
Polyhedron xxx (2014) xxx–xxx

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository
Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier .com/locate /poly
A novel route for large-scale synthesis of [Au(NHC)(OH)] complexes
http://dx.doi.org/10.1016/j.poly.2014.06.017
0277-5387/� 2014 Published by Elsevier Ltd.

⇑ Corresponding author at: EaStCHEM School of Chemistry, University of St
Andrews, St Andrews, KY16 9ST, UK. Tel.: +44 1334463763; fax: +44 (0) 1334463
808.

E-mail address: snolan@st-andrews.ac.uk (S.P. Nolan).

1 Previous methods required heat in order to achieve full conversio
induced reproducibility problems at large scale (incomplete conversions w
observed on gram scale reactions). When CsOH was used, the gold(I) h
complexes were obtained in lower purity as suggested by their failure
elemental analysis. This is due to the partial solubility of Cs salts (CsOH and
organic solvents.

Please cite this article in press as: F. Nahra et al., Polyhedron (2014), http://dx.doi.org/10.1016/j.poly.2014.06.017
Fady Nahra a, Scott R. Patrick a, Alba Collado a, Steven P. Nolan a,b,⇑
a EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
b Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
a r t i c l e i n f o

Article history:
Received 5 May 2014
Accepted 5 June 2014
Available online xxxx

Keywords:
Gold
Synthesis
NHC
Large scale
Coordination chemistry
a b s t r a c t

A novel route for the large-scale synthesis of [Au(NHC)(OH)] complexes is reported. Using this new
methodology, several [Au(NHC)(OH)] complexes were readily and efficiently accessed on multi-gram
scale (up to 20 g).

� 2014 Published by Elsevier Ltd.
1. Introduction

The use of gold in catalysis has witnessed an explosive growth
over the past decade due to the broad reactivity it enables [1a–j]. In
recent years, transition metal hydroxide complexes have emerged
as simple and versatile reagents that forgo the need for external
bases [1k,l]. Our group has leveraged the strong stabilizing power
of N-heterocyclic carbene (NHC) ligands to isolate a number of
reactive metal-hydroxide species, featuring gold [2], copper [3],
rhodium [4], ruthenium [5], palladium [6] and iridium [7].

We have previously reported the synthesis of the first mononu-
clear NHC-gold hydroxide complex [Au(IPr)(OH)] (2) [IPr = 1,3-
bis(2,6-diisopropylphenyl)imidazol-2-ylidene)] from [Au(IPr)Cl]
(1) [2a]. The development of 2 has allowed access to a wide variety
of novel Au(I) species whilst avoiding the use of inert atmosphere
and additives. Complex 2 is remarkably stable while remaining
highly basic (pKa 30.3 in DMSO) [2a,8]. It has been successfully
employed in the synthesis of gold-acetylene complexes [9], car-
boxylation and decarboxylation reactions [8,10], silver-free gold
catalysis [11] and many other transformations [12].

More recently, we reported a new synthetic method to access a
wide range of [Au(NHC)(OH)] complexes in good yields, starting
from [Au(NHC)Cl] (Scheme 1), without the use of silver salts [13].
However, attempts to perform this reaction on a larger scale led
to irreproducibility issues and/or incomplete conversion.1 For this
reason, alternative synthetic protocols were explored, to access
these valuable synthons in a more reliable and reproducible manner.
2. Results and discussion

[Au(IPr)Cl] (1) was chosen as the model substrate for initial
optimisation principally because of its wide use in catalysis and
the known stability of [Au(IPr)(OH)]. Preliminary results allowed
the identification of a new way to access the desired complex 2.

