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Abstract

We prove that, for a primitive permutation group G acting on a set X of size
n, other than the alternating group, the probability that Aut(X, Y G) = G
for a random subset Y of X, tends to 1 as n → ∞. So the property of the
title holds for all primitive groups except the alternating groups and finitely
many others. This answers a question of M. H. Klin. Moreover, we give an
upper bound n1/2+ε for the minimum size of the edges in such a hypergraph.
This is essentially best possible.
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1. Introduction

It is well known that, although every abstract group is the full auto-
morphism group of a graph, not every permutation group is. Moreover, the
alternating group is not the automorphism group of any family of sets, or
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even the intersection of automorphism groups of families of sets; for any set
system admitting the alternating group admits the symmetric group. It is
our purpose here to show that, at least for primitive groups, there are only
finitely many other exceptions. Moreover, we can assume that G acts tran-
sitively on the sets of the system, and that the size of the sets is not too
large.

Theorem 1.1. For any ε > 0, there is a finite list L of primitive permutation
groups such that the following holds for every k satisfying n1/2+ε ≤ k ≤ n/2.
If G is a primitive permutation group of degree n, which is not the alternating
group and not in the list L, then there is a k-uniform hypergraph (X,B) such
that Aut(X,B) = G and G acts transitively on B.

Corollary 1.2. Let G be a primitive group on X, not the alternating group
and not one of a finite list of exceptions. Then there is a uniform hypergraph
(X,B) such that Aut(X,B) = G and G acts transitively on B.

If we do not restrict the edge size, then the G-orbits of almost all subsets
of the vertex set define edge-transitive hypergraphs that have automorphism
group no larger than G:

Theorem 1.3. Let |X| = n, and let G be a primitive permutation group on
X but not the alternating group. If Y is a random subset of X and Y G the
set of G-translates of Y then

Prob(Aut(X, Y G) > G) < exp(−n1/2+o(1)).

Remark 1. We give first the proof of Theorem 1.3, since Theorem 1.1 uses
similar arguments but needs more refined estimates.

Remark 2. We have not attempted to determine the “finite list of excep-
tions” in Corollary 1.2. Note that any set-transitive group is an exception.
There are just four of these apart from Sn and An, viz. the Frobenius group
of order 20 (n = 5), PGL(2, 5) (n = 6), PGL(2, 8) and PΓL(2, 8) (n = 9).
Another exception is the Frobenius group of order 21 (n = 7); any orbit (or
union of orbits) of G on 3-sets (or on 4-sets) admits one the three minimal
overgroups of G (the Frobenius group of order 42 and one of two copies of
PGL(3, 2)).
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A very similar situation arose in connection with the main theorem of [9],
where it was shown that every primitive group apart from symmetric and
alternating groups and a finite list has a regular orbit on the power set of its
domain. The finite list was computed by Seress [22]. His methods were our
inspiration to complete the work reported here.

Remark 3. What is the least size of edges in a hypergraph (X,B) with
Aut(X,B) = G? We cannot get by with edges of fixed size. Consider, for
example, the alternating group G of degree m in its induced action on 2-sets.
A k-subset Y of X is the edge set of a graph with m vertices and k edges.
If B is a collection of k-sets with Aut(X,B) = G, then some set Y ∈ B does
not admit any odd permutation in Sm; so it has at most one fixed point,
and at least (m− 1)/2 = Ω(

√
n) edges. This shows that Theorem 1.1 is best

possible, apart from the value of ε in the exponent.

Our proof uses the following result [7]:

Lemma 1.4. Let G be a primitive permutation group of degree n, other than
Sn or An. Then either

(a) G is Sm or Am on 2-sets (n =
(
m
2

)
), or G is a subgroup of Sm wr S2

containing A2
m (n = m2); or

(b) |G| <∼ exp(n1/3 log n).

