A2〉 = 〈A1〉〈A2〉, where A1 is
any product of mode operators pertaining to mode 1, and
similarly for A2. We then find eight terms linear in 〈a1〉
and 〈a2〉. For an electromagnetic field state of the form∑

n an |n〉〈n|, with |n〉 a Fock state, expectation values linear
in the ladder operators are zero, and we neglect these terms.
This leaves second- and fourth-order terms. The second-order
terms involve expectation values of the form 〈a†(t1)a†(t2)〉,
which also give zero for electromagnetic fields, as discussed
above. The remaining terms give

G
(2)
HOM(t1,t2,τD) = G

(2)
HBT(t1 − τD,t2 − τD) + G

(2)
HBT(t1,t2)

+ 1
4 {G(2)(t1 − τD,t2) + G(2)(t1,t2 − τD)

− 2Re[G(1)(t1 − τD,t2 − τD)G(1)(t2,t1)]},
(B6)

where G(1)(t1,t2) = 〈a†(t1)a(t2)〉 is the unnormalized first-
order correlation function.

To normalize this quantity, we again consider the scenario
in which t1 and t2 are sufficiently separated that mode
operators evaluated at these two times are uncorrelated. In
doing so, we find the uncorrelated coincidence probability for
the HOM setup, G

(2)
HOM,UC(t1,t2) = 1

4 [G(2)(t1,t2) + G(2)(t1 −
τD,t2) + G(2)(t1,t2 − τD) + G(2)(t1 − τD,t2 − τD)]. Since we
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integrate over all t1 and t2, the appearances of τD can be
neglected, i.e., we have∫ ∞

−∞
dt1

∫ ∞

−∞
dt2G

(2)
HOM,UC(t1,t2) =

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2G(2)(t1,t2)

(B7)

by a simple change of variables. An identical argument can
be made for the τD appearing in G

(2)
HBT(t1 − τD,t2 − τD) in

Eq. (B6). In the HOM setup, we therefore measure the
normalized quantity,

g
(2)
HOM(τD) =

∫ ∞
−∞ dt1

∫ ∞
−∞ dt2G

(2)
HOM(t1,t2,τD)∫ ∞

−∞ dt1
∫ ∞
−∞ dt2G

(2)
HOM,UN(t1,t2)

= 1

2
g

(2)
HBT(0) + 1

2
[1 − C(τD)], (B8)

where we have defined the strictly two-photon coalescence
probability,

C(τD)=
∫ ∞
−∞dt1

∫ ∞
−∞dt2Re[G(1)(t1−τD,t2 − τD)G(1)(t2,t1)]∫ ∞

−∞ dt1
∫ ∞
−∞ dt2G(2)(t1,t2)

,

(B9)

which for τD = 0 becomes the visibility ν = C(0).

3. Quantum dot–cavity system

We now develop a master equation which will allow us to
derive an analytic expression for g

(2)
HOM(τD) in the presence of

time jitter and pure dephasing. We follow Ref. [28] and model
the quantum dot (QD) as a three-level system, with crystal
ground state |g〉, single-exciton state |e〉, and pump level |p〉,
having energies �ωg , �ωe, and �ωp, respectively. The cavity
mode is described by creation and annihilation operators c†

and c, and has frequency ωc. The system is depicted in Fig. 6.
In a rotating frame, the QD-cavity system is described by the
Jaynes-Cummings Hamiltonian,

HJC = �� |e〉〈e| + �g(|e〉〈g| c + |g〉〈e| c†), (B10)

|g

|e

|p

|0

|1Δ

α

κ
g

γ
α

Adiabatic 
cavity 

elimination

γ

|G

|E

|P

ΓB Γ

FIG. 6. (Color online) Schematic diagram of the system under
consideration; a quantum dot with pump level |p〉, excited state
|e〉, and ground state |g〉 couples to a cavity mode with strength
g and detuning �. We consider only the zero-photon and one-photon
manifolds of the cavity mode, which decays with rate κ . The |p〉 →
|e〉 transition has rate α, while the spontaneous-emission process of
|e〉 → |g〉 has background rate 	B . The excited state undergoes pure
dephasing with rate γ . Adiabatic cavity elimination results in an
effective three-level system with a modified spontaneous-emission
rate 	.

