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ABSTRACT 

Attaching a large external display can help a mobile device user 

view more content at once. This paper reports on a study investi-

gating how different configurations of input and output across 

displays affect performance, subjective workload and preferences 

in map, text and photo search tasks. Experimental results show 

that a hybrid configuration where visual output is distributed 

across displays is worst or equivalent to worst in all tasks. A mo-

bile device-controlled large display configuration performs best in 

the map search task and equal to best in text and photo search 

tasks (tied with a mobile-only configuration). After conducting a 

detailed analysis of the performance differences across different 

UI configurations, we give recommendations for the design of 

distributed user interfaces. 

Categories and Subject Descriptors 

H5.2 [Information interfaces and presentation]: User Interfaces. - 

Graphical user interfaces. 

General Terms 

Design, Experimentation, Human Factors. 

Keywords 

Distributed user interfaces, multi-display environments, mobile 

input, text search, photo search, map search. 

1. INTRODUCTION 
Mobile devices are used by billions of people for voice calls or 

messaging and by hundreds of millions to access e-mail, browse 

photographs, use applications or access geographical data. How-

ever, mobile devices have intrinsic limitations due to their neces-

sarily small size. A very apparent drawback of mobile devices is 

that their screens do not allow for the display of large amounts of 

information at once without requiring interaction, which limits the 

possibilities for information access and manipulation on the go. 

One attractive approach taken to address this problem is to com-

plement the small display of a mobile device with a larger display, 

which might be borrowed opportunistically from the environment 

(see Figure 1 and [32]). Such configuration has several perceived 

advantages, including: a) the large display might supplement the 

screen real estate lacking in the mobile display, b) input can still 

be provided through the mobile device, which is familiar to, prox-

imate to and easily manipulated by the user, and c)implementation 

of this kind of configuration is already possible with a currently 

available infrastructure (e.g., network-connected digital signage 

[18]). Many research projects (e.g., [4, 6, 9, 10, 11], and numerous 

new commercial products (e.g., Wii U, Apple Remote App, multi-

device Scrabble) point to a future where we might expect operat-

ing system-level support for multi-display ecosystems with seam-

less interaction across opportunistically available displays. 

 

Figure 1. Hybrid configuration for information seeking. 

However, before this can happen, we need to better understand the 

implications on performance and use when the interface to an 

application exists across multiple displays. Indeed, the distribution 

of the interface may introduce new problems that are not present 

in single-screen user interfaces [31, 25] and we need to know 

whether the added problems outweigh the advantages of the extra 

display. In this paper we describe a series of experiments that 

investigate the effects of three configurations (mobile-only, mo-

bile-controlled large display, and hybrid) on performance, subjec-

tive workload and user preference in three tasks common to mo-

bile scenarios (map, text, and photo search). 

We contribute important new empirical evidence applicable to the 

design of interfaces for mobile multi-display scenarios. The ex-

periments show that distributing visual information across the two 

displays (hybrid) causes significant overheads due to the neces-

sary gaze shifts, resulting in the worst performance across config-

urations. The best configuration across all tasks was the mobile-

controlled large display, where output is constrained to the large 

display and input is provided in the mobile device.  

2. RELATED WORK 

2.1 Distributed and Multi-Device UI  
Multi-Display Environments (also known as Distributed Display 

Environments) are computing systems that present visual output 

to more than one display [19, 24]. Previous work has explored the 

challenges of designing, enabling, and implementing generic 

MDEs (e.g., [30, 21, 22]). 

In this paper we focus on MDEs that use a large situated display 

to complement a mobile device (mobile+large display), which has 

been explored by several research groups in the past [10, 23]. 

