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ABSTRACT: 1 

The emergence of technologies capable of storing detailed records of object locations has 2 

presented scientists and researchers with a wealth of data on object movement. Yet 3 

analytical methods for investigating more advanced research questions from such detailed 4 

movement datasets remain limited in scope and sophistication. Recent advances in the 5 

study of movement data has focused on characterizing types of dynamic interactions, 6 

such as single-file motion, while little progress has been made on quantifying the degree 7 

of such interactions. In this article, we introduce a new method for measuring dynamic 8 

interactions (termed DI) between pairs of moving objects. Simulated movement datasets 9 

are used to compare DI with an existing correlation statistic. Two applied examples, team 10 

sports and wildlife, are used to further demonstrate the value of the DI approach. The DI 11 

method is advantageous in that it measures interaction in both movement direction 12 

(termed azimuth) and displacement. As well, the DI approach can be applied at local, 13 

interval, episodal, and global levels of analysis. However the DI method is limited to 14 

situations where movements of two objects are recorded at simultaneous points in time. 15 

In conclusion, DI quantifies the level of dynamic interaction between two moving 16 

objects, allowing for more thorough investigation of processes affecting interactive 17 

moving objects. 18 

19 
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1 Introduction 20 

 The study of individual movement has entered a new era whereby researchers 21 

from various fields can benefit from fine resolution object movement data. Technical 22 

developments associated with location aware technologies, such as GPS, are transforming 23 

representations of movement. Despite improvements in spatially explicit movement 24 

datasets, the scope and sophistication of research questions are limited by a lack of 25 

methods and analysis (Wolfer et al. 2001). Laube et al. (2007) suggest that within 26 

geography, reliance of geographic information systems (GIS) and spatial statistics on 2-27 

dimensional representations may be limiting the development of more complex analyses 28 

of movement, while disciplines outside of geography may be unaware of the power of 29 

spatial (and space-time) analysis. To optimally utilize new movement datasets, analytical 30 

techniques capable of addressing more advanced research questions are required.  31 

Recently, the identification and measurement of dynamic interactions between 32 

moving objects has become an active area of research, likely owing to readily available 33 

fine granularity movement data. Dynamic interaction, a term from the wildlife ecology 34 

literature, can be defined as the way the movements of two individuals are related 35 

(Macdonald et al. 1980) or as inter-dependency in the movements of two individuals 36 

(Doncaster 1990). Alternatively, the terms association (Stenhouse et al. 2005), relative 37 

motion (Laube et al. 2005), and correlation (Shirabe 2006) have been used to refer to 38 

dynamic interactions between moving objects in other examples. All of these terms refer 39 

to the same general idea: identifying of how the movements of one individual are related 40 

to another. Recent work on dynamic interactions has focused on methods for identifying 41 

dynamic interaction patterns defined a priori (for example single file motion, Buchin et 42 



  3     

  3 

al. 2010; or chasing behavior, de Lucca Siqueira and Bogorny 2011). However limited 43 

work exists on quantifying the strength of dynamic interactions present in movement 44 

data. With this in mind we are motivated to investigate methods for measuring the 45 

strength of dynamic interactions when there is an expectation that such behavior occurs. 46 

This approach differs from recent developments in movement analysis which focus on 47 

identifying patterns, defined a priori, from large movement databases.  48 

The objective of this work is to extend a previously developed statistic (Shirabe 49 

2006) to a measure capable of quantifying the degree of dynamic interaction between 50 

moving objects. The new method (termed DI) measures dynamic interaction in 51 

coincidental movement segments, that is, it requires movement data of two individuals 52 

recorded simultaneously. The DI method is separable into components measuring 53 

dynamic interaction in movement direction (azimuth) and movement distance 54 

(displacement), termed DIθ and DId respectively. Further, DI is appropriate with the four 55 

analysis levels (local, interval, episodal, and global – see Figure 1) identified by Laube et 56 

al. (2007) with the beneficial property of local values (denoted here using lower-case – 57 

di) that aggregate to the interval, episodal and global values. Lastly, DI is derived in a 58 

way to allow for a time-lagged approach, but also extensions including time- and 59 

distance-based weighting schemes. 60 

< Approximate location Figure 1 > 61 

2 Related Work 62 

This research is motivated by an existing technique (Shirabe 2006) for measuring 63 

the strength of dynamic interactions (termed correlations) present in movement data. The 64 

use of the term correlation by Shirabe stems from the fact that the statistic takes the form 65 
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of a Pearson product-moment correlation coefficient. Consider two moving objects M
a
 66 

and M
b
, whose spatial coordinates (x, y) are recorded coincidentally at discrete times t = 1 67 