We call G “large” or “small” according as the first or second alterna-
tive holds. Note that large groups have order roughly exp(n1/2 log n). While
Lemma 1.4 uses the classification of finite simple groups, a remarkable re-
cent result by graduate students Xiaorui Sun and John Wilmes [23] (extend-
ing [1]) combined with [2] or [21] yields an elementary proof of a slightly
weaker bound, namely, exp(n1/3(log n)7/3) in part (b), which would be just
as adequate for our purposes.

Remark 4. This recent progress has not entirely eliminated our dependence
on the classification of finite simple groups, and it is worth pointing out just
how the classification is used. First of all, we actually require stronger bounds
than Lemma 1.4 with a longer list of exceptions ([7], see Lemma 7.1). The
best explicit result in this direction is due to Maróti [19], but we do not need
the full force of this. We also use the classification of 2-homogeneous groups
and the facts that simple groups can be generated by 2 elements and have
small outer automorphism groups; but these could probably be avoided with
care.
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The results in this paper were mostly obtained during the Second Japan
Conference on Graph Theory and Combinatorics at Hakone in 1990. We
are also grateful to M. Deza, I. Faradžev, and M. H. Klin for asking per-
sistent questions, and especially to Klin for proposing the question and for
several contributions to the proof. The final steps in the argument (reported
in Section 8) eluded us for some time, and so publication has been rather
seriously delayed! In the intervening time, some of the results we used in
the proof have been improved (for example in the papers [15, 19]), which
allows a small amount of streamlining of our arguments; but we have kept
the original arguments almost unchanged.

2. Outline of the proof

Throughout the paper we use the term “maximal subgroup” to mean
“subgroup of Sn, maximal in the set of permutation groups other than Sn
and An”: that is, a maximal subgroup of Sn other than An, or a maximal
subgroup of An contained in no other proper subgroup of Sn. We deduce the
Theorem from the following result.

Lemma 2.1 (Main Lemma). Let G be primitive on X with |X| = n, G 6=
Sn, An. Then with probability 1 − exp(−n1/2+o(1)), a random subset Y of X
has the property that MY = 1 for every maximal subgroup M containing G.

(Here MY denotes the setwise stabilizer of Y .)
The deduction of Theorem 1.3 from the Main Lemma runs as follows.

Clearly the theorem holds for G = Sn; so we may assume G 6= Sn, An. Let
Y be a subset for which the conclusion of the Main Lemma holds, and let
H = Aut(X, Y G). Then H ≥ G, and so H ≤M for some maximal subgroup
M containing G. Thus MY = 1, and so HY = 1, and

|G| ≥ |Y G| = |Y H | = |H| ≥ |G|,

from which H = G follows.
Now to prove the Main Lemma, we need estimates for

(a) the number of conjugacy classes of maximal subgroups;

(b) for each conjugacy class, the number of subgroups in that class containing
G;

(c) for each maximal subgroup M , the probability that MY = 1 for ran-
dom Y .
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The estimate for (a) is taken from [16], improving earlier bounds in [4],
[20], and [15].

Lemma 2.2. The number of conjugacy classes of maximal subgroups is at
most (1

2
+ o(1))n.

Estimates for (b) are given in the next two sections; we separate the
cases of large and small maximal subgroups. In section 5 we prove a uniform
bound exp(−c

√
n) for (c), using elementary bounds on the minimal degree.

In section 6 we do the accounting necessary to prove the Main Lemma.
Finally in section 7, we indicate how to modify the argument in order to
prove Theorem 1.1.

We will need the following result at two points in the proof.

Lemma 2.3. A primitive group of degree n can be generated by at most
c(log n)2 elements.

Proof. If G has abelian socle, then |G| ≤ n1+logn and the claim is clear.
So let G have socle T k, where T is non-abelian and simple. Then G ≤
T k · (OutT )k · Sk. Now T k requires at most 2k generators; a subgroup of
(OutT )k, at most 3k (since Out(T ) is at most 3-step cyclic); and a subgroup
of Sk, at most 2k [3, 10]. Since k ≤ log n, the result holds.

3. Large maximal subgroups

Let S(2)
m denote the action of Sm on the n =

(
m
2

)
pairs.

