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Abstract. Animal-attached sensors provide invaluable data to describe behavior of cryptic species,

such as cetaceans, and are increasingly used to assess anthropogenic disturbance effects. Tag

deployment and handling may itself alter the behavior of study animals and there is a need to assess

if and when behavior recovers to an undisturbed level. Not all behavioral changes have fitness

consequences, and our goal is to derive metrics that can be linked to fitness implications, such as time

and energy allocation to different functional behaviors. Here we detail an approach that incorporates

biological knowledge and multiple streams of tag-recorded data in a hidden state-switching model to

estimate time series of functional behavioral st ates for 12 sperm whales off Norway. Foraging, recovery

and resting states were specified in the hidden state model by state-dependent likelihood structures.

Comparison of hidden state models revealed a parsimonious set of input time series, and supported the

inclusion of a less informed ‘silent active’ state. There was a high agreement between state estimates and

expert classifications. We then used the estimated states in time series models to test three hypotheses

for behavioral change during suction-cup tag deployment procedures: change in behavioral states,

change in prey capture attempts and locomotion cost, given behavioral state. Sperm whales spent 34%

less time at the sea surface and 60% more time in non-foraging silent active state in the presence of the

tag boat (‘‘tagging period’’ 0.1–2.8 h) than during post-tagging baseline period (1.8–20.8 h). No

comparable pre-tagging baseline data were available. Nevertheless, time-decaying models of tagging

effects were not retained in model selection, indicating a short-term effect that ceased immediately after

the tagging period. We did not find changes in energetic proxies, given behavioral state, however

changes in functional state budget indicate costs in terms of lost feeding opportunities and recovery

time at surface. These results are useful to quantitatively identify data periods that should not be

considered baseline behavior within tag recordings. This functional state approach proves effective to

quantify disturbance in terms of time and energy allocation that is based upon general principles that

can be applied to other species and biologging applications.
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INTRODUCTION

Animal-attached sensors have become an
important means to monitor individual behavior
for a wide range of species and habitats in the
wild. With technological advances in miniaturi-
zation, resolution and longevity of bio-logging
sensors and transmitters, there is scope for a
more integrated understanding of how individ-
ual behavior and physiology interact with their
environment and anthropogenic stressors (Cooke
et al. 2004, Johnson et al. 2009). As such,
biologging science can provide first clues of
individual-level mechanisms that could drive
anthropogenic impacts on populations (Cooke
et al. 2004, Tyack 2009, Berger-Tal et al. 2011,
Miller et al. 2012). For population-level inferences
to be reliably made, it is important to consider
how representative the tagged individuals’ base-
line behavior (such as time spent foraging) or
response to stimuli (such as probability of
avoidance) are of the wild, non-tagged popula-
tion of conservation interest. Evaluation of
possible effects of bio-logging experimental
procedures is therefore important when consid-
ering how representative tag data might be to the
entire population (‘‘measurement affects perfor-
mance’’; Wilson et al. 1986, Miller et al. 2009).

Research effects of biologging studies comprise
both the effects elicited by the tag deployment
procedures, such as approach, physical contact or
capture (hereafter collectively termed as ‘han-
dling’) and the presence of the device itself upon
the animal. Documented tagging and marking
effects range from injury, physiological stress and
behavioral changes to reproductive success and
survival rates (Murray and Fuller 2000, Godfrey
and Bryant 2003, Barron et al. 2010, Walker et al.
2012). The relative importance of handling and
device effects depends upon their relative inva-
siveness, duration and repetition that may allow
for habituation or sensitization. The effects of tag
presence are of particular concern for flying and
swimming species that may be more sensitive to
alterations to their streamlining, such as tag-
induced drag (Bannasch et al. 1994, Barron et al.
2010, Hazekamp et al. 2010), and subsequent
increases in transport costs (Wilson et al. 1986,
Ropert-Coudert et al. 2000, Wilson and McMa-
hon 2006, Fossette et al. 2007). These effects are
reduced by use of relatively smaller and more

aero- and hydrodynamic tag shapes (e.g., Ban-
nasch et al. 1994). Locomotion costs can also be
expected to increase if the tag significantly
increases the mechanical loading (weight), buoy-
ancy or center of gravity of an individual (Wilson
et al. 1986). Tag attachment method (e.g., harness
vs. glue) may also impair movement (Barron et
al. 2010), but also have more subtle physiological
effects, such as changes in the distribution of
animal surface temperature (McCafferty et al.
2007).

In marine mammals, most studies have report-
ed short-term behavioral effects of tagging with
little evidence of impacts on survival (McMahon
et al. 2008, Walker et al. 2012). While extensive
research on tagging effects have helped to guide
deployment practices and tag development (e.g.,
Fossette et al. 2007), generalizing the device-
specific and mostly qualitative results to different
species and constantly evolving telemetry set ups
is challenging (Murray and Fuller 2000). Not only
are tagging effects likely to depend upon specific
handling procedures and tag design but also
individual (age, sex, condition) and behavioral
and environmental context (e.g., nursing, prey
availability) (Murray and Fuller 2000, Walker et
al. 2012). Reliable estimation of tagging effects
therefore requires case-by-case assessment. How-
ever, with limited availability and cost of
alternative study platforms, tagging studies are
rarely able to empirically cross-validate tag data
with data from a ‘pre-tagging’ period or data
from non-tagged individuals (Murray and Fuller
2000, Godfrey and Bryant 2003, Walker et al.
2012). Most studies therefore assume that tagging
has negligible or no influence on parameters of
interest after some cut-off recovery time since
handling (‘baseline’ period; Murray and Fuller
2000, Godfrey and Bryant 2003, but see definition
of baseline period based upon affected dive
parameters in Miller et al. 2009).

An alternative and quantitative approach is to
compare tagged individual behavior between
different available ‘doses’ of tagging procedures,
such as varying tag size (Wilson et al. 1986) or
handling intensity (Engelhard et al. 2002). Such
an approach could be used to back-calculate true
population parameters (Wilson et al. 1986,
Wilson and McMahon 2006). For example,
Ropert-Coudert et al. (2007) compared diving
and movement behavior of Adelie penguins

//titan/Production/e/ecsp/live_jobs/ecsp-06-01/ecsp-06-01-05/layouts/ecsp-06-01-05.3d � Monday, 19 January 2015 � 9:36 am � Allen Press, Inc. � Page 2 ECSP ES14-00130R1 Isojunno

v www.esajournals.org 2 January 2015 v Volume 6(1) v Article 6

ISOJUNNO AND MILLER



between two different tag sizes to extrapolate
effects on penguins with tags of negligible size.
Based upon their results on tagged individuals,
the authors were able to predict that non-tagged
penguins would maintain similar energy expen-
diture than tagged animals but be able to swim
faster, dive deeper, and range farther in pursuit
of prey. Similarly, data can be compared within
each tag record under the assumption that
handling effects are strongest at the time of
attachment and decrease afterwards. For exam-
ple, Miller et al. (2009) found that the first dive
after tagging was shorter than subsequent dives
of sperm whales. Such a ‘during-after’ compar-
ison can reduce confounding individual variabil-
ity, but does assume that tag records are long
enough to allow at least partial recovery.

In this paper, we develop and apply a novel
approach to quantitatively assess the effects of
suction-cup tag deployment procedures (‘han-
dling’) on sperm whales for which no pre-
tagging control was available. Our goal was to
compare whale behavior in the presence vs.
absence of the tag boat, and to evaluate different
models of recovery from effects due to tag
attachment and tag boat presence. We evaluate
three classes of possible behavioral effects: (1)
change in behavioral time-budget, (2) reduction
in prey capture attempts (proxy for foraging
success), given behavioral state and (3) increase
in movement cost, given behavioral state.

To obtain behavioral states for hypothesis
testing, we used multiple streams of tag data in
a hidden state-switching model to estimate
biologically informed states and their uncertain-
ty. As well as classification of sperm whale
behavior, our goal was to formulate ‘functional’
states that could be generalized to other species
and used to assess a range of disturbance stimuli.
Conceptually, our analytical approach follows
the movement ecology paradigm (Nathan et al.
2008) and functional state framework (Isojunno
and Miller 2014). Functional state decomposes
behavioral time series into behavioral states as
units of ‘effort’ that are associated with a goal or
set of goals, combining both the ultimate and
proximate drivers of behavior (Nathan et al.
2008, Isojunno and Miller 2014). For example,
these goals could be mating, information, breath-
ing or shelter. The achievement of these goals can
be measured using currencies (e.g., prey capture

for feeding goal) or proxy indicators of the
currency (e.g., terminal echolocation as an
indicator of foraging success) and expressed as
success or cost rate within each functional state
(Isojunno and Miller 2014). The states capture
mean differences across different behavioral
states of the currencies of interest.

We used adult male sperm whales in a sub-
arctic foraging ground in Northern Norway as a
relatively simple model system where individu-
als spend most of their time solitary and feeding
(Teloni et al. 2008, Oliveira and Wahlberg 2013).
Sperm whales perform deep (200–1000 m) and
long (30–60 min) echolocation-based foraging
dives (Watwood et al. 2006), facing trade-offs
between time spent foraging at depth and
recovering oxygen stores at the sea surface (Boyd
1997). These trade-offs formed the conceptual
basis for our functional state model for sperm
whales. We considered two bio-energetic curren-
cies, foraging success and movement cost, that
vary across the foraging dive cycle (surfacing,
descending transit, layer-restricted search, as-
cending transit). Terminal echolocation buzzes
(Miller et al. 2004) and dynamic body accelera-
tion (ODBA; Halsey et al. 2009) were quantified
as proxies for prey capture attempts (;foraging
success) and locomotion cost, respectively. Be-
sides foraging dive cycles, we also expected
sperm whales to spend time in shallower dives
for other purposes, such as resting or ‘silent
active’ swimming. Sperm whale resting dives
occur in consecutive bouts of variable duration,
are typically shallower than foraging dives, and
are stereotypically characterized by a vertical
‘head-up’ or ‘head-down’ posture (Miller et al.
2008). Non-foraging but active behaviors are also
described for sperm whales (Miller et al. 2008),
and likely reflect social or anti-predatory func-
tions (Curé et al. 2013). We were able to test how
many non-foraging functional states are utilized
by sperm whales by comparing models with five
(foraging states þ resting) versus six states (þ
active non-foraging) (Fig. 1).

METHODS

We first estimate time series of functional states
and then use the resulting state classification to
test for behavioral disturbances likely linked to
individual fitness. Behavioral states were esti-
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mated in a hidden state model in order to
formalize our prior expectations of functional
behavior (surfacing, transiting, layer-restricted
search, resting, and other ‘silent active’) and
utilize multiple input data time-series. The state
estimates and uncertainty were next used as data
in a second analysis step that tested for time or
energetic costs of tag deployment procedures
with different models of recovery from disturbed
to post-tagging baseline behavior.

Data
Data were collected for 12 individual sperm

whales tagged with an audio and movement-
recording bio-logging device (Dtag; Johnson et
al. 2009). Four whales were tagged in 2005
(Teloni et al. 2008) and eight whales were tagged
in 2008–2010 (Miller et al. 2012) near Lofoten
Islands in Northern Norway. Sperm whales were
localized at sea visually and acoustically by
monitoring their echolocation clicks with a towed
hydrophone array. The protocol included initial
observations at 200–1000 m from a main obser-
vation vessel (MS Stronstad, 29 m). A smaller tag
boat (rigid-hulled inflatable boat or similar) was
launched to approach each whale and deploy
tags with a pole that varied in length each year of
research (Table 1).

Tag data were processed to calculate depth as

well as whale-frame acceleration and magnetom-
eter data which was converted to pitch, roll and
heading time-series (Miller et al. 2012). Time-
series data from the tag was down-sampled to
one sample per minute to reduce computational
time and concentrate analysis efforts on dive
phase scale rather than fine-scale behavior, such
as thrusting strokes. Depth was sampled at the
start of each 1-min interval, while mean pitch and
‘overall dynamic body acceleration’ (ODBA)
were calculated over the entire 1-min interval.
ODBA was calculated as the sum over each
minute of the two-norm of high-pass filtered
acceleration (finite impulse response filter, cut-on
frequency 0.05 Hz). To account for effects of tag
position on ODBA, ODBA values for each whale
were divided (normalized) by its median value
and then multiplied by the median ODBA across
whales. Surface periods were detected using a
depth threshold of 2 m for accepting a dive, and a
threshold of 1 m for reaching the surface. Time
(min) since the last surface period was calculated
for the start of each 1-min interval (minFrom-
Surf ).

Audio data (stereo at 96 kHz) were monitored
aurally and visually using spectrograms for
echolocation click trains (regular and buzz clicks)
and marked for their start time and duration in
each record. The presence or absence of these

Fig. 1. We specified five or six functional states for sperm whales in their foraging ground: (1) surfacing, oxygen

replenishment and physiological recovery at the surface; (2) descending transit, transiting to a deeper prey layer;

(3) layer restricted search (LRS), searching at a prey layer; (4) ascending transit, transiting to a shallower depth or

the surface; (5) resting and sleep underwater and (6) active non-foraging, which could encompass multiple

functions. States 1–4 are considered to be functional states for foraging. Solid arrows show transitions that were

expected to be likely and dashed arrows highlight the uncertainty related to the transition probability to and

from state 6. These expectations and uncertainties were incorporated in the model as respective informative and

uniform priors for the transition probabilities (Appendix A: Fig. A1).
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aurally monitored clicks in each 1-min interval

was used in the hidden state models in conjunc-

tion with the depth and accelerometer data.