… n, termed fixes. Now consider for any M with t = 2…n, V = [Mt – Mt-1] = [vt], is a 68 

vector time series of M with n-1 vector segments. A correlation statistic for movement 69 

data defined this way takes the form (Shirabe 2006): 70 
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Where 
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1
n

t

t

n
vv  are mean coordinate vectors of V. The correlation statistic (r) 72 

is defined over the interval [-1, 1] with a score of 1 being perfect positive correlation and 73 

a score of -1 perfect negative correlation, with 0 denoting no correlation.  74 

 The statistic – r, could be advanced in three ways. First, it is dependant on the 75 

mean vector of each path, and thus measures correlations in movement deviations from 76 

their respective means. The statistic, r, cannot be used for testing direct interactions 77 

between two moving objects unless their corresponding mean vectors are identical or 78 

near identical. An improved statistic would not rely on this overall mean value. Second, r 79 

is unable to disentangle the effects of correlations in movement azimuth and distance, 80 

while being sensitive to both. Decomposing such a statistic into components based on 81 

movement direction (termed azimuth) and distance (displacement) would be beneficial, 82 

as it would allow interactions in these two independent components of movement to be 83 

analyzed separately. A third improvement would be a statistic that measures the 84 

interaction of each individual movement segment (i.e., local level - Laube et al. 2007). 85 

By definition, r produces a single resulting value for the entire path (i.e., global level - 86 
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Laube et al. 2007). When movement patterns are characterized by periods of interactive 87 

and non-interactive behavior, or varying levels of interactive behavior, a local level 88 

statistic will allow a finer treatment of dynamic interactions. 89 

Measurements of dynamic interaction in movement data have also been 90 

developed by wildlife researchers interested in a finer understanding of wildlife 91 

movement processes. The types of interactions studied in wildlife are classified as either 92 

static or dynamic interactions (Doncaster 1990; Macdonald et al. 1980). Static interaction 93 

relates to how two individuals use space coincidentally, while dynamic interaction 94 

reflects how the movements of two individuals are related, for example attraction 95 

(Macdonald et al. 1980). Typically, measures of dynamic interaction summarize the 96 

proximity of simultaneous movement points. Doncaster (1990) introduced one such 97 

measure of dynamic interaction based on the variance/covariance matrix of the spatial 98 

coordinates of simultaneous wildlife telemetry fixes; others have used Euclidean distance 99 

as an indicator of interaction (Bandeira de Melo et al. 2007; Stenhouse et al. 2005). 100 

Stenhouse et al. (2005) further investigated dynamic interaction in grizzly bears (termed 101 

associations) by measuring dynamic interaction in movement direction (azimuth – θ) 102 

defined as: 103 
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     (2) 104 

Equation (2) ranges from 0 –1, with values of 1 when direction of movements is identical 105 

and zero when completely opposite (i.e., at 180°).  106 

 Measuring dynamic interactions in moving object databases is also directly 107 

related to a larger body of literature on identifying similar movement trajectories (Sinha 108 

and Mark 2005; Vlachos et al. 2002; Yanagisawa et al. 2003). Similarity indices are 109 
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commonly employed as a first-step for identifying broader patterns or for detecting 110 

clusters in larger movement databases (Benkert et al. 2008; Gao et al. 2010). Moving 111 

object pairs that are highly interactive could also be said to follow a similar trajectory in 112 

many of these applications, and the methods for detecting dynamic interactions in 113 

movement data could be useful for detecting similar movement trajectories. 114 

Recently, many new techniques have been developed for categorizing various 115 

dynamic interaction patterns commonly found in movement data. Laube et al. (2005) 116 

developed a method for detecting RElative MOtion (REMO) classes based upon 117 

interpreting patterns of movement direction in groups of moving objects. For example, 118 

trend-setting, when one object moves with anticipation of the movement of others, is 119 

identifiable using the REMO approach. Noyon et al. (2007) use changes in inter-object 120 

distance and velocity to identify relative behavior such as collision avoidance. Benkert et 121 

al. (2008) present an algorithm for finding flock patterns in movement databases; which 122 

tests whether a group of moving objects are contained in a circle radius r over a given 123 

time interval. The study of flocking behavior is useful in the study of wildlife and crowd 124 

dynamics (Batty et al. 2003). Buchin et al. (2010) have developed a method for 125 

identifying single-file motion in groups of moving objects. Single-file motion is detected 126 

using free-space diagrams, derived from the Fréchet distance metric for comparing 127 

polygonal curves (Alt and Godau 1995). Related to single-file motion is the detection of 128 

chasing behavior, identifiable using the algorithm proposed by de Lucca Siqueira and 129 