In this section, we estimate the number of subgroups S(2)
m or Sm wr S2

containing a given primitive group G. In the first case, we obtain a best
possible result.

Lemma 3.1. A primitive group of degree n is contained in at most one
subgroup isomorphic to S(2)

m .

Proof. Let Sm act on ∆ = {1, . . . ,m}, and identify X with the set of 2-
subsets of ∆. If G ≤ Sm on pairs and G is primitive on X, then certainly
G is 2-homogeneous on ∆ (transitive on unordered pairs). These groups are
listed, for example, in [8, pp.194–197]. Below we give original sources.
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(a) Affine case: G has an elementary abelian normal subgroup N regular
on ∆. Then N is intransitive on X; so G cannot be primitive.

We note that this includes the case when G is not 2-transitive; indeed, in
that case G has odd order and is therefore solvable; being primitive on ∆,
its minimal normal subgroup is transitive and elementary abelian.

Therefore we are left with the cases of non-affine, doubly transitive groups
G on ∆. The socle T of G is then a non-abelian simple group. If T is
alternating of degree k < m then k ≤ 7 and n ≤ 15 by Maillet’s 19th century
result [17]; we move these cases to item (iii) below. The case T = Am is
trivial. In the remaining cases, T is either of Lie type (these cases were
classified by Curtis, Kantor and Seitz [11]) or T is sporadic. We consider
each case.

(b) G ∼= Sp(2d, 2), m = 22d−1± 2d−1. Then ∆ is embedded in AG(2d, 2) in
a G-invariant fashion, and G preserves the restriction of the parallelism
relation to 2-subsets of ∆; so G cannot be primitive on X.

(c) G preserves a Steiner system S(2, k,m), k > 2. (This includes groups
containing PSL(d, q) with d > 2, unitary and Ree groups in Table 7.4,
p.197, of [8].) Then the set of pairs contained in a block of the Steiner
system is a block of imprimitivity for G on X; once again G can not
be primitive.

(d) In the remaining cases, overgroups S(2)
m of G correspond bijectively to

unions of orbital graphs of G which are isomorphic to the line graph of
Km. We show that, in each case, there is at most one such union.

(i) Sz(q) ≤ G ≤ Aut(Sz(q)), m = q2 + 1. Let N be the Sylow 2-
normalizer in Sz(q). Then N fixes a point of ∆, say 1, and is
transitive on the remaining points. Thus N has an orbit of length
q2 on X, consisting of pairs {1, i} for i ∈ ∆\{1}. Any other N -
orbit on X has length divisible by q−1, by considering the 2-point
stabilizer in Sz(q). So the orbit of length q2 is unique. Now this
orbit must be a clique in the required graph, and the edge sets of
its translates cover all edges of the graph. So the graph is unique.

(ii) PSL(2, q) ≤ G ≤ PΓL(2, q), m = q+ 1. This case is similar to the
preceding one.
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(iii) Finitely many others. These are handled by ad hoc methods. For
example, the groups Mn, for n = 11, 12, 23, 24, are 4-transitive on
∆, and so have just two non-trivial orbital graphs, the line graph
of Km and its complement.

Lemma 3.2. A primitive group of degree n = m2 is contained in at most
nc logn subgroups isomorphic to Sm wr S2.

Proof. If G has an overgroup M ∼= Sm wr S2, then G has a subgroup H of
index 2 which has a block B of imprimitivity of size

√
n. The pair (H,B)

determines M . (Indeed, it is easy to show that any such pair gives rise to an
overgroup of the correct form.) So we have to estimate the number of such
pairs.

(a) G has at most nc logn subgroups of index 2. This is immediate from
Lemma 2.3.

(b) A block of imprimitivity containing a point x for a transitive group H
is determined by its stabilizer, a subgroup K of H containing Hx. Now
K is generated by at most log n cosets of Hx, so there are at most nlogn

choices for it.

Multiplying (a) and (b) yields the Lemma.

4. Small maximal subgroups

In this section we prove a general bound. It is good enough for our
purposes for small maximal subgroups, but not for large ones.

