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Guillaume Laibe1‹ and Daniel J. Price2

1School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK
2Monash Centre for Astrophysics and School of Mathematical Sciences, Monash University, Clayton, Vic 3800, Australia

Accepted 2014 July 7. Received 2014 July 4; in original form 2014 March 15

ABSTRACT
We derive the single-fluid evolution equations describing a mixture made of a gas phase and
an arbitrary number of dust phases, generalizing the approach developed by Laibe & Price. A
generalization for continuous dust distributions as well as analytic approximations for strong
drag regimes is also provided. This formalism lays the foundation for numerical simulations of
dust populations in a wide range of astrophysical systems while avoiding limitations associated
with a multiple-fluid treatment. The usefulness of the formalism is illustrated on a series of
analytical problems, namely the DUSTYBOX, DUSTYSHOCK and DUSTYWAVE problems as well as
the radial drift of grains and the streaming instability in protoplanetary discs. We find physical
effects specific to the presence of several dust phases and multiple drag time-scales, including
non-monotonic evolution of the differential velocity between phases and increased efficiency
of the linear growth of the streaming instability. Interestingly, it is found that under certain
conditions, large grains can migrate outwards in protoplanetary discs. This may explain the
presence of small pebbles at several hundreds of astronomical units from their central star.
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1 IN T RO D U C T I O N

Small but not insignificant: dust grains play an essential role for
forming stars and planets in the Universe (e.g. Chiang & Youdin
2010; Testi et al. 2014). Dust reprocesses the energy emitted from
surrounding stars and grains grow to build large solid bodies. Dust
in molecular clouds originates from the interstellar medium, where
grains have a typical distribution in size of the form n(s) ∝ s−3.5

(Mathis, Rumpl & Nordsieck 1977). Evidence of multiple grain
size populations has also been detected in molecular clouds (e.g.
Pagani et al. 2010; Andersen et al. 2013) and in protoplanetary discs
(e.g. Dullemond & Dominik 2004; Duchêne et al. 2004; Pinte et al.
2007; Lommen et al. 2009; Banzatti et al. 2011; Ubach et al. 2012).
Since the coupling efficiency with the surrounding gas varies with
the particle size, different grain populations may experience very
different dynamics (e.g. Shariff 2009).

Dust evolution has been studied in astrophysical systems mostly
by modelling the dust phase as a continuous pressureless fluid and
treating the interactions with the gas via a drag force (e.g. Saffman
1962; Garaud & Lin 2004). However, numerical simulations using
this two-fluid approach suffer from two severe limitations (Laibe
& Price 2012a,b). First, grain collisions are generally not effective
enough to provide support against dust accumulation. Hence, if
grains concentrate below the gas resolution (as during the planet
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formation process), they form dead artificial clumps. Secondly, the
presence of small grains requires the use of a prohibitively high
spatial resolution in order to resolve the tiny spatial de-phasing
of the two phases. These difficulties limit progress in simulating
complex dust evolution in cold astrophysical systems, in particular
the formation of a planet ab initio.

In Laibe & Price (2014a), we have shown that these limitations
can be overcome by changing the physical description of the sys-
tem, describing the gas and the dust particles as the elementary
constituents of a single fluid – the mixture – whose density is the to-
tal density of its two phases and which is advected at the barycentric
velocity of the particles. The chemical composition of the system
and the relative velocities between the phases are treated as internal
properties of the mixture. Using this description, the fundamental
difficulties described above disappear, as shown in our numerical
simulations based on this approach using Smoothed Particle Hydro-
dynamics (SPH) (Laibe & Price 2014b). A single-resolution length
is used in the simulation, meaning that one phase cannot accu-
mulate below the resolution of the other. Moreover, the resolution
criterion arising from the spatial dephasing between the two phases
is no longer necessary in this description. Finally, no interpola-
tion between the gas and the dust phases is required and implicit
time-stepping is straightforward to implement.

The main limitation of the Laibe & Price (2014a,b) work is that
only a single dust grain population was considered. This is insuffi-
cient for modelling systems where grains of different sizes mix. For
example, a good knowledge of the dust distribution is required to
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Dust and gas mixtures with one fluid 1941

compute opacities in radiation-hydrodynamics simulations of star
formation. In this paper, we generalize our previous work to de-
scribe a mixture of n dust species interacting with a gas component.
The equations are given in their most general form in Section 2.
In Section 3, the physical properties of multiple dust population
mixtures are discussed by applying the one-fluid formalism to an-
alytical examples relevant to astrophysics. In doing so, we provide
analytic solutions that can be used to benchmark numerical imple-
mentations and which shed light on the rich physics of multiple
dust-phase mixtures.

2 O NE FLUID W ITH MULTIPLE DUST
SPECIES

We address the problem of treating a mixture composed by a contin-
uous gas phase and any number n of distinct dust phases (e.g. made
of different grain sizes). Thorough this paper, we use the subscript
g to refer to the gas phase and d, k to refer to the kth dust phase, k
being an integer taking all the values from 1 to n. In this study, we
restrict ourselves to the case where dust grains do not interact with
each other (in particular, they do not grow or fragment).

2.1 Multiple fluid formalism

In a multiple fluid formalism, each phase of the mixture is treated
as a fluid, with elements composed of a mesoscopic volume of
particles of the given species. Those fluid elements move with their
own advection velocities. Hence, with usual notations, the equations
for the conservation of density, momentum and energy for the gas
and the n dust phases are:

∂ρg

∂t
+ ∇ · (ρgvg

) = 0, (1)

∂ρdk

∂t
+ ∇ · (ρdkvdk) = 0, (2)

ρg

[
∂vg

∂t
+ (vg · ∇)vg

]
= ρg f g +

∑
k

Kk(vdk − vg) + ρg f , (3)

ρd

[
∂vdk

∂t
+ (vdk · ∇) vdk

]
= ρdk f dk − Kk(vdk − vg) + ρdk f , (4)

∂u

∂t
+ (vg · ∇)u = −Pg

ρg
(∇ · vg) +

∑
k

Kk

ρg
(vdk − vg)2. (5)

The different phases are coupled by drag terms, which exchange
momentum and energy between the gas and the dust phases. Kk

denotes the drag coefficient between the gas and the kth dust species
and has the dimension of a mass per unit volume per unit time since
it defines a drag force per unit volume. It can be either a constant
or a function of the differential velocities between the phases (see
Laibe & Price 2012b for a discussion on the different astrophysical
regimes). f g and f dk denote the forces that are specific to the
gas and the dust phases, respectively (i.e. gas pressure gradient or
viscosity, dust radiation pressure, buoyancy forces and so forth).
For simplicity, we assume an ideal gas equation of state given by

Pg = (γ − 1)ρgu. (6)

The total dust density ρd and the dust velocity vd are defined
according to

ρd ≡
∑

k

ρdk, (7)

vd ≡ 1

ρd

∑
k

ρdkvdk. (8)

Summing equations (2) over all the dust species gives the equation
of conservation for the total mass of dust,

∂ρd

∂t
+ ∇ · (ρdvd) = 0. (9)

Finally, in the multiple fluid formalism, the total density of energy
of the mixture is given by

e = 1

2
ρgv

2
g +
∑

k

1

2
ρdkv

2
dk + ρgu. (10)

2.2 One-fluid formalism

In the one-fluid formalism, particles of different species are treated
as being part of the same continuous fluid called the mixture. The
mixture’s fluid elements are thus made of particles of different types
that are advected with a single velocity v (x, t). Each fluid element
is constructed so that its mass is rigorously conserved, while the
composition may vary since one species can replace another one.
Differential velocities between the gas and the dust phases are not
kinematic quantities anymore, but intrinsic properties of the fluid.
This approach, developed by Laibe & Price (2014a) for the specific
case n = 1 we now generalize to any number of dust phases.

2.2.1 Physical quantities

The mixture’s density ρ is defined as being the total density of its
constituents

ρ ≡ ρg + ρd = ρg +
∑

k

ρdk. (11)

The mixture’s advection velocity v is chosen to be the barycentric
velocity of the different phases

v ≡
ρgvg +

∑
k

ρdkvdk

ρ
= ρgvg + ρdvd

ρ
. (12)

The relative chemical composition of the mixture is expressed via
the dust fractions of each species εk

εk ≡ ρdk

ρ
, (13)

such that the total dust fraction is given by

ε ≡
∑

k

εk = ρd

ρ
, (14)

which sets the gas fraction as (1 − ε) to conserve the total mass of a
fluid element. This definition also ensures the following relation:

εvd =
∑

k

εkvk. (15)

The differential velocities between the kth dust phase and the gas
are defined according to

�vk ≡ vdk − vg. (16)
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1942 G. Laibe and D. J. Price

Inverting equations (12) and (16), the gas and dust velocities can be
expressed as functions of the mixture’s quantities as follows:

vg = v −
∑

k

εk�vk, (17)

vdk = v + �vk −
∑

k

εk�vk, (18)

vd = v + (1 − ε)

ε

∑
k

εk�vk. (19)

Introducing the total differential velocity �v defined according to

ε�v ≡
∑

k

εk�vk, (20)

equations (17)–(19) can be rewritten as

vg = v − ε�v, (21)

vdk = v + �vk − ε�v, (22)

vd = v + (1 − ε) �v. (23)

Equations (21) and (23) are fully consistent with the definition of
�v in the limiting case n = 1. Similarly, by substituting equations
(17) and (18) in equation (10), the total density of energy of the
mixture becomes

e = 1

2
ρv2 + 1

2
ρ

[∑
k

εk�v2
k − (ε�v)2

]
+ (1 − ε) ρu. (24)

The physical quantities defined above reduce to the one used for the
one-fluid formalism with a single dust species for the case n = 1.