where � = (ωe − ωg) − ωc is the detuning of the QD transi-
tion from the cavity mode, and g is the QD-cavity coupling
strength. Relaxation processes are added using the Lindblad
formalism [40], and the master equation describing the QD-
cavity degrees of freedom ρ becomes

dρ

dt
= − i

�
[HJC,ρ] + [Lκ (c) + L	B

(|g〉〈e|)
+L2γ (|e〉〈e|) + Lα(|e〉〈p|)]ρ, (B11)

where the Lindblad operators satisfy Lγ (A)ρ = γ (AρA† −
1
2 {A†A,ρ}), with α and κ the decay rates of the pump level and
cavity, respectively. The background spontaneous-emission
rate of the QD is 	B , and the rate γ describes pure dephasing
of the QD excited-state level.

In the limit of weak QD-cavity coupling and/or strong
cavity decay, the cavity can be adiabatically eliminated from
equations of motion describing our system. Formally, we
require γtot � �,	,g with γtot = γ + 1

2 (κ + 	), and provided
we consider the initial state ρ(0) = |p〉〈p| |0〉〈0|, with |0〉 the
vacuum state of the cavity mode, the dynamics can be well
approximated by the master equation [28]

dρ

dt
= − i

�
[� |E〉〈E| ,ρ] + [L	(|G〉〈E|)

+ L2γ (|E〉〈E|) + Lα(|E〉〈P |)]ρ, (B12)

which is Eq. (1) in the main text.

4. Photon indistinguishability for the QD-cavity system

We now use Eq. (B12) to calculate the TPI probability,
given by Eq. (B8). To proceed, we note that in the far field, we
can make the replacement a(t) → σ (t) with σ = |G〉〈E| [26]
in Eq. (B8). Then, to calculate the second-order cor-
relation function G

(2)
HBT(t1,t2) = 1

4 〈a†(t1)a†(t2)a(t1)a(t2)〉 →
1
4 〈σ †(t1)σ †(t2)σ (t1)σ (t2)〉, we make use of the quantum re-
gression theorem to write [41]

∂

∂τ
G

(2)
HBT(t,t + τ ) = −	 G

(2)
HBT(t,t + τ ). (B13)

For τ = 0, we find G
(2)
HBT(t,t) = 0 since σ 2 = (σ †)2 = 0, and,

as such, G
(2)
HBT(t,t + τ ) = 0 and we can set g(2)(0) = 0 in

Eq. (B8). This reflects that for the theory presented here, we
have strictly one (or less) excitations in the system at any time.

We now calculate the two-photon coalescence probability
expressed in Eq. (B9). To begin, we consider the uncorre-
lated probability G(2)(t1,t2) → 〈σ †(t1)σ (t1)〉〈σ †(t2)σ (t2)〉. The
quantity 〈σ †(t)σ (t)〉 = Tr[ρ(t)σ †σ ] is just the excited-state
population at time t , and from Eq. (B12), we have

〈σ †(t)σ (t)〉 = �(t)
α

	 − α
(e−αt − e−	t ), (B14)

where the Heaviside θ function [�(t) = 0 for t < 0 and �(t) =
1 for t > 0] has been introduced to ensure no excitations are
present before emission events. From the quantum regression
theorem, the first-order correlation function G(1)(t,t + τ )
obeys the equation of motion,

∂

∂τ
G(1)(t,t + τ ) = −

(
γ + 1

2
	 + i�

)
G(1)(t,t + τ ), (B15)
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with initial condition G(1)(t,t) = 〈σ †(t)σ (t)〉, which gives

G(1)(t,t + τ ) = 〈σ †(t)σ (t)〉e−(γ+ 1
2 	+i�)|τ |. (B16)

Finally, performing the integrals in Eq. (B8), we arrive at
Eq. (3) in the main text.