Some prototypes demonstrate varied applications where the mo-

bile device is used for both input and output [28, 15, 18, 6, 27, 9], 

or exclusively for input [2, 18, 23]. LensMouse [33] is also an 

example of this kind of configuration motivated instead as en-

hanced input device for personal computers. In addition to re-

search prototypes, several commercial systems exist that take 

advantage of similar MDE configurations such as the upcoming 

Wii U, or other applications to control PCs or TVs from a 

smartphone (e.g., [29]). Phone projector systems [14, 17] are also 

similar to our scenario in that they produce two visual spaces. 
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2.2 Studies on Distributed Interaction 
Although many mobile+large display systems exist with alterna-

tive distributions of input and output, comparisons of the effects 

of different configurations are scarce.  

ARCPad [23] and LensMouse [33] contain evaluations of pointing 

and menu access capability; although these are useful for the de-

sign of input interaction techniques, we seek to investigate higher-

level tasks that go beyond selection. Finke et al. [11] investigate 

several strategies for the design of applications across personal 

and public displays and test several examples; however, these 

provide qualitative evidence about specific applications that might 

be difficult to generalize, and they did not find differences be-

tween configurations. Closest to our research is Gostner et al.’s 

study [13], which investigated a text search and entry task in large 

display-only, mobile-only, and hybrid configurations and found 

that the large-display and hybrid condition were best. Our study 

extends their work in three ways: we test three tasks, we isolate 

text search (which they studied in combination with text entry), 

and we study a large display configuration that is comparable in 

input to the hybrid and mobile (their large display condition had 

input in the large display, which could introduce a confound – 

results could be due to input or output differences). 

Although not identical, results from studies on projector phone 

devices are also relevant to our work. Studies about picture 

browsing [14] and map search tasks [17] found performance ad-

vantages for the projected-only configuration for map search 

tasks. Besides the differences in the physical environment (theirs 

was a hanging mini-projector attached to a mobile phone), our 

work differs from theirs in two main ways: we use touch as input 

(they used buttons and a joystick), and we provide a statistical 

analysis of differences in performance and user preference. Cau-

chard et al. [5] studied the effects of the positioning of the pro-

jected image on hybrid (mobile+projected display) configurations. 

They found that having two screens in the same visual field en-

couraged context shifts, but that did not affect performance. 

2.3 Issues in Mobile-LD Interactions 
Other researchers have investigated issues that are relevant, but 

they focused on other scenarios. For example, mobile+large-

display configurations can be considered to be bifocal display 

systems used for overview and detail [8]. Grudin [16] highlights 

how the partition between displays can be beneficial; Tan et al. 

[31] showed that comparing information across displays at differ-

ent depths has a small cost in terms of performance; and Bi et al. 

[3] found that bezels can negatively affect visual search in vertical 

displays if objects are split. Finally, map navigation in large dis-

plays was found to be more efficient with physical navigation than 

through panning and zooming [1].   

3. EMPIRICAL STUDY 
The main goal of the studies is to find out which configuration is 

best and worst for each task in terms of performance, workload, 

and participant preference. The secondary goal is to investigate 

the possible causes of these results. We chose tasks among those 

identified as the most common information tasks on mobile sce-

narios: map search, text search, and photo search [7]. 

Elements common to all three experiments are described in the 

following sub-sections. Specifics of each experiment are ex-

plained in their corresponding experiment sections. 

3.1 Apparatus 
The apparatus consisted of two displays: a HTC Desire HD™ 

mobile device with a 480x800px (240ppi), 5.7x9.6cm (4.3") 

screen and a 1980x1080px (54ppi), 92.5x52cm (42") LG High 

Definition Liquid Crystal™ display. The large display was at-

tached to a Windows 7™ PC and both devices ran custom exper-

imental Java™ software connected through a 13Mbps IEEE 

802.11 wireless connection (no noticeable delay). 

Participants sat on a chair, with the large vertical display perpen-

dicular to them and centered in front, at a distance of about 

120cm. Participants were not movement-constrained although we 

kept the chair in a fixed position. Participants were allowed to 

hold the untethered mobile device in the non-dominant hand, in a 

portrait orientation (content rotation was disabled). 