Other types of clicks (slow clicks, codas) were

not included in the analysis.

Six whales were subject in a controlled

exposure experiment that included up to five

20–30 min exposure sessions (Miller et al. 2012,

Curé et al. 2013). Two of these six whales were

exposed to just two sessions, followed by a

secondary suction-cup tag deployment 1.2 h after

all experiments ended. All data from all 12

individual sperm whales were used to parame-

terize the hidden state model, but non-tagging

baseline periods excluded all exposure sessions

and post-exposure periods. For tagging effects

analysis, tag handling periods were defined as

the time period between tag deployment and

recovery of tag boat to the main research vessel

or movement of the tag boat (.1 km) from the

tagged whale.

A calibration data set of behavioral states was

used to compare with the hidden model state

estimates. ‘‘Bottom phases’’ were defined by the

period between the first positive and the last

negative pitch in a dive for nine whales (Miller et

al. 2004; Table 1). Dive types were classified by

consensus of three experts, including the authors

and Dr. Stacy DeRuiter. The resulting consensus

comprised 11 dive types (Appendix C: Table C4).

Hidden state model
Our state-switching model for sperm whale

behavior consisted of four functional foraging
states and either one or two additional states for
non-foraging related behavior (Fig. 1). Alterna-
tive model structures were considered to assess
how many states (five or six; Fig. 1) and which
combinations of input data (depth, clicking,
minFromSurf, ODBA and/or pitch) should be
included to classify the behavioral time series
most effectively. Each model consisted of a five-
by-five or six-by-six state transition probability
matrix and state-dependent likelihoods for the
input data.

Depth was modeled as a random walk
Gaussian variable with a state-specific mean
and variance (Langrock et al. 2013, Photopoulou
2013):

dt ; Nðdt�1 þ pst�1
;r2

st�1
Þ ð1Þ

where dt denotes depth at time step t and s
denotes the hidden state at time step t � 1.
Descent and ascent states were modeled as a
directional random walk (‘bias’ parameter ps

estimated 6¼ 0), and all other states a non-
directional random walk (ps ¼ 0). A separate
variance for depth changes (r2

s) was estimated
for each state. A step function was used to
constrain predicted depths to be .0 m.

To relax the Markov assumption that state
transitions depend only upon the previous time

Table 1. Summary of tag records.

Tag id,
pole length (m)

Sample duration (h) Time in pre-detected behavioral states (%)

Total
Tagging
analysis Tag-boat

Surface
period

Bottom
phase

Dives
1–4

Dives
5–7

Dives
8–9

Dives
10–11

sw05_196a, 15 21.32 21.32 0.50 29.7 52.0 91.6 5.8 0.0 2.7
sw05_199a, 15 18.07 0.00 0.00 18.6 57.8 100.0 0.0 0.0 0.0
sw05_199b, 15 13.82 0.00 0.00 22.9 46.1 82.9 6.6 10.5 0.0
sw05_199c, 15 13.38 0.00 0.00 24.3 18.1 55.9 6.7 34.9 2.4
sw08_152a, 5 8.65 4.60 2.83 16.2 no data 70.0 24.2 0.0 5.8
sw09_141a, 9 15.28 3.83 0.82 20.7 no data 42.4 28.4 7.6 21.6
sw09_142a, 9 14.77 2.98 0.23 21.0 no data 59.8 13.9 13.1 13.2
sw09_153a, 9 8.53 8.53 0.12 17.6 61.7 100.0 0.0 0.0 0.0
sw09_160a, 9 14.78 3.47 0.22 17.4 no data 94.7 2.9 0.0 2.4
sw10_147a, 12 15.77 15.77 0.93 30.7 27.7 71.8 3.6 24.0 0.6
sw10_149a, 12 16.13 14.15 1.80 21.9 51.8 95.9 0.0 0.0 4.1
sw10_150a, 12 14.87 12.97 0.78 25.9 30.5 93.2 4.5 0.0 2.3
Total 175.37 87.62 8.23 266.8 345.6 958.3 96.6 90.1 55.0

Notes: Total sample duration (h) refers to data that was used to fit hidden state models, while tagging analysis show
durations of data retained for tagging and post-tagging datasets (see text). Tag boat shows the total number of hours that the
boat remained near the whale after tag deployment. Expert classified dives are given as dives with clicking and usual dive
profile (1–4), dives with clicking and unusual dive profile (5–7), dives without clicking and drifting behavior (8–9) and dives
without clicking and silent active swimming (10–11) (Appendix C: Table C4).
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step, all models allowed the probability of

surfacing at time t to increase with decreasing

depth at time t � 1 in a multinomial logistic

regression (see Langrock et al. 2013 for a similar

formulation of feed-back in transition probabili-

ties). minFromSurf (x1) was an additional covar-

iate in the regression for the probability of

transition to LRS (state 3). The linear predictor

for the probability of state s at time t was
therefore:

f ðPðstÞÞ ¼ b0;st�1;st
þ b1;st

dt�1 þ b2;st
x1;t ð2Þ

where intercept b0 was specific to a state-

transition, coefficient b1 was associated with

transitions to surface (state 1), and b2;St
associated

with staying in LRS (state 3). The coefficients

were fixed at zero for other transitions, i.e., when
st 6¼ 1, then b1 was set to zero, and when st 6¼ 3

and st�1 6¼ 3, then b2 was set to zero.
The presence/ absence of clicking (c) was

estimated a state-specific probability (ct ; Ber-
noulli(cs[t])). ODBA (o) was similarly modeled as
a Gamma distributed variable with state-depen-
dent shape and rate parameters (ot ; Gam-
ma(us[t], xs[t])).

The absolute value of the pitch angle p was
modeled in a logistic Beta regression (Ferrari
and Cribari-Neto 2004) so that within mobile
states (i.e., not surfacing or resting), pitch was
related to vertical step length in a linear
predictor:

gðptÞ ¼ a0;st
þ a1;st

jdt�1 � dtj: ð3Þ

Here, the coefficient for vertical step a1,s[t] was
specific to each state so that all mobile states were
estimated a single coefficient which was fixed at
zero for surface and resting. Pitch during
surfacing and resting were estimated state-
dependent means (a0,1, a0,5), while mobile states
were assigned a common intercept.

The joint likelihood for the full model (all five
data streams) was the product of their condi-
tionally independent likelihoods (for a similar
formulation, see McClintock et al. 2013):

lðps;r2; b ; c ;u ;x ; a ; s s; sjhÞ ¼
P
T

t¼1
lðptjh; stÞlðr2

t jh; stÞlðbtjh; stÞlðctjh; stÞlðutjh; stÞ

lðxtjh; stÞlðatjh; stÞlðstjh; stÞlðstjh; st�1Þ ð4Þ

where h denotes the included set of state-
dependent parameters. The full model (all four
model components) had 54 estimable parameters
in addition to the hidden states that were
estimated for each data point.

After initial inspection of model performance,
one additional parameter was introduced for the
seven best DIC model structures. In the fore-
mentioned models, we had assumed a time-
constant average step length within each state by
estimating a state-specific r2

s. Inspection of the
data revealed that step lengths increased as a
function of the depth during foraging dives
(dives consisting of only descent, LRS, and
ascent). The observed relationship appeared to
be linear when depth was square root trans-
formed (see Fig. 4, middle panel). We therefore
specified a time-varying r2

s for LRS state and
time-varying drift for descent and ascent states
by setting:

Fig. 2. Illustration of the log-linear model probability

of state transition log(P(s)) ¼ a þ b 3 x with five

different hypotheses for tagging dose. Blue and red

tick marks on x-axis show Tagging period, with start of

tagging data in blue and end of Tagging in red. The

first hypothesis for dose was a presence/absence effect

of tag boat, Tagging, shown as shaded gray. Four time-

decaying explanatory variables were tested for hy-

potheses of recovery from either tag deployment (blue;

minFromTd and minFromTd2) or end of Tagging

period (red; minFromTagging and minFromTagging2).

The variables were calculated as linear or squared time

since tag deployment or Tagging, representing either

exponential (dashed lines f(x); minFromTd and min-

FromTagging) or exponential with delayed (dashed

lines f(x2); minFromTd2 and minFromTagging2) speed

of recovery. In this illustration example, the intercept a
was set at �0.5 and coefficient b at �0.005.
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r2
3;t ¼ r2

3 þ l
ffiffiffiffiffiffiffiffi

dt�1

p

p2
2;t ¼ p2 þ l

ffiffiffiffiffiffiffiffi

dt�1

p

p2
4;t ¼ p4 þ l

ffiffiffiffiffiffiffiffi

dt�1

p
:

ð5Þ

Here r2
s and ps are the time-constant

intercepts for variance and drift for the random
walk, r2

s,t and ps,t are the respective time-varying
parameters, and l the increase in step length for
every square root unit increase in depth. We
therefore specified that the relationship between
step length and depth was constant across the
three foraging states (descent, LRS, ascent). For
an exhaustive list of model parameters, see
Appendix A.

In order to incorporate prior information on
whale behavior, a Bayesian approach was taken
to parameterize the models. A Gibbs sampling
algorithm was used to sample from the joint
posterior distribution of the model. We used
freely available jags software (2003) within r
(coda package, Plummer 2003 and R2jags pack-
age Su and Yajima 2012). Descent and ascent rate
were specified with informative priors using

Gamma distribution with a mean and variance
parameter from literature (Watwood et al. 2006).
A lower mean and variance for ODBA was used
to construct a Gamma prior for resting. Proba-
bility of clicking was also informed, with a higher
mean for foraging states (descent, LRS, ascent).
Pitch regression coefficients had uninformative
priors with no parameter difference between
states except that the coefficient for vertical step
was fixed at zero for surface and resting as
explained above. Uniform (uninformative) priors
were specified for most transition probabilities
(state-specific intercepts). Coefficients for the
probability of transition to surface and LRS were
assigned uninformative normal priors. The prob-
ability of transition to surface was constrained to
be negative by truncating its prior distribution.
See Appendix A for a comprehensive list
(illustration in Appendix D), and example model
scripts and data in the Supplement.

All models were sampled in three independent
chains, each with an initial 16,000 iterations.
Model convergence was assessed at this point,

Fig. 3. Hidden state model selection. Model structure numbers are given before number of states in brackets.

‘Base’ structure here refers to depthþ clicking that were included in all of the converged set of models; ‘TS’ refers

to time-varying step length models. Left panel: overall state uncertainty for each model (total bar width) with

contributing states color-coded. Overall state uncertainty was calculated for each model as the total proportion of

posterior samples that were not the most prevalent state. Gray circles show DIC (from Table 2). Middle panel:

percentage of time estimated in each state during pre-classified bottom phases. Contributing states are color-

coded so that green shows sensitivity of layer-restricted search to pre-classified bottom phases. Right panel:

percentage of time estimated in each state during expert classified silent active dives. Models in all panels are

shown in ascending order for overall state uncertainty.
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and a subset of models that were deemed to

reach convergence in terms of state classification

were updated a further 20,000 times. Initial

values were set manually for all state parameters

(Appendix A: Table A1). Brooks-Gelman-Rubin

diagnostic (BGR; Brooks and Gelman 1998,

Gelman et al. 2003) was used to assess model

convergence, which was rejected based on its

poorest converging parameter (BGR estimate �
1.05). Detailed methods and results for model

convergence can be found in Appendix B.

Four criteria were used to rank models that

were deemed to have converged: (1) goodness of

fit relative to model complexity (deviance infor-

mation criterion DIC), (2) uncertainty in state

classification, and (3) sensitivity and specificity to

pre-classified bottom phases and (4) comparison

to pre-classified resting and silent-active dives.

Detailed methods for model selection can be

found in Appendix C.

Use of state classifications for assessment
of tagging effects

We used the top-ranked time series estimate of

hidden states as data, and their uncertainty as

weights, in a second analysis step that tested the

effects of tagging on three response variables: (1)

estimated activity state (; multinomial, proxy

for functional state), (2) presence/absence of

buzzing (; Bernoulli, proxy for foraging suc-

cess), and (3) overall dynamic body acceleration

(ODBA ; Gamma, proxy for locomotion cost).

Fig. 4. Characteristics of the selected functional state model. Left panel: sample size and posterior 95% quantile

for probability of clicking by functional state (Fig. 1). The total numbers of states with and without clicking are

given on the bottom gray x-axis, and the posterior estimate for the probability of clicking on the top black x-axis.