2.2.2 One-fluid equations

Expressing equations (1)–(5) with the new physical quantities pro-
vides the system of equations describing the evolution of the mixture
in the one-fluid formalism

dρ

dt
= −ρ(∇ · v), (25)

dεk

dt
= − 1

ρ
∇ · [ρεk (�vk − ε�v)] , (26)

dv

dt
= (1 − ε) f g +

∑
k

εk f dk + f

− 1

ρ
∇ ·
[
ρ
∑

k

εk�vk (�vk − ε�v)

]
, (27)

d�vk

dt
= − �vk

εktbk

−
∑

l

�vl

(1 − ε) tbl

+ ( f dk − f g) − (�vk · ∇)v

+ 1

2
∇ [�vk · (�vk − 2ε�v)] , (28)

du

dt
= − Pg

(1 − ε) ρ
∇ · vg + ε�v.∇u +

∑
k

�v2
k

(1 − ε) tbk

, (29)

where the comoving derivative refers to a particle moving with the
barycentric velocity v, i.e.

d

dt
≡ ∂

∂t
+ (v.∇), (30)

and the drag stopping times tbk are given by

tbk = ρ

Kk

. (31)

Equation (25) shows that, locally, the mass of the mixture is
conserved exactly. This property has been obtained by construction,
using the properties of the centre of mass of a physical system
(equations 11–12). Equation (26) expresses the fact that although
the mass of a fluid element is constant, its composition may evolve,
depending on the relative dust and gas fluxes. Equation (27) shows
that the mixture evolves under the action of all the forces acting on
its constituents, as well as a generalized anisotropic pressure term
due to momentum transferred through composition modification.
Differential velocities evolve under the action of both conservative
and dissipative terms (equation 28), which both transfer energy
from a dust to the gas phase (equation 29). This system of equations
reduces exactly to the one studied in Laibe & Price (2014a) in the
specific case n = 1.

2.3 Conservative terms

Similar to the n = 1 case, it is physically enlightening to derive
the conservative part of equations (25) from integral conservation
laws and put the system in a conservative form. From a numerical
point of view, it should be noted that switching from a primitive
to a conservative form preserves the hyperbolic structure of the
equations, as discussed in Laibe & Price (2014a).

2.3.1 Conservation of mass

The total mass of gas, of any dust species as well as the total mass
dust contained in a given volume V, is

Mg ≡
∫

V

ρgdV =
∫

V

(1 − ε) ρdV , (32)

Mdk ≡
∫

V

ρdkdV =
∫

V

εkρdV , (33)

Md ≡
∑

k

Mdk =
∫

V

ερdV =
∫

V

ρddV . (34)

The mass conservation for every species over the volume V (includ-
ing the gas) can be expressed as

dgMg

dt
= 0, (35)

ddkMdk

dt
= 0, (36)

where
dg

dt
= ∂

∂t
+ vg · ∇ and

ddk

dt
= ∂

∂t
+ vdk · ∇ are the comoving

derivatives for the gas, the n dust species and the entire dust phase,
respectively. Applying the transport theorem and the divergence
theorem (similarly to Laibe & Price 2014a) on equations (35)–(36)
gives

∂ρ (1 − ε)

∂t
+ ∇ · [ρ (1 − ε) (v − ε�v)] = 0, (37)

∂ρεk

∂t
+ ∇ · [ρεk (v + �vk − ε�v)] = 0. (38)

Summing equation (37) and the n equations of equation (38) gives

∂ρ

∂t
+ ∇ · (ρv) = 0, (39)

which is rigorously equivalent to

dM

dt
= 0, (40)
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Dust and gas mixtures with one fluid 1943

where M is the total mass of material contained in the volume V.
This result is not surprising since the mixture has been constructed
to exploit the conservative properties of the centre of mass of the
system. Similar to the case n = 1, the mass of each species or phase
taken individually is not conserved since

dMg

dt
=
∫

S

ρ (1 − ε) ε�v · ndS, (41)

dMdk

dt
= −

∫
S

ρεk (�vk − ε�v) · ndS. (42)

The right-hand sides of equations (41) and (42) represent the fluxes
of mass of each species through the surface S of the volume V. By
construction, those fluxes cancel each other when summing over
the different species.

Summing only over the n equations of equation (38) leads to
conservation relations related to the evolution of the entire dust
phase

∂ρε

∂t
+ ∇ · [ρεv + ρ (1 − ε) ε�v] = 0, (43)

which is equivalent to

dMd

dt
= −

∫
S

ρ (1 − ε) ε�v · ndS, (44)

or

ddMd

dt
= 0, (45)

where
dd

dt
= ∂

∂t
+ vd · ∇ is the comoving derivative of the entire

dust phase. It is worth noting that the terms in equations (43) and
(42), though here with generalized meaning, are the same as in the
n = 1 case.

2.3.2 Conservation of momentum

The total momentum of gas, of dust of each species and the total
momentum of dust in the volume V are

Pg ≡
∫

V

ρgvgdV =
∫

V

ρ (1 − ε) (v − ε�v) dV , (46)

Pdk ≡
∫

V

ρdkvdkdV =
∫

V

ρεk (v + �vk − ε�v) dV , (47)

Pd ≡
∑

k

Pdk =
∫

V

[ρεv + ρ (1 − ε) ε�v] dV ,

=
∫

V

ρdvddV . (48)

Using P to denote the gas pressure, the conservation of momentum
for every species reads

dg Pg

dt
≡ −

∫
S

P ndS, (49)

ddk Pdk

dt
≡ 0. (50)

Equations (49) and (50) therefore result in local conservation equa-
tions given by

∂ρ (1 − ε) (v − ε�v)

∂t

+ ∇ · [ρ (1 − ε) (v − ε�v) (v − ε�v) + P I] = 0, (51)

∂ρεk (v + �vk − ε�v)

∂t

+ ∇ · [ρεk (v + �vk − ε�v) (v + �vk − ε�v)] = 0. (52)

Summing over all the phases of the mixture (including the gas)
gives the local and the integral equations of conservation for the
total momentum of the mixture

∂ρv

∂t
+ ∇ ·

[
ρvv + P I + ρ

∑
k

[εk�vk (�vk − ε�v)]

)
= 0,

(53)

and
dP
dt

= −
∫

S

P ndS −
∫

S

ρ
∑

k

[εk�vk (�vk − ε�v)] · ndS,

(54)

where P ≡ Pg + Pd. In contrast to the total mass, the total mo-
mentum P is not conserved since the momentum fluxes transported
by the mass fluxes specific to each species do not counterbalance
each other. As for the special case n = 1, the overall contribution is
equivalent to an anisotropic pressure gradient term, but the contri-
bution arises here from the balance between two terms. Following
the same argument, the total dust momentum carried at the dust
velocity is not conserved either, i.e.∑

k

ddk Pdk

dt
�= dd Pd

dt
. (55)

2.3.3 Conservation of energy

The total energy for the gas phase and the n dust species over the
volume V is given by

Eg = 1

2

∫
V

ρgv
2
gdV = 1

2

∫
V

(1 − ε) ρ (v − ε�v)2 dV , (56)

Edk = 1

2

∫
V

ρdkv
2
dkdV = 1

2

∫
V

ρεk (v + �vk − ε�v)2 dV . (57)

Conservation of energy can therefore be expressed as

dgEg

dt
= −

∫
S

P (v − ε�v) ndS, (58)

ddEdk

dt
= 0. (59)

Combining the two local equations of conservation induced by
equations (58) and (59) leads to

∂e

∂t
+ ∇ ·

⎧⎨
⎩
(

1

2
ρv2 + 1

2
ρ

[∑
k

εk�v2
k − (ε�v)2

])
v

+ ρ

2

[∑
k

εk�v2
k (�vk − ε�v) + 2

∑
k

εkvg · (�vk − ε�v) �vk

]

+ ρ(1 − ε)(u + Pg)vg

⎫⎬
⎭ = 0, (60)

where the total energy density e is given by equation (24). This
expression reduces to the one found in Laibe & Price (2014a) for
the case n = 1.
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1944 G. Laibe and D. J. Price

2.3.4 Conservation of physical quantities over the entire space

If the volume V used in the equations above represents the entire
space, the surface terms of the previous integrals go to zero and

dM

dt
= dP

dt
= dE

dt
= 0. (61)

Equation (61) provides important constraints for any conservative
numerical methods. For example, these conservation relations pro-
vide the basis on which one could derive the SPH equivalent of
equations (1)–(5) in a form which is fully conservative, implying
that equation (61) is satisfied to machine precision (see Laibe &
Price 2014b).

2.4 Drag terms

2.4.1 Drag coefficients

Various drag regimes are encountered in astrophysical systems,
depending on the properties of the grains and of the gas (see e.g.
Laibe & Price 2012b for an exhaustive discussion). In most of
the situations, linear drag regimes (i.e. constant drag coefficient)
are relevant, although non-linear drag regimes can be experienced
by large particles in highly energetic flows. This consideration is
of importance for numerical simulations since efficient implicit
time-stepping is easier to implement in the linear case (Laibe &
Price 2012b, 2014b). From a numerical point of view, it is also
important to handle drag coefficients that are not related to any
physical quantities to benchmark the algorithms efficiently. Thus,
we retain quite general drag coefficients in the following, except
when a particular expression is specified.