3.2 Conditions 

The main factor for all three experiments was UI configuration. 

UI Configuration had three levels: 

Mobile. Only the mobile device was used for input and output. 

Panning and paging through touch input allowed virtual naviga-

tion of data space that did not fit on screen. 

Large Display. The mobile device was used only as input device; 

output was shown only on the large display. Input was captured 

through a modified version of RemoteDroid [29] which works 

like a buttonless touchpad. 

Hybrid. The mobile device was used for input and output as in the 

mobile configuration, but output was also shown on the large 

display. In the case of a large data set, the large display showed 

the whole data, while the handheld only showed a partial view. 

The part of the dataset visible on the mobile device was dynami-

cally represented with the scope window frame, a rectangular 

bounding box on the large display (Figure 2).  

Resolution and input ratio were kept constant across the three 

configurations. Each map, photo and text was represented by the 

same amount of pixels regardless of the display. Input was cali-

brated so that the same drag gesture would result in the same 

amount of pixel movement. The C-D gain was approximately 4.6 

for mobile-controlled movements on the large display and 1 for 

content on the mobile display (direct touch).  

The secondary factor in all three experiments was data size, that 

had two levels: small, and large. Small data was calculated to fit 

completely on the mobile display, while large data did not, requir-

ing some kind of navigation dependent on the task. 

3.3 Measures 
All experiments measured: 

Completion time (CT). Calculated from the time the trial starts 

until the last selection is made. 

Errors. Proportion of trials with incorrect answer(s). 

Length of interaction (LI). Finger drags distance logged by the 
mobile screen (in pixels) during the trial. 

Gaze shifts (#GS). The number of times a participant shifts gaze, 

or gaze and head pose, between displays, per trial. Measured by 
examining the video of each trial. 

Subjective Workload. For each configuration and task, participants 
filled a six-question NASA TLX survey. 

Overall Preference. Each participant ranked each configuration in 
order of preference. 

3.4 Participants 
Twenty-six participants (age 19-33, 7 females) were recruited 

from the local university in exchange for a £5 gratuity. All partic-

ipants had normal or corrected-to-normal vision. Except two, all 

had used touch phones. All participants did all three experiments. 



3.5 Procedure 
Participants rehearsed with each condition before the real trials. 

For each task, they performed three blocks of eight trials, each on 

a different configuration. The order of the conditions was bal-

anced across participants, although each participant would see the 

same order of configurations across all three experiments. Within 

each block, participants performed four trials under the small data 

condition followed by four trials under the large data condition. 

The first and fifth trial in each block were considered as training 

trials, and are excluded from the analyses. Participants performed 

a total of 8x3x3 = 72 trials of which 18 (25%) were considered 

training. After each block, participants filled the TLX question-

naire, and after each experiment they ranked the configurations in 

order of preference. Each session took approximately 1h. 

3.6 Data Filtering 
We filtered out the data of participants that did not comply with 

criteria established before the analysis. We discarded a partici-

pant’s data for an experiment when more than 2/3 of the trials con-

tained at least one error, when the participant showed signs of not 

understanding the task during the real trials, and when a disrup-

tion took place during the test (e.g., loud external noise). 

4. EXPERIMENT 1: MAP SEARCH 
This task represents map search situations where a user needs to 

find a location with a choice criterion (e.g., the cheapest hotel) 

and is modeled upon previous experimental tasks [1, 17]. Partici-

pants had to find and tap on the marker with the lowest price label 

out of 15 markers distributed on the map shown on a fixed zoom 

level. The trial would not finish until the unique lowest-price 

marker was tapped. For small data, all markers were visible with-

in the mobile screen and panning was disabled. 

In large data trials, the markers were spread out across the full 

map, which was the same size as the large screen (1920x1080), 

and was accessible from the mobile device through standard 2D 

panning. In the hybrid condition, a rectangle on the large screen 

dynamically represented the viewport currently shown on the 

mobile display (Figure 2). 