When 1 was reacted with KOH in the presence of 0.4 equiv. of
tert-amyl alcohol, complete conversion to 2 was observed at room
temperature. Although a low yield of 2 was obtained initially
(Table 1, entry 2), the method proved to be more reliable than its
predecessors. Optimisation of the amount of tert-amyl alcohol
allowed us to obtain higher yields (Table 1, entries 2–4). There is
clearly an effect exerted by the tert-amyl alcohol, thus strongly
suggesting a completely new mechanism for this reaction leading
to 2. It should be noted that tert-butanol could also be used instead
of tert-amyl alcohol (Table 1, entry 5); however, the latter was
chosen for ease of handling. Gratifyingly, replacing potassium
hydroxide with the less hygroscopic sodium hydroxide, which
n, which
ere often
ydroxide
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Table 2
Optimisation of the reaction solvent.

NaOH (6 equiv.)
tAmOH (0.2 equiv.)

Solvent, r.t., 24h
under air

NN

iPr

iPr iPr

iPr

Au
Cl

NN

iPr

iPr iPr

iPr

Au
OH

1 2

Entry Solvent (M) 1/2a Yieldb (%)

1 THF (0.16) 0/100 74
2 THF/toluene (0.16) 58/42 –
3 THF (0.32) 0/100 87

a Ratio determined by 1H NMR.
b Isolated yield.

Table 3
Scope of the reaction.

NaOH (6 equiv.)
tAmOH (0.2 equiv.)

THF, r.t., 24h
under air

NNR1 R1

Au

Cl

NNR1 R1

Au

OH

R2 R2 R2 R2

N N N N

N N

PhPh

Ph

Ph

Ph

Ph

Ph Ph

N N
p-Tolp-Tol

p-Tol

p -Tol

p-Tol

p -Tol

p-Tol p -Tol

N N

Cl Cl

IPr SIPr IPrCl

IPr* IPr*Tol

Entry NHC Yielda (%)

1 IPr 87
2 SIPr 72
3 IPr⁄ 75
4 IPr⁄Tol 83
5 IPrCl 76

a Isolated yield.

Table 1
Screening of reaction conditions.

MOH (x equiv.), additive

THF, r.t., 24h
under air

NN

iPr

iPr iPr

iPr

Au
Cl

NN

iPr

iPr iPr

iPr

Au
OH

1 2

Entry MOHa (equiv.) Additive (equiv.) 1/2b Yieldc (%)

1 KOH (8) – 20/80 –
2 KOH (8) tAmOH (0.4) 0/100 56
3 KOH (8) tAmOH (0.2) 0/100 74
4 KOH (8) tAmOH (0.1) 37/63 –
5 KOH (8) tBuOH (0.2) 0/100 71
6 NaOH (8) tAmOH (0.2) 0/100 72
7 NaOH (6) tAmOH (0.2) 0/100 74

a Hydroxide salts were freshly grinded to fine powder before use.
b Ratio determined by 1H NMR.
c Isolated yield.

N NR1 R1

Au

Cl

N NR1 R1

Au

OH

R2 R2 R2 R2

MOH

Solvent, 30-60 oC, 24 h

M = K, Cs

Scheme 1. Previous methods to prepare [Au(NHC)(OH)].
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was not possible with the previous conditions [2a], also gave good
results (Table 1, entry 6). Furthermore, fewer equivalents of the
hydroxide salt could now be used in this procedure with no detri-
mental effect on conversion (Table 1, entry 7).

Finally, optimisation of the reaction solvent and concentration
allowed us to obtain full conversion to the hydroxide complex 2,
with 87% isolated yield (Table 2). It should be noted that these
optimisation reactions were performed using freshly distilled
THF, under air.2 Furthermore, the workup was also optimised to
obtain the final product in good purity using simple procedures;
the final product was isolated by performing a filtration through Cel-
ite, followed by the addition of water and evaporation of the solvents
under reduced pressure. Further addition of water permitted the
removal of any remaining alcohol by filtration, affording 2 in high
purity.3