Middle panel: vertical steps (m/min) predicted as a function of depth (m). Posterior mean steps as a function of

depth were predicted based on the posterior mean (solid lines) and 95% quantile (dashed lines) for the random

walk parameters r2
s, l, p2 and p4 (Appendix D: Table D1). Predictions for each state are color-coded; vertical step

predictions for descents (red) and ascents (blue) include drift (bias, p) and are slightly asymmetric around zero

because descent and ascent drift were estimated separately as p2 and p4 in the model. Vertical step predictions for

states 1 (surfacing, in black), 3 (LRS, in green), 5 (resting, in indigo) and 6 (active-silent, in pink) did not include

drift (i.e., not signed) but for illustration, are overlaid here symmetrically with observations both above and

below zero. Right panel: Absolute value of pitch (deg) predicted as a function of vertical step length (m/min)

(right), each overlaid with observed data. Pitch values were predicted based on the posterior mean (solid lines)

and 95% quantile (dashed lines) values the pitch regression intercept a0,s and coefficient for depth a1,s (Appendix

D: Table D1).
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Probability of state, given previous state, was
modeled by including previous state (prevState)
as factor baseline covariate. State was used as a
factor baseline covariate in models for ODBA and
buzz. We also allowed for mean differences in all
three response variables across individuals by
including tag id (whale) of the record as a factor
covariate. The binomial model for buzz was
fitted to a subset of data that only included
foraging states (descent, LRS and ascent). No
buzzing was observed in the non-foraging states
(surfacing, drifting or silent active), so estimating
standard errors for their coefficients would have
not been possible.

Candidate exposure covariates were assessed
for inclusion using model selection, and were
designed to test between different hypotheses of
the time-course of possible behavioral responses
to tag deployment procedures (Fig. 2). Presence/
absence of tag boat was included either as a main
effect (Tagging), or interaction with year (Tag-
ging : year) or pole length (Tagging : poleL) to
assess any differences in level of response across
years or as a function of pole length, respectively.

We chose a maximum likelihood framework
for fitting these models for ease of model
selection using AIC. Multinomial log-linear
regression models were fit using function multi-
nom in r library nnet, while binomial (logit link)
and Gaussian (identity link) regression models
were fit using function glm in r library stats.
Multinomial models were weighted by the
posterior probability of the state estimate, thus
accounting for the uncertainty in state estimation.
AIC unit difference of DAIC , �2 was consid-
ered support for candidate tagging covariates
compared to the baseline models for each
response variable (state ; prevState þ whale,
ODBA ; state þ whale, and buzz ; state þ
whale). All tagging effects models included the
baseline covariates and up to two tagging-related
explanatory variables. To avoid spurious rela-
tionships, only one of the four time-decay
covariates (minFromTd, minFromTd2, minFrom-
Tagging, or minFromTagging2) were included in
any one model, and were not included in the
same model with Tagging:Year.

The lowest AIC models were diagnosed for
influential individuals and data, goodness of fit,
distributional assumptions, and serial correlation
in residuals (Appendix D). Models that were

diagnosed with serial correlation of residuals
were re-fit within a generalized estimating
equation (GEE) in SAS 9.3 (procedure ‘genmod’).
In multinomial models, the state that appeared to
change most in response to tagging was used as a
binomial response variable in the GEE. Any
tagging effects were re-assessed using the em-
pirical standard error estimates that do not
assume any particular working correlation with-
in the GEE, but account for the smaller effective
sample size of correlated data within clusters.
Small empirical standard errors (estimates . 2 3

SE) and significant type 3-tests (p , 0.05) were
considered as support for candidate covariates.
GEE models included whale as a cluster variable
rather than an explanatory variable, and there-
fore explicitly estimated the parameters of the
model for the group of whales rather than
separately for each individual.

RESULTS

Data
A total of 175.37 hours of DTAG data were

analyzed, an average of 14.6 hours of data
recorded per whale (Table 1). All data from the
12 deployments were used to parameterize the
hidden state model. Data for tagging effects
analysis included nine DTAG deployments (87.62
h) from the time of first tag-on to the first
experiment or end of the full tag record. For two
of these whales, we also included the period
between the start of secondary tag deployment
until the end of the full DTAG record. Three
whales (sw05_199a-c) were excluded completely
due to incidental exposures to unidentified sonar
at the beginning of the tag records (0–3 hours
from tag deployment) (Table 1).

Hidden state model selection
Based on their state classification convergence

at 6k–16k iterations, eight fixed-step length (FS)
models were rejected and 10 accepted for further
updates. All six-state FS models that did not
include pitch failed to converge in terms of state
classification, suggesting that pitch was impor-
tant in discriminating between resting (state 5)
and active-silent state (state 6). In the 10 FS
models selected to be updated, all parameters
converged adequately (BGR estimate , 1.05)
after 16,000 iterations.
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As described in the methods, the seven lowest
DIC model structures were also fitted with time-
varying step length (TS) during foraging states
descent, LRS and ascent (Table 2). Of the seven
TS models, two models with five states (models 2
and 6) failed to converge in terms of state
classification; the remaining five TS models and
their parameters appeared to converge sufficient-
ly. The converged set of models improved
within-chain correlation of all posterior transition
probabilities from state 3 to states 2–6 compared
to the same models without TS (Fig. B3).

Six-state and TS models outperformed respec-
tive five-state and FS models, both in terms of
lower DIC, lower state uncertainty and higher
sensitivity to pre-classified bottom phases (Fig.
3). Six-state models estimated most of the time in
expert classified ‘silent active swimming’dives as
silent active state, and models with pitch were
further able to discriminate between expert
classified drifting and silent active swimming
dives (Fig. 3). When vertical step was allowed to
vary with depth (TS models), inclusion of ODBA
appeared to somewhat improve overall state
certainty and sensitivity to pre-classified bottom
phases (Fig. 3).

Minimum DIC was obtained for model struc-
tures 6 (base þ pitch) and 9 (base þ pitch þ
minFromSurf ) both within five- and six-state
models. However, both uncertainty in state
classification and sensitivity to pre-classified
bottom phases ranked three models slightly

above the lowest DIC model (six states, TS and
pitch): full six-state TS model, and six-state TS
models pitch þminFromSurf and pitch þODBA
(Fig. 3). Including ODBA in the best DIC model
with pitch changed only 2.8% of its state
estimates, a magnitude similar to their overall
state uncertainty (;3%), and had only small
contribution on the state classifications of the full
TS model (Appendix C: Fig. C6). In the interests
of model parsimony therefore, we selected
against ODBA in the hidden state model.
Including minFromSurf in the best DIC model
changed the state classification even less, by
0.6%. Without minFromSurf, TS model posterior
samples, transition probabilities from state 3 in
particular, had a greater (.400) effective sample
size. Therefore, it was the lowest DIC model 6
(base þ pitch) with six states and time-varying
step length that was selected for interpretation
and further analyses of tagging effects.

Description of selected hidden state model
The posterior distributions of the selected

hidden state model were consistent with our
prior expectation of behavior. A high probability
of clicking was estimated for the foraging states
(posterior means for descent: 0.90, layer-restrict-
ed search: 0.99, and ascent: 0.56) while a low
probability of clicking was estimated for surface,
resting and silent active states (,0.02). Descent
and ascent rates overall were very similar when
accounting for their variability and effects of

Table 2. Deviance, effective number of parameters ( pv) and deviance information criterion (DIC, based on pv) for

the 15 converged models in the last 10,000 iterations.

Model (no. states) Structure Deviance pv DIC

6 TS (6) depth þ clicking þ pitch 42654.9 4369.5 47024.4
9 TS (6) depth þ clicking þ minFromSurf þ pitch 42767.0 4665.1 47432.1
9 FS (6) depth þ clicking þ minFromSurf þ pitch 43478.9 4593.8 48072.7
6 FS (6) depth þ clicking þ pitch 43446.7 5122.8 48569.5
9 TS (5) depth þ clicking þ minFromSurf þ pitch 46541.5 3393.7 49935.1
6 FS (5) depth þ clicking þ pitch 47463.5 3654.5 51118.1
9 FS (5) depth þ clicking þ minFromSurf þ pitch 47505.7 3852.6 51358.3
2 FS (5) depth þ clicking 74128.5 5614.6 79743.2
8 TS (6) depth þ clicking þ ODBA þ pitch 118344.3 4658.2 123002.5
5 TS (6) depth þ clicking þ minFromSurf þ ODBA þ pitch 118495.1 4543.1 123038.1
5 FS (6) depth þ clicking þ minFromSurf þ ODBA þ pitch 119157.2 6587.2 125744.4
8 FS (6) depth þ clicking þ ODBA þ pitch 119091.0 6682.1 125773.1
5 FS (5) depth þ clicking þ minFromSurf þ ODBA þ pitch 123024.8 3913.2 126938.0
8 FS (5) depth þ clicking þ ODBA þ pitch 122975.6 4254.8 127230.4
4 FS (5) depth þ clicking þ minFromSurf þ ODBA 151908.6 5713.6 157622.3

Notes: Models labelled ‘FS’ (fixed step length) estimated a constant step length within each state; models labelled ‘TS’ (time-
varying step length) allowed vertical step to increase as a function of depth during foraging states. See Appendix C for
calculation of pv.
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depth (Fig. 4). During foraging states (descent,
LRS and ascent), step length was estimated to
increase by 1.47 (SD 0.02) m/min for every unit
increase in square root transformed depth. The
posterior mean absolute value of pitch was 1.3
(SD 45.6) degrees during surfacing and 80.5 (SD
45.8) degrees during resting. See Appendix D for
complete description of the selected model.

Effects of tagging
When the tag boat remained near the whales in

tagging operations (n ¼ 8.1 h), the whales spent
no time resting, and across individuals, an
average of 1.63 more time in the silent active
state (10.1%, SD ¼ 13.2) and less time surfacing
(12.4%, SD ¼ 10.2) compared to baseline periods
when the boat was recovered (n ¼ 79.4 h; 60%
increase from 6.3%, SD ¼ 15.1 and 34% decrease
from 18.8%, SD ¼ 5.5, respectively) (Figs. 5 and
6).

The most prolonged tagging period was for
whale sw08_152a that was approached by the tag
boat for 2.8 hours after tag attachment attempt-
ing to photograph the whale (Fig. 5). During
those 2.8 hours, the whale spent only 1.8% of the
time in surfacing state 1, and 31.4% of the time in
silent-active state. With most of the silent-active
state comprised silent diving, the whale spent
only 12.3% of its time near surface (,10 m). This

compared to 12.7–27.8% of time spent in the
surface state across the deployments during post-
tagging (Appendix E: Table E3). Immediately
after the tag boat left the whale, it spent eight
minutes in the surfacing state, which was the
longest period the whale spent in the surfacing
state during the entire DTAG record (post-
tagging individual average surface duration
was 6.8 min SD 2.0).

The lowest AIC model for state transitions
included prevState þ whale þ Tagging, which
improved the baseline model prevState þ whale
by 9.5 AIC units (Fig. 7). Tagging covariate was
also supported by a likelihood ratio test between
the two models (df ¼ 5, p ¼ 0.002, function
anova.nnet()). The model estimated 86.5% of the
post-tagging baseline states and 79.2% of the
Tagging period states correctly. The model fit best
to LRS and drifting states (92.7% and 88.5%
correct predictions, respectively), and worst to
silent active state (64.8%) (Appendix E: Fig. E1).

The binomial GEE model for silent active state
with prevState and Tagging as covariates and
whale as a cluster variable improved the QIC of
the baseline GEE model by 28.9 units (Table 3).
The GEE model with Tagging estimated the odds
of silent active state to increase by a factor of 3.70
[95% CI 1.3, 10.1] during the tagging period
(Appendix E: Table E5), slightly greater but

Fig. 5. Time series of state budget and dive profile for whale sw08_152a during the Tagging and post tagging

baseline period. X-axis shows time since tag-on time (tot). Bottom graph shows posterior probabilities for each

state (color-coded as in Fig. 3). Top graph shows 1-minute depth data (gray) overlaid with presence/absence of

clicking (black) and presence/absence of buzzing (green).
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within the confidence intervals (2 3 SE) of the
respective coefficient estimate from the multino-
mial model (Appendix E: Table E4). The GEE
model results confirmed that the detected change
in state transitions of the multinomial model was
not merely a by-product of serial correlation. We
detected both positive and negative residual
correlation in the best multinomial model (Ap-
pendix E: Fig. E2).

Probability of buzzing was highly variable
within and across individuals, but the individual
average for foraging states was somewhat lower
during the tagging period (descent state: 8.4% SD
¼ 14.4; LRS state: 15.0%, SD ¼ 11.1; ascent state:
0.0%) than in the post-tagging baseline (descent

state: 10.1 % SD¼ 8.6; LRS state: 23.1% SD¼ 14.6;
ascent state: 5.8% SD¼ 4.5) (Fig. 6). There was no
consistent increase in ODBA during the tagging
period compared to baseline across states. Only
surface and ascent states had slightly greater
individual average ODBA during Tagging (sur-
face state: 26.7 SD ¼ 7.4; ascent state: 22.0 SD ¼
5.5) than post-tagging (surface state: 21.9 SD ¼
3.5; ascent state: 20.6, SD ¼ 3.5) (Fig. 6).

In the AIC model selection, there was little
support for an overall tagging effect on proba-
bility of buzzing, given the foraging states
(descent, LRS and ascent states) and whale as a
factor covariate. Tagging improved the baseline
model stateþwhale by only 0.74 AIC units (Fig.

Fig. 7. AIC model selection for tagging effects on state transitions (left) probability of buzzing (middle) and

ODBA (right). Baseline models are shown on top of each Fig. and candidate Tagging covariate combinations on

the left. Black solid circles show AIC for each model and vertical line AIC value for the baseline model. Models

were considered to have performed better than the baseline model if their AIC was at least two units lower

(horizontal grid length).