Bogorny (2011). The methods mentioned above are capable of identifying specific types 130 

of dynamic interactions in movement data as defined a priori. However, such methods 131 
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are unable to quantify the strength of dynamic interactions present, thus motivating the 132 

development of quantitative measures of dynamic interaction. 133 

3 Derivation 134 

 In developing a measure of dynamic interaction we consider the rather optimal 135 

data situation (as in Shirabe 2006) where two moving objects’ (M
a
 and M

b
) spatial 136 

coordinates (x, y) are recorded coincidentally at discrete times t = 1 … n, termed fixes. 137 

For any M with t = 2…n, V = [Mt – Mt-1] = [vt], is a vector time series of M with n-1 138 

vector segments. For each movement segment define two fundamental properties: 139 

direction (θ), termed azimuth, and length (d), termed displacement. Azimuth (θ) is the 140 

angle between a movement segment and a constant axis, most commonly the horizontal 141 

axis (Figure 2a). Displacement (d) is the Euclidean distance between two consecutive 142 

fixes in a movement segment (Figure 2a). We are interested in deriving a measure of 143 

dynamic interaction that separately quantifies interactions in azimuth and displacement 144 

(Figure 2b-e).  145 

< Approximate location of Figure 2 > 146 

3.1 Azimuth – θ 147 

To investigate the interaction in movement azimuths we take the cosine of the 148 

angle between them. This is simply calculated as: 149 

   b

t

a

t

b

t

a

tt
cos,f  

θ
di  (3) 150 

where θt is the angle of movement at time-step t. Here ft has a range of [-1, 1] as desired. 151 

The function  b

t

a

t
 cos  is 1 when movement segments have the same orientation, 0 152 

when movement segments are perpendicular, and -1 when in complete opposing 153 

directions. In practice if either object (or both) do not move (3) is undefined, because θt is 154 
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undefined. Thus, we must consider two alternative scenarios; first if one object moves 155 

and one remains stationary, and second if both objects remain stationary. Here we make 156 

the assumption that if one moves and the other remains stationary the two objects exhibit 157 

no directional interaction, and if both are stationary they are positively interactive. 158 

Considering these two alternative scenarios, a complete definition for (3) is: 159 
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3.2 Displacement – d 161 

Interaction in movement displacement could be measured using a variety of 162 

functions. However, it is desirable to have the function (gt) fall in the range of 0 – 1, 163 

where a value of 0 represents no interaction and 1 positive interaction. Note there is no 164 

consideration of negative interaction in displacement. Using this definition gt can be 165 

thought of as a scaling function to ft, and maintains the statistic on the range [-1, 1]. We 166 

propose the following function for gt: 167 
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Where |·| is the absolute value operator, and α is a scaling parameter defaulting to 1. The 169 

function  b

t

a

tt
ddg ,  approaches zero when 

a

t
d  >>> 

b

t
d  or vice-versa, and is 1 when 

a

t
d  = 170 

b

t
d . The effect of the scaling parameter (α) on the function  b

t

a

tt
ddg ,  is demonstrated in 171 

Figure 3. Parameter α can be adjusted to place stricter or looser requirements on 172 

similarity in displacement denoting interaction. As α is increased larger differences in 173 

displacement are still considered as positively interactive. A closer examination of (5) 174 
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reveals that it is undefined when 
b

t

a

t
dd   = 0, (i.e., both objects are stationary). If we 175 

consider both objects remaining stationary as positive interaction, a more robust 176 

definition of (5) is: 177 

 





































01

01

b

t

a

tb

t

a

t

b

t

a

t

b

t

a

t

b

t

a

tt

dd,
dd

dd

dd,

d,dg



      (6) 178 

< Approximate location of Figure 3 > 179 

Thus, for two corresponding movement segments, a measure of dynamic 180 

interaction is the product between the azimuthal term (ft) and displacement term (gt): 181 

     b

t

a

tt

b

t

a

tt

b

t

a

t
d,dg,fv,v  

dθt
dididi    (7) 182 

We are motivated to use the functions ft and gt to provide a statistic that covers the range 183 

[-1, 1] as was done in Shirabe (2006). Positive values of dit correspond to cohesive or 184 

positively interactive movements, while negative values can be interpreted as repulsion or 185 

opposing movements. Values near zero should be interpreted as having no interaction. 186 

The di statistics measure dynamic interaction based on similarity in azimuth (θ) 187 

and displacement (d) of simultaneous movement segments but do not account for the 188 

proximity of moving objects. Thus, di represents a similarity index taken in a normalized 189 

plane (i.e., the distance between the two objects has no impact on the resulting value). 190 

We are motivated to use this type of formulation as the spatial proximity required for 191 

dynamic interaction to occur is application specific. It is up to the analyst to decide if two 192 

moving objects maintain a requisite proximity for dynamic interaction to occur, then such 193 

interaction can be measured using di. In cases where actual spatial contact is required, for 194 
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example when identifying points-of-interest in large movement databases (e.g., Benkert 195 

et al. 2007), the di method should not be employed. 196 

 We have made assumptions in the equations for diθ and did regarding how to 197 

analyze dynamic interactions when objects do not move (i.e., θ is undefined and d = 0). 198 

