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There are only limited reports on vanadium (IV) oxyfluorides (VOFs) with extended crystal structures.

Here we expand and enrich the list of existing VOFs with a series of 14 new materials “VOF-n (n =1-

14)” prepared using ionothermal and solvothermal synthesis methods. All these materials arise from the10

condensation of a dimeric structural motif. These VOFs can be classified into three groups depending on

their key structural features; layer structures: VOF-1 “[HN2C7H6][V2O2F5]”, VOF-2

“[HN2C4H4][V2O2F5]”, VOF-3 “[HN2C3H4][V2O2F5] and VOF-4 “V2(N2C4H4)O2F4”, ladder like

structures: VOF-5 “[NH4(HN2C3H4)][V2O2F6]”, VOF-6 “[K(HN2C3H4)][V2O2F6]”, VOF-7

“[HNH2CH2CH3][VOF3]”, VOF-8 “[HN2C7H6][VOF3]”, VOF-9 “[H2N2C4H6][V2O2F6]”, VOF-10 “β-15

RbVOF3”, VOF-11 “α-KVOF3”, VOF-12 “β-KVOF3”, VOF-13 “[H2(NH2)2(CH2)2][V2O2F6], and a

chain structure: VOF-14 “[H2N2C6H12][V2O2F7]”. The crystal structures of VOF-n are presented, and

their synthetic and structural relationships are discussed.

.

Introduction20

Compounds of vanadium (IV) exhibiting extended lattice
structures are of interest for a variety of properties and
applications, for example as lithium battery cathodes,1 frustrated
magnets2 and oxidation catalysts.3 We have focused our own
interest over the past few years on the synthesis of metal25

(oxy)fluorides4 with particular emphasis on developing novel
hybrid organic-inorganic vanadium (oxy)fluorides using various
synthetic methods, including hydrothermal and ionothermal
systems. This has resulted in a wide range of materials containing
vanadium in III, IV or V oxidation states. 5-8

30

The many variables involved in both hydrothermal and
ionothermal systems illustrate their complexity, and in the course
of our exploratory studies we have found that the outcomes of
these reactions are very sensitive to small changes in conditions.
In addition to the vital role of the solvent, many other factors (e.g.35

vanadium source, amount of HF, nature and amount of the added
template and others) may affect the reaction outcome. Although
the direct impact of these parameters on the resulting materials is
not yet fully understood, there is a clear indication of the
propensity of ionothermal systems9, i.e. using ionic liquids (ILs)40

as the reaction solvent, to produce more extended V(IV)-
containing fluorides. For instance hydrothermal synthesis mainly
produces low dimensional VOFs; monomeric, oligomeric or
chain-type structures are all accessible hydrothermally at low

reaction temperatures. On the other hand more extended VOF45

structures are accessible using ionothermal synthesis, where a
hydrophobic IL, 1-ethyl-3-methylimidazolium bis
(trifluoromethylsulfonyl)imide (EMIM Tf2N) is used as the
reaction solvent. Initially, this led to the preparation of the first
VOF with a 2-D connectivity, [Hpyr][V2O2F5],

10 and50

subsequently, a similar approach allowed us to prepare a VOF
with a pillared-layer kagome lattice,
[NH4]2[HNC7H13][V7O6F18].

11 Very recent studies demonstrate
that this material displays unusual gapless quantum spin-liquid
behaviour.12

55

We have pursued further research on both ionothermal and
hydrothermal synthesis of VOFs, yielding a variety of further,
novel V(IV)-containing materials with a very rich crystal
chemistry. All the materials reported herein contain vanadium in
the IV oxidation state, and are based on a common dimeric60

structural motif. The order in which the structures are presented
follows their dimensionality, and the structures are given the
symbols VOF-n

Experimental Section

65

Synthesis

All reagents were commercially available and used without
further purification, except the ionic liquids EMIM Tf2N and N-
butylpyridinium bromide (BPB), which were synthesised
according to the literature procedure.13,14
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Table 1 Crystallographic Data for VOF-3, VOF-4, VOF-13 and VOF-14

