
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 138.251.162.231

This content was downloaded on 02/02/2015 at 15:44

Please note that terms and conditions apply.

The intrinsic shape and dynamical structure of the bulges of lenticular galaxies

View the table of contents for this issue, or go to the journal homepage for more

2014 J. Phys.: Conf. Ser. 566 012009

(http://iopscience.iop.org/1742-6596/566/1/012009)

Home Search Collections Journals About Contact us My IOPscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/30318555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/566/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


The intrinsic shape and dynamical structure of the

bulges of lenticular galaxies

L Costantin1, E M Corsini1,2, J Méndez-Abreu3, E Dalla Bontà1,2,
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2 INAF-Osservatorio Astronomico di Padova, Italy
3 School of Physics and Astronomy, University of St. Andrews, UK

E-mail: luca.costantin@studenti.unipd.it, enricomaria.corsini@unipd.it,

jma20@st-andrews.ac.uk, elena.dallabonta@unipd.it, lorenzo.morelli@unipd.it,

alessandro.pizzella@unipd.it

Abstract. Several scenarios have been proposed to account for the formation and evolution of
galactic bulges and to explain the variety of their observed properties. Both the intrinsic shape
and dynamical structure of bulges depend on the mechanisms and timescales of their formation.
We are deriving the intrinsic axial ratios of the bulges of a sample of unbarred lenticular galaxies
to look for a possible relationship with their known orbital structure. Preliminary results show
that the orbits of stars of the triaxial bulge of NGC 4476 are more anisotropic than those in the
axisymmetric bulge of NGC 4249 hinting at a different formation process.

1. Introduction
Several formation scenarios were proposed to explain the variety of photometric, kinematic,
dynamical, and stellar population properties observed in bulges of lenticular and spiral galaxies.
Classical bulges are similar to low-luminosity elliptical galaxies and they are thought to be
formed by rapid gravitational collapse or hierarchical merging; boxy/peanut-shaped bulges are
bars and formed from dynamical instabilities of the galactic disks; pseudobulges are reminiscent
of disks and formed from secular processes of redistribution of the gas and stars driven by
bars or environmental effects (see [1], for a review). This picture is further complicated by the
co-existence of mixed types of classical and pseudobulges in the same galaxy [2, 3] and their
combination with boxy/peanut structures in barred galaxies [4, 5].

Studying the intrinsic shape of the bulges provides a crucial piece of information for testing
the results of numerical simulations of bulge formation. About 80% of bulges in unbarred
lenticular and early-to-intermediate spiral galaxies are not oblate but triaxial ellipsoids [6] and
the distribution of bulge triaxiality is strongly bimodal [7]. According to numerical simulations,
bulges with a Sérsic index n ≤ 2 which show a high fraction of oblate axisymmetric (or
nearly axisymmetric) shapes and have a bulge-to-total ratio B/T ≤ 0.3, may be the result
of dissipational minor mergers. Both major dissipational and dissipationless mergers seem to be
required to explain the variety of shapes found for bulges with n > 2 and B/T > 0.3 (e.g., [8]).

We started a project to analyze the structural and dynamical properties of the bulges of a
sample of unbarred lenticular galaxies in order to study the relationship between their intrinsic
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Figure 1. Two-dimensional photometric decomposition of the fast-rotating galaxy NGC 4249
(left plot) and slow-rotating galaxy NGC 4476 (right plot) obtained from GASP2D. Upper panels
(from left to right): map of the observed, modeled, and residual (observed−modeled) surface
brightness distribution of the galaxy. Lower panels (from left to right): ellipse-averaged radial
profile of surface brightness, position angle, and ellipticity measured in the observed (dots with
error bars) and modeled image (green solid line). The surface-brightness radial profiles of the
fitted bulge (blue dashed line) and disk (red dotted line) are also shown.

shape and orbital structure. In this paper we present the preliminary results for the bulges of
the two S0 galaxies NGC 4249 and NGC 4476.

2. Galaxy sample
Our sample comprises 46 objects from the volume-limited ATLAS3D sample of 260 early-type
galaxies with a distance d < 40 Mpc [9]. The sample galaxies were selected to be classified
as SA0 [10]; with inclination i < 65◦ to successfully perform the photometric decomposition;
without morphological (e.g., signatures of interactions; [9]) and/or kinematic (e.g., evidence for
decoupled components; [11]) peculiarities; with i-band images in the data archive of the Sloan
Digital Sky Survey (SDSS), [12].

3. Photometric parameters of the bulge and disk
The photometric decomposition of the i-band SDSS images of the sample galaxies was performed
using the GASP2D algorithm [6], which yields the structural parameters for a Sérsic bulge and
an exponential disk.

The fitting algorithm relies on a χ2 minimization of the intensities in counts, for which we
must adopt initial trial parameters that are as close as possible to their final values. The trial
values of the effective surface brightness, effective radius, shape parameter, position angle, and
axial ratio of the bulge (Ie, re, n, PAb, and qb) and of the central surface brightness, scale-length,
position angle, and axial ratio of the disk (I0, h, PAd, and qd) were estimated from the analysis
of the ellipse-averaged radial profiles of surface brightness µi, ellipticity ε, and position angle PA.
The latter were measured using the IRAF task ELLIPSE [13]. Starting from these initial trial
parameters the different photometric models of the surface brightness were fitted iteratively to
the galaxy image. Each image pixel was weighted according to the variance of its total observed
photon counts due to the contribution of both galaxy and sky, and determined assuming photon
noise limitation and taking the detector read-out noise into account. Seeing effects were also
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Figure 2. The distribution of the intrinsic axial ratios of the bulge of NGC 4249 (left plot) and
NGC 4476 (right plot). For each galaxy, the median value of B/A and C/A is given and marked
with a segment in the bottom and right panel, respectively.

taken into account by convolving the model image with a circular Moffat point spread function
(PSF) with a FWHM matching the observed one. The convolution was performed as a product
in Fourier domain before the least-squares minimization. Only the image pixels with an intensity
larger than the sky standard deviation were included in the fit. Foreground stars were masked
and excluded from the fit.