Importantly, the drag coefficients Kk involved in equations (4)
and (5) correspond to drag forces expressed per unit volume. Kk is
therefore related to the drag coefficient of a single grain K1k by the
relation

Kk = ρdkK1k/mk, (62)

where mk denotes the mass of a single grain (Laibe & Price 2012a).
Denoting tk = K1k/mk the typical drag time exerted on a single
grain, equation (62) can be rewritten as

tbk = ε−1
k tk. (63)

It should be noted that, as a thought experiment, a dust phase i
can be artificially split into several dust phases (e.g. εi = ∑jεi, j).
This implies also that the drag coefficients of the sub-phases should
be weighted accordingly, i.e. Ki, j = εi, jKi. Performing this trans-
formation on to the drag coefficients ensures that the two descrip-
tions of the mixture are identical. This provides a particularly effi-
cient way of benchmarking numerical codes against analytic solu-
tions obtained for the case n = 1. We have used this approach in
Section 3.

2.4.2 Drag matrix

Equation (28) describes the exchange of momentum between the n
dust phases and the gas. If we restrict the evolution of the differential
velocities to the contributions of the drag terms (i.e. excluding
intrinsic and external forces, as well as convective terms), we obtain
the following equation(

∂�V
∂t

)
drag

= −�n�V , (64)

where �V denotes the vector whose components are �Vi = �vi ,
and �n is the drag matrix defined by

�n,ij =
⎧⎨
⎩

1
(1 − ε) tbj

, i �= j ;

1
tbi

(
1
εi

+ 1
(1 − ε)

)
, i = j .

(65)

In the case where the mixture is composed by a single dust species
only, equation (64) reduces to a simple scalar differential equation
(e.g. Laibe & Price 2014a).

We now examine the properties of the matrix �n to interpret
the physics contained in equation (64). We first note that �n is a
diagonal plus rank-one matrix, i.e. �n = D + U, where

Dij = δij [εi tbi]
−1 , (66)

Uij = uiv
T
j , (67)

with

ui = 1, (68)

vi = ((1 − ε)tbj )−1. (69)

Using the formula det(D + uvT) = det(D−1)det(I + vTD−1u), the
determinant of �n is:

det (�n) =
(∏

k

1

εktbk

)
×
(

1 +
∑

k

εk

(1 − ε)

)
> 0. (70)

Thus, the matrix �n is invertible. The analytic expression of �−1
n

can be obtained from the Sherman–Morrison formula for diagonal
plus rank-one invertible square matrices:

(D + uvT )−1 = D−1 − D−1uvT D−1

1 + vT D−1u
, (71)

which gives after simplifications

�−1
n,ij = 1

det (�n)
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−

∑
k �=j

1

tbk

(1 − ε)
∏

k �=(i,j )

εk

, i > j ;

−

∑
k �=i

1

tbk

(1 − ε)
∏

k �=(i,j )

εk

, i < j ;

⎛
⎝∏

k �=i

1

tbk

⎞
⎠ × 1 − εi

(1 − ε)
∏
k �=i

εk

, i = j,

(72)

where tbk is related to drag time-scale on a single grain by equation
(63). Physically, the differential energies between the dust phases
and the gas are dissipated by the drag. In particular, the following
inequality(

d�V
dt

)
drag

= −2�V · �n�V < 0 (73)

has to be satisfied, implying that �n has to be positive definite. To
prove this property, we introduce the diagonal matrix 	 defined by

	ij =
{

K
−1/2
i , i = j ;

0, i �= j
(74)
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Dust and gas mixtures with one fluid 1945

which satisfies the similarity relation

Wn = 	−1�n	, (75)

where Wn is the real symmetric matrix (therefore positive definite)
defined by

Wn,ij = 1

(1 − ε) ρ

⎧⎪⎨
⎪⎩

Ki

(
1 + (1 − ε)

εi

)
, i = j .√

KiKj , i �= j .

(76)

In Appendix A, we demonstrate that the spectrum formed by the
positive eigenvalues λk of �n (or equivalently Wn) satisfies

(∑
k

(1 − εk) tk

)−1

< λmin ≤ λk ≤ λmax ≤ max
k

(
1

tk

)

+ 1

(1 − ε)

∑
k

εkt
−1
k . (77)

Physically, the quantities tdk = λ−1
k are the inverses of the n physical

drag time-scales encountered in the problem. A priori, those values
depart from the n individual stopping times obtained when the gas
and a dust phase are treated independently to the other dust phases.
Those drag time-scales tdk depend not only on the drag coefficients,
but also on the relative densities of each phase. This generalizes the
case n = 1, for which the physical processes induced by the drag
are determined by the values of the drag coefficient and the dust
fraction. In a multiple dust species mixture, dense grains phases
provide an efficient backreaction on to the gas. On the other hand,
grains behave as individual particles in dilute dust phases. They are
dragged by the gas which is itself affected by the backreaction of
the dense dust phases. The dynamics of the mixture induced by the
drag is therefore related to the efficiency of the coupling between
the gas and the different grains species, as well as to the relative
densities of the different phases.

2.4.3 Explicit time-stepping criterion

The drag terms in equations (28) and (29) are usually integrated
numerically by an operator splitting method, meaning that the drag
contribution is treated independently from the conservative part
of the evolution equations. In a single-fluid formalism, integration
schemes for drag terms are much easier to derive than in a multiple
fluid formalism (e.g. Laibe & Price 2014b), since all the physical
quantities required are carried by the same fluid element and no
interpolation over the different phases is required.

The simplest explicit solver for equation (64) is the forward Euler
scheme

�V n+1 − �V n

�t
= −�n

n�V n. (78)

To determine the stability constraint in equation (78), we will as-
sume that the drag coefficients are constant. In this case, the inequal-
ity in the right hand side of equation (77) provides a lower bound
for the smallest drag time-scale which is larger than the smallest
stopping time. Therefore, it provides a Courant–Friedrichs–Levy
(CFL) condition for the drag time-step �td, one that is less stringent
than �td, multi, the one which would be used with a multiple fluids

treatment, namely

�t > �td,one =
(

max
k

(
1

εktbk

)
+ 1

(1 − ε)

∑
k

t−1
bk

)−1

, (79)

since

�td,one > �td,multi = max
k

[
1

tbk

(
1

εk

+ 1

(1 − ε)

)]
. (80)

As an example, if a single dust species i is submitted to a very strong
drag such that tbi � tbk �= i, equation (79) can be approximated by

�td,one 	
(

1

mink (tsk)
+ 1

(1 − ε) tbi

)−1

. (81)

Equation (81) shows that �td, one results from a balance between
density weighted contributions of the n stopping times and the
intrinsic drag time tbi that depends only on the drag coefficient Ki.

2.4.4 Implicit time-stepping

In numerical simulations, drag stopping times that are much smaller
than all the other typical times involved in the problem induce
prohibitive computational costs with explicit numerical schemes.
To get rid of this issue, this conditionally stable explicit scheme
has to be replaced by an unconditionally stable implicit scheme.
The simplest for integrating equation (64) is the backward Euler
scheme

�V n+1 − �V n

�t
= −�n+1

n �V n+1, (82)

which is equivalent to

�V n+1 = (I + �n+1
n �t

)−1
�V n, (83)

showing that the scheme’s efficiency is obtained at the price of a
fast and robust matrix inversion. Using equation (75) to transform
equation (64), the problem can be reduced to

�V̂
n+1 = (I + Wn+1

n �t
)−1

�V̂
n
, (84)

where �V̂ = 	−1�V . The vector �V̂ is straightforward to com-
pute from �V (and vice versa) since 	 is an analytic diagonal
matrix. The general inverse problem (equation 83) has thus been
reduced to the inversion of a real symmetric matrix, for which ro-
bust and fast algorithms are known to converge (e.g. Cholesky de-
composition, Gauss–Seidel iterations). Alternatively, the Sherman–
Morrison formula (equation 71) can be used to invert the matrix on
the right-hand side of equation (84) analytically if the drag coeffi-
cient is constant. The resulting expression is, however, useful only
for situations where the number of dust phases n is not too large.

2.5 A two-dust population model

To understand how different phases of a mixture with multiple dust
species interact with each other, it is instructive to consider the
special case n = 2 involving two dust phases. Here the parameter
space is narrower than for an arbitrary number of dust phases, but
aspects specific to multiple dust populations remain. In this case we
use β ≡ t1/t2 to denote the ratio of the two single-grains drag times
and φ1 to denote the relative dust fraction, i.e.

φ1 ≡ ε1/ε, (85)

which implies ε2 = (1 − φ1)ε. Thus, the problem is symmetric
with respect to the transformation [β → 1/β, φ1 → (1 − φ1)]. The
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1946 G. Laibe and D. J. Price

matrix �2 becomes

�2 = εφ1

t1 (1 − ε)

⎛
⎜⎜⎝

1 + (1 − ε)

εφ1

β (1 − φ1)

φ1

1
β (1 − φ1)

φ1

(
1 + (1 − ε)

ε (1 − φ1)

)
⎞
⎟⎟⎠.

(86)

The two physical drag time-scales td± are related to the eigenvalues
λ± of the matrix �2 by the relation

t−1
d± = λ± = 1

2

(
t−1
s1 + t−1

s2

) {
1 ±
√

1 − Q
}

, (87)

where

Q = 4β (1 − ε)

[(1 − φ1) (1 − ε (1 − φ1)) + βφ1 (1 − εφ1)]2 , (88)

and tsi are the usual stopping times t−1
si = Ki

(
ρ−1

g + ρ−1
di

)
defined

for a single dust phase mixture (Q < 1 since λ± > 0). Thus, if
Q → 1, we have

t−1
d± = λ± 	 1

2

(
t−1
s1 + t−1

s2

)
, (89)

and the expression is dominated by the smallest stopping time. If
Q � 1,

t−1
d+ = λ+ 	 (t−1

s1 + t−1
s2

)
, (90)

t−1
d− = λ− 	 Q

(
t−1
s1 + t−1

s2

)
. (91)

In this limit, td− is larger than the two stopping times characterizing
the damping processes involved when the gas interact with the dust
phase separately.