Fig. 6. Behavioral time budgets (left) and proxies of foraging success (probability of buzzing, center) and

locomotion cost (mean ODBA, right) averaged across individuals during the Tagging condition (top, 8.1 h) and

post Tagging baseline (bottom, 79.4 h). Each state is color-coded as in Fig. 3.
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7). The coefficient estimate for Tagging was small
(�0.32, SE ¼ 0.20) with no evidence that it was
different from zero (z ¼�1.61, p ¼ 0.107).

The best AIC model for ODBA included stateþ
whale þ minFromTd. minFromTd improved the
baseline model by 30.0 AIC units (Fig. 7),
however, the estimated effect was very small
(�0.18 decrease in mean ODBA for every hour).
When fitted within a GEE which accounts for
serial correlation in the data, neither minFromTd,
Tagging nor Tagging:state were supported with
respective QIC increases of 543.7, 18.5 and
1353.22 units compared to the base model (Table
3). We therefore concluded that there was no
evidence for a change in ODBA as a function of
time since tag-on time or tag boat presence.

DISCUSSION

In this study, we were able to estimate a time-
series of functional behavioral states that most
fully captured the variability in diverse data
streams recorded by an animal-attached move-
ment and sound recording tag. Our results
demonstrate that a ‘silent active’ state can be
identified despite lack of a prior functional
description for this state, and that including this
state along with a defined resting state improved
the functional state models for behavior of
Norwegian sperm whales. We then used the
output of the model to evaluate three possible
behavioral responses to tagging procedures: (1)
change in behavioral time-budget, (2) reduction
in prey capture attempts, given behavioral state
and (3) increase in movement cost, given

behavioral state. We demonstrate that whales
spent more time in the silent active state when
the tag boat was present, and that a simple
present versus absent response explained the
data better than time-decaying models of behav-
ioral response. This enables quantitative deter-
mination of post-handling periods that should be
excluded to retain periods more likely to reflect
baseline behavior.

Hidden state models
The hidden state models were able to estimate

both very stereotyped states (surfacing, resting)
and states with highly variable data signatures
(layer-restricted search LRS, other non-foraging)
(Fig. 4). Although there was uncertainty in
formal model selection in this Bayesian frame-
work, different hidden state models arrived at
similar state classifications, which all agreed well
with expert classifications (Fig. 3; Appendix C:
Tables C1 and C2). The hidden state models
succeeded to identify and characterize states that
could be interpreted in terms of functional
behaviors previously documented for sperm
whale foraging. The accepted hidden state model
included six states, time-varying vertical step
length for foraging states (descent, LRS and
ascent), clicking, and log-linear relationships
between vertical step and the absolute value of
pitch. This model had the lowest DIC score, and
was selected as the most parsimonious model
amongst the models with the lowest uncertainty
and agreement with expert opinion (Fig. 3).

Allowing step length to increase with depth
(TS models) improved the DIC, state uncertainty,

Table 3. The lowest AIC models (generalized linear models; no random effects) and the corresponding GEE

models with QIC (with whale as a random effect).

Response variable Explanatory variables Random effect AIC/QIC DAIC/DQIC

state prevState þ whale 4549.84 0.00
state prevState þ whale þ Tagging 4540.38 �9.45
state 6 prevState whale 1020.14 0.00
state 6 prevState þ Tagging whale 991.21 �28.92
buzz state þ whale 3136.38 0.00
buzz state þ whale þ Tagging 3135.63 �0.74
buzz state whale 3253.02 0.00
buzz state þ Tagging whale 3246.63 �6.39
ODBA state þ whale 38754.62 0.00
ODBA state þ whale þ minFromTd 38724.62 �30.00
ODBA state þ whale þ Tagging 38754.39 �0.23
ODBA state whale 191513.45 0.00
ODBA state þ minFromTd whale 192057.18 þ543.73
ODBA state þ Tagging whale 191531.97 þ18.52
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and sensitivity to pre-classified bottom phases
compared to models with a simple random walk
with fixed step length (FS models) (Fig. 3). TS
models also appeared to capture an active
foraging mode better than FS models that
estimated the highest average ODBA during
descent rather than LRS. We do not postulate
that sperm whales are intrinsically more mobile
at depth, but rather that the time-varying
formulation for step length was more flexible
by accepting a wider distribution of step lengths
for LRS, and was subsequently able to more fully
capture an active foraging mode. Such high
variability in step length across foraging phases
could be expected when prey layers vary in
vertical thickness, quality and/or prey species
that in turn influence whales’ hunting and
searching strategy.

Functional time budget of foraging
male sperm whales

Layer-restricted search (LRS) was estimated as
the most prevalent state in the post-tagging data
(47.5% of all data, and 51.2% of all foraging states
1–4), consistent with the high proportion of time
spent in foraging and high diving efficiencies
(foraging phase duration: dive cycle duration)
reported for sperm whales both at high- and low
latitudes (Jaquet et al. 2000, Watwood et al.
2006). Unlike studies using bottom phase (de-
fined by the first descent and final ascent of a
dive) or foraging phase (defined by the first and
last buzz of a dive) (Watwood et al. 2006) alone
as a measure of foraging time, we were able to
estimate multiple foraging phases within a dive
(e.g., Appendix D: Fig. D3b). Thirty of 119
(25.2%) ‘‘usual’’ foraging dives (expert dive types
1–4 in Appendix C: Table C4) contained more
than one foraging (LRS) phase.

There was strong support for a sixth ‘silent
active’ state, with six-state models outperforming
five-state models in terms of higher overall
posterior probability of states (Fig. 3) and a
better fit of state-dependent likelihoods to the
data (Appendix C: Fig. C3). Furthermore, there
was high concordance between the state 6
estimates and expert classified ‘‘silent active’’
dives (Fig. 3). Nevertheless, state transitions
appeared to be relatively weak predictors of
state 6 compared to other states (Appendix C:
Fig. C5), with wide posterior credible intervals

for the transition probability of staying in state 6
(Appendix D: Fig. D1). However, variability
related to state transitions is expected as state 6
likely encompassed several non-foraging behav-
iors that may have been associated with different
functional behaviors and contexts, such as
socializing, avoiding the tag boat near surface,
or horizontal transit. Future work with larger
datasets could consider the potential to divide
state 6 into more specific functional states.

State 5 (resting/drifting) was estimated for
3.8% of post-tagging baseline data, most of which
coincided with expert classified drifting dives
based upon the description of this behavior by
Miller et al. (2008). For two whales (sw05_196a
and sw10_150a) state 5 also identified drifting to
the sea surface that occurred at the end of
foraging dives (max depth 306 m; Appendix D:
Fig. D3a). Drifting had a very distinct data
signature featuring little vertical movement yet
nearly vertical pitch (posterior mean and 95%
CRI was estimated for step length as 8.5 [7.9, 9.0]
m, and for pitch as 80.5 [79.8, 81.0] degrees),
consistent with stereotyped vertical posture drift-
dives documented for sperm whales world-wide
(Miller et al. 2008).

Effects of tagging
Using the estimated states and uncertainty to

assess tagging effects, we found that sperm
whales increased time in non-foraging silent
active state (Table 3, Figs. 6–7). Within each
behavioral state, we found no evidence of
changes in a proxy for locomotion cost (ODBA)
or a proxy for foraging success (probability of
buzzing) (Table 3, Figs. 6–7). Sw08_152a was re-
approached by the tag boat for the longest
duration (2.8 h), and during this time, spent
31.4% of time in silent active state compared to
no time in this state in the post-tagging period
that consisted of three foraging dives and longer
surface periods (Fig. 5). These results indicate an
evasion or vigilance reaction to the tag boat that
disrupted behavior, rather than a direct reduc-
tion in prey capture attempts or change in
locomotion cost within behavioral states. No
longer-term effects could be detected on the time
scale of each tag record (;15–20 h in duration),
suggesting that whales recovered to a post-
tagging level of behavior relatively soon after
the tag boat left.
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We were not able to collect comparable data
during the pre-tagging period, and therefore
could not establish with certainty that behavior
was resumed to a completely undisturbed (non-
tagged) level. However, two whales (sw10_149a
and sw10_150a) were re-approached for a sec-
ondary tag deployment and had a response
profile consistent to whales that were tagged
only once. Both whales spent time in the silent
active state near the sea surface during first and
second tagging periods, while full foraging dive
cycles were resumed soon after the tag boat left
the whales. Within both tag records, the first and
second post-tagging deployment periods consist-
ed of near identical time and depth profile of
foraging (descent, LRS and ascent states) with
little apparent effect of the presence of a
secondary tag (Appendix D: Fig. D3k–l). We
conclude that the presence of tags alone on the
animal was likely to have little effect on whale
behavior compared to tag deployment proce-
dures (‘handling’). Indeed the DTAG only
weighs 300 g, which is less than 0.01% of an
adult sperm whale mass (14–50 t). Little is
known about the effects of suction-cup tag
attachment, however tags typically detach if a
sperm whale performs a breach, indicating that
an uncomfortable tag can be removed by the
whale (Johnson et al. 2009). Nevertheless, multi-
ple tagging of the same individual appears a
promising approach to decompose the effects of
handling vs. tag presence on the animal, as well
any sensitization or habituation to tag deploy-
ment procedures. Future studies could address
these effects with a larger sample size of
secondary tag deployments and include tags of
varying sizes.

Although we did not find evidence for changes
in energetic proxies within states, the increased
probability of non-foraging silent active behavior
and reduced time at surface suggests an energetic
cost of tag boat presence. Miller et al. (2009)
found similar short-term changes in sperm whale
foraging behavior during the first dive of the tag
record but not subsequent dives. These changes
included reduced buzz and pitching rates during
the bottom phase, and shorter dive duration
compared to the subsequent dive. However, the
presence/absence of tag boat was a more impor-
tant predictor of effects than time since tag-on
time, suggesting a lack of a specific cut-off period

after tag attachment. This result is expected when
the tagging procedure, including re-approach for
photo-identification, varies across tagging occa-
sions. In such cases it is important to collect
detailed data on tagging effort to describe the
‘dose’ of handling, such as tag boat distance to
the whale, with focus on recording the intensity
and duration of approach both before and after a
successful tag attachment.

Methods considerations
Although we did find evidence of short-term

tag boat effects (tagging period duration ranged
between 0.1 and 2.8 h), the sensitivity of our test
for subtle longer-term effects was likely to be
limited due to the relatively small number of tags
(n ¼ 9) and high variability in state budgets and
buzz rates across the tag records. Variability in
the tagging procedure across years and different
tagging crews was also likely to affect the
probability and level of the individual responses.
We did not find evidence for a different level of
response to shorter pole length (Fig. 7), however
due to the small sample size we could not
account for other factors that could have been
equally important, such as tag boat handling and
targeting tag placement near the head vs. the
back of the animal. Tagging protocol in 2005 and
2008 aimed to place tags at the anterior end of the
head, while in 2009–2010 whales were typically
approached from behind and tags were placed
on the back of the whale anterior to the dorsal
fin.

Tagging periods after tag attachment ranged
from just 6 minutes up to 2.8 hours (1.1–61.4% of
tag records). Our time-series approach explicitly
modeled this unbalanced sample, and we also
contrasted results from GLMs that estimated
individual level differences with GEEs that
estimated individual average and between-indi-
vidual variability in the response data. Never-
theless, it was possible that a few individuals that
responded strongly to the presence of tag boat
were influential in the estimation of a population
effect. We tested the influence of individuals by
re-fitting the baseline and the tagging effects
GLM:s for state without each individual, and
found that excluding either sw08_152a or
sw10_150a lowered the AIC difference below
our DAIC threshold of�2 (Appendix E: Fig. E4).
sw08_152a was exposed to the longest tagging
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period (2.8 h), whereas sw10_150a was ap-
proached by the tag boat twice for shorter
periods, including secondary tag deployment.
Both sw08_152a and sw10_150a spent the longest
durations in state 6 (an average of 6.5 and 4.0
minutes, respectively) compared to any other
whale during the tagging period, and were not
estimated to return to state 6 in the baseline
period. Therefore, had we not sampled these two
individuals, we would have not been able to
estimate a tag boat effect overall.

As one of the first attempts at multivariate
hidden state modeling of individual behavior, we
simplified the hidden state model structure by
assuming mostly Markov transitions, no individ-
ual effects or spatial memory for prey layers.
Despite the relatively simple process model, a
sufficiently strong signal in the input data
allowed for robust state classification and esti-
mation of time budgets that were highly variable
across individuals. A more realistic (complex)
process model would be required if disturbance
was incorporated and tested within the hidden
state model. For example, a hidden state model
with individual as a random effect could estimate
population-average effects by incorporating tag
boat presence as an explanatory variable for
buzzing within each state.