In certain cases interpretation of these situations will be clear, for example, if one object 199 

stops moving, does the other? However in practice, many applications may not facilitate 200 

such straight-forward interpretation. For example, when studying urban travelers does 201 

stopping at a red-light signify a change to dynamic interaction even if they will 202 

eventually go straight? In light of these concerns, these assumptions can be modified to 203 

accommodate different situations that may arise in various movement scenarios to fit a 204 

given application. 205 

3.3 Global analysis 206 

 A global version of the di statistic can be used to measure the overall interaction 207 

in a set of movement segments. First, it is useful to recognize that we can identify global 208 

interaction in azimuth or displacement individually by summing the interaction values for 209 

each individual segment and dividing by the number of segments. This form of a global 210 

DI gives equal weight to each segment. .  211 
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A global measure of overall dynamic interaction DI can also be derived.  214 
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It is important to note that in the local version di = diθ × did, but with the global statistic, 216 

due to summation rules, DI ≠ DIθ × DId. This can make interpretation of global values of 217 

DI less straightforward than with local values. However, if we were to alternatively 218 

define the global version as DI = DIθ × DId, then the equation defined by (10) would no 219 

longer hold. Thus, interpretation of DI values is best done separately for each component 220 

(i.e., DI, DIθ, and DId).  221 

The global formulation is also appropriate for interval and episodal levels of 222 

analysis. Here we simply replace n with some interval or episode length n’, where n’ < n. 223 

This type of analysis can be illuminating when analyzing interactions in larger movement 224 

datasets, where varying levels of dynamic interaction may occur at different points in the 225 

movement paths. 226 

3.4 Time- and Distance-based Weighting 227 

 In instances where the sampling interval of the n fixes is unequal it is desirable to 228 

scale the statistic based on the temporal duration of each movement segment. In practice, 229 

this would give more weight to segments of longer duration and less weight to shorter 230 

segments. Temporal weighting may also be used to account for missing fixes, common to 231 

GPS-based tracking data.  Let Δt correspond to the temporal duration of segment t, where 232 








1

1

n

t

t
T  is the total duration of the entire movement path. Then a time weighted 233 

version of (10) is defined as: 234 
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tba
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dθ
VV didiDI    (11) 235 

Viewed in light of the uncertainty associated with movement data, this form of temporal 236 

weighting may be counter-intuitive. That is, it may be logical to assign weights inversely 237 
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proportional to the duration between fixes; lower weights to segments with higher 238 

uncertainty (i.e., more time between fixes) and higher weights to segments with higher 239 

certainty or finer space-time resolution. 240 

Similarly, we can define a distance-based weighting scheme for (10) where 241 

movements with larger displacement have increased weight in calculation of the statistic. 242 

Varying distance-based weights could be used when dynamic interactions of a specific 243 

movement behavior are of interest. For example in the study of wildlife long directed 244 

movements are often interspersed with shorter random movements distinguishing 245 

migratory and foraging behavior (Turchin 1998). Distance weighting could be used to 246 

tailor the measurement of dynamic interactions to either of migratory or foraging 247 

behaviors in this case. A possible distance-based weighting scheme would be the average 248 

displacement of two segments:   2/
b

t

a

t

avg

t
ddd  , and 







1

1

n

t

avg

t
Dd . Based on the 249 

average displacement a distance-weighted version of (10) is defined as: 250 
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However, the average displacement of two objects movement segments is misleading 252 

when one object has a large displacement and the other has a small displacement. Thus, 253 

other distance measures are worth investigating for alternative distance-based weighting 254 

schemes, keeping in mind that the sum of the weights should equal one. The equations 255 

(11) and (12) can be combined to provide a time- and distance-based weighting scheme. 256 

It is important to note that time- and distance-based weighting is really only useful when 257 

interpreting global results when there is benefit to assigning segments weights based on 258 

duration or distance.  259 
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 Another interesting extension to studying correlations in movement paths is when 260 

movements interact with a temporal lag, for example when trend-setting occurs, as 261 

described by Laube et al. (2005). The DI statistic can be modified to evaluate dynamic 262 

interactions at a temporal lag. To measure dynamic interactions at a temporal lag, select a 263 

time lag – k, where k is generally taken to be a multiple of the fix interval (i.e., if fixes are 264 

taken at even intervals the time between consecutive fixes). Then we can, alternatively 265 

define diθ and did as: 266 

 b

kt
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tt
,f


 

θ
di      (13) 267 
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tt
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di     (14) 268 