VOF-3 VOF-4 VOF-13 VOF-14
Formula [HC3N2H4][V2O2F5] V2(N2C4H4)O2F4 [H2(NH2)2(CH2)2][V2O2F6] [H2N2C6H12][V2O2F7]
Fw/g/mol 297.97 289.97 310 381.07
Space group P21 (4) P21/c (14) P21/m (11) C2/c (15)
a /Ǻ 7.170(3) 5.0096(14) 8.806(3) 10.0330(19)
b /Ǻ 17.333(7) 10.8260(3) 12.100(5) 10.0380(17)
c /Ǻ 7.370(4) 7.288(7) 9.206(4) 11.930(2)
α /° 90 90 90 90
β /° 118.0531(10) 95.9430(10) 106.301(2) 110.170(3)
γ /° 90 90 90 90
V / Ǻ3 808.32(6) 393.1(4) 941.49(6) 1127.8(3)
Z 4 2 4 4
Crystal size /mm 0.250.030.02 0.20 0.200.12 0.20.20.2 0.05  0.05 0.05
Crystal shape and colour Blue needle Blue platelet Blue prism Blue prism
F(000) 576 280 608 680
Rint 0.0509 0.0247 0.0601 0.1031
Obsd data [I>2σ(I)] 1875 612 1711 891
Data/restraints/parameters 2153/1/254 710/0/72 1821/0/125 1046/0/96
GOOF on F2 1.013 1.069 1.241 1.019
R1, wR2 (I >2 σ(I)) 0.0395, 0.0772 0.0262, 0.0540 0.1123, 0.2515 0.0871, 0.2332 
R1, wR2 (all data) 0.0468, 0.0815 0..0337, 0.0565 0.1180, 0.2551 0.0970, 0.2486
Largest diff. peak / hole 0.522/-0.504 0.318/-0.368 2.314 /-1.787 1.775 /-0..847

Among the VOFs presented here, only VOF-10, VOF-11 and
VOF-12 were synthesised solvothermally in a 40 mL Teflon-5

lined stainless steel autoclave using either a mixture of
water/DMSO or water/ethylene glycol. All the other VOFs were
made ionothermally in a 30 mL Teflon-lined stainless steel
autoclave.

10

All the ionothermally prepared VOFs were synthesised following
a typical synthesis procedure: a Teflon-lined autoclave (volume
30 mL) was charged with VOF3 (0.124 g, 1 mmol, Sigma
Aldrich) (or V2O5 (0.182 g, 1 mmol, Sigma Aldrich) in the case
of VOF-13) and HF (48 wt% in H2O) (0.1 mL, 2.76 mmol,15

Sigma Aldrich) or 1 mL, 27.6 mmol, Sigma Aldrich in the case of
VOF-13) and then the IL EMIM Tf2N (4 g, ~10 mmol) (or the IL
EPB 2.16 g, ~10 mmol in the case of VOF-13) was added along
with the added template; benzimidazole (VOF-1 and VOF-8),
pyrazine (VOF-2 and VOF-4), imidazole (VOF-3 and VOF-5),20

imidazole and KNO3 (VOF-6), ethylamine (VOF-7), 2-
methylimidazole (VOF-9), ethylenediamine (VOF-13) and 1,4-
diazabicyclo[2.2.2]octane (DABCO) (VOF-14).

For VOF-1, VOF-2, VOF-3, VOF-5, VOF-6, VOF-7, VOF-8
and VOF-9 the stainless steel autoclave was then sealed and25

heated in an oven at 170°C for 24 hrs; for VOF-4 and VOF-13
the autoclave was heated at 140°C for 24 hrs and for VOF-14 the
autoclave was heated at 130°C for 24 hrs. After the autoclave had
been cooled to room temperature, the product was filtered,
washed with methanol and dried in air for 24 hrs.30

A general scheme for the synthesis of VOF-10, VOF-11 and
VOF-12 solvothermally is as follows: a Teflon-lined autoclave
(volume 40 mL) was charged with V2O5 ((0.182 g, 1 mmol,

Sigma Aldrich) and RbF (0.209 g, 2 mmol) or K2CO3 (0.136 g, 1
mmol) and HF (48 wt% in H2O) (0.5 mL, 13.8 mmol, Sigma35

Aldrich). and then a solution of 3:1 H2O/DMSO, 4:5
H2O/ethylene glycol or 7:1 H2O/ethylene glycol was added
respectively. The stainless steel autoclave was then sealed and
heated in an oven at 160°C for 24 hrs or 72 hrs.

The synthesis procedure for the ILs and for each compound can40

be found in full detail in the supplementary material.

X-ray Crystallography.

Single crystal X-ray diffraction data for VOF-1 were collected at45

station 11.3.1 of the Advanced Light Source at Lawrence

Berkeley National Laboratories, California using a Bruker APEX

II CCD diffractometer. Single crystal X-ray diffraction data for

all other VOFs were collected using Mo-Kα (0.7107 Ǻ) radiation 

utilising a Rigaku rotating anode single-crystal X-ray50

diffractometer at the University of St Andrews. The structures

were solved with standard direct methods using SHELXS and

refined with least-squares minimisation techniques against F2

using SHELXL within the WinGX packages.