 
Figure 2. Map search task on mobile and large display (hybrid 

configuration). Devices not to scale. 

4.1 Results 
No participant data was excluded for the map experiment. 

4.1.1 Performance 
The main measure of the experiment was completion time. Due to 

the non-normality of the time measure distributions all time statis-

tical analyses were performed on log-transformed measures. Av-

erage times and graphs are presented in non-transformed measures 

(seconds). The same applies to the other experiments. 

An omnibus ANOVA with configuration and data size as main 

factors and participant as random factor revealed a strong effect of 

configuration (F2,50 = 11.29, p < 0.001, ηp
2 = 0.31), and data size 

(F1,25 = 84.93, p < 0.001, ηp
2 = 0.77) on completion time, as well 

as interaction between the two main factors (F2,50 = 11.77, p < 

0.001, ηp
2 = 0.32). To follow up the interaction, we performed 

separate analysis on the large and small data conditions. 

An ANOVA test on the small data trials showed that configura-

tion had a significant effect on completion time (F2,50 = 6.28, p < 

0.01, ηp
2 = 0.20). For the small data condition,  mobile was  fastest 

(M=8.99s), followed by large display (M=9.29s, 3.3% slower) and 

hybrid (M=11.49s, 28% slower). Post-hoc tests corrected for mul-

tiple comparisons (Tukey’s HSD) showed significant differences 

between the hybrid (the slowest) and the other configurations, but 

not between mobile and the large display. 

The ANOVA on the large data trials was also significant for con-

figuration (F2,50 = 18.45, p < 0.001, ηp
2 = 0.42), but the post-hoc 

comparisons showed a different pattern, where large display is 

significantly faster (M=11.17s) than both hybrid (M=14.01, 25% 

slower) and mobile (M=16.52, 47% slower) configurations. Fig-

ure 3 shows a summary of completion times for the map task 

where * sign on bars indicates a significant difference. 

 
Figure 3. Map search: mean completion times (error bars 

indicate 95% confidence intervals). 

Error data was non-parametric and was analyzed using a Fried-

man test, which showed no significant differences between con-

figurations (χ²(2) = 4.23, p > 0.05). The average number of trials 

with errors was lowest in large display (M=17.3%) followed by 

hybrid (M=18.3%) and mobile (M=24.5%) configurations. 

4.1.1.1 Subjective Evaluation 
The 10-point scale NASA TLX questionnaire questions were 

analyzed separately using non-parametric Friedman paired 

measures tests. We found significant differences among UI con-

figurations regarding physical demand temporal demand, perfor-

mance, effort and frustration level, but not for mental demand (see 

statistics and averages in Table 1). The ratings show that partici-

pants ranked large display as best across all workload questions 

and mobile as worst, with hybrid in the middle. 

Table 1. Map search: average ratings and statistics for the 

TLX questions. For performance, higher means better. Green, 

yellow, red indicate best, middle and worst configuration.   

 
Table 2. Map search: configuration preference rankings. 

 

Best   Worst 

Mobile 2 7 17 

Hybrid 12 11 3 

Large Display 12 8 6 

In the overall ranking, mobile was overwhelmingly the least pre-

ferred configuration (17 out of 26 participants, 65%). Large dis-

play and hybrid were ranked similarly (each preferred by 12 par-

ticipants), although hybrid was more often the intermediate 

choice. The complete preference choices are shown in Table 2. A 

Friedman test of the rankings shows significant differences be-

tween configurations (χ²(2) = 12.0, p < 0.01).  

Factor χ² (2) p Mobile Hybrid Large D.