The global statistics (DI, DIθ, DId) can be computed as before, using the time lagged 269 

versions of diθ (13) and did (14). 270 

4 Data 271 

4.1 Simulated Data 272 

 Six simulated data sets are used to highlight the utility of the DI statistic and the 273 

benefit of extensions it makes to r (Shirabe 2006). A single random walk (n = 10) is used 274 

to generate a movement path that is the bases for the simulation examples. We used 275 

manual permutations to the spatial coordinates of the original random walk to produce 5 276 

new movement paths that represent 5 unique dynamic interaction scenarios (Table 1). 277 

The first scenario simulates two objects moving with strong-positive dynamic interaction. 278 

The second scenario uses the same two paths as the first scenario, but one is rotated at 279 

45°, simulating strong interaction in displacement, and low interaction in azimuth. The 280 

third scenario simulates positive interaction in azimuth and no interaction in 281 

displacement. The fourth scenario simulates negative interaction in azimuth and no 282 
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interaction in displacement.  The fifth scenario simulates no interaction in azimuth and 283 

strong interaction in displacement. The sixth scenario uses a second independent random 284 

walk to simulate random interactions between two moving objects.  285 

< Approximate location of Table 1 > 286 

4.2 Athletes – Ultimate Frisbee 287 

 In team sports players (objects) movements are expected to be highly interactive. 288 

Often a defending player is tasked with “covering” an offensive player, and their 289 

movements are in reaction to that offensive player. In the sport of ultimate frisbee, 290 

offensive players move about the field in an attempt to get open for a pass from their 291 

teammates. Defending players cover them, in an attempt to intercept or dissuade passes 292 

from being completed. As such, in ultimate frisbee the movements of an offensive player 293 

and their defender are highly interactive. We used 5 Hz sports-specific GPS devices 294 

(GPSports, Fyshwick, Australia) to monitor the movements of two ultimate frisbee 295 

players over a one minute segment during a training game. In this example, the two 296 

players cover each other for the entirety of the one minute period. A total of n = 276 GPS 297 

locations (out of a possible 300) were simultaneously recorded. Most of the missing 298 

locations occur when the players are relatively stationary. At 5 GPS locations per second 299 

this represents an extremely detailed movement dataset, appropriate for investigating the 300 

intricate movements of athletes.  301 

4.3 Grizzly Bears in Alberta, Canada 302 

  To further demonstrate DI, we investigate a previously published dataset 303 

containing GPS telemetry locations of a number of grizzly bears in Alberta, Canada 304 

(Stenhouse et al. 2005). Stenhouse et al. (2005) revealed that various bear combinations 305 
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showed evidence of dynamic interaction during different seasons, in particular male-306 

female interactions were strongest during spring when mating activity occurs. To 307 

demonstrate DI, we examine one specific male-female bear combination that exhibited a 308 

relatively strong association during the mating season (male (G006) and female (G010) - 309 

see Fig. 4 in Stenhouse et al. 2005). Grizzly bear GPS collars were programmed to obtain 310 

a location fix every four hours, however missing entries are frequent. As a result, only 311 

112 simultaneous GPS fixes were obtained for the two bears during period from May 28, 312 

2000 to July 08, 2000. In this example, we incorporate time-based weighting in order to 313 

account for unevenness in fix intervals (ranging from 4 hours to over 6 days).  314 

5 Results 315 

5.1 Simulated Data 316 

 Using the six simulated datasets we compared global values for DI, DIθ, and DId 317 

with Shirabe’s (2006) r statistic (Figure 4) to reveal both the similarities and differences 318 

between these two methods. In scenario 1, where both movements are highly interactive 319 

in both displacement and azimuth, DI and r are very similar. In scenario 2 DI and r are 320 

similar, however using the DI method we can identify that interaction is higher in 321 

displacement (DId = 0.977), and lower in azimuth (DIθ = 0.664). In contrast, scenario 3 322 

reveals a situation where DI and r exhibit substantially different results. Using DIθ and 323 

DId we can further examine the nature of the interaction in both azimuth and 324 

displacement, in this case DId = 0.287 and DIθ = 0.992. High DIθ independent of DId 325 

could be useful in measuring interactive movement patterns via different modes of 326 

transportation (e.g., walking vs. biking), or scale independent movement behavior in 327 

wildlife. Scenario 4 demonstrates an example where negative dynamic interaction is 328 
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present (i.e., repulsion). In this case, DI is small and negative (DI = -0.278) due to low 329 

interaction in displacement (DId = 0.280), while rxy is large and negative (r = -0.805). 330 

Scenario 5, shows the case where low DI is a function of low interaction in azimuth (DIθ 331 

= -0.095), despite having a strong level of interaction in movement displacement (DId  = 332 