Lemma 4.1. Let G be primitive, M maximal, of degree n. Then G lies in
at most (c|M |)c log2 n conjugates of M .

Proof. First, M contains at most |M |c log2 n copies of G, because G has at
most c log2 n generators, as we observed in Section 2.

Next, |NSn(G) : G| ≤ exp(c log2 n). For |NSn(G) : G| does not exceed
|Out(N)|, where N is the socle of G. The bound is clear if N is abelian.
Otherwise, N = T k, where k ≤ log n; and |OutN | = |OutT |kk!. If T is
alternating, then |OutT | is bounded by a constant; otherwise, |OutT | ≤
log |T |, and |T | ≤ nlogn. In either case, the bound holds.
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Now let x be the number of conjugates of M containing G. Counting
pairs (G′,M ′), where G′ and M ′ are conjugates of G and M respectively, we
obtain

x|Sn : NSn(G)| ≤ |M |c log2 n|Sn : M |.

Rearranging, x|M : G| ≤ |M |c log2 n|NSn(G) : G|, which gives the result (since
|M : G| ≥ 1).

Remark 5. This bound is probably much too large.

5. The probability of rigidity

The analysis in this section has been performed several times by different
people for various applications. The minimal degree of G is the least number
of points moved by a non-identity element of G. Doubly transitive groups
other than Sn and An have minimal degree at least n/4 by Alfred Bochert’s
1892 combinatorial gem [6]. Primitive but not doubly transitive groups have
minimal degree at least (

√
n−1)/2 by elementary arguments [1, Thm 0.3], so

the same lower bound1 holds for all primitive groups other than Sn and An.
For convenience we cite the following slightly stronger bound taken from [14].

Lemma 5.1. A primitive permutation group of degree n, other than Sn or
An, has minimal degree at least (

√
n)/2.

Lemma 5.2. Let M be a maximal primitive group of degree n, acting on a
set X. If Y is a random subset of X, then

Prob(MY 6= 1) ≤ exp(−c
√
n),

for some constant c.

Proof. Again we treat large and small groups separately. If M is large, we
require the probability that a random graph (or bipartite graph) admits a
non-trivial automorphism, for which estimates exist [13].

So suppose M is small. Let m be its minimal degree. If g ∈ M , g 6= 1
then g has at most n−m/2 cycles on X (the extreme case occurring if g is

1Still by elementary arguments, the lower bound 2
√
n holds for the minimal degree of

all primitive groups other than Sn and An, for all sufficiently large n [23].
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an involution moving m points), and so g fixes at most 2n−m/2 subsets. So
the probability that a random subset is fixed by g is at most 2−m/2 ≤ 2−

√
n/4.

Then

Prob(MY 6= 1) ≤ |M | · 2−
√
n/4

≤ exp(n1/3 log n) · 2−
√
n/4

≤ exp(−c
√
n).

6. Completion of the Proof

Now by the above Lemmas, the number F (G) of maximal subgroups
containing G is at most

1 + nc logn + exp(log4 n) · (c exp(n1/3 log n))c log
2 n,

and the probability that the conclusion of the Main Lemma fails is at most
F (G) exp(−c

√
n). So the result is proved.

7. Bounding the size of sets required

The proof of Theorem 1.1 follows closely the argument we have given, but
the technical details are considerably harder. The difficulty arises because
the analogue of Lemma 5.2 is much weaker. If M is maximal primitive with
minimal degree m, then a non-identity element of M has at most n −m/2
cycles, and so fixes at most

k∑
i=0

(
n−m/2

i

)
≤ 2

(
n−m/2

k

)

subsets of size k. So

Prob(MY 6= 1) ≤ 2|M |
(
n−m/2

k

)
/
(
n

k

)

≤ 2|M |(1− m

2n
)k

< 2|M | exp(−km
2n

).
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Now |M | ≥ 2n/m (this bound holds for any transitive group of degree n
and minimal degree m [14, 5]), and so

Prob(MY 6= 1) ≤ |M | exp

(
− k

2 log |M |

)

= 2 exp

(
log |M | − ck

log |M |

)
.