Powder XRD was carried out on a Stoe STADI/P diffractometer55

using Cu Kα1 X-rays

VOF-3 displays an inorganic layer that shows an interesting
variation to the one previously seen in [Hpyr][V2O2F5].

10 VOF-4,
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Fig.1 The dimeric [V2O2F8]
4- building units observed in (a) all the VOF-n

structures except VOF-4 and (b) dimeric unit observed in VOF-4

Fig.2 Ladder type [VOF3]n
n- chain5

VOF-13 and VOF-14 display novel polyhedral connectivities
that are unprecedented in this class of materials. For space
reasons only the crystallographic details for these materials are
presented in Table.1; for all the other structures they are tabulated
in the supplementary material.10

Magnetic Measurements.

Magnetic susceptibility data for VOF-13 were collected on a

Quantum Design MPMS SQUID. Data were recorded in a 200015

Oe field while warming the sample from 1.8 to 300K in 4 K

steps, following consecutive zero-field cooling (ZFC) and field

cooling (FC) cycles. Data were normalized to the molar quantity

of the sample, and corrected for any diamagnetic contributions.

20

Results and Discussion

Crystal structures

The VOF structures presented here fall into three major groups:25

2-D layers, 1-D ladder-like chains and a 1-D single chain.

Interestingly all these structures can be regarded as arising from

the same structural motif, where in all the structures the

coordination environment around each vanadium atom is highly

distorted (typical characteristic of V(IV) in vanadium30

oxyfluorides) due to the presence of the short vandyl V=O bond

(~ 1.6 Ǻ) and the corresponding elongated trans V–F bond (~ 2.2 

Ǻ); the other V–F bonds are within the normal range (~ 1.9 Ǻ).7

Fig.3 [V2O2F5]n
n- layer found in VOF-1 and VOF-235

Fig.4 A view of the layer packing in (a) VOF-1 and (b) VOF-2

The vanadyl group is terminal in all the structures, with an

additional common feature being two F atoms bridging two40

adjacent octahedral units into an edge-shared dimer. These

dimers, are then further linked to others in different ways to form

layers, ladders or chains. The dimer in VOF-4 is slightly different

with the vanadyl group being cis- rather than trans- to the

bridging F atoms, and two N atoms from the pyrazine ligand45

taking up one of the trans- positions (V–N distance 2.121(3) Ǻ). 

These two types of edge-shared-dimers are shown in Fig.1.

VOF-1 and VOF-2 arise from the condensation of the edge-

shared dimers, described earlier, through bridging F-atoms to50

form infinite “ladder” like chains (Fig.2). These chains are further

linked through F atoms leaving only O atoms terminal, to form an

infinite anionic layer of composition [V2O2F5]n
n- (Fig.3), similar

to the one previously seen in [Hpyr][V2O2F5].
10 These layers are

separated via hydrogen-bonded protonated organic amine55

moieties, benzimidazolium, or pyrazinium (Fig. 4)

In VOF-1 there are four vanadium ions in the asymmetric unit,

and in VOF-2 there are two vanadium ions in the asymmetric

unit, all of which are in the 4+ oxidation state as confirmed by

bond valence sum calculations (see supplementary60
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Fig.5 [V2O2F5]n
n- layer found in VOF-3

Fig.6 A view of the polymorphic3 [V2O2F5]n
n- layers: (a) found in VOF-5

3 (b) found in VOF-1 and VOF-2

material).

VOF-3 is also constructed from the edge-shared dimer described10

earlier, with the dimers sharing F atoms to form infinite “ladder”

like chains in a similar way as VOF-1 and VOF-2. These chains

are then joined through F atoms to form an infinite anionic layer

(Fig. 5). Interestingly, as shown in Fig.6, the ladders in VOF-3

are linked in a different way compared to VOF-1 and VOF-2. In15

VOF-3 the nearest “vanadyl” bonds from two adjacent ladders

point in opposite directions (Fig.6(a)); in contrast, in VOF-1 and

VOF-2 they point in the same direction (Fig.6(b)).

In VOF-3 the layers are separated via hydrogen-bonded

protonated imidazolium cations (Fig.7).20

It can be seen that the arrangement of the ladders within two

different layers in VOF-1 and VOF-2 follow the same pattern

previously seen in [Hpyr][V2O2F5]: ie. corrugated layers arranged

25

Fig.7 A view of the layer packing in VOF-3

Fig.8 Inorganic chain found in VOF-4

Fig.9 The V(IV) oxyfluoride/pyrazine layer found in VOF-430

parallel to each other while in VOF-3 they are quite different, and

are aligned in nearly anti-parallel fashion.