Implications and future steps
The functional state approach appears to be

able to effectively estimate behavioral distur-
bances that can be linked to individual fitness.
We showed that after tag deployment, whales
can remain vigilant to the presence of tag boat
and thus trade off foraging time for perceived
risk at surface. During-after comparisons of
functional states and currency proxies were
influenced by individuals that were exposed to
tag boat repeatedly or for extended durations,
highlighting the importance of consistent deploy-
ment procedures and minimizing handling time.
Nevertheless, we succeeded to estimate a cut-off
point (tag boat recovery) after which whales
were likely to have returned to a post-tagging
level of behavior, and recommend before-during
comparison of behavior where pre-tagging base-
line data is not available. Our results also lend
support for the exclusion of handling periods to
better capture post-tagging baseline behavior.
However, comparable pre-tagging data would be

needed to quantify tagging effect as a deviation
from the non-tagged population of interest. An
optimal design would monitor behavior during
all phases of tag deployment (before approach,
during tag deployment procedures, during at-
tachment, and after the device is detached), and
from a platform that minimized research effects.
For cetaceans such as sperm whales that use
biosonar to locate prey, remote visual and
passive acoustic tracking could be used to
monitor foraging and movement before-during-
after tag deployment, as well as complement
fine-scale on-board acoustic and orientation data
during the tag record.

Our concept model and hidden state ap-
proach was based upon first principles of
searching behavior (transiting vs. encamped
search) and central-place foraging (surface vs.
diving) that are transferrable across species, and
we show that not all such functional states need
strict definition a priori to be estimated. The
hidden state model also incorporated species-
specific expectations of behavior (echolocation,
drifting posture), combined multiple sources of
data to estimate biologically interpretable states
and parameters (such as descent rate), and
allowed modeling of currency proxies within
the relevant behavioral contexts. Unlike expert
classifications, hidden state modeling is auto-
mated and quantifies uncertainty. As well as for
offline-analysis, these are also desirable proper-
ties for an on-board data compression algo-
rithm, and state-estimation of fine-resolution
archival tags could guide the development and
use of such algorithms in data-relaying tags that
aim to collect data for months or even years.
With recent advances in deviance-based selec-
tion for Bayesian mixture models (e.g., Plummer
2003), there is also more scope to incorporate
and test a range of disturbance effects as
explanatory variables within hidden state mod-
els, rather than as a second AIC-based analysis
step. Behavioral context is increasingly high-
lighted as the key to understanding the fitness
trade-offs of behavioral decision making in
response to anthropogenic stimuli (Gill et al.
2001, Beale 2007) and within such flexible
hierarchical estimation frameworks, could be
explicitly modeled by conditioning disturbance
effects by behavioral state.
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SUPPLEMENTAL MATERIAL

APPENDIX A

Hidden state model specification

Table A1. Estimable parameters in full model with prior and initial value specification.

Parameter

Prior distribution

Initial values

Jags name [state] Symbol Chain 1 Chain 2 Chain 3

T.beta11[1] b1;St
Gaussian(0, 0.1)T(�15, �0.2) �0.2 �2.3 �5.8

T.beta31[3] b2;St
Gaussian(0, 0.1)T(,1.0E�6) �0.3 �0.03 �4.02

tau[1] r2
1 Gamma (1, 1) 0.001 4 1

tau[2] r2
2 Gamma(2.0736, 0.0023) 1500 900 450

tau[3] r2
3 Gamma(2.0736, 0.0023) 300/100 700/200 150/93

tau[4] r2
4 Gamma(2.0736, 0.0023) 1500 900 450

tau[5] r2
5 Gamma(2.0736, 0.0023) 60 24 93

tau[6] r2
6 Gamma(2.0736, 0.0023) 300 700 150

tau.beta0[2, 3, 4] l Gamma(3, 2) 0.1 2 0.5
drift.t[2] p2 Gamma(9.7344, 0.1248) 60 132 45
drift.t[4] p4 Gamma(9.7344, 0.1248) 60 132 45
RC.beta0[1] c1 Beta(1, 10) 0.004 0.08 0.03
RC.beta0[2] c2 Beta(2, 1) 0.59 0.98 0.76
RC.beta0[3] c3 Beta(2, 1) 0.59 0.98 0.76
RC.beta0[4] c4 Beta(2, 1) 0.59 0.98 0.76
RC.beta0[5] c5 Beta(1, 10) 0.004 0.08 0.03
RC.beta0[6] c6 Beta(1, 10) 0.004 0.08 0.03
a.mean[1] uS/x1 Gamma(5, 0.2) 18 10 30
a.mean[2] uS/x2 Gamma(5, 0.2) 18 10 30
a.mean[3] uS/x3 Gamma(5, 0.2) 18 10 30
a.mean[4] uS/x4 Gamma(5, 0.2) 18 10 30
a.mean[5] uS/x5 Gamma(1, 1) 9 5 15
a.mean[6] uS/x6 Gamma(5, 0.2) 18 10 30
a.rate[1] x1 Gamma(3, 0.5) 1.5 0.1 1
a.rate[2] x2 Gamma(3, 0.5) 1.5 0.1 1
a.rate[3] x3 Gamma(3, 0.5) 1.5 0.1 1
a.rate[4] x4 Gamma(3, 0.5) 1.5 0.1 1
a.rate[5] x5 Gamma(1, 2) 1.5 0.1 1
a.rate[6] x6 Gamma(3, 0.5) 1.5 0.1 1
p.beta0[1] a0,1 Gaussian(0, 0.1) �3 �1 �5
p.beta0[2, 3, 4, 6] a0;st

Gaussian(0, 0.1) �3 �1 �5
p.beta0[5] a0,5 Gaussian(0, 0.1) 2 1 3
p.gamma[1] s1 Gamma(1, 0.1)T(1.0E-6,) 20 7 70
p.gamma[2, 3, 4, 6] sS Gamma(1, 0.1)T(1.0E-6,) 20 7 70
p.gamma[5] s5 Gamma(1, 0.1)T(1.0E-6,) 20 7 70
p.beta1[2, 3, 4, 6] a1;st Gaussian(0, 1.0E-6) 0.04 0.0031 0.0928

Notes: Parameter names are given as in jags code in the Supplement, with number in square brackets referring to the state (1–
6) that the parameter is associated with. Symbols refer to the notation in the main text. Gamma distribution for ODBA was
parameterized in terms of mean and a rate parameter, so that mean ¼ shape/rate. Parameters for prior distributions were
specified and are given here as in JAGS Version 3.2.0 user manual (mean and precision for Gaussian, shape and rate parameters
for Gamma, and first and second shape parameters for Beta distribution). T(x1, x2) shows prior truncation with lower limit x1
and/or upper limit x2 (a single limit indicates one-sided truncation). Initial values were fixed, i.e., not generated randomly for
each chain. The values were chosen to represent the prior distribution in an over-dispersed fashion. For models that allowed
vertical step to vary with depth, the initial value for tau[3] was lowered because it was introduced in the model as an intercept.
The initial values for models with fixed step length and varying step length are shown before and after slash (/).
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APPENDIX B

Hidden state model convergence
Methods.—All models were sampled in 3

independent chains, with an initial 16 000
iterations each. Initial values were set manually
for all state parameters (Table A1).The first 6k
iterations were discarded for adaptation and
burn-in. The remaining 10k iterations were
down-sampled (thinned) to reduce autocorrela-
tion in the analyzed samples, and monitored for
convergence of state classification to accept a
subset of models for a further 20k iterations (Fig.
B1). A lower down-sampling rate was used
initially (every 18th and 6th sample for iterations
6–12k and 12–16k) to explore serial correlation in
chains, while a factor of 50 was used to down-
sample the additional (20k) iterations.

The model assessment after 16k iterations was
done to reduce computation time on models that
were deemed unlikely to converge at all. Two
criteria were set for rejecting a model for further
updates: (1) for at least two states, state propor-
tions were so diverged that the samples did not

overlap, (2) the state proportions appeared
stationary across the iterations (6–16k) (Fig. B1).
Such models were considered to be poor repre-
sentations of the data and were not included in
further model selection. The remaining models
were assessed visually for parameter conver-
gence, stationarity and serial correlation of the
chains across all iterations (6–36k). Brooks-Gel-
man-Rubin (BGR; Brooks and Gelman 1998,
Gelman et al. 2003) diagnostics were calculated
separately for iterations 16–36k and 26–36k using
a 95% credible interval in function gelman.diag (r
package ‘coda’). Model convergence was rejected
based on its poorest converging parameter. All
convergence assessment accounted for down-
sampling rate. The convergence assessment
procedure was repeated for models with variable
step length, but with more iterations (48k) and a
down-sampling rate at 18.

An accurate estimate of the posterior distribu-
tion requires a sufficient number of independent
samples. Conventionally, an effective sample size

Fig. A1. Beta prior densities (y-axes) illustrated for transition probability intercepts (x-axes). Rows show state

(1–6) at time t, and columns state (1–6) at time tþ 1. Green shows transitions with uninformative prior density

Beta(shape1¼ 1, shape2¼ 1), and other colors show different types of informative Beta priors: from state 2 to 1,

and state 1 to 4 (;Beta(1, 1eþ06)); from states 1–4 to state 5, and states1–5 to 6 (;Beta(1, 10)); and staying in

states 1, 2, 5 and 6 (;Beta(2, 1)).
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Fig. B1. Example output used to visually assess convergence of state classifications. Convergence of state

classification was approximated by total proportion of states in the posterior sample. Top left panel shows

proportions in each chain (color-coded) as a function of iteration history (x-axis). Top right panel shows posterior

density distribution pooled across chains. Bottom left panel shows shrink factor (Brooks-Gelman-Rubin

Diagnostic, BGR) as a function of the upper limit of samples that were used in the calculation of the diagnostic

(function gelman.plot in package coda in r). The BGR value in the title was calculated for the whole posterior

sample, with 95% confidence interval in the brackets. Bottom right plot shows autocorrelation for each chain as a

function of lag; the total effective sample size for the samples is shown in the title (function effectiveSize in

package coda in r). The examples show model 1 with six states (a) that was rejected based on its poor

convergence of state proportions, and model 2 with five states (b) that appeared to converge adequately.
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of 400 is used (Lunn et al. 2013). Posterior
summary statistics were therefore based on the
number of iterations that contained at least 400
independent samples for each parameter and
state proportion in the converged set (function
effectiveSize in package coda).

Results.—Based on their state classification
convergence at 6k-16k iterations, eight FS models
were rejected and 10 accepted for further updates
(Fig. B2). No five-state model state classification
converged unless they included clicking (Model
2), however otherwise it was less clear how five-
state model structures contributed to state
convergence at 6–16k iterations. While ‘clicking
with minFromSurf’ or ‘ODBA’ models (3 and 7)
failed to converge, clicking did converge with
‘minFromSurf þ ODBA’ (Model 4). In addition,
convergence of state classification was satisfacto-
ry for all five-state models that included pitch
(models 5, 6, 8 and 9). Near-surface behaviors
appeared to be the most challenging to converge
into states 1, 5 and/or 6 across model structures.
The base model (Model 1, depth) and Model 3
(clicking þ minFromSurf ) indicated a failure to
classify these behaviors both with and without
the sixth state: in all four models, the coefficient
for the probability of surfacing (T.beta11) and

precision for depth during states 1 and 5 were

divergent. Similarly, it appeared that ODBA

alone could not discriminate between active

and non-active behaviors near surface, such as

shallow resting, unless the model was limited to

Fig. B2. Brooks-Gelman-Rubin (BGR) estimate (solid circles) and 95% CI (lines) for each fixed step length

model (y-axis, number of states in brackets) at iterations 16–36k. BGR estimate of 1.05 was used as an acceptance

threshold for parameter convergence. Left-hand panel includes three models that were rejected based on their

poor state classification convergence (1(5), 1(6) and 2(6)) at 6–16k iterations. These models were updated to check

that the rejection based on state classification was conservative. As expected, model parameters remained poorly

converged. Right-hand panel only includes models that were accepted for state classification convergence.

Fig. B3. Effective posterior sample size (x-axis) for

transition probabilities from state 3 to states 2–6 (y-

axis) in fixed-step length (FS) models (black lines)

versus time-varying step length (TS) models (blue).

Effective posterior sample sizes are given per 20 k

iterations; for effective size analysis, posterior samples

were thinned by a factor of 50 for FS models and by a

factor of 54 for TS models.
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five states and the duration of submergence was
accounted for (minFromSurf ). For both five- and
six-state Model 7, state 1 and 5 parameters for
depth precision (tau) and state 5 and 6 param-
eters for ODBA (a.mean, a.rate) diverged.

In the 10 updated FS models, the Brooks-
Gelman-Ruben (BGR) estimates were less than or
equal to 1.05 for all parameters and state
proportions at 16–36k. However, in seven of the
10 FS models, the upper 95% confidence intervals
of BGR estimates exceeded the threshold (max
1.14) (Fig. B2). Most of the values (15/20) that
were over the threshold were related to transition
probabilities from state 3 to states 2–6 that were
also more serially correlated (i.e., mixed slower)
than other parameters, indicating that within-
chain correlation increased uncertainty in param-
eter convergence.

While a sufficient number of effective posterior

samples (..400) could be achieved for all other

parameters at 16–36k iterations, transition prob-

abilities from state 3 had effective sample sizes

less than 400 in all FS models (min 150). We did

not find any improvement in the chains when

minFromSurf was included as a covariate for the

probability of staying in state 3, indicating the

slow mixing of state 3 transition probabilities was

not due to inaccuracies of the 1st order Markov

assumption. Nevertheless, even the most serially

correlated posteriors appeared stationary (no

trend) across the iterations. We therefore used a

wide sample window for all posterior summary

statistics (16–36k) to improve accuracy. However,

the converged set of time-varying step length

models appeared to improve within-chain corre-

lation compared to FS models, at least for the

transition probabilities from state 3 (Fig. B3).