2.6 First-order approximation

In the limit where all the n drag time-scales tdk are much smaller
than any other typical time-scale τ involved in the problem, equa-
tion (28) can be approximated by the so-called terminal velocity
approximation (see e.g. Youdin & Goodman 2005; Chiang 2008;
Barranco 2009; Lee et al. 2010; Jacquet, Balbus & Latter 2011;
Laibe & Price 2014a for applications in the case n = 1), i.e.

�V = −�−1
n �F, (92)

where �F is the vector whose coordinates are the differential forces
between a dust phase and the gas, i.e. �Fi = ( f di − f g). From
equation (72), we derived the values of each differential velocity
�vk in this strong drag limit. After simplifications we find

�vk =
[

( f dk − f g) −
∑

l

( f dl − f g)εl

]
tk. (93)

If f d = 0, equation (93) reduces to

�vk = f g (1 − ε) tk. (94)

Moreover, if n = 1, and f g = −∇P
ρg

, equation (93) reduces to

�v = ∇P

ρg
ts, (95)

where the stopping time ts for a single dust phase is defined by

ts = ρgρd

K(ρg + ρd)
= ε (1 − ε) ρ

K
. (96)

Equation (95) is the usual expression for the terminal velocity in the
case n = 1 (we used the relation tk = ερ/K obtained from equation
63). Using equation (93) to expand the evolution equations to the
first order in tdk/τ , we find

dρ

dt
= −ρ(∇ · v), (97)

dεk

dt
= − 1

ρ
∇ · [ρεk (�vk − ε�v)] , (98)

dv

dt
= (1 − ε) f g +

∑
k

εk f d + f , (99)

du

dt
= − Pg

(1 − ε) ρ
∇ · vg + ε�v · ∇u, (100)

�vk =
[

( f dk − f g) −
∑

l

( f dl − f g)εl

]
tk, (101)

since all the terms of second order arising from quadratic expres-
sions in �vk have being neglected.

2.7 Zeroth-order approximation

In the limit of an infinitely strong drag regime, tbk = 0 to the zeroth
order of approximation in tdk/τ . In this limit, the gas and all the
dust phases are perfectly coupled, i.e. �vk = 0. The equation of
evolutions for the mixture then reduce to

dρ

dt
= −ρ(∇ · v), (102)

dεk

dt
= 0, (103)

dv

dt
= (1 − ε) f g +

∑
k

εk f d + f , (104)

du

dt
= − Pg

(1 − ε) ρ
∇ · v. (105)

These equations are similar to the one found in the zeroth order
approximation with a single dust species. Physically, this means
that all the phases evolve coherently as they are stuck together by
the drag, following the centre of mass of the system. In particular,
the dust phases move as one and the system reduces to the case
n = 1. This implies that the mixture can be treated like as a single
gas phase with a corrected sound speed c̃s

c̃s = cs√
1 − ε

, (106)

where cs is the sound speed of the gas phase (Laibe & Price 2012a).

2.8 Continuous dust distributions

2.8.1 Physical quantities

So far, we have assumed a finite number n of dust phases. This dis-
crete description is of practical interest for numerical simulations,
for which continuous dust distributions have to be sampled over a
finite number of dust phases. For analytic studies, however, it may
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Dust and gas mixtures with one fluid 1947

be practical to directly use the evolution equations for a continu-
ous dust distribution. Hence, we can describe a dust distribution
depending on a single continuous parameter, the grain size s (i.e.
all the grains of the same size are treated as belonging to the same
continuous dust phase). Here n(s), m(s) and vd(s) denote the number
density of grains per unit size, the individual mass of a grain and the
velocity of the phase made of grains of size s, respectively [where

m(s) = 4

3
πρs3 for compact spherical grains]. The dust densities

and velocities are then defined according to

ρd ≡
∫

n(s)m(s)ds, (107)

vd ≡ 1

ρd

∫
n(s)m(s)vd(s)ds. (108)

Thus, the definition of the mixture’s density, ρ = ρg + ρd, holds.
An important quantity is the dust fraction per unit size s, defined
as

ε̃(s) ≡ n(s)m(s)

ρ
, (109)

which satisfies

ε =
∫

ε̃(s)ds = ρd

ρ
. (110)

The relation given by equation (110) also ensures that ρg = ρ(1 − ε)
and v = (1 − ε) vg + εvd. Using �v(s) ≡ vd(s) − vg to denote the
differential velocity between grains of size s and the gas, one has∫

ε̃(s)�v(s)ds = ε�v, (111)

where the generalized differential velocity for continuous dust dis-
tributions is still defined as

�v ≡ vd − vg. (112)

This implies that the gas and dust velocities can be expressed in
terms of the one-fluid quantities as

vg = v − ε�v, (113)

vd = v + �v(s) − ε�v. (114)

Equations (113) and (114) are the continuous versions of equations
(17) and (18). Finally, the total energy of the mixture becomes:

e = 1

2
ρv2 + 1

2
ρ

[∫
ε̃(s)�v(s)2ds − (ε�v)2

]
+ (1 − ε) ρu.

(115)

2.8.2 Evolution equations

The generalization of equations (25)–(29) to continuous dust distri-
butions results in the following equations of evolution

dρ

dt
= −ρ(∇ · v), (116)

dε̃(s)

dt
= − 1

ρ
∇ · [ρε̃(s) (�v(s) − ε�v)] , (117)

dv

dt
= (1 − ε) f g +

∫
ε̃(s) f d(s)ds + f

− 1

ρ
∇ ·
[
ρ

∫
ε̃(s)�v(s) (�v(s) − ε�v) ds

]
, (118)

d�v(s)

dt
= −�v(s)

ts(s)
−
∫

ε̃(s ′)
(1 − ε)

�v(s ′)
ts(s ′)

ds ′

+ ( f d(s) − f g) − (�v(s) · ∇)v

+ 1

2
∇ [�v(s) · (�v(s) − 2ε�v)] , (119)

du

dt
= − Pg

(1 − ε) ρ
∇ · vg + ε�v.∇u +

∫
�v(s)2ε̃(s)

ts(s) (1 − ε)
ds, (120)

where ts(s) denotes the continuous stopping time. This is defined
by

ts(s) = dρd

ds
(s) = m(s)

K1(s)
, (121)

where K1(s) is the drag coefficient of a single grain (and therefore
has different dimensions to K; see Laibe & Price 2012a). For a dust
distribution characterized by single dust grain size s0,

n(s) = ρ

m (s0)
δ (s − s0) , (122)

and

K =
∫

K1 (s) sds = ρK1 (s0)

m (s0)
. (123)

Equations (116)–(120) can also be written in a conservative form,
generalizing the equations derived in Section 2.3.

2.8.3 Strong drag regimes

In the limit where all the continuous dust distribution satisfies the
limit of a strong drag regime, equation (119) converges to the
terminal velocity approximation

�vk

ts(s)
+
∫

ε̃(s ′)
(1 − ε)

�v(s ′)
ts(s ′)

= ( f d(s) − f g). (124)

We derive the analytic solution of equation (124) as

�v(s) =
(

( f d(s) − f g) −
∫

( f d(s ′) − f g)ε̃(s ′)ds ′
)

ts(s),

(125)

which becomes

�v(s) = − f g (1 − ε) ts(s), (126)

if f d(s) = 0 [a direct substitution of equation (125) in equation
(124) proves the result]. Equation (124) is the continuous version
of equation (93). In the limit of infinitely strong drag regimes,
ts(s) → 0 and �v(s) = 0 (zeroth order approximation).

3 A PPLI CATI ONS

3.1 DUSTYBOX

The DUSTYBOX problem consists of gas and dust moving in opposite
directions in a homogeneous, isothermal mixture, considering only
the mutual drag acting between the phases. The different phases
have constant uniform densities (implying ρg = ρg0 and ρdk = ρdk0,
or equivalently ρ = ρ0 and εk = εk0). The initial differential veloci-
ties of the mixture as well as the gas pressure P are uniform. Analytic
solutions of the DUSTYBOX problem for different drag regimes, either
linear or non-linear, are given in Laibe & Price (2011). Since the
only forces relevant for this problem are the drag forces, the total
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1948 G. Laibe and D. J. Price

Figure 1. Evolution of gas and dust velocities towards the barycentric value in a gas plus two dust phase mixture moving in opposing directions, showing the
fast (thick solid lines) and the slow (thin dashed lines) eigenmodes in a linear drag regime. Black, red and blue colours represent the gas, first and second dust
phases, respectively. The parameters of the mixture are ρ = 1, ε = 0.5 and φ1 = 0.5, t1 = 2, t2 = 0.2 (left panel), φ1 = 0.1, t1 = 0.2, t2 = 1 (right panel).
Depending on the choice of parameters, the different phases evolve simultaneously or in opposition.

linear momentum of the system is only exchanged between the dif-
ferent phases, resulting in a constant barycentric velocity (v = v0).
As the DUSTYBOX problem does not involve any velocity gradient,
the only relevant evolution equation is the one involving differential
velocities of the mixture, which reduces to

d�V
dt

= ∂�V
∂t

= −�n�V , (127)

where �V is the differential velocity vector introduced in Section
2.4.2. For the case of a linear drag regime, �n has constant coeffi-
cients and the exact solution of equation (127) is

�V = e−�nt�V 0. (128)

Hence, the differential velocities �V are progressively damped over
the n successive drag time-scales characterizing the mixture.