35

VOF-4 displays a 2-D coordination polymer motif, built up from

the edge-sharing dimer described earlier (Fig.1(b)), which is

further linked to other adjacent dimers through two bridging F-

atoms to form an edge-sharing “zigzag” chain (Fig.8). These

chains are bridged by the pyrazine ligand to form infinite metal-40

organic sheets (Fig.9 and Fig.10).

In VOF-4 there is only one single vanadium ion in the 4+

oxidation state as confirmed by bond valence sum calculations

(∑V1 = 3.77). 45

Edge-sharing octahedral chains bridged by organic ligands have
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Fig.10 Structure of VOF-4 viewed along the a axis, showing stacks of
layers

Fig.11 Structure of VOF-5 (a),VOF-6 (b) and VOF-7 (c) viewed along5

the a axis

previously been reported for divalent metal chlorides bridged by

bipy15-17 and trans-connected single chains have also been seen in

vanadium and magnesium fluorides bridged by bipy,6,18 but there

are no previous reports on “zigzag” edge-sharing chains in metal-10

halide/organic coordination polymers.

VOF-4 was synthesised using the same procedure as VOF-2, the

only difference being the reaction temperature (140°C for VOF-4

and 170°C for VOF-2). It is interesting to see how the reaction

temperature affects the resulting materials and also the15

protonation of the organic amine involved within the synthesis.

Fig.12 Structures of VOF-8 (a) and VOF-9 (b) viewed along the b axis

High temperature reaction conditions led to more condensation of

the inorganic framework to form 2-D anionic inorganic sheets20

templated by protonated pyrazinium cations, whereas lower

reaction temperatures did not favour either increased

condensation of the inorganic framework or the protonation of

pyrazine, and hence a 2-D coordination polymer was formed.

25

VOF-5, VOF-6, VOF-7, VOF-8, VOF-9, VOF-10, VOF-11 and

VOF-12 all display the same inorganic ladder-type chain

previously reported for CsVOF3, α-RbVOF3 and

[H2bpe]1/2VOF3.
19 This ladder (Fig.2) is constructed from the

edge-sharing dimer described earlier (see Fig.1(a)), with each30

dimer sharing two further F atoms with adjacent dimers, leaving

one F and one O atom terminal.

All the ladder type materials contain one single vanadium site in
the asymmetric unit, with bond valence sum calculations
indicating a 4+ oxidation state in each case.35

Interestingly, this type of vanadium octahedral connectivity can
be achieved using organic, inorganic or mixed organic-inorganic
templates, and is produced using either solvothermal or
ionothermal synthesis.

While the ladder-like motif always displays essentially the same40

structural features (i.e. distribution of bond lengths and the
orientation of the vanadyl bond), the different templates involved
in the synthesis dictate different overall crystal-packing
characteristics. In fact, it is not only the template that affects the
overall structural features: a subtle change in the reaction45

conditions can give rise to different polymorphs of the same
composition. For example, prior to our synthesis of VOF-10 a
different modification (now designated α-RbVOF3) had been
reported19 and was synthesised using a solution of 1:1
H2O/ethylene glycol. Changing the mixed solvent system to 3:150

H2O/DMSO led to the second polymorph (VOF-10, or β-
RbVOF3) with a different ladder packing scheme. Also VOF-11
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Fig.13 Structures of VOF-10 (a) viewed along the c axis, VOF-11 (b)
and VOF-12 (c) viewed along the b axis

and VOF-12, polymorphs of KVOF3, can both be synthesised by
varying the ratio of the mixed solvent system and the5

temperature.

The crystal packing schemes for VOF-5, VOF-6, VOF-7, VOF-
8, VOF-9, VOF-10, VOF-11 and VOF-12 are shown in Fig 11,
12 and 13.