APPENDIX C

Hidden state model selection
Methods.—For measuring goodness of fit rela-

tive to model complexity, we used deviance
information criterion (DIC). The DIC is an
extension of Akaike’s Information Criterion
(AIC) and is particularly useful for models that
have been fitted outside of a maximum likeli-
hood (ML) framework. Similarly to the AIC, the
DIC is based upon both model fit and model
complexity (Spiegelhalter et al. 2002, Lunn et al.
2013):

DIC ¼ Dþ pD ðC:1Þ

where D is the posterior mean deviance of the
model, and pD is the effective number of model
parameters. Jags calculates the deviance as the
sum of the deviances of all observed random
variables defined in the model (i.e., ‘‘stochastic
nodes’’ in BUGS terminology), and pD as the
difference between the expected deviance D and
the deviance evaluated at the posterior means
(DðhÞ; Spiegelhalter et al. 2002). However, pD
cannot be evaluated for discrete parameters such
as hidden states (Lunn et al. 2013). We used an
alternative measure of effective number of
parameters pv instead, which is invariant to
reparameterization but assumes that the infor-
mation in the likelihood dominates that of the
prior (Gelman et al. 2003, Lunn et al. 2013):

pv ¼ varðDÞ=2: ðC:2Þ

We also assessed how well the posterior state-
dependent likelihoods fitted to data. The joint
probability density of data (‘‘emission probabil-
ity’’) and probability of state transitions were
calculated for each model given the posterior
parameter samples. The emission and transition
probabilities were calculated for each data point
as per model specification, but ignoring prior
distributions. Transition probability matrix was
updated at each time step to incorporate the
linear predictor with data on depth and time
since surfacing (minFromSurf ). The ‘‘emission
only’’ prediction was calculated by selecting the
state that maximized the sum of the log-
likelihoods for data (i.e., in the full model, the
likelihood for depth, clicking, pitch and ODBA).
The ‘‘Viterbi sequence’’ accounted for both
emission and transition probabilities by calculat-
ing the likelihood for the entire sequence using
the Viterbi algorithm (Viterbi 1967, see Supple-
ment script). The predicted states were then
compared to the posterior state estimates to
assess the contribution of state-dependent likeli-
hoods vs. transition probabilities in the state
classification. The two estimates are expected to
differ because the posterior state-dependent
likelihoods (data) should not always support
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the expected states based on the sequence of

states, e.g., a data point resembling drifting (state

5) in the middle of an estimated layer-restricted

search phase.

To measure the contribution of data in a given

state classification, we re-calculated the most

likely states based on a sub-set of emission

probabilities from the full model. The full model

was chosen in order to compare the contributions

of all data streams. The predicted states based on

emission probabilities were compared to the

model’s state estimates, and the percentage of

correct predictions for each state was contrasted

across the sub-sets.

Layer-restricted search (LRS) state estimates

were compared to pre-classified bottom phases

and drifting state and silent active state estimates

to expert classification of dives (Table C4) to

assess their concordance to existing methods of

behavioral classification. Unlike LRS state, bot-

tom phases were limited to a single phase within

each dive that started and ended with changes in

descend and ascend pitch. Therefore a higher

sensitivity of LRS state to bottom phases could

have also indicated a classification that was less

sensitive to multi-layered dives.

Table C1. Estimated time budget for each fixed step (FS) and time-varying step (TS) length model.

Model

Percentage of time in each state

1 2 3 4 5 6

FS 2(5) 19.95 15.83 37.84 14.77 11.61
FS 4(5) 19.05 20.17 35.02 14.27 11.5
FS 5(5) 19.14 21.2 34.38 18.72 6.56
FS 6(5) 19.15 18.34 36.55 19.38 6.58
FS 8(5) 19.13 20.89 34.58 18.84 6.56
FS 9(5) 19.16 18.74 36.47 19.06 6.58
FS 5(6) 19 19.27 35.24 13.19 6.46 6.83
FS 6(6) 18.97 15.66 37.74 14.23 6.5 6.9
FS 8(6) 18.99 18.75 35.5 13.42 6.46 6.88
FS 9(6) 18.99 15.61 37.79 14.15 6.5 6.96
TS 9(5) 19.1 15.8 40.7 17.8 6.6
TS 5(6) 19 13.5 43.6 10.6 6.5 6.9
TS 6(6) 18.9 14 41.9 12 6.5 6.7
TS 8(6) 18.9 13.8 43.1 10.8 6.5 6.9
TS 9(6) 18.9 13.8 42.1 11.9 6.5 6.7

Note: Blank cells are unavailable state 6 estimates in five-state models.

Table C2. Pair-wise similarity in state classification between the converged set of models

Model no.

Fixed step length models Variable step length models

2(5) 4(5) 5(5) 6(5) 8(5) 9(5) 5(6) 6(6) 8(6) 9(6) 9(5) 5(6) 6(6) 8(6) 9(6)

2(5) 37.8 92.3 86.9 91.1 87.1 91.0 86.5 91.3 87.0 90.8 86.2 84.0 85.4 84.3 85.2
4(5) 87.1 35.0 93.6 89.4 93.2 89.7 92.4 87.8 91.9 87.9 85.3 82.4 83.3 82.5 83.2
5(5) 86.8 97.4 34.4 94.3 99.0 94.4 91.7 87.6 91.3 87.6 90.1 81.9 83.0 82.1 82.9
6(5) 96.3 87.2 87.9 36.6 94.5 99.1 87.7 91.7 88.1 91.4 93.1 84.5 86.0 84.7 85.9
8(5) 87.3 96.5 97.8 88.6 34.6 94.3 91.5 87.8 91.6 87.6 90.3 82.1 83.2 82.3 83.1
9(5) 95.9 87.9 88.5 98.0 88.5 36.5 88.1 91.6 88.1 91.6 92.6 84.4 85.9 84.6 85.8
5(6) 87.2 98.6 96.3 87.0 95.9 87.9 35.2 94.5 99.0 94.6 83.7 89.2 89.7 89.3 89.6
6(6) 98.5 87.3 86.8 96.3 87.4 96.1 87.6 37.7 95.0 99.2 87.0 91.9 93.2 92.1 93.0
8(6) 88.2 97.2 95.5 87.7 96.5 87.7 97.6 88.5 35.5 94.8 83.9 89.3 90.0 89.6 89.8
9(6) 97.3 87.7 86.8 95.7 87.1 96.1 88.1 98.1 88.3 37.8 87.0 91.9 93.2 92.1 93.1
9(5) 85.0 78.0 77.6 84.5 78.1 84.0 78.0 85.4 78.4 85.6 40.7 89.4 91.6 89.7 91.5
5(6) 82.4 76.2 74.8 80.6 75.4 80.4 76.4 82.8 76.8 82.9 91.5 43.6 97.0 99.3 97.2
6(6) 84.8 77.3 76.2 83.0 76.8 82.8 77.5 85.2 78.2 85.3 95.9 94.0 41.9 97.3 99.4
8(6) 83.0 76.3 75.0 80.9 75.6 80.7 76.5 83.2 77.1 83.2 92.0 98.5 94.8 43.1 97.3
9(6) 84.3 77.3 76.1 82.9 76.6 82.7 77.5 84.9 77.9 85.2 95.7 94.6 98.7 94.7 42.1

Notes: The number of model structures is followed by the number of states in parentheses. Percentages of the time series of
state estimates that agreed between the two models are given above the diagonal. The diagonal (values in boldface) shows the
total proportion of states estimated as LRS state for each model. Percentages of LRS state estimates (one or both models
estimated LRS state) that agreed between the two models are given below the diagonal.
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Measures of accuracy and diagnostic odds
ratio (DOR, Glas et al. 2003) were used to
compare LRS state to pre-classified bottom
phases. The sensitivity of LRS state estimates to
pre-classified bottom phases was calculated as
the total proportion of LRS state estimates within
bottom phases. The specificity of LRS state
estimates was calculated as the proportion of
non-LRS state estimates within the whole time-
series that was not classified as outside bottom
phases.

DOR combines sensitivity and specificity into
one discriminatory test performance diagnostic
(Glas et al. 2003):

DOR ¼ sensitivity

1� sensitivity
=

1� specificity

specificity
: ðC:3Þ

Thus, DOR was the ratio of the odds of LRS
state in a bottom phases to the odds of LRS state
outside the bottom phase. The higher the value,
the better the estimated state could discriminate

between the human classified states. Standard
errors were calculated for the logarithm of DOR
that follows approximately a normal distribution
(Glas et al. 2003). Sensitivity and specificity of the
LRS state classification to bottom phases were
calculated based on the proportion of bottom
phases (‘true conditions’) and intervals between
bottom phases (‘false conditions’) that were
estimated as LRS state. The number of bottom
phases were therefore accounted for in SE(log(-
DOR)).

Results.—Six-state models had both lower
posterior mean deviance and DIC than their
respective five-state model structures. Converse-
ly, posterior mean deviances were higher for
models with ODBA despite increased model
complexity (Table 3). The effective number of
parameters was estimated small for models with
smaller deviance (model structures 6 and 9) and
higher for models with higher deviance (model
structures 4, 5 and 8) both by pD and pv (Table 3,

Table C3. State uncertainty (probability that the estimated state was not the true state) in each model.

Model

Data average and 95% quantile probability (3100)

1 2 3 4 5 6

FS 2(5) 0.8 5.65 5.08 5.62 2.95
(2.26) (36.1) (32.67) (36.2) (19.23)

FS 4(5) 0.58 6.52 5.38 5.56 1.88
(0.75) (40.32) (33.75) (35.67) (11.36)

FS 5(5) 0.26 6.24 5.67 5.5 0.6
(0.08) (39.75) (34.5) (35.88) (0.05)

FS 6(5) 0.21 5.66 6 4.9 0.36
(0.17) (35.25) (36.33) (33.53) (0)

FS 8(5) 0.26 6.53 5.88 5.36 0.65
(0.08) (40.03) (34.42) (36.97) (0.08)

FS 9(5) 0.21 6.13 5.59 4.9 0.38
(0.17) (38.92) (34.25) (32.78) (0)

FS 5(6) 0.48 6.83 5.37 5.53 0.47 5.83
(0.92) (42.61) (33.39) (35.8) (0.17) (34.59)

FS 6(6) 0.51 5.97 4.8 5.89 0.33 5.44
(1.42) (37.4) (30.92) (38.93) (0.08) (32.92)

FS 8(6) 0.49 6.6 5.52 5.89 0.48 5.94
(1) (40.13) (34.08) (40.35) (0.17) (35.56)

FS 9(6) 0.55 5.65 4.69 5.9 0.32 5.73
(1.42) (37.06) (30.83) (39.37) (0.08) (34.16)

TS 9(5) 0.33 5.83 4.15 5.32 0.40
(0.17) (37.67) (29.66) (34.35) (0.02)

TS 5(6) 0.53 5.63 3.12 5.37 0.42 6.30
(0.90) (35.66) (24.33) (33.26) (0.15) (34.53)

TS 6(6) 0.46 6.03 3.42 5.49 0.35 6.01
(1.19) (37.04) (26.66) (34.90) (0.12) (34.31)

TS 8(6) 0.50 6.13 3.18 5.34 0.43 6.06
(0.85) (36.92) (24.34) (35.03) (0.20) (33.56)

TS 9(6) 0.52 5.87 3.26 5.63 0.41 5.92
(1.20) (37.38) (23.90) (35.03) (0.14) (33.96)

Notes: the given probabilities were calculated as the average posterior proportion of states that were not the most prevalent
state within each state estimate (i.e., accounting for the prevalence of state estimates in data, unlike Fig. C2). Blank cells are
unavailable state 6 estimates in five-state models.
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Fig. C1). Therefore, deviance and DIC arrived at
a similar ranking of models.

Time series of state estimates were calculated
for each model as the most prevalent state in the
posterior sample at iterations 16–36k for fixed
step length (FS) models and samples 24–48k for
time-varying step length (TS) models. The state

estimates from all the 15 models agreed on 77.9%
of data, yielding similar time budgets (Tables C1
and C2). Six-state model classifications were
more consistent within FS models (93.9%) and
within TS models (93.9%) than across (86.7%). TS
models estimated the highest proportions of data
as LRS state than any FS model (.40%; Table
C2).

‘Overall state uncertainty’ was designed to
measure the average residual or overall lack of
support for the estimated sequence of states.
Overall state uncertainty ranged between 3.3-
4.5% of samples across all models. Allowing for
step length to increase with depth improved the
overall state certainty in all converged model
structures (Fig. C2). TS models 5 (full model) and
8 (pitch þ ODBA) had the lowest overall state
uncertainty (3.25% and 3.33%).

Based on emission probability of data alone
(depth, clicking, pitch, ODBA), the models’
discriminatory power broadly mirrored that of
their overall state uncertainty (Figs. C2 and C3),
indicating that any lack of support for the most
prevalent states was driven by the state-depen-
dent likelihoods. Emission probabilities predict-
ed a posterior average of 89.1–93.45% of state
estimates across models. When accounting for
transition probabilities (Viterbi algorithm), the
models’ ability to discriminate states was im-
proved and less variable between models (97.8–

Table C4. Expert dive classification.