5. Exciton-phonon coupling

To explore the influence of phonons seen in our data, a
weak exciton-phonon coupling time-convolutionless master-
equation technique is used [28]. To second order in the
exciton-phonon coupling strength, and within the Born-
Markov approximation, the master equation for the complete
QD-cavity system (i.e., before adiabatic elimination) becomes

dρ

dt
= − i

�
[HJC,ρ] + [Lκ (c) + L	(|g〉〈e|)

+ L2γ (|e〉〈e|) + Lα(|e〉〈p|)]ρ + Kph(ρ), (B17)

where the phonon-induced dissipator is given by

Kph(ρ) = −
∫ ∞

0
dsTrph[HI ,[H̃I (−s),ρ(t)ρph]], (B18)

where Trph denotes a trace over the phonon modes. The
interaction Hamiltonian is written

HI = |e〉〈e|
∑

k

gk(b†k + bk), (B19)

where b
†
k is a creation operator for a phonon mode with

wave vector k, and gk describes its coupling strength to the
QD exciton. The interaction-picture interaction Hamiltonian is
defined by H̃ (−s) = e−iH0sHI e

iH0s , where H0 = HJC + Hph,

with phonon Hamiltonian Hph = ∑
k ωkb

†
kbk and ωk the

frequency of mode k. Finally, we assume a thermal state for
the phonon density operator: ρph = e−βHph/Trph(e−βHph ), with
β = �/kBT and T the sample temperature.

The strength of the QD-phonon coupling is characterized by
the spectral density, defined as J (ω) = ∑

k g2
k δ(ω − ωk), and

which for excitons in QDs has been shown to be adequately
described by the function

J (ω) = η ω3 exp[−(ω/ωc)2], (B20)

where η captures the overall strength of the interaction
determined by material parameters, and ωc is the photon
cutoff frequency [42]. The behavior of the phonon dissipa-
tor in Eq. (B18) in different parameter regimes has been
discussed in detail elsewhere [28–30]. The parameters used
to obtain improved fits to the data in the main text (the
solid orange curves in Fig. 4) are η = 0.032 meV−2 and
ωc = 1.3 meV, while the constant pure-dephasing rate was
reduced to γ = 1 μeV. These parameters correspond to
phonons contributing approximately 40% of the dephasing
on-resonance. We note that the other parameters in the
model were adjusted to 1/	B = 730 ps and g = 34 μeV in
order that the T1 times as a function of detuning were well
reproduced.

The density operator ρ entering Eq. (B17) contains both QD
and cavity degrees of freedom. When relating the field operator
a(t) to the QD-cavity system, we have a choice to consider QD
emission or cavity emission, making, respectively, the replace-
ments a → c or a → |g〉〈e| in the field correlation functions.
Our data were better described by cavity emission, which we
attribute to the high Purcell factor of our QD-cavity system.
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S. Höfling, and A. Fiore, Opt. Express 20, 21758 (2012).

[16] S. Reitzenstein and A. Forchel, J. Phys. D: Appl. Phys. 43,
033001 (2010).

[17] O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold,
A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lematre, and
P. Senellart, Nat. Commun. 4, 1425 (2013).

[18] J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard,
and V. Thierry-Mieg, Phys. Rev. Lett. 81, 1110 (1998).

[19] J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou,
N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard,
Nat. Photon. 4, 174 (2010).

[20] M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B.
Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven,
and V. Zwiller, Nat. Commun. 3, 737 (2012).
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M. Kamp, S. Höfling, D. P. S. McCutcheon, and A. Nazir,
Phys. Rev. Lett. 113, 097401 (2014).

[33] S. Weiler, A. Ulhaq, S. M. Ulrich, S. Reitzenstein, A. Löffler,
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