For k = n1/2+ε, no conclusion is possible unless |M | ≤ exp(n1/4−ε).
Fortunately the classification of finite simple groups gives such a bound

with known exceptions. For this result see [7, 19], but note that we do not
need the full refinement of Maróti’s estimates.

Lemma 7.1. If G is primitive of degree n and maximal, then either

(a) G is contained in Sm on k-sets, k = 2, 3 or 4, (n =
(
m
k

)
), or Sm wr Sk,

k = 2, 3, or 4 (n = mk); or

(b) |G| ≤ exp(n1/5 log n).

The groups contained in Sm wr S2, where Sm acts on 2-sets (with order
around exp(n1/4 log n)) do not need to be considered since they are contained
in Sm(m−1)/2 wr S2.

If we redefine “large” maximal subgroups to include all those under (a),
then our estimates suffice for “small” maximal subgroups, and we can use
separate estimates for the probabilities that random k-uniform hypergraphs
and random k-partite k-uniform hypergraphs, for k = 2, 3, 4, admit non-
trivial automorphisms. These are given in the next Section. We also need to
prove analogues of Lemmas 3.1 and 3.2 for k = 3, 4.

Lemma 7.2. A primitive group of degree n lies in at most one copy of Sm
on k-sets, for fixed k ≥ 2 and m > 2k.

Proof. The case k = 2 is Lemma 3.1. For k ≥ 3, there are very few groups
other than Sm and Am which act primitively on k-sets. For such a group
must be k-homogeneous, and hence 2-transitive [18]; as before, it cannot
have a regular normal subgroup N (since N would be intransitive on k-sets).
This leaves only the cases PSL(2, q) ≤ G ≤ PΓL(2, q) (with k = 3) or G is a
Mathieu group. In the first case, the stabiliser of a 3-set is not maximal (by
inspection of the list of maximal subgroups in [12]). The Mathieu groups are
handled by ad hoc methods.
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Lemma 7.3. A primitive group of degree n lies in at most nc logn copies of
Sm wr Sk, for fixed k ≥ 2 and m > 2.

Proof. The proof of Lemma 3.2 applies with trivial changes.

8. Asymmetry of random hypergraphs

Lemma 8.1. For 2 ≤ t ≤ n/2, let Pt denote the probability that a random
t-uniform hypergraph on n vertices is not asymmetric. For t = 2 we have
P2 =

√
2n22−n/2(1 + o(1)). For t ≥ 3 we have Pt < exp(−c1

(
n−1
t−1

)
) < 2−cn

2

for some positive absolute constants c, c1.

Proof. (For t = 2 this is well known [13], but we include this case, too, in
the proof.) If the random hypergraph H has a nonidentity automorphism
then it has one of prime order. Let σ be a permutation of V (H) of prime order

p. Let N(σ) denote the number of t-sets moved by σ, so that N(σ) ≤
(
n
t

)
.

The number of cycles of σ on t-sets is at most
(
n
t

)
− N(σ)/2, the extremal

case being where σ is an involution.
Let P (σ) denote the probability that σ is an automorphism of H. We

think of H being generated by flipping a coin for every t-tuple F ⊂ V to
decide whether or not to include F in E(H). However, for each σ-orbit of
t-sets, we can flip the coin only once. Therefore P (σ) ≤ 2−N(σ)/2 and

Pt ≤
∑
σ

2−N(σ)/2, (1)

where the summation extends over all permutations σ of prime order.
Let s denote the size of the support of σ (number of elements of V (H)

moved). Note that p|s. Let ρ(s, `, p) =
(
s/p
`/p

)
if p divides `, and 0 otherwise.

Let us compute N(σ) by counting for each ` ≥ 1 those t-sets which intersect
the support of σ in exactly ` elements. Adding these up we obtain

N(σ) =
t∑

`=1

((
s

`

)
− ρ(s, `, p)

)(
n− s
t− `

)
.