0.979), while rxy = -0.532. Measurement of high vs. low DId independent of DIθ could be 333 

used in behavior analysis to identify objects with similar diurnal activity patterns (i.e., 334 

temporal patterns of long and short movements). In Scenario 6, both DI and r show 335 

values near 0, as would be expected from two independent random motions. It is 336 

interesting to note that DId = 0.649 is relatively high in this example, as the random 337 

walks used identical parameters for their displacement distributions.  338 

< Approximate location of Figure 4 > 339 

5.2 Athletes – Ultimate Frisbee 340 

In the Ultimate Frisbee example, the two players positively interact in movement 341 

azimuth (DIθ = 0.682) and movement displacement (DId = 0.730). The global statistic 342 

shows that a substantial level of interaction exists between the two athletes (DI = 0.572). 343 

Local analysis enables the identification of times/locations where the athletes exhibit 344 

more or less interactive movements (Figure 5). In the ultimate frisbee example, local 345 

analysis is more informative than the global measure, as the movement path consists of 346 

many (shorter) movement segments. Maps of local di can be combined with a time-series 347 

graph of di, diθ, and did related to times/locations during the game where the defending 348 

player did a poor job covering the offensive player. We use episodal level analysis to 349 

segregate the movement paths into episodes of high vs. low interaction in order to further 350 

investigate the interactive behavior of these two athletes. For example, from 0 - 20 and 38 351 
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- 40 seconds (highlighted in blue in Figure 5), high and positive di values suggest the 352 

defending player is providing good defensive coverage (for these two episodes DI = 353 

0.757). While from 20 - 38 seconds (highlighted in red in Figure 5) di values are much 354 

lower, an indication of less interactive movement and poor defensive coverage (for this 355 

episode DI = 0.122).  356 

< Approximate location of Figure 5 > 357 

5.3 Grizzly Bears in Alberta, Canada 358 

 In the grizzly bear example it was revealed that the male and female bears showed 359 

substantial interaction (DI = 0.578) over the 42 day period from May 28, 2000 to July 8, 360 

2000, using time-based weighting (see equation (11)) to account for missing fixes. 361 

Similarly, time weighted results for azimuth (DIθ = 0.663) and displacement (DId = 362 

0.731) reveal that both azimuth and displacement were strongly related during this 363 

period. Local analysis revealed that the strong interaction seen with the global results was 364 

a function of highly cohesive movements during the middle of June, while at the 365 

beginning of June the two animals show little interaction (see Figure 6).  Again we 366 

perform analysis at the episodal level for separate periods identified visually from the 367 

local analysis as having low and high dynamic interaction (low interaction: May 28 – 368 

June 09; high interaction: June 09 – 29). The period of high interactions has a time-369 

weighted DI = 0.492, while the period of low interaction has a time-weighted DI = 0.029. 370 

Highly interactive behavior by mating grizzly bears is common in this region, as males 371 

will attempt to confine female movements to a ‘mating area’ (Hamer and Herrero 1990). 372 

Interpretation of maps and graphs of di facilitates the identification of where and when 373 

such behavior occurs. 374 
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< Approximate location of Figure 6 > 375 

6 Discussion 376 

DI has three fundamental advantages over an existing method (Shirabe 2006) for 377 

measuring interactions (termed correlations) in movement data. First, the existing method 378 

follows a traditional correlation coefficient structure and is thus dependent on the mean 379 

vector of a movement vector time series. In most cases, this mean movement vector will 380 

have little relevance in the context of the analysis. However, in cases where interactions 381 

are expected to occur relative to some mean movement trajectory, the method from 382 

Shirabe (2006) is still advantageous. For instance, two objects moving radially from a 383 

point (at some acute angle) may exhibit dynamic interaction (e.g., Fig. 4a in Shirabe 384 

2006). Second, DI is explicitly decomposed into components measuring interaction in 385 

movement azimuth and displacement. This property enables analysts to identify 386 

situations where movements are related in one component but not the other. For example, 387 

in scenario 3, DId is low, however strong interaction is present in DIθ, indicating that the 388 

objects move with similar azimuths but not displacements, a conclusion not discernable 389 

from the rxy statistic. Lastly, the di statistics we have developed are calculated 390 

independently for each simultaneous movement segment. The di values can be mapped 391 

and analyzed in a time-series fashion providing a local level analysis. Local analysis 392 

reveals spatial-temporal information about locations of increased or decreased interaction 393 

along the movement trajectory. Furthermore, the local level statistics (di, diθ, and did) are 394 

easily aggregated to coarser levels of analysis (interval, episodal, and global).  395 

Other research areas where measuring movement interactions could provide new 396 

and unique insight include transportation, human-activity, and other wildlife and sporting 397 
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examples. In transportation applications measuring interactions in large movement 398 

databases could be used for generating information on commuter behavior. Examples 399 

from human-activity research where interactions are important include tourist behavior 400 