It is worth mentioning, here, that the layer structure VOF-1 and10

the ladder VOF-8 have been prepared using the same template
benzimidazole; using 1 mmol led to VOF-1 as a pure phase,
slightly increasing this amount to 1.5 mmol led to a sample
containing mixed phases of VOF-1 and VOF-8. The layered
structure VOF-3 also coexists with the ladder type structure15

VOF-5, and several attempts to prepare them phase-pure were
not successful (See supplementary for more details on the
synthesis conditions and also PXRDs for the samples)

The crystal structure of VOF-13 shows an interesting variation of

the ‘standard’ [VOF3]n
n- ladder-type described above. In the20

standard ladder, the edge-sharing dimer can be considered as the

rung of the ladder, with each octahedral unit of the dimer further

sharing one F atom with adjacent octahedra to form the rails

(Fig.2). In contrast, VOF-13 can be regarded as an “alternating

ladder-type structure” where the edge-sharing dimer is not the25

rung of the ladder but instead forms part of the rails; the rung is

the tetrameric unit formed when the dimers share two further F

atoms, and these tetrameric units are linked to each other by

sharing two more F atoms (Fig.14). Fig.15 shows the “buckled”

nature of the “alternating” ladder compared to the30

“standard”ladder.

Fig.14 Topology of the [VOF3]n
n- “alternating ladder” chain

35

Fig.15 A view showing the standard ladder (a) and the alternating ladder
(b)

It can also be seen that both types of ladders, the ‘standard’ and
the ‘alternating’ one may be regarded as constituent motifs of the
layers found in VOF-1 and VOF-2 (See Fig.S11 in the40

supplementary) where the “standard ladder” can be seen in the
vertical direction, while the “alternating ladder” appears in the
horizontal direction.

In VOF-13, the ladders are linked together by protonated
ethylenediammonium cations as illustrated in Fig.16.45

Fig.16 VOF-13 viewed along the b axis
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Fig.17 Unique chain type [V2O2F7]n
2n- motif found in VOF-14

5

Fig.18 A view of VOF-14 along the c axis

VOF-14 has a novel chain type structure. Again, this chain, as
illustrated in Fig.17, is formed from the edge-sharing dimers
described earlier, with each dimeric unit sharing only one further
F atom with neighbouring units, leaving two F atoms and one O10

atom terminal. The chains are connected through protonated
DABCO cations as shown in Fig.18. It is worth noting that
according to the bond valence sum calculations, (∑V1 = 4.77) 
and also looking at the formula (with only one H2DABCO),
vanadium occurs in a mixed +4/+5 oxidation states.15

Magnetic Susceptibility

As shown in Fig.19, magnetic susceptibility data for VOF-13
show evidence for low-dimensional antiferromagnetic order, with
a broad maximum in the plot of  versus T near 50 K.(see the
inset in Fig.19) Above 150 K the data fit well to a Curie-Weiss20

law, with a Weiss constant  = –90 K indicating relatively strong
antiferromagnetic interactions. The experimental effective
magnetic moment eff = 2.29 B; in good agreement with the
ideal value for two isolated spin ½ species (i.e two V(IV) per
formula unit) , ideal = 2.45 B.25

Various simple models were used to attempt to fit the (T) data,
including Bleaney-Bowers dimer, 1D Ising or Heisenberg chains
and spin ladder models. The best fit was produced from a 1-D S =

Fig.19 Plot of 1/χ  versus T and the Curie-Weiss fit above 150 K for30

VOF-13; the inset shows the plot of χ versus T

½ Ising chain model (See supplementary material), rather than
the Heisenberg chain (in contrast to the ladder compound
CsVOF3).19

Conclusions35

The reaction of VOF3 or V2O5, HF and an appropriate organic,
inorganic or mixed templating source in a suitable solvent (IL or
a solution of H2O/DMSO or H2O/ethylene glycol) yielded 14
novel materials, that considerably expand and enrich the list of
existing VOFs. Both ionothemal and solvothermal systems are40

shown to be fruitful media to target these types of materials.
These results emphasise once more the propensity of ionothermal
synthesis to produce more extended structures, with the isolation
of four novel materials displaying 2-D connectivities, although
ladder type structures and 1-D chains are still accessible45

ionothermally. In ionothermal synthesis using a hydrophobic IL,
EMIM Tf2N, the nature and the amount of the templating source
involved in the synthesis has a great effect on the dimensionality
of the final material. The reaction temperature can also affect the
degree of protonation of template. High reaction temperature50

leads to the protonation of pyrazine and the formation of a 2-D
inorganic layer with the pyrazinium cations acting as a template
and charge balancing agent (VOF-2), while lower temperature
yielded a neutral layered coordination polymer with pyrazine
acting as a coordinating ligand (VOF-4). Solvothermal synthesis55

yielded three different phases displaying ladder like topologies
and it is found that a subtle change in the reaction conditions
affects the conformation of the ladders and their packing within
the unit cell (VOF-10, VOF-11, VOF-12). While this exploration
yielded several interesting materials, it is apparent that there is60

still much more scope to develop further the chemistry of VOFs,
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leading to other new VOF framework types and potentially novel
physical or chemical properties.
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