The analysis of the fitted images allowed to reject 29 galaxies since they either turned out to
be ellipticals or showed a bar and/or spiral arms. The result of the photometric decomposition
of the images of NGC 4249 and NGC 4476 is shown in figure 1.

The errors on the fitted parameters were estimated through Monte Carlo simulations on
images of artificial galaxies. Finally, a background level and photon noise were added to the
simulated images in order to mimic the instrumental setup and image signal-to-noise ratio. The
relative errors in the fitted parameters of the artificial galaxies were estimated by comparing
the input and output values and were assumed to be normally distributed. The standard
deviation was adopted as the 1σ error in the relevant parameter for the bulge-disk decomposition.
Systematic errors given by a wrong estimation of the PSF FWHM and sky level are the most
significant contributors to the error budget. To derive the intrinsic shape of the bulge we are
interested in qb, qd, PAb, and PAd. Their 3σ errors including systematics are smaller than 15%.

4. Intrinsic shape of the bulges
The intrinsic shape of the sample bulges was derived from the geometrical relationships between
the projected and intrinsic shapes of the bulge and its surrounding disk (see [7] for details). The
bulge is assumed to be a triaxial ellipsoid with semi-axes of length A and B in the equatorial
plane and C along the polar axis. The bulge shares the same center and polar axis as the
disk, which is circular and lies on the equatorial plane of the bulge. The intrinsic shape of
the bulge is recovered from the bulge ellipticity parameter e = (1 − q2b)/(1 + q2b), twist angle
δ = 180◦ − |PAb − PAd| between the major axes of the bulge and disk (i.e., the line of nodes),
and disk inclination θ = arccos qd.

The relation between the intrinsic and projected parameters depends only on the spatial
position of the bulge, i.e., on the angle 0 ≤ φ ≤ 90◦ measured on the bulge equatorial plane
between the principal axis corresponding to A and the line of nodes. The equatorial ellipticity
Z = B2/A2 and intrinsic flattening F = C2/A2 of the bulge are given by:
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Figure 3. (ε, V/σ) diagram of the ATLAS3D galaxies (see [14] for details). NGC 4249 (blue
circle) and NGC 4476 (orange circle) are shown together with the non-rotating galaxies (red
symbols), non-regular rotators without any specific kinematic feature (green symbols), and
regular rotators (purple symbols). The solid black line corresponds to isotropic oblate systems
viewed edge-on.

sin (2φC) sin2 θ

cos2 θ
F = − sinφB cos (2φC − φB) (1 + Z)2

+ sin (2φC − φB)
√
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cos θ (1 + e cos 2δ)
, (2)

φC =
1

2
arctan

2 e sin 2δ cos θ

e cos 2δ (1 + cos2 θ)− sin2 θ
. (3)

Since the axial ratios B/A and C/A are both functions of the same variable φ, their probabilities
are identical, i.e., for a given value of B/A with probability P (B/A), the corresponding value
of C/A obtained by equation (1) has a probability P (C/A) = P (B/A). This allows to obtain
the range of possible values of B/A and C/A for the bulge and to constrain its most probable
intrinsic shape by adopting the probabilities P (Z) and P (F ), [7].

The distribution of B/A and C/A for the bulges of NGC 4249 and NGC 4476 as calculated via
Monte Carlo simulations is shown in figure 2. We randomly chose 5000 geometric configurations
assuming a Gaussian distribution of qb, qd, PAb, and PAd taking into account their 3σ errors.
For each geometric configuration we derived 1000 values of B/A and C/A according to their
probability distribution functions. The resulting median values of the axial ratios and the 1σ
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confidence intervals from their cumulative distribution are B/A = 0.99+0.01
−0.01 and C/A = 0.84+0.09

−0.08

for the bulge of NGC 4249 and B/A = 0.48+0.11
−0.14 and C/A = 0.56+0.11

−0.13 for the bulge of NGC 4476,
respectively.

5. Conclusions
The two S0 galaxies NGC 4249 and NGC 4476 are classified as a fast and slow rotator,
respectively (figure 3, [14]). Slow rotators exhibit complex stellar velocity fields and often
include stellar kinematically distinct cores, fast rotators have regular velocity fields and show
aligned photometric and kinematic axes.

We have found that the bulge of NGC 4249 is axisymmetric and almost spherical, whereas the
bulge of NGC 4476 is triaxial and partially prolate (figure 2). From the location of NGC 4249 and
NGC 4476 in the (ε, V/σ) diagram (figure 3), we conclude that the orbits of stars of the triaxial
bulge of NGC 4476 are more anisotropic than those in the axisymmetric bulge of NGC 4249.

This is in agreement with the recent findings on the shape of the ATLAS3D early-type galaxies
[15]. It has been shown that the fast rotators are predominantly axisymmetric, whereas slow
rotators are mildly triaxial hinting at different formation scenarios. However, their photometric
and kinematic properties are representative of the galaxy as a whole, and therefore, no attempt to
account for the different structural components of the galaxies (i.e., bulge, disk and bar) or even
to distinguish elliptical and lenticular galaxies was made. Moreover, a Gaussian intrinsic shape
distribution under assumption of axisymmetry has been adopted in the photometric analysis.
We plan to address the above issues for the bulges of lenticular galaxies by completing the
analysis of their intrinsic shape and orbital structure for all the objects of our sample.
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