(e.g., Shoval and Isaacson 2007) or crowd dynamics (Batty et al. 2003). With wildlife 401 

movement data, the detection of interactions is important in the study of resource 402 

selection (Millspaugh et al. 1998) and social behavior (Bandeira de Melo et al. 2007; 403 

Kenward et al. 1993), but also for examining offspring dependency, and inter-/intra-404 

species behavior. Finally, a number of sporting examples exist where measuring 405 

movement interactions could provide new and unique insight including soccer, American 406 

football, and ice hockey.  407 

We use simulated movement data to highlight the advantages of DI over an 408 

existing method in a small set of specific scenarios designed to show the range of 409 

dynamic interactions present in movement data. When two movements are highly 410 

interactive (e.g., scenario 1) both methods successfully identify the high level of dynamic 411 

interaction. Also, when two movements show opposing or repulsive movements (e.g., 412 

scenario 4) both methods are able to identify this behavior. The value of the DI method is 413 

demonstrated in scenarios 3, 4, and 5, where interactions in either azimuth or 414 

displacement are coupled with no interaction in the other component. This type of 415 

analysis may be useful, for example, when object movement is dependent on a temporal 416 

factor. For instance, many wildlife species are active only at specific times of the day and 417 

remain dormant during other periods. Measuring positive dynamic interactions in 418 

displacement, irrespective of azimuth, may be useful in identifying whether or not 419 
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different species or individuals operate with similar circadian cycles (Merrill and Mech 420 

2003). 421 

 The example from athletes playing ultimate frisbee demonstrates the value of 422 

measuring dynamic interactions at the local and episodal levels of analysis. Local and 423 

episodal analysis revealed periods of varying degrees of dynamic interaction, which can 424 

be related to player performance (i.e., how well the defensive player was able to cover the 425 

offensive player). In many team sports, player evaluation has traditionally been 426 

conducted by human observers. More recently, data driven analyses have become 427 

common in the evaluation of players in team sports (e.g., Fearnhead and Taylor 2011). 428 

When a player’s movement can be directly related to specific abilities, for instance the 429 

soccer example in Laube et al. (2005), the measurement of dynamic interactions, using 430 

the DI method can enhance player evaluation using novel sport-specific movement 431 

datasets. 432 

The DI method we have developed requires that movement locations be recorded 433 

simultaneously. Such a tidy form of movement data (i.e., where objects locations are 434 

recorded simultaneously) may not always be available, limiting the ability to implement 435 

this method. In such cases, path interpolation methods (e.g., Tremblay et al. 2006) could 436 

be used to estimate the locations of one object at coinciding times. Similarly, in many 437 

applications the assumption that movement data are collected at a regular interval is not 438 

satisfied (e.g., with movement data collected using cell-phone records). This is also the 439 

case in many wildlife telemetry studies where missing fixes are common. In the grizzly 440 

bear example, we demonstrate the value of temporal weighting the DI statistic to account 441 

for uneven sampling intervals. Further, we highlighted how local and episodal analyses 442 
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can provide unique and valuable insights into the nature of dynamic interactions present 443 

in movement datasets. Local analysis reveals the times and locations of dynamic 444 

interactions not discernable from global level statistics. When comparing male and 445 

female grizzly bears, the dynamic interactions were likely due to mating behavior. This 446 

example demonstrates the value of quantifying dynamic interactions in wildlife 447 

movement datasets, as they can be related directly to specific social activities.   448 

   When movement data are collected at too fine a granularity, the movement 449 

process (e.g., dynamic interaction) can be masked by data noise (termed over-sampling, 450 

Turchin 1998). In these cases, down-sampling can be used to reduce data redundancy in 451 

the movement path and improve the process signal to noise ratio. The DI statistics can 452 

then be computed on the re-sampled movement dataset, as another form of interval and/or 453 

episodal analysis (e.g., Laube et al. 2007). Variations of this procedure at different 454 

interval and episodal scales can lead to increasingly complex and cross-scale 455 

investigations of dynamic interactions in moving object datasets. Recently, Laube and 456 