3.1.1 Results with gas and two dust phases

We can use the two-dust phase model described in Section 2.5 to
illustrate the physics of the DUSTYBOX problem with multiple dust
species. We set ρ = 1, ε = 0.5 (so that the total mass of gas and
dust is identical), φ1 = 0.5 (the dust mass is identical in both dust
phase), t1 = 2 and t2 = 0.2 (the drag is the strongest for the second
phase; in practice, this would correspond to smaller grains). The
eigenvalues λ± of the matrix �2 are given by equation (87). Our set
of parameters gives Q 	 0.3.

We first check that the lower and upper bounds provided by
equation (77) are relevant. We find

0.606 < λ− 	 0.659 < λ+ = 7.591 < 7.750, (129)

showing that equation (77) gives quite accurate limits for the eigen-
values of the drag matrix (we obtain similar accuracies with dif-
ferent parameters). The two drag time-scales are t1 = λ−1

2+ 	 0.132
and t1 = λ−1

2+ 	 1.518. Those values differ by less than 10 per cent
from the individual stopping times ts1 and ts2.

The left panel of Fig. 1 shows the velocities of the gas and the dust
phases as a function of time, corresponding to the two eigenmodes
of the matrix �2. The first, fast eigenmode is the one for which the
differential velocities between species is more efficiently damped.
The gas velocity is in the opposite direction to both the first and the
second dust species. The damping is optimal since the initial kinetic
energy is mostly concentrated in the second phase, which is the most

efficiently coupled to the gas. In the second, slow eigenmode the gas
and the dust species move in the opposite direction from the first dust
phase, which is also the least efficiently coupled. The differential
kinetic energy between the phases is thus dissipated inefficiently.
The right panel of Fig. 1 shows that a similar behaviour is found for
t1 = 0.2, t2 = 1 and φ1 = 0.1. However, in that case the phases are
coupled differently since the dust phase with the highest density is
now the most poorly coupled.

3.1.2 Quadratic versus linear drag and non-monotonic behaviour

Fig. 2 compares linear and quadratic drag operators (for the
quadratic case we have integrated the evolution equations numeri-
cally). The velocities of the phases were initially vg, 0 = 1, vd1, 0 = 2
and vd2, 0 = −0.5, and can be seen to relax towards the barycentric
velocity of the system, v = v0 = 1.25. As in the n = 1 case, the
nature of the evolution is mostly independent of the drag regime.
This implies that iterative numerical procedures to solve the dissipa-
tive part of the equations will work with both linear and non-linear

Figure 2. Comparison between the velocities obtained for the DUSTYBOX

problems with the linear (thick solid lines) and the quadratic (thin dashed
lines) drag regime in a two dust phase mixture. Parameters are similar to
the ones used in Fig. 1, with vg, 0 = 1, vd1, 0 = 2 and vd2, 0 = −0.5. Black,
red and blue colours represent the gas, the first and the second dust phases,
respectively. The mixture’s evolution is essentially identical in both cases,
with the velocities converging towards the barycentric velocity v = 1.25 of
the system (black thick dashed line). The gas velocity is not monotonic.
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drag regimes (as discussed above, the similar symmetric form Wn

of �n provides the most robust structure to approximate the solution
of the problem with iterative methods).

The evolution in Fig. 2 occurs in two stages: During the first stage
the gas and the second dust phase quickly stick together and form a
sub-mixture composed of the gas and one dust phase. This happens
in a typical time of order t1, since the second phase possesses the
highest drag coefficient and the smallest mass. In the second stage,
which develops over a typical time t2, this sub-mixture feels the drag
from the first dust phase, as it possesses a smaller drag coefficient
and a larger density. The differential velocity between the first dust
phase and the sub-mixture is then damped on a longer time-scale and
all the velocities of the mixture’s phases converge to the barycentric
velocity of the system. This example illustrates a physical property
specific to multiple dust phase mixtures (i.e. n > 1): the evolution
of the different velocities is not necessarily monotonic (which was
the case for n = 1). In particular the gas velocity decreases and then
increases under the successive actions of the second and the first
dust species, respectively (see black lines in Fig. 2).

We have also solved the DUSTYBOX problem for the n = 3 case,
finding results similar to those discussed above.

3.2 DUSTYWAVE

3.2.1 General case

The DUSTYWAVE problem consists of the propagation of a linear
acoustic wave in a dust and gas mixture, with the different phases
interacting via linear drag terms. The analytic solution for the DUSTY-
WAVE problem in the special case n = 1 is provided in Laibe & Price
(2011). Here, we generalize the problem for an arbitrary number
of dust phases. Linearizing the evolution equations for the mixture
around the equilibrium solution ρ = ρ0, ε = ε0, v = �v = 0 gives

∂δρ

∂t
= −ρ0

∂δv

∂x
, (130)

ρ0
∂δv

∂t
= −c2

s

[
(1 − ε0)

∂δρ

∂x
− ρ0

∂δε

∂x

]
, (131)

ρ
∂δεk

∂t
= − ∂

∂x

(
ρ0εk0

[
−δ�vk −

∑
l

εl0δ�vl

])
, (132)

∂δ�vk

∂t
= − δ�vk

tk0
−
∑

l

εl0

(1 − ε0) tl0
δ�vl

+ c2
s

(1 − ε0) ρ0

[
(1 − ε0)

∂δρ

∂x
− ρ0

∂δε

∂x

]
, (133)

where an isothermal equation of state δP = cs2[(1 − ε0)δρ − ρ0δε]
and the relation δε = ∑kδεk have been used. To first order, the
individual fluctuations of the dust fractions δεk are not involved in
equations (130)–(133) and only the terms in δε coming from the
gas pressure are relevant. The dispersion relation related to those
2n + 2 equations is a polynomial of order 2n + 1 in ω and cannot
be factored easily.

We illustrate the physics of the DUSTYWAVE problem with multiple
dust species with the two dust phase mixture model described in
Section 2.5. We assumed perturbations of the form δA = δÃ (t) eikx

in equations (130)–(133), and solved the resulting system of ordi-
nary differential equations numerically. Absolute values of the re-
sulting complex amplitudes may then be plotted and compared to

those in a mixture with a single dust phase. Fig. 3 shows the evo-
lution of the real amplitudes of the perturbations in the case n = 1
(cs = 1, ρ0 = 2, ε0 = 0.5, t1 = 2, k = 2π in code units) and n = 2
(φ1 = 0.8, t2 = 0.2). These parameters are identical to those used in
the DUSTYBOX problem in Section 3.1. Initially, δvg = δvd1 = δvd1

and δρg = δρd1 = δρd1 = 0.
We find that the evolution of the perturbations in the n = 2 case

is similar to the n = 1 case. After a transient regime during which
the drag terms damp the differential velocities between the dust
and the gas phases, the mixture stays at rest. The entire kinetic
energy of the mixture has been progressively damped by the drag,
since the gas pressure maintains a non-zero differential velocity
between the gas and the dust phases by propagating a perturbation
at the gas sound speed cs. After several drag times, periodic density
fluctuations remain in the dust phases as remnants of the sound
waves dissipated by the gas drag. The asymptotic values obtained
for δρ and δε balance each other to give δρg = 0, since the energy
powering the acoustic wave is entirely dissipated. We have also
studied the n = 3 case, and found similar results.

3.2.2 Terminal velocity approximation

The limiting behaviour of the DUSTYWAVE problem in a drag-
dominated regime is given in Laibe & Price (2012a) for the case
n = 1. For any number of dust phases, an analytic solution can
be derived using the generalized terminal velocity approximation
given in Section 2.6. Substituting equation (94) into the evolution
equations gives

dρ

dt
= −ρ

∂v

∂x
, (134)

ρ
dv

dt
= −∂P

∂x
, (135)

ρ
dεk

dt
= − ∂

∂x

(
εk

∂P

∂x

[
tk −

∑
l

εl tl

])
. (136)

A linear expansion of equations (134)–(136) gives

∂δρ

∂t
= −ρ0

∂δv

∂x
, (137)

ρ0
∂δv

∂t
= −cs2 ∂

∂x
((1 − ε0) δρ − ρ0δε) , (138)

ρ0
∂δεk

∂t
= −cs2εk0

[
tk0−

∑
l

εl0tl0

]
∂2

∂x2
(−ε0δρ+ρ0δε) , (139)

and after summing over the indices k in the n equations of equation
(139), we obtain

ρ0
∂ε

∂t
= −c2

s ε0ts,eff
∂2

∂x2
(−ε0δρ + ρ0δε) , (140)

where ts,eff denotes the effective stopping time of the mixture which
is given by:

ts,eff = (1 − ε0)

ε0

∑
k

εk0tk0. (141)

In the case of a single dust species, equation (141) reduces to
ts, eff = ε(1 − ε)tb = ts, the usual stopping time.
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Figure 3. Comparison of the evolution of the amplitude of the perturbations in the DUSTYWAVE problem with one (black) and two (red) dust phases. For the δε

and the δ�v panels, dashed and dotted lines represent perturbations related to the first and the second dust phases, respectively. The parameters used for the
background equilibrium are cs = 1, ρ0 = 2, ε0 = 0.5, t1 = 2, k = 2π and φ1 = 0.8, t2 = 0.2. No major differences are found between the two cases – with the
evolution of each perturbation being similar. The amplitudes of the perturbations have been renormalized to the initial velocities of the phases.