This quantity is estimated as

N(σ) ≥ 1

2

t∑
`=1

(
s

`

)(
n− s
t− `

)
=

1

2

((
n

t

)
−
(
n− s
t

))
. (2)
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For t = 2, the right hand side is

N(σ) ≥ 1

2

((
n

2

)
−
(
n− s

2

))
= s(n− s/2− 1/2)/2.

¿From equation (1) we then infer that

P2 ≤
n∑
s=2

(
n

s

)
(s!− 1)2−s(n−s/2−1/2)/4 =

(
n

2

)
2(−n+3/2)/2(1 + o(1)),

as stated. The opposite inequality follows by taking the second term of the
inclusion-exclusion formula into account in calculating the probability that
there exist two vertices switched by a transposition.

For t ≥ 3, equation (2) implies N(σ) >
(
n−1
t−1

)
> c2n

2, therefore

Pt ≤ n!2−(1/2)(
n−1
t−1).

A t-partite transversal hypergraph H is a t-uniform hypergraph whose
vertex set is partitioned into t “layers” V (H) = V1 ∪ · · · ∪ Vt and each edge
intersects each class Vi in exactly one element. The partition into layers
is given and is part of the definition of H. Automorphisms of H preserve
the partition by definition (but may interchange the layers). A transversal
hypergraph is balanced if all layers have equal size.

Lemma 8.2. For 2 ≤ t ≤ n/2, let Qt denote the probability that a random
balanced t-partite transversal hypergraph on n = tr vertices is not asym-
metric. For t = 2 we have Q2 = cn22−n/4(1 + o(1)). For t ≥ 3 we have

Qt < exp(−c1
(
n−1
t−1

)
) < 2−cn

2
for some positive absolute constants c, c1.

Proof. As before, let σ be a permutation of V = V (H) of prime order
p. By our remark about automorphisms before the lemma, σ respects the
partition into layers (V1, . . . , Vt). We say that a t-tuple is transversal if it
intersects each layer in exactly one element. The total number of transversal
t-sets is rt where r = n/t. Let N(σ) denote the number of transversal t-sets
moved by σ. Let Q(σ) denote the probability that σ is an automorphism of
the random transversal hypergraph H. Just as in equation (1), we have

Qt ≤
∑
σ

2−N(σ)/2, (3)
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where the summation extends over all permutations σ of prime order, re-
specting the partition (V1, . . . , Vt).

If σ moves some of the layers then it moves at least p layers. Hence in
this case,

N(σ) ≥ rt − rt−p+1 > rt/2. (4)

If σ fixes all layers, then let si denote the number of elements in Vi that are
moved by σ. So the support of σ has size s = s1 + · · ·+ st.

The transversal t-sets not moved by σ are now exactly those which do
not intersect the support of σ. Therefore

N(σ) = rt −
t∏
i=1

(r − si) ≥ rt(1− e−s/r) ≥ rt · s
r
·
(

1− s

2r

)
. (5)

We infer that for s ≤ r/2 we have

N(σ) ≥ rt3s/(4r) ≥ rt−1, (6)

and for s ≥ r/2 we have (for r ≥ 3)

N(σ) ≥ rt(1− e−1/2) > 0.39 · rt > rt−1. (7)

For t = 2 we conclude, separating the case s = 2, that

Q2 ≤ ((
n

2
)!)22−n

2/8 +
n(n− 2)

4
2−n/4 +

n/4∑
s=4

(
n

s

)
2−3ns/16 +

n∑
s=n/4

(
n

s

)
2−0.39n

2/2.

It is clear that the second term dominates this sum.
For t ≥ 3 we obtain Qt ≤ n!2−r

t−1/2.

9. Open problems

1. Can we eliminate the need for the classification of finite simple groups
from the proof of Theorem 1.1?

2. AssumingG is a primitive group whose socle is not a product of alternating
groups, is it possible to reduce the size of the hyperedges in Theorem 1.1
below n0.49 (for sufficiently large n)? Is it possible to reduce it to no(1) ?
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