Purves (2011) have discussed the impact that movement data granularity (i.e., sampling 457 

resolution) has on metrics used to quantify and describe movement trajectories (e.g., 458 

mean speed).  The DI method is similarly impacted by the granularity at which 459 

movement data are represented.  For example, at a coarse granularity objects may exhibit 460 

positive dynamic interactions, while at a fine granularity their movements may show 461 

negative dynamic interaction (see Figure 7). Both the granularity at which the data are 462 

represented and analysis level selected will impact the results and subsequent 463 

interpretation of DI. One of Laube and Purves (2011) main recommendations is that 464 
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movement data analysis be conducted across a range of scales (granularities and analysis 465 

levels) to correctly understand observed patterns.  466 

< Approximate location of Figure 7 > 467 

6 Conclusions 468 

Movement data are being collected for a variety of research agendas involving the 469 

study of humans, their vehicles, and wildlife. Central to analyzing movement data is the 470 

measurement of dynamic interactions between pairs of moving objects. We have 471 

developed a new statistic (DI) for measuring dynamic interactions in discrete movement 472 

data (e.g., with a GPS). The basic properties of movement segments – azimuth and 473 

displacement, are used to detect dynamic interactions in azimuth, displacement, and 474 

overall movement. The DI method can be applied at four analysis levels (local, interval, 475 

episodal, and global - Laube et al. 2007) associated with movement data, and results can 476 

be aggregated across analysis levels. We introduce both time- and distance-based 477 

weighting schemes that can be useful in specific situations. The measurement of dynamic 478 

interactions at a temporal-lag, an example of trend-setting (Laube et al. 2005), can be 479 

easily incorporated. Like many spatial analysis techniques the DI method is impacted by 480 

the granularity at which movement data is represented. A detailed investigation of cross-481 

scale effects is warranted to provide a better understanding of how the measurement of 482 

dynamic interaction is impacted by changing data granularities.  483 

In some situations the nature of movement interactions will not simply involve 484 

two moving objects, but rather involve two moving objects impacted by a third. Consider 485 

the grizzly bear example; the bears exhibit varying levels of dynamic interaction over the 486 

course of the time period. The level of interaction is likely affected by their position 487 
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relative to the location of other objects, including other bears, roads, or sources of 488 

attraction or repulsion (i.e., food or danger). Future research will develop approaches for 489 

measuring third-party interactions, whereby pairs of moving objects interact with respect 490 

to a third stationary or moving object.  491 

To those wishing to measure dynamic interactions with their own applications we 492 

have developed code for implementing DI in the statistical software package R (R 493 

Development Core Team 2011), for more information please visit: 494 

<insert link to website here> 495 
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Table 1: Simulated movement scenarios, depicting different types of dynamic 

interactions, used to examine the differences between the new interaction statistic (DI) 

and an existing method (r). 

Scenario Azimuth (θ) Displacement (d) 

1 Positive interaction Interaction 

2 Positive interaction 

(rotated by 45°) 

Interaction 

3 Positive interaction No interaction 

4 Negative interaction No interaction 

5 No interaction Interaction 

6 Random Random 
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Figure 1: Diagram of four analysis levels used in movement data analysis (after Figure 2 

in Laube et al. 2007). Local level statistics are calculated for each individual movement 

segment. Interval level analysis computes a running average statistic using a moving 

window. Episodal level analysis computes the statistic over a selected ‘episode’ or period 

of the dataset. Global level analysis computes the statistic over the entire movement path. 
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Figure 2: a) Diagram of movement properties azimuth (θ) and displacement (d). 

Examples of movement segments that exhibit: b) positive interaction in θ and low 

interaction in d; c) negative interaction in θ and high interaction in d; d) no interaction in 

θ and high interaction in d; and e) no interaction in θ or d. 
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Figure 3: Relationship between log(da/db) and did, for values of α = 1, 2, 3.  
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Figure 4: Results from global analysis of 6 simulated example scenarios, comparing the 

new DI method with the Shirabe (2006) correlation statistic – r. Original path is solid and 

black, while the path in dashed grey portrays variations based on six simulated scenarios 

(see Table 1). 
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Figure 5: Local analysis showing maps of di values for a) player 1, and b) player 2, from 

the ultimate frisbee example. c) time series graphs of di, diθ, and did can be used to 

identify periods of high and low dynamic interaction. Highlighted in blue in the time 

series graphs (c) are periods where player 1 does a good job covering player 2 (DI = 

0.757). Highlighted in red is a period where the player 1 does a poorer job covering 

player 2 (DI = 0.122). 
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Figure 6: Local analysis showing maps of di values for a) the male grizzly bear (G006), 

and b) the female grizzly bear (G010), from the grizzly bear example. c) time series 

graphs of di, diθ, and did can be used to identify periods of high and low dynamic 

interaction. Highlighted in red in the time series graphs (c) is a period where the bears 

exhibit low dynamic interaction (DI = 0.029). Highlighted in blue is period where the 

bears exhibit strong dynamic interaction (DI = 0.492), in this example indicative of 

mating behavior. 
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Figure 7: A pair of moving objects that exhibit negative dynamic interaction when 

analyzed at a fine granularity (dashed line, DI = –0.47) but positive dynamic interaction 

when analyzed at a coarser granularity (solid line, DI = 0.49). This example illustrates 

how changes in data granularity can impact results and interpretation of DI. 