Remarkably, the system formed by equations (137)–(138) and
(140) is equivalent to the system found for the case n = 1, simply
with ts replaced by ts, eff (Laibe & Price 2014a). We deduce from
this analogy, by extrapolating the result from the analytic solution
derived in Laibe & Price (2012a) for n = 1, that monochromatic
plane waves solutions of the DUSTYWAVE problem therefore satisfy
the dispersion relation

ω2 = k2c2
s [(1 − ε0) − iωε0ts,eff ]. (142)

3.2.3 Resolution criterion at high drag

Importantly, as shown in Laibe & Price (2012a) for the case n = 1,
equation (142) sets the spatial resolution criterion required when
simulating strong drag regimes in a dust and gas mixture with a
multiple fluid algorithm. For an arbitrary number of dust species,
this criterion can be generalized to give

� � csts,eff, (143)

where � is the resolution length of the simulation (� 	 h, the
smoothing length, in SPH simulations). However, if the evolution
of the gas and the dust phases is computed with a numerical method
based on the one-fluid formalism, this spatial criterion resolution
is irrelevant, since the mixture’s differential velocities are intrinsic
quantities that are advected with the fluid (Laibe & Price 2012a,

2014a,b) rather than representing a physical separation of resolution
elements.

3.2.4 Drag time-scales with continuous dust distributions

For continuous dust distributions, the same reasoning can be per-
formed, leading to

ts,eff = (1 − ε0)

ε0

∫
ε̃(s)ts(s)ds. (144)

Equation (144) shows that if the density of dust fraction ε̃(s) and
the drag time-scales of small grains go like ε̃ ∝ sa and ts ∝ sb, the
numerical value of ts, eff will be dominated by the large or small
grains depending on whether the quantity a + b + 1 takes positive
or negative values, respectively. As an example, consider spher-
ical compact grains with a size distribution typical of the ISM,
n(s) ∝ s−3.5, a = −0.5 and grains submitted to the Epstein drag
regime, for which b = 1. In this case we have a + b + 1 = 1.5. This
tends to indicate that within the dust population which satisfies the
terminal velocity approximation, the contribution from large grains
dominates over the integral summation in equation (144). This im-
plies that the spatial resolution criterion would be less stringent
than if the integral were dominated by the contribution of the small
grains. However, the caveat of this simple reasoning is that n(s) is
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Dust and gas mixtures with one fluid 1951

not a free parameter of the problem, since it should evolve according
to equation (26) (as well as grain growth, which is neglected here).

Replacing ts by ts, eff is not a suitable recipe for every physical
problem. In the DUSTYWAVE problem, this result arises because: (1)
the problem is linearized, (2) we are in the limit of strong drag, and
(3) the pressure gradient at equilibrium is zero, implying that the
perturbations in the dust fractions play a role via δε only, and not
via the individual values of δεk. This last point allows one to sum
over the indices k in order to reduce the problem to the propagation
of an acoustic wave in a mixture with a single dust phase.

3.3 DUSTYSHOCK

The DUSTYSHOCK problem consists of the propagation of a 1D shock
in a dust and gas mixture. As shown in Miura & Glass (1982) and
Laibe & Price (2012a,b), the shock evolution is divided into two
phases. First, the differential velocities between the gas and the dust
are damped. In the case of a mixture with multiple dust phases, this
transient regime occurs during the n physical drag time-scales of
the problem, which are the inverses of the eigenvalues of the drag
matrix �n. Then, the mixture reaches a stationary regime, where the
shock propagates as in a pure gas phase, but at the modified sound
speed c̃s given by equation (106). c̃s is the same modified sound
speed as for the case n = 1. Indeed, c̃s is related to the behaviour
of the mixture in the limiting regime of an infinite drag, which does
not depend on the number of dust phases (see Section 2.7).

In the limiting case of strong drag regimes, similar resolution
issues arise for the DUSTYSHOCK problem as for DUSTYWAVE problem
when treating the system with a multiple fluid formalism (Laibe
& Price 2012a). This issue can be fixed by using the single-fluid
formalism developed in this paper, exactly as in the one dust species
case (Laibe & Price 2014a,b). In the case of a multiple dust pop-
ulation, using the one-fluid formalism is even more valuable since
it avoids the need for high resolution everywhere merely because a
small fraction of strongly coupled dust grains are present.

3.4 Radial migration in discs

3.4.1 Analytic solution

The radial-drift of single-sized dust grains in protoplanetary discs
is a well-studied problem (e.g. Weidenschilling 1977; Nakagawa,
Sekiya & Hayashi 1986; Youdin & Shu 2002; Laibe, Gonzalez
& Maddison 2012, 2014b; Laibe 2014). In a two-dimensional
(x, y) shearing box rotating at an angular velocity � (Goldreich
& Lynden-Bell 1965), the analytic solution for the problem reads:

vx = 0, (145)

vy = −3

2
�x + 1

2ρ0�
∂rP , (146)

�vx = ∂rP

ρ0 (1 − ε0)

ts(
1 + �2t2

s

) , (147)

�vy = − ∂rP

ρ0 (1 − ε0)

�t2
s

2
(
1 + �2t2

s

) , (148)

where the large-scale pressure gradient ∂rP is a constant over the
size of the box. This large-scale pressure gradient enforces a dif-
ferential velocity between the gas and the dust which is damped
by the drag. As a result, angular momentum is transferred from the
dust (which therefore migrates inwards) to the gas (which migrates
outwards). Youdin & Shu (2002), Laibe et al. (2012), Pinte & Laibe

(2014) have shown that grains can pile-up as they reach the inner
regions of the disc provided that the drag intensity increases enough
to balance the increased migration efficiency from the increasing
radial pressure gradient. This result has been extended to the case
of growing grains (Laibe et al. 2014b; Laibe 2014; Pinte & Laibe
2014), showing that a significant fraction of the classical T-Tauri
Star discs should retain their particles during the initial stages of
planet formation.

The analytic solution for the problem of the radial evolution of
a multiple grain sizes distribution is derived in appendix of Bai &
Stone (2010). We show here how to rederive it from the one-fluid
formalism. We first note that

f = 3�2xux, (149)

f g = − ∂rP

ρ0 (1 − ε0)
ux − 2� × vg, (150)

f dk = −2� × vdk, (151)

so that

ρg f g +∑k ρdk f dk

ρ
= −∂rP

ρ0
ux − 2� × v, (152)

f dk − f g = ∂rP

ρ0 (1 − ε0)
− 2� × �vk, (153)

where f is the usual expression for the balance between the gravity
from the central star and the centrifugal force in a Keplerian po-
tential. Importantly, the forces specific to each species contain the
Coriolis terms, since they depend on the intrinsic velocity of each
phase. We now look for stationary solutions consisting of a homo-
geneous perturbation superimposed on a constant shear (equations
25 and 26 imply ρ = ρ0 and εk = εk0). The scalar equations in vx,
vy are therefore

−2�vy + vx

∂vx

∂x
+ vy

∂vx

∂y
= 3�2x − ∂rP

ρ0
, (154)

2�vy + vx

∂vy

∂x
+ vy

∂vy

∂y
= 0, (155)

whose solution is identical to the single dust species case and is
given by equations (145) and (146). Writing the 2n equations for
the quantities �vkx, �vky in a matrix form, we have(

�n −2�In
1
2 �In �n

)
�Ṽ = ∂rP

ρ0 (1 − ε0)

(
1n,1

0n,1

)
, (156)

where �Ṽi = �vix if i ≤ n, �Ṽi = �viy if i > n and 1n, 1 is the
column vector of dimension n containing only the value unity
(and similarly 0n, 1 contains zeros). Since �n is positive defi-
nite, det

(
�2

n + �2In
)

> 0 and the matrix is invertible. Using the
identity

�n

(
�2

n + �2In
)−1 = (�2

n + �2In
)−1

�n, (157)

equation (156) can be inverted by blocks, giving the solutions for
the quantities �vkx and �vky as

(
�vkx

�vky

)
= ∂rP

ρ0 (1 − ε0)

⎛
⎜⎜⎜⎝
∑

j

[
�n

(
�2

n + �2In
)−1
]

kj

−�

2

∑
j

(
�2

n + �2In
)−1

kj

⎞
⎟⎟⎟⎠. (158)

It is straightforward to see that in the case of a single dust species,
equation (158) reduces to equations (147) and (148). We have not,
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1952 G. Laibe and D. J. Price

however, been able to invert the matrix �2
n + �2In of equation (158)

analytically in an elegant way. �2
n + �2In is, however, similar to a

positive definite matrix and can easily be inverted numerically.

3.4.2 Migration with two dust species

Valuable physical insight into the evolution of the system can be
obtained by using the two-dust-phase population model described
in Section 2.5. When stationary equilibrium is reached, the radial
velocities for the gas and the two dust species are:⎛
⎜⎝

vgx

vd1x

vd2x

⎞
⎟⎠ = ∂rP

ρ0 (1 − ε)

⎛
⎜⎝

tgx

td1x

td2x

⎞
⎟⎠ (159)

where

tgx = ε (1 − ε)
[
φ1t1 + (1 − φ1) t2 + �2φ1t1t

2
2 + �2 (1 − φ1) t2t

2
1

]
D (�, ε, φ1, t1, t2)

,

(160)

td1x = − (1 − ε)
[(

1 + �2t2
2

)
t1−ε

(
φ1 + �2t2

2

)
t1 − ε (1 − φ1) t2

]
D (�, ε, φ1, t1, t2)

,

(161)

td2x = − (1 − ε)
[(

1 + �2t2
1

)
t2 − ε

(
(1 − φ1) + �2t2

1

)
t2 − εφ1t1

]
D (�, ε, φ1, t1, t2)

.