This new methodology was extended to other IPr-type com-
plexes and the corresponding [Au(NHC)(OH)] were obtained in
good yields (Table 3). The method tolerates NHC ligands with a
substituted backbone (IPrCl) and high steric bulk (IPr⁄, IPr⁄Tol).
Moreover, a saturated NHC (SIPr) was also tolerated under these
novel reaction conditions. Unfortunately, this new methodology
was unsuccessful when applied to N-alkyl substituted NHCs (e.g.,
ICy, IDD, IAd, ItBu) or smaller NHC ligands (e.g., IMes, SIMes), which
yield highly moisture sensitive [Au(NHC)(OH)] complexes or a
mixture of products.4
2 Anhydrous THF was always used to ensure reproducibility of the procedure and
product purity for large-scale reactions. Reagent grade THF was tested on normal
scale reactions, affording similar results.

3 IPr-based NHC gold(I) chlorides and hydroxides are insoluble in water. Traces of
water were removed under high vacuum.

4 Using N-alkyl substituted NHCs only resulted in decomposition. The use of IMes
and SIMes as ligands did not result in full conversion and a mixture of starting
material and final product was always obtained.
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In order to further establish the robustness of the improved
methodology, we sought to produce the [Au(NHC)(OH)] complexes
on a larger scale (Table 4). Thus, 2 was successfully synthesised on
1, 5 and 20 g scales (Table 4, entries 1–3). Yields increased as the
scale of the reaction was increased. This observation suggested
that yield losses were intrinsically related to mechanical loss and
work-up processes. Extending the large-scale methodology to
other related NHC ligands also proved successful (Table 4, entries
4–7).

As previously mentioned, the new conditions dictate a different
pathway from previous methodologies. A possible mechanism for
this reaction is depicted in Scheme 2, in which the tert-amyl alco-
hol first reacts with NaOH to generate the alkoxide species [14].
Although the equilibrium position surely lies towards the hydrox-
ide, the (small) amount of the alkoxide would react rapidly with
[Au(NHC)Cl]. The intermediate thus formed, [Au(NHC)(OtAm)],
reacts quickly with water in the reaction mixture to form the
[Au(NHC)(OH)] complex, and thus regenerating the tert-amyl
alcohol. To support the proposed mechanism, we isolated and
.doi.org/10.1016/j.poly.2014.06.017
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Table 4
Larger-scale reactions.

NaOH (7 equiv.)
tAmOH (0.2 equiv.)

THF, r.t., 24h
under air

NNR1 R1

Au
Cl

NNR1 R1

Au
OH

R2 R2 R2 R2

Entry NHC Scale (g) Yielda (%) Yielda (g)

1 IPr 1 95 0.9
2 IPr 5 97 4.7
3 IPr 20 99 19.2
4 SIPr 1 90 0.9
5 IPr⁄ 1 91 0.9
6 IPrCl 1 70 0.7
7 IPr⁄Tol 0.59 70 0.4

a Isolated yield.
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characterised [Au(IPr)(OtAm)] (3) starting from 1. Excess water (7
equiv.) was added to 3, and as expected full conversion to 2
occurred rapidly. Complex 3 is highly unstable in solution, and will
react quickly with residual water to afford mixtures of alkoxide
and hydroxide complexes.
tAmOH
NaO

H2O

[Au(NHC

H2O

[Au(NHC)(OH)]

tAmOK (1.3 equiv.)

C6H6, r.t.
91%

NN

iPr

iPr iPr

iPr

Au

Cl

iPr

iP

1

Scheme 2. Proposed mechanism

NN+

iPr

iPr iPr

iPr

Cl-

1) [Au(DMS)Cl], KOtBu
2) KOtBu (3 equiv.) in to
3) Filtration, then H2O, 3

under air

Yield = 95IPr.HCl

Scheme 3. One-pot procedure fro
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Finally, it was postulated that the ability of 3 to readily afford 2
could be exploited in a one-pot procedure starting from the NHC
salt. When [Au(IPr)Cl] (1) was generated in situ from IPr.HCl and
[Au(SMe2)Cl] [15], then reacted with potassium tert-butoxide
followed by filtration and water addition, 2 was obtained in 95%
isolated yield (over two steps) (Scheme 3). This novel one-pot
reaction is performed under air and affords 2 in excellent purity.
Attempts to extend this new methodology to other NHC ligands
are ongoing.
3. Conclusion