Category 1 Category 2 Dive no. Description

A) Dives with clicking Usual dive profile 1 Shallow (,300 m in max depth)
2 Mid-depth dives
3 Deep dives (.1000 m in max depth)
4 Multi-layer dives; whale spends time at

several depth layers, or there is an
excursion of more than about 2x the

depth extent of the main layer
Unusual dive profile 5 Clicking but not buzzes, unusual shape

with few inflections and smoother
shape in dive profile

6 Some clicking on descent, but clicking
ceases and whale drifts during ascent

7 Some clicking on descent, but clicking
ceases and whale swims actively during

ascent
B) Dives without clicking Pitch and ODBA indicate drifting

behavior
8 Shallow (,20 m)

9 Deep (.20 m)
Silent active swimming 10 Shallow (,20 m)

11 Deep (.20 m)

Notes: Dive types were divided into two main categories based on the presence of echolocation clicks. Sub-categories were
determined by the shape of the dive profile and active swimming versus drifting.

Fig. C1. Comparison of the two estimates for the

effective number of parameters for each converged

model (n ¼ 15): pD (returned by jags, difference

between the posterior mean and the deviance evalu-

ated at posterior means) and pV (variance of posterior

deviance divided by two). The lowest deviance model

is circled in blue.
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Fig. C2. Overall state uncertainty for each model (total bar width) with contributing states (states 1–6 color-

coded from left to right). Overall state uncertainty was calculated for each model as the total proportion of

posterior samples that were not the most prevalent state. Models are shown in ascending order of overall

uncertainty with the lowest (best) values at the bottom. Model structure numbers are given before number of

states in brackets. ‘Base’ structure here refers to depthþ clicking that were included in all of the converged set of

models; ‘TS’ refers to time-varying step length models.

Fig. C3. Percentage of state estimates predicted correctly when the predicted state was based on emission

probability alone (black) and on both emission and transition probabilities (Viterbi algorithm, blue). Percentages

for each posterior sample (small dots), mean percentage (large dots) and 95% quantiles (intervals) are shown.

Models are shown in ascending order of average percentage of correct predictions based on emission alone, with

the highest (best) values at the bottom. Emission probabilities were calculated as the sum of the state-dependent

posterior log densities for each data stream. The predicted state in a time step, given an emission, was found by

maximising the emission probability across the states. Transition probabilities were calculated based on the

posterior transition matrix and linear predictor at each time step for each model (‘TS’: time-varying time step

length models). The most likely path was found by Viterbi algorithm that minimizes both the emission and

transition probabilities across sequences of states. See Supplement for r script.
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98.9%). Viterbi algorithm improved the state
predictions only 7.0% on average, highlighting
how variable and relatively little the (mostly)
Markov state-transitions contributed to the state
classification (Fig. C3).

Surface and drifting states had the lowest
average state uncertainties (0.44% and 0.70%)
and descent and ascent states the highest across
all models (6.08% and 5.48%) (Table C3, Fig. C4).
Silent active state had similarly high average
uncertainty both within FS and TS models (5.74%
and 6.07%, Table C3). Although the emission
probabilities predicted silent active state better

than the foraging states 2–4 (Fig. C4), silent
active state was predicted worse than any other
state when accounting for transition probabilities
(Fig. C5). However, excluding the sixth state
from the model appeared to decrease the
contribution of state-dependent likelihoods in
descent state estimation (Fig. C4). The state-
dependent likelihoods for TS models were
further better able to discriminate descent and
ascent states than FS models (Fig. C4). The
overall lower state uncertainty of TS models
therefore appeared to be driven by the foraging
states (descent, LRS and ascent).

Fig. C4. The average (solid circle) and 95 quantile for the percentage of correct predictions for each state

estimate when predicted by emission probability alone. Emission probabilities were calculated as the sum of the

state-dependent posterior log densities for each data stream. The predicted state in a time step, given an emission,

was found by maximising the emission probability across the states. ‘TS’ refers to time-varying step length

models.

Fig. C5. The average (solid circle) and 95 quantile for the percentage of correct predictions for each state

estimate when predicted by the Viterbi algorithm. ‘TS’ refers to time-varying step length models.
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Contribution of data was measured for the

state classification of the full TS model structure 5

with six states. Compared to the full set of

likelihoods, the percentage of correct predictions

decreased most for LRS state and silent active

state when clicking was excluded from the

predictions. In contrast, removing ODBA

changed the percentage of correct predictions

least (Fig. C6).

There were only small differences in the

estimated time budgets for expert classified

(Table C4) drifting dives between the models

(Fig. C7). All models estimated drifting dives to

consist more than an average of 76% (76.3–82.9%)

of time in drifting state, and at least an average of

13% (12.9–18.1%) of time in state 2 (descending).

Five-state models with pitch estimated drifting

dives to also contain ascending (3.9–4.4.6%)

while six-state models estimated silent active

(silent active state, 7.0–7.9%) (Fig. C7).

Fig. C6. The average (solid circle) and 95 quantile for the percentage of correct predictions for each state

estimate when predicted by a sub-set of state dependent likelihoods for each data (y-axis) in the full time-varying

step length (TS) model 5 with six states.

Fig. C7. Comparing state estimates of the converged set of models to expert classified drifting dives and silent

active dives. Bar plots show time budget of state estimates (color-coded) within each type of dive. Models are

shown in ascending order of state proportion for silent active dives, then by drifting dives, with the highest

values at the bottom. ‘TS’ refers to time-varying step length models.
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Expert classified silent active swimming dives
had more variable time budgets across models
than drifting dives. Five-state models without
pitch estimated these dives to consist mostly of
drifting state (Model 2 average: 75.2%, Model 4
average: 68.7%) while five-state models with
pitch estimated these dives to consist mostly of
ascend (state 4 averages 61.2–62.6%) (Fig. C7).
Six-state classifications were more consistent,
with ;75% in silent active state and ;3% in
drifting state.

LRS state estimates of model structure 6 and 9
with six states were most sensitive to the pre-
classified bottom phases (0.79 and 0.78, respec-
tively; Fig. C8). With little differences in specific-
ity between the models, also the diagnostic odds
ratio (DOR) selected for these two models as the
best match for pre-classified bottom phases. In
terms of the 95% confidence intervals for DOR,
all FS models appeared to be significantly poorer
classifiers of bottom phases than TS models (Fig.
C8).

Fig. C8. Comparing LRS state estimates of the converged set of models (y-axis) to pre-classified bottom phases.

Bar plots show proportion of state estimates (color-coded) in pre-classified bottom phases (left) and intervals

between pre-classified bottom phases (middle). Green bar widths therefore represent sensitivity and specificity of

LRS state estimates to the bottom phases. Logarithm of the diagnostic odds ratios (DOR) are shown in the far

right figure, with 95% Gaussian confidence intervals. Sample size for standard errors were based on number of

bottom phases (n ¼ 171). Models are shown in ascending order of DOR with the highest (best) values at the

bottom. Model structure numbers are given before state number in brackets. ‘Base’ structure here refers to depth

þ clicking that were included in all of the converged set of models; ‘TS’ refers to time-varying step length models.
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APPENDIX D

Posterior estimates from the selected hidden state model

Table D1. Posterior distribution estimates for transition probabilities.

Parameter[state] Mean SD SE

Quantiles (%)

2.50 25.00 50.00 75.00 97.50

T.beta0[1, 1] 2.53 0.62 11.65 1.38 2.10 2.49 2.92 3.76
T.beta0[1, 2] �2.34 0.13 2.32 �2.63 �2.43 �2.34 �2.25 �2.10
T.beta0[1, 3] �7.90 1.28 20.27 �11.17 �8.54 �7.68 �7.00 �6.08
T.beta0[1, 4] �14.42 1.31 22.75 �17.50 �15.11 �14.20 �13.51 �12.55
T.beta0[1, 5] �5.93 0.47 7.43 �6.98 �6.21 �5.90 �5.61 �5.11
T.beta0[1, 6] �2.85 0.15 2.60 �3.16 �2.95 �2.85 �2.76 �2.58
T.beta0[2, 1] �14.39 1.30 20.53 �17.58 �15.05 �14.20 �13.46 �12.50
T.beta0[2, 2] 2.18 1.36 29.13 �0.02 1.25 2.02 2.90 5.39
T.beta0[2, 3] �1.37 0.25 6.72 �2.00 �1.48 �1.31 �1.21 �1.05
T.beta0[2, 4] �6.11 0.95 15.62 �8.43 �6.55 �5.96 �5.45 �4.79
T.beta0[2, 5] �6.04 0.61 11.47 �7.42 �6.40 �5.98 �5.61 �5.02
T.beta0[2, 6] �4.20 0.31 6.14 �4.89 �4.39 �4.18 �3.99 �3.67
T.beta0[3, 1] .33 1.27 20.48 �0.77 0.49 1.17 2.04 4.20
T.beta0[3, 2] �4.60 0.27 7.46 �5.24 �4.75 �4.57 �4.42 �4.17
T.beta0[3, 3] 2.05 1.32 32.04 �0.14 1.12 1.91 2.83 5.09
T.beta0[3, 4] �2.99 0.22 6.80 �3.58 �3.09 �2.93 �2.83 �2.71
T.beta0[3, 5] �6.69 0.47 8.80 �7.73 �6.98 �6.65 �6.37 �5.89
T.beta0[3, 6] �5.44 0.32 7.93 �6.16 �5.64 �5.41 �5.21 �4.89
T.beta0[4, 1] 2.11 0.83 15.89 0.55 1.55 2.07 2.61 3.83
T.beta0[4, 2] �8.80 0.80 15.38 �10.66 �9.25 �8.73 �8.25 �7.46
T.beta0[4, 3] �6.84 0.46 10.85 �7.81 �7.14 �6.81 �6.52 �6.02
T.beta0[4, 4] �3.14 0.41 9.69 �4.01 �3.40 �3.11 �2.85 �2.43
T.beta0[4, 5] �9.14 0.84 16.36 �11.07 �9.62 �9.05 �8.56 �7.76
T.beta0[4, 6] �7.46 0.51 10.83 �8.51 �7.80 �7.43 �7.11 �6.54
T.beta0[5, 1] 2.27 1.36 21.48 0.04 1.36 2.13 3.02 5.44
T.beta0[5, 2] �7.17 1.27 20.45 �10.21 �7.84 �6.98 �6.28 �5.17
T.beta0[5, 3] �5.37 0.58 9.37 �6.63 �5.71 �5.32 �4.97 �4.38
T.beta0[5, 4] �4.28 0.43 7.12 �5.20 �4.55 �4.24 �3.97 �3.51
T.beta0[5, 5] 2.19 1.32 20.53 0.22 1.26 1.99 2.92 5.36
T.beta0[5, 6] �2.95 0.26 4.16 �3.49 �3.11 �2.93 �2.77 �2.49
T.beta0[6, 1] 2.35 0.70 12.30 1.09 1.85 2.32 2.80 3.86
T.beta0[6, 2] �2.65 0.32 7.26 �3.28 �2.86 �2.65 �2.43 �2.03
T.beta0[6, 3] �4.24 0.40 7.89 �5.08 �4.49 �4.22 �3.97 �3.47
T.beta0[6, 4] �4.19 0.38 7.92 �4.97 �4.43 �4.17 �3.92 �3.47
T.beta0[6, 5] �3.24 0.32 6.69 �3.88 �3.45 �3.22 �3.02 �2.62
T.beta0[6, 6] �0.20 0.52 12.33 �1.09 �0.55 �0.24 0.10 0.96
T.beta11[1] �8.37 1.18 21.49 �10.79 �9.13 �8.31 �7.54 �6.24
tau[1] 0.010 0.000 0.006 0.010 0.010 0.010 0.011 0.011
tau[2] 677.9 28.2 485.8 623.8 658.7 677.4 696.8 734.6
tau[3] 0.045 0.058 1.047 0.002 0.012 0.027 0.057 0.203
tau[4] 443.5 21.8 423.3 402.5 428.9 442.3 457.6 488.1
tau[5] 72.41 5.01 88.64 62.96 69.07 72.20 75.69 82.75
tau[6] 125.0 10.5 215.8 105.6 118.0 124.7 131.8 146.9
tau.beta0 1.469 0.023 0.432 1.423 1.453 1.470 1.485 1.514
drift[2] 41.61 0.83 13.70 39.98 41.06 41.62 42.17 43.18
drift[4] 46.03 0.93 16.76 44.22 45.43 46.02 46.64 47.90
RC.beta0[1] 0.002 0.001 0.026 0.000 0.001 0.002 0.003 0.005
RC.beta0[2] 0.902 0.009 0.138 0.885 0.896 0.902 0.907 0.918
RC.beta0[3] 0.997 0.001 0.017 0.995 0.996 0.997 0.998 0.999
RC.beta0[4] 0.559 0.016 0.278 0.528 0.548 0.559 0.569 0.589
RC.beta0[5] 0.012 0.005 0.088 0.005 0.008 0.011 0.014 0.022
RC.beta0[6] 0.015 0.008 0.212 0.003 0.010 0.015 0.021 0.033
p.beta0[1] �4.198 0.026 0.413 �4.248 �4.216 �4.197 �4.180 �4.147
p.beta0[2, 3, 4, 6] �2.458 0.013 0.211 �2.484 �2.467 �2.458 �2.449 �2.432
p.beta0[5] 2.132 0.035 0.569 2.062 2.109 2.131 2.156 2.198
p.gamma[1] 51.27 1.92 29.25 47.61 49.95 51.22 52.56 55.02
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Table D1. Continued.