(162)

and

D (�, ε, φ1, t1, t2) = 1 + �2
[
(1 − εφ1)2 t2

1 + 2ε2φ1 (1 − φ1) t1t2

+ (1 − ε (1 − φ1))2 t2
2

]+ (1 − ε)2 �4t2
1 t2

2 .

(163)

As expected, equations (160)–(163) are symmetric with respect to
the transformation (t1 → t2), (φ1 → 1 − φ1). When the two dust
populations degenerate (t1 = t2, identical dust grains), equations
(160)–(163) reduce to

tgx = ε (1 − ε) t1

1 + �2 (1 − ε)2 t2
1

, (164)

tdx = − (1 − ε)2 t1

1 + �2 (1 − ε)2 t2
1

, (165)

which are the expressions obtained in the original derivation of
Nakagawa et al. (1986) in the case n = 1 [usually, the factor (1 − ε)t1

is replaced by the stopping time ts]. Dust loses angular momentum
to the gas, implying that dust grains migrate inwards and the gas
migrates outwards. Enforcing ε = 0 directly in equations (160)–
(163) provides the usual expression of migration for individual
isolated grains.

3.4.3 Outward migration of dust particles

Behaviours specific to multiple dust distributions are observed when
the relative composition between the dust species is varied. In partic-
ular, an interesting limit consists of a situation where one of the two
phases is infinitely diluted. As an example, we shall focus hereafter
on the case φ1 → 0, since the two dust populations are symmetric.

Figure 4. The orange, purple, blue and red curves give the values of the
function gε (T1, T2) for increasing values of the dust fraction, i.e. ε = 0.01,
0.1, 0.25 and 0.5, respectively. Below those curves, the grains of the first
dust phase migrate outwards in the individual grains limit (φ1 = 0). This
process can happen only if the grains of the other species are larger, since
the curves are below the line T1 = T2 (black dashed line). The maximum
possible size for outwardly migrating grains (given by the maximum of the
curves gε ) is an increasing function of the dust fraction ε.

In this case, the inertia of the first dust phase is rigorously zero
and grains behave like isolated individual particles. Thus, equation
(161) reduces to

vd1x = − (1 − ε)
[
t1 − εt2 + (1 − ε) �2t1t

2
2

]
(
1 + �2t2

1

) (
1 + (1 − ε)2 �2t2

2

) . (166)

As shown by equation (166), vd1x depends not only on t1, but also
on t2 since the gas is dragged by the second dust species. The sign
of vd1x is given by the sign of the function fε defined by

fε (T1, T2) = T1 − εT2 + (1 − ε) T1T
2

2 , (167)

where T1 and T2 are the individual Stokes numbers of each species,
defined by t1� = T1 and t2� = T2.

Fig. 4 summarizes the detailed study of the function fε . The
important result is that for a range of values of (T1, T2) which
depends on the dust fraction ε, fε < 0, implying that the grains are
migrating outwards. Since this result is obtained at the limit φ1 →
0, it implies that there is a continuous range for increasing values
of φ1 for which this result holds. Bai & Stone (2010) observed this
outwards migration for small grains as a result of their multiple
grain size simulations. From equation (167), outward migration
occurs when

T1 < gε (T1, T2) = εT2

1 + (1 − ε) T 2
2

. (168)

A necessary condition for this condition to be satisfied is (see
Fig. 4):

T1 < gε (T1, T2) < εT2 < T2. (169)

As a consequence, outward migration occurs only in the dust pop-
ulation with the smallest grain size, i.e. the one with the smallest
value of tk, which is the most efficiently dragged. Physically, the gas
migrates outwards as an effect of the backreaction from the inward
migration of the dense phase of large grains. Then, small dust grains
efficiently couple to the gas and migrate outwards, rather than mi-
grating inwards as if it would be expected if they were the only dust
population in the mixture.
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Figure 5. Renormalized migration velocities as a function of the relative dust fraction φ1 in a two-dust-phase mixture. Positive velocities indicate outward
migration. The left panel represents a typical initial situation for a protoplanetary disc. The parameters are set to ρ0 = 1, ε0 = 0.01, � = 1 and individual drag
time-scales t1 = 10−3, t2 = 10−2. The right panel mimics a situation where grains have grown and have concentrated due to settling (ε0 = 0.01, t1 = 0.1, t2 = 1).
The gas, the first (smaller grains) and the second (larger grains) dust phases are represented by black dashed, red dotted and red dashed lines, respectively. As
an indication, thin (thick) solid lines represent the gas and the dust velocities in a mixture made of the second (first) dust species only, i.e. φ1 = 0 (φ1 = 1).
In the first configuration (left panel), grains are migrating inwards, in accordance with the single dust population case. Only a negligible dependence on the
relative dust fraction is observed. In the second configuration (right panel), the smaller grains show outward migration when the relative dust fraction is �0.6,
with the velocity being of order the optimal migration velocity for grains in discs.

The largest possible value T1c of outwardly migrating grains
corresponds to the maximum of the function gε . This is an increasing
function of the dust fraction:

T1c = ε

2
√

1 − ε
, (170)

which is reached at T2c = (1 − ε)−1/2. Thus, at small values of ε

(i.e. ε � 1), only very small grains can migrate outwards. However,
when the dust-to-gas ratio becomes of order unity (ε 	 0.5), T1c

becomes of order unity. Therefore, grains of intermediate size (i.e.
having a Stokes number of order unity) can migrate outwards. In
theory, very large values of T1c can be reached in the limit ε → 1,
but those regimes are not relevant for planet formation.

Fig. 5 compares the renormalized gas and dust velocities obtained
for a single- and two-dust-phase mixture as a function of the relative
dust fraction φ1. Radial velocities are positive when the migration
is outwards. The parameters of the mixture are ρ0 = 1, ε0 = 0.01,
� = 1 and t1 = 10−3, t2 = 10−2 (left panel) or ε0 = 0.5, t1 = 0.1,
t2 = 1 (right panel). Those two sets of parameters are chosen to
mimic a typical dust distribution in a protoplanetary disc before and
after the growth and settling stage. In the first case, when the dust
fraction is still small enough and the grains are small, each grain
phase behaves almost as in the single grain case: particles migrate
inwards with velocities that are almost identical to the ones found
in the case n = 1. Corrections due to the change of relative dust
composition are essentially negligible. More interesting is the case
which mimics a stage where dust grains have grown and are highly
concentrated in the disc mid-plane. The presence of grains with
Stokes number of order unity and dust-to-gas ratios of order unity
(i.e. ε 	 0.5) is expected (e.g. Barrière-Fouchet et al. 2005; Zsom
et al. 2011). In such a situation, the right panel of Fig. 5 shows that
outward dust migration occurs in this system. When larger grains
(t1 = 1) dominate over the dust density (φ1 � 0.6), the smaller grains
(t2 = 0.1) migrate outwards. A similar behaviour also occurs for any
smaller grains in the first dust species (t1 < 0.1). Importantly, the
renormalized velocity of the outwardly migrating grains is 	0.1,
which is of the order of the highest velocity which can be reached
for inward migration in the case n = 1, implying that this outwards
drift can be quite efficient.

3.4.4 Consequences for planet formation

As discussed above, the maximum size of dust particles that can
migrate outwards is an increasing function of the dust fraction.
This result is of particular importance for planet formation. Ini-
tially, when dust grains are distributed over the entire disc, the dust
fraction is of the order of ε 	 10−3 to 10−2 and dust grains are
micron-sized (T2 � 1). Thus, outward migration does not hap-
pen since it would only concern a population of non-physical (too
small) grains (T1≪1), whose migration efficiency would be neg-
ligible anyway. Then, grains grow and settle in the disc mid-plane
where they concentrate. If a dust-to-gas ratio of order unity is
reached, the presence of millimetre-sized grains (T2 	 1; e.g. Laibe
et al. 2012) can trigger outward migration of hundredth-of-micron-
sized grains (for which T1 	 0.1) in a classical T Tauri star disc
at 100 au. Such a scenario makes sense for real discs since the
combination of growth and settling is known to provide particles
with such sizes in the disc mid-plane (Laibe et al. 2008; Brauer,
Dullemond & Henning 2008; Laibe et al. 2014a). Moreover, the
Stokes number is a decreasing function of the disc radius since it
scales like the disc surface density (e.g. Laibe 2014). Therefore,
on a global radial scale, outward migration of particles for which
St 	 1 brings grains to the outer regions of the disc, where their
new Stokes number is larger than unity. This process therefore
helps the particles to decouple from the gas and grow at this new
location.

Outward migration of dust particles may explain the presence of
large grains observed in the outer regions of protoplanetary discs
(Ricci et al. 2012). When grains are initially growing, most of the
dust mass is concentrated in the largest particles (Blum & Wurm
2008; Windmark et al. 2012; Garaud et al. 2013). This implies
φ1 < 0.5 and would support the outward migration mechanism
detailed above. However, this scenario would depend on the grain
growth efficiency, which determines whether the density of the dust
distribution is mostly concentrated into the small or the large grains.

All of this serves to reinforce Bai & Stone (2010)’s remark that
multiple dust phases should not be studied by treating the dust
phases as if they were independently coupled to the gas. The outward
migration of large grains found above would not be captured by such
a procedure.
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1954 G. Laibe and D. J. Price

3.4.5 A comment on the expression of the drag coefficients

In a mixture with a single dust species (n = 1) it is convenient
to denote the drag coefficient by the constant K. However, gener-
alizing this approach for multiple dust population using constant
coefficients K1, K2, . . . , Kn, instead of using the expression given
by equation (62), would lead to incorrect results in the problem
of the migration of multiple dust populations. Indeed, in the limit
φ1 → 0 in the two-dust-species migration model studied above,
the drag time-scale K1/(εφ1) of the first dust species would tend to
infinity instead of taking the finite value t1, making the dust velocity
incorrectly converge to the gas velocity. Hence, despite our earlier
practice, we recommend use of the quantities tk rather than the drag
coefficients.