In conclusion, a new and reproducible procedure is disclosed
for the synthesis of gold hydroxide complexes bearing NHC
ligands. Experimental evidence supporting the mechanism is pre-
sented. Using this methodology, various [Au(NHC)(OH)] com-
plexes were readily accessed in good to excellent yields on
multigram-scale. A novel high-yielding one-pot procedure has
been successfully developed for [Au(IPr)(OH)]. In view of its ease
of synthesis, 2 has the potential to become a workhorse in gold-
mediated transformations, as a pre-catalyst or as a useful mech-
anistic probe [16], without the use of silver at any stage of its
preparation.
tAmONa
H

[Au(NHC)Cl]

)(OtAm)]

NaCl

NN

r iPr

iPr

Au

O

H2O
NN

iPr

iPr iPr

iPr

Au
OH

3

2

quant.

under the new conditions.

, THF, r.t., 2 h
luene, 3 h
0 min NN

iPr

iPr iPr

iPr

Au

OH
% 2

m IPr�HCl and [Au(SMe2)Cl].
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4. Experimental

4.1. General procedure for small-scale synthesis of [Au(NHC)(OH)]

A vial was charged with [Au(NHC)Cl] (1 equiv.), finely ground
sodium hydroxide (6 equiv.) and THF (0.32 M) under air. Tert-amyl
alcohol (0.2 equiv.) was then added under stirring. After 24 h at
room temperature, the crude mixture was then filtered through
Celite and washed with additional THF. Water (�1 mL/100 mg)
was added to the solution and THF was removed under vacuum.
More water was added to the white, cloudy suspension and the
product was stirred vigorously for a few minutes. It was left to
settle for 10 min, collected using a Buchner funnel and washed
with hexane. It was then dried under vacuum for several days to
produce a white microcrystalline solid (cf. Supporting information
for analytical data).

4.2. General procedure for large-scale synthesis of [Au(NHC)(OH)]

A round-bottomed flask was charged with [Au(NHC)Cl] (1
equiv.), finely ground sodium hydroxide (7 equiv.) and THF
(0.32 M). Tert-amyl alcohol (0.2 equiv.) was then added under
stirring. After 24 h at room temperature, the crude mixture was
then filtered through Celite and washed with additional THF.
Water (�5 mL/1 g) was added to the solution and THF was
removed under vacuum. More water was added to the white,
cloudy suspension and the product was vigorously stirred until a
fine suspension is achieved. If aggregation persists, break manually
before filtration. It was left to settle for 10 min, collected using a
Buchner funnel and washed with water. It was then dried under
vacuum for several days to produce a white microcrystalline solid.

4.3. General procedure for the one-pot synthesis of [Au(NHC)(OH)]

A vial was charged with [Au(SMe2)Cl] (53 mg, 190 lmol, 1.06
equiv.), IPr.HCl (76 mg, 179 lmol, 1 equiv.) and KOtBu (31 mg,
277 lmol, 1.5 equiv.) in THF (0.5 mL), under air. The mixture was
stirred for 2 h at room temperature. KOtBu (62 mg, 553 lmol, 3
equiv.) was then added followed by toluene (0.5 mL). After 3 h at
room temperature, the crude mixture was then filtered through
Celite and washed with additional THF. Water (0.1 mL) was added
to the solution and the solution was stirred for an additional
15 min. THF was then removed under vacuum. More water was
added to the white, cloudy suspension and the product was
vigorously stirred for a few minutes. It was left to settle for
10 min, collected using a Buchner funnel and washed with hexane.
It was then dried under vacuum for several days to produce a white
microcrystalline solid.
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