Parameter[state] Mean SD SE

Quantiles (%)

2.50 25.00 50.00 75.00 97.50

p.gamma[2, 3, 4, 6] 12.27 0.21 3.40 11.87 12.13 12.27 12.41 12.68
p.gamma[5] 14.67 0.94 15.05 12.89 14.01 14.67 15.26 16.58
p.beta1[2, 3, 4, 6] 0.037 0.000 0.004 0.036 0.036 0.037 0.037 0.037

Notes: Posterior summary statistics were calculated using ‘summary.mcmc’ function in package ‘coda’ in r. Time-series
standard error (SE) was based on an estimate of the spectral density at zero. Parameter names are given as in BUGS code
(Supplement), with numbers in square brackets referring to the state(s) (1–6) with which the parameter is associated.

Table D2. Descriptive dive cycle (divingþpost surfacing) statistics for each state estimate within expert classified

dive types.

Dive type N
Duration
(min)

Max
depth (m)

Percentage of dive cycle
time in each state

Total percentage of dives with multiple
states in each state

1 2 3 4 5 6 1 2 3 4 5 6

1 72 34.3 215.1 21.6 9.8 55.5 6.7 1.3 5.1 0.0 9.7 13.9 5.6 0.0 2.8
19.1 7.7 24.6 5.3 4.2 14.1

2 40 33.7 503.7 23.0 19.3 35.9 17.9 0.0 3.9 0.0 30.0 45.0 15.0 0.0 2.5
8.9 9.6 13.4 6.1 0.0 11.6

3 3 37.3 842.4 11.4 10.4 31.7 13.2 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0
10.1 12.4 28.3 11.5 0.0 57.7

4 4 20.8 210.7 31.0 9.0 19.5 9.8 0.0 30.6 0.0 25.0 50.0 25.0 0.0 0.0
33.0 13.7 25.0 11.6 0.0 47.5

6 2 37.0 78.7 66.0 2.8 7.5 0.0 17.9 5.7 0.0 0.0 0.0 0.0 0.0 0.0
34.6 4.0 10.7 0.0 25.3 5.4

7 2 25.5 28.9 30.9 0.0 0.0 0.0 27.6 41.5 0.0 0.0 0.0 0.0 50.0 50.0
5.1 0.0 0.0 0.0 39.0 44.1

8 6 33.0 43.2 35.4 0.0 0.0 0.0 59.0 5.6 0.0 0.0 0.0 0.0 33.3 83.3
5.3 0.0 0.0 0.0 4.8 1.4

10 1 23.0 51.9 21.7 0.0 0.0 0.0 0.0 78.3 0.0 0.0 0.0 0.0 0.0 0.0
11 1 18.0 37.3 16.7 0.0 0.0 0.0 0.0 83.3 0.0 0.0 0.0 0.0 0.0 0.0

Notes: Expert classified dive types (rows, 1–11) are as shown in Table C4. Only data from post-tagging baseline period are
included. Duration and maximum depth are means. Percentage of dive cycle time values are mean with SD below.
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Fig. D1. Prior and posterior densities for the best model (Model 5 with 6 states and time-varying step length).

Posterior densities are shown both at range [0, 1] (shaded gray) and zoomed in to the posterior range (blue). Prior

densities are shown as dashed line at [0, 1] range. Thinned posterior samples (1334 out of 20k iterations) are given

as rug plot at the bottom of each graph at the scale of the prior.
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Fig. D2. Residual plots for depth and pitch in the best hidden state model. Raw residuals were calculated as

posterior mean (‘‘fitted’’) minus observed value for each time step. In order to obtain sign for the posterior

predicted depth, we used the posterior mean of samples that were monitored for the random walk in the model

(parameter ‘mu’ in Supplement Jags script). For pitch, posterior mean was calculated based on the posterior

means of the beta regression coefficients p.beta0 and p.beta1, as well as the observed vertical step length.
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Fig. D3. Time series of posterior state probabilities for each individual (color-coded), overlaid with dive profile

(white) and presence/absence of clicking (black dots) at bottom half of the graph. The top half of the graph shows

absolute value for pitch scaled to 0–1 (gray), and for sonar exposures, sound exposure levels (black; dB re 1

lPa2s). Sonar pings from an unidentified source are given as yellow vertical lines. Black vertical lines labelled at

top x-axis show received sound exposure level (SEL).
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Fig. D3. Continued.

Fig. D3. Continued.
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Fig. D3. Continued.

Fig. D3. Continued.
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Fig. D3. Continued.

Fig. D3. Continued.
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Fig. D3. Continued.

Fig. D3. Continued.
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Fig. D3. Continued.

Fig. D3. Continued.
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APPENDIX E

Tagging effects

Fig. D3. Continued.

Table E1. Individual average state duration and state depth during tagging and post-tagging.

State

Tagging period Post-tagging baseline

N tags (states)

Duration (min) Depth (m)

N tags (states)

Duration (min) Depth (m)

Mean SD Mean SD Mean SD Mean SD

1 6 (18) 3.2 1.8 0.22 0.35 9 (135) 6.8 2.0 0.08 0.07
2 6 (17) 3.1 1.2 136.3 87.6 9 (143) 4.6 2.5 167.0 119.9
3 6 (21) 7.8 3.5 230.2 72.1 9 (151) 16.8 6.4 283.9 234.4
4 5 (15) 4.5 1.2 111.5 45.5 9 (123) 4.3 2.3 113.0 92.2
5 0 3 (19) 5.5 5.5 49.9 43.0
6 4 (19) 4.0 1.8 62.1 54.1 7 (68) 2.4 2.9 30.4 50.2

Notes: Only complete states that started and ended within tagging or post-tagging are included in these statistics. Sample size
(N) is given both per tag and number of states.
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Table E2. Individual average buzz presence and mean ODBA during tagging and post-tagging.

State

Tagging period Post-tagging baseline

N tags

BUZZ % ODBA

N tags

BUZZ % ODBA

Mean SD Mean SD Mean SD Mean SD

1 7 0.0 0.0 26.7 7.4 9 0.0 0.0 21.9 3.5
2 9 8.4 14.4 25.4 6.9 9 10.1 8.6 25.1 3.6
3 9 15.0 11.1 27.0 4.7 9 23.1 14.6 29.1 4.5
4 6 0.0 0.0 22.0 5.5 9 5.8 4.5 20.6 3.5
5 0 4 0.0 0.0 14.3 7.2
6 4 0.0 0.0 24.5 5.5 7 0.0 0.0 26.2 2.3

Table E3. Time spent in each state during the tagging period and post-tagging period for each individual.

Tag ID Data Percentage of time

Time in state (h)

1 2 3 4 5 6

sw05_196a tagging 0.5 6.9 10.3 72.4 10.3 0 0
post 20.8 26.8 8 52.6 6.6 3.8 2.2

sw08_152a tagging 2.8 1.8 16.6 32 18.3 0 31.4
post 1.8 18.9 12.3 63.2 5.7 0 0

sw09_141a tagging 0.8 16.7 8.3 20.8 27.1 0 27.1
post 3 18.2 4.4 24.9 5 1.1 46.4

sw09_142a tagging 0.2 0 23.1 76.9 0 0 0
post 2.8 12.7 6.7 73.9 5.5 0 1.2

sw09_153a tagging 0.1 0 33.3 66.7 0 0 0
post 8.4 13.9 8.9 67.9 8.5 0 0.8

sw09_160a tagging 0.2 25 66.7 8.3 0 0 0
post 3.3 12.8 18.5 54.4 14.4 0 0

sw10_147a tagging 0.9 23.6 18.2 40 18.2 0 0
post 14.8 27.8 13.1 28.2 13.1 14.8 2.9

sw10_149a tagging 1.8 17.8 19.6 43.9 7.5 0 11.2
post 12.4 17.8 14 54 12.6 0.1 1.5

sw10_150a tagging 0.8 19.6 23.9 21.7 13 0 21.7
post 12.2 20.5 22.4 37.2 18.1 0 1.8

Table E4. Coefficient estimates from the best multinomial model (state ; prevState þwhale þ Tagging).

Parameter

State 2 State 3 State 4 State 5 State 6

Mean SE Mean SE Mean SE Mean SE Mean SE

intercept �2.68 0.19 �17.91 0.25 �30.93 0.29 �5.93 0.75 �3.29 0.25
prevState 2 27.85 0.27 42.26 0.25 50.12 0.60 �14.60 0.00 23.69 0.41
prevState 3 4.31 0.62 24.46 0.51 34.11 0.53 6.93 1.02 3.41 0.73
prevState 4 �2.16 0.81 15.30 0.35 31.70 0.27 1.58 1.26 �1.17 0.60
prevState 5 �13.47 0.00 18.10 0.70 29.76 0.87 9.49 0.92 4.43 0.69
prevState 6 2.69 0.29 16.17 0.47 28.93 0.45 5.54 0.80 3.63 0.27
sw08_152a 0.88 0.46 0.45 0.50 0.71 0.49 �7.21 81.20 1.72 0.47
sw09_141a �0.69 0.48 �0.38 0.51 0.22 0.47 �1.25 0.86 1.95 0.35
sw09_142a 0.41 0.60 0.39 0.64 0.05 0.64 �7.46 50.12 0.09 0.89
sw09_153a 0.79 0.34 0.62 0.38 0.31 0.36 �13.97 0.00 �0.14 0.63
w09_160a 1.16 0.44 0.33 0.49 0.70 0.45 �6.83 48.66 �12.35 0.00
sw10_147a 0.16 0.26 �0.36 0.28 0.59 0.27 0.68 0.41 �0.05 0.34
sw10_149a 0.59 0.27 0.12 0.30 0.45 0.28 �1.88 1.24 0.25 0.37
sw10_150a 0.68 0.26 �0.19 0.29 0.76 0.27 �21.72 0.00 0.41 0.36
Tagging 0.30 0.31 0.03 0.34 0.28 0.33 �15.68 0.00 1.21 0.31
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Table E5. Coefficient estimates for the GEE model (state6 ; prevState þ Tagging).

Parameter Estimate, ex 95% CI

Sequential Wald test

df v2 p

intercept 0.23 1.26 �1.02 1.47
prevState 1 �3.32 0.04 �4.22 �2.41 5 1409.9 ,0.001
prevState 2 �5.29 0.01 �6.11 �4.47
prevState 3 �6.36 0.00 �7.21 �5.51
prevState 4 �5.67 0.00 �6.96 �4.38
prevState 5 �3.02 0.05 �4.32 �1.72
Tagging 1.31 3.70 0.30 2.31 1 6.52 0.011

Notes: Type 3 Wald tests are shown for each explanatory variable (prevState and Tagging). Mean estimates are given both in
link scale and ex transformed.

Fig. E1. Residuals and fitted values for the best multinomial model (state ; prevStateþwhaleþ Tagging). (a)

All state-dependent raw residuals for the post-tagging baseline data as a function of time since the end of tagging

period (vertical line at 0 hours), and for the tagging condition as a function of time since tag deployment (vertical

line at �3 hours); (b) fitted probabilities for each hidden state (i.e., observed state vs. fitted probability in the

multinomial model); (c–d) fitted probabilities by the multinomial model as a function of the posterior probability

of each state. Panel (c) shows data for post-tagging baseline, while panel (d) shows data for the tagging period.
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Fig. E2. Autocorrelation (y-axis) as a function of lag (x-axis) for the state-specific residuals of the best

multinomial model (state ; prevState þwhale þ Tagging).
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Fig. E3. Residuals and fitted values for the GEE model (state6 ; prevState þ Tagging). (a) Raw binomial

residuals for the post-tagging baseline data as a function of time since the end of the tagging period (vertical line

at 0 hours), and for the Tagging condition as a function of time since tag deployment (vertical line at�3 hours),

colored by previous state (pink¼ state 6). A positive residual indicates state 6 in the data, and a smaller positive

value indicates that the GEE fitted a higher probability. (b) Autocorrelation of the raw residuals (y-axis) as a

function of lag (x-axis). (c) Fitted probability of state 6 as a function of posterior probability of state 6. Circles and

triangles show data from post-tagging baseline and tagging periods, respectively, colored by previous state. (d)

Individual average fitted probability vs. average observed presence of state 6 within the post-tagging baseline

(black solid circles) and Tagging (red triangles) periods. Segments join data from the same individual.

Fig. E4. The best tagging effects model for state (prevState þwhale þ Tagging) re-fit without each whale (x-

axis) and checked for AIC against the baseline model (prevStateþwhale). Right y-axis (red) shows duration of

the tagging period in minutes. Horizontal line shows our cut-off DAIC ¼�2.
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SUPPLEMENT

R scripts for fitting the base- and full model structures to sample data (Ecological Archives, http://
dx.doi.org/10.1890/ES14-00130.1.sm).
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