3.5 Linear growth of the streaming instability

The streaming instability in dusty protoplanetary discs was discov-
ered by Youdin & Goodman (2005). It has since been studied in a
number of papers (e.g. Youdin & Johansen 2007; Johansen et al.
2007; Jacquet et al. 2011) since it provides a mechanism to con-
centrate dust particles during the early stages of planet formation.
Youdin & Goodman (2005) showed that the stationary solution de-
rived in Section 3.4 is unstable with respect to a linear perturbation
that develops in the radial and the vertical direction simultaneously.
The energy required for the amplification of the perturbation is pro-
vided by the background differential rotation between the phases.

To perform a similar linear stability analysis in a multiple dust
phase system, perturbations of the form δ A = δ A0e

i(kxx+kzz−ωt) may
be superimposed on the stationary solutions of the evolution equa-
tions for the mixture derived in Section 3.4. The resulting linear
system obtained is tediously long and of limited interest, and will
not be reproduced here for clarity. However, two features of this
system of equations are worth highlighting. First, in a multiple
fluid treatment of the gas and dust phases, perturbations of the con-
vective derivatives of physical quantities give rise to terms of the
form

[−iω + ikxvgx0

]
δA0 (and similar expressions with vdkx0). In

a one-fluid formalism, those are replaced by the simpler expression
−iωδ A0, since the stationary solution for the radial barycentric
velocity of the mixture is identically zero. Secondly, in the one-
fluid formalism, �vg0 and �vdk0 are first-order non-zero correc-
tions to the background shear. This generates a large number of
first-order terms originating from the �v contributions on the right-
hand side of the evolution equations. Importantly, perturbations to
the anisotropic pressure terms result in terms of order �v2

0 × δv0

which are of third order with respect to the background shear. This
explains why the streaming instability is difficult to capture accu-
rately in a global simulation of a protoplanetary disc, for which the
background shear cannot be subtracted.

We have again employed the two-phase dust mixture model of
Section 2.5 to gain a physical insight into the linear behaviour of the
system, comparing its evolution to the limiting cases where either
only the first or the second dust species are present in the mixture.
Fig. 6 shows the imaginary part of ω for the unstable modes of
the linear system as a function of the relative dust fraction φ1. The
following parameters are adopted: ρ0 = 4, ε0 = 0.75, t1 = 0.1,
cs = 0.1, η = 0.05 (η being the dimensionless background radial
pressure gradient), kx = kz = 30π/0.005, t2 = 10. If the dust phases
degenerate into the single first dust phase (φ1 = 1), the mixture
reduces to the configuration of the linA mode described in Youdin
& Johansen (2007). Since t2 > t1, the second dust phase adds grains

Figure 6. Growth rate of the unstable eigenmodes for the linear streaming
instability problem in a two-dust-phase mixture as a function of the relative
dust fraction φ1 (red solid lines). In this example, ρ0 = 4, ε0 = 0.75,
t1 = 0.1, cs = 0.1, η = 0.05, x = kz = 30π/0.005 and t2 = 10. The values of
the limiting values in a single-dust-population limit are given by the dashed
black (φ1 = 0) and the solid black lines (φ1 = 1). A small amount of strongly
coupled dust grains can increase the efficiency of the instability by a factor
of 3.

that are individually less strongly coupled to the gas than those of
the first phase.

As expected, the limit φ1 = 0 and φ1 = 1 generates the unstable
mode obtained when only the second and the first dust species are
present in the mixture, respectively. Moreover, if t1 = t2, the only
unstable modes obtained are the ones of the corresponding single
dust phase. In the general case, three unstable modes are found for
the two-dust-species mixture, regardless of the value of φ1. The
values of Im(w) of the unstable modes are monotonic functions
of φ1. In this specific example, having φ1 � 0.75 generates an
unstable mode in the mixture which grows faster (i.e. up to a factor
of 3 in the limit φ1 → 0) than the modes generated by each dust
species individually. Therefore, having a local dust distribution with
multiple grain sizes can enhance the efficiency of planet formation
in protoplanetary discs. Exploring the parameter space, we have not
found a set of parameters that suppresses the streaming instability
in a two-dust-phase mixture. Finally, in contrast to the DUSTYWAVE

problem, an analytic solution for the streaming instability can be
found in the terminal velocity regime only for the case n = 1 (Youdin
& Goodman 2005) since perturbations in δεk do not add up to form
a perturbation in δε in the general case.

4 C O N C L U S I O N

We have derived a generalized formalism describing systems made
of gas and any number of dust species as a single-fluid mixture,
extending the approach developed in Laibe & Price (2014a) towards
realistic simulations of dusty astrophysical systems. This formalism
brings three key advantages compared to a multiple-fluid approach:

(i) It avoids the need for prohibitive spatial and temporal resolu-
tions in order to correctly treat strongly coupled grains.

(ii) It prevents the formation of artificial clumps which arise when
dust particles concentrate below the gas resolution.

(iii) It removes the need to interpolate between different phases
in the numerical solution.

We have derived the equations for the mixture in both Lagrangian
and conservative Eulerian forms, for an arbitrary number of dust
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species as well as for continuous dust distributions, and in the zeroth-
and first-order approximations where the dust fractions are either
constant or evolve according to diffusion equations, respectively.
The main difference with multiple dust phases compared to the
single dust phase mixture studied in Laibe & Price (2014a) is that
the differential velocities are related via a drag matrix. We have
outlined in Section 2.4.4 how these drag terms can be handled
numerically using an implicit integration.

This single-fluid formalism was then applied to both simple prob-
lems (the DUSTYBOX, the DUSTYSHOCK and the DUSTYWAVE problems)
and more complex problems related to planet formation (grains
radial-drift and streaming instability in protoplanetary discs). Where
possible, analytic solutions for an arbitrary number of dust species
have been derived. Where not, a two-dust phase model was used to
highlight the important physical mechanisms involved.

As expected, the physics with multiple dust species is richer than
with a single dust phase only. Several drag time-scales are involved
and the evolutions of physical quantities are not always monotonic.
The global evolution of the mixture results from a balance between
the relative strength of the drag terms and the relative mass in each
dust phase.

The most interesting result concerns dust grains in protoplanetary
discs. We find that after the growth and settling stage which concen-
trate the dust particles, large grains that are located in the outer disc
regions can migrate outwards. This would provide a simple expla-
nation for the observed presence of (sub)millimetre-in-size grains
at several tens if not hundreds of au from their central star.

We also found that the presence of multiple grain sizes can in-
crease the efficiency of the linear growth of the streaming instability.
This would enhance planet formation in protoplanetary discs.

An obvious extension to the present work will be to translate this
theoretical formalism into its SPH equivalent in order to solve the
full non-linear system in three dimensions, generalizing the study
recently performed in Laibe & Price (2014b). Since the structure of
the equations is similar to the single dust phase case, we expect this
to be straightforward.

Finally, the main limitation of the single-fluid formalism at
present is that is does not handle grain–grain interactions (in partic-
ular, grain growth and fragmentation). Addressing this issue is of
tremendous importance but beyond the scope of the present paper.
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APPENDI X A : PRO PERTI ES
O F T H E SP E C T RU M O F �n

To obtain a lower bound for the spectrum of �n (or equivalently
Wn), we first note that W−1

n is real and symmetric since Wn is real
and symmetric. W−1

n thus has positive real eigenvalues which are
the inverse of Wn’s eigenvalues. Thus,

λ−1
min < Tr

(
W−1

n

)
, (A1)

providing our lower bound for �n’s spectrum

λmin >

(∑
k

εk (1 − εk) tbk

)−1

. (A2)

A similar reasoning for the upper bound of �n’s spectrum would
provide the following inequality:

λmax < Tr (�n) =
∑

k

1

tbk

(
1

εk

+ 1

(1 − ε)

)
. (A3)
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However, a better upper bound can be found by splitting the matrix
Wn according to

Wn = D + U′, (A4)

where D is the diagonal matrix defined in equation (66) and U′ is
the rank one matrix

U′
ij =

√
KiKj

ρ (1 − ε)
= u′

iu
′T
i , (A5)

where u′ is the vector defined by

u′
i =
√

Ki. (A6)

U is a symmetric matrix whose unique eigenvalue λU′ is given by
its trace, i.e.

λU =
∑

k t−1
bk

(1 − ε)
. (A7)

Taking now advantage from the fact that the application which
associates a symmetric matrix to its maximum eigenvalue is a norm,
we apply the triangular inequality in equation (A4) and obtain

λmax ≤ max
k

1

εktbk

+
∑

k t−1
bk

(1 − ε)
. (A8)

Equation (A8) improves the upper bound given in equation (A3) by
a factor O(1/n) when the εk are small, which is likely to be the case
in practice. Therefore:(∑

k

εk (1 − εk) tbk

)−1

< λmin ≤ λk ≤ λmax ≤ max
k

(
1

εktbk

)

+ 1

(1 − ε)

∑
k

t−1
bk , (A9)

and using equation (63),(∑
k

(1 − εk) tk

)−1

< λmin ≤ λk ≤ λmax ≤ max
k

(
1

tk

)

+ 1

(1 − ε)

∑
k

εkt
−1
k , (A10)
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