Physical Demand 11.06 <0.01* 2.98 2.58 2.27

Mental Demand 5.01 >0.05 2.75 2.19 2.27

Temporal Demand 9.32 <0.01* 2.9 2.33 2.27

Performance 7.27 <0.05* 7.85 8.42 8.75

Effort 6.93 <0.05* 3.36 2.92 2.48

Frustration 8.44 <0.05* 3.17 2.38 2.07



Comments from the participants serve to further explain the pref-

erence rankings. Large display was preferred to hybrid because it 

did not require switching attention between displays. Participants 

that preferred hybrid often mentioned the availability of both de-

tail and overview in different displays. They also highlighted the 

ability to easily keep track of the overall position as one of the 

advantages of hybrid vs. mobile. The extensive panning required 

in the mobile configuration was cited as a disadvantage for mo-

bile, although not for hybrid. 

4.2 Auxiliary Analyses 
In addition to the measures analyzed above, we collected gaze 

shift and length of interaction measures to explore explanations 

for the performance differences. Note that these analyses are not 

the main focus of the study and should be interpreted and general-

ized with caution. 

An omnibus ANOVA of length of interaction with configuration 

and data size as main factors and participant as random factor 

yielded main effects of data size (F1,25 = 118.79, p < 0.001, ηp
2 = 

0.83) and configuration (F2,50 = 97.56, p < 0.001, ηp
2 = 0.80), as 

well as an interaction between the two (F2,50 = 105.25, p < 0.001, 

ηp
2 = 0.81). A post-hoc analysis analogous to the one performed 

above showed statistical differences between the interaction 

length in pixels between mobile (Msmall = 2381px, Mlarge = 

39278px) and other configurations (large display: Msmall = 849px, 

Mlarge= 1270px; hybrid: Msmall = 645px, Mlarge = 2361px), but not 

between hybrid and large display. Figure 4 shows the length of 

interaction in configurations.  

To investigate the relationship between gaze shifts and completion 

time, we ran a regression test for the data in the hybrid configura-

tion (the only one with gaze shifts). Trials from small and large 

data were analyzed separately to avoid causing the regression to 

appear significant due to the differences in task requirements. 

 
Figure 4. Map search: length of interaction (LI) 

For  small data, there is a linear relationship between the number 

of gaze shifts (#GS) and completion time 

(CT(seconds)=1.8*#GS+ 8.21) as shown in Figure 5. This regres-

sion is statistically significant (F1,25 = 6.55, p < 0.05) and explains 

21% of the completion time variance (R2=0.214). For large data, 

the regression is very similar (CT=1.8*#GS+9.53), and also sig-

nificant (F1,25 = 15.01, p < 0.01), although it explains a larger por-

tion of the CT variance (R2=0.385, 38%).  

4.3 Summary 
In the map task, configuration made a large difference to perfor-

mance; for data that fits within a mobile screen, mobile and large 

display are equivalent, and better than hybrid, whereas for large 

data, large display is faster than hybrid and mobile. The overall 

disadvantage of the hybrid condition seems to stem from the gaze 

shifts needed in this configuration. Our measures indicate that 

each shift might cost up to 1.8 seconds. The auxiliary analyses 

suggest that, for the small data, the main factor affecting perfor-

mance was gaze shifts, which made hybrid worst.  

The large data forced participants to pan much more in the mobile 

condition, making it the slowest; although this increased level of 

interaction was not necessary with the hybrid configuration 

(which showed low interaction), the gaze shifts in this configura-

tion still mattered, making hybrid and mobile equivalently slow 

for different reasons. 

 
Figure 5. Map search: average gaze shifts (per trial) in the 

hybrid configuration. 

These results put the large display configuration as the best option 

across all data sizes. Although this was recognized in the work-

load assessments (large display ranked as the least demanding 

configuration), more participants ranked hybrid above large dis-

play than the opposite when asked for their overall preference. 

5. EXPERIMENT 2: TEXT SEARCH 
This task was designed to represent text tasks such as those in-

volved in search-engine use. Participants had to find and tap on 

page-result descriptors that contained a specific text fragment. 

The text to be found was presented at the top of the screens and 

was reproduced verbatim within the target page-result descriptors. 

Descriptors were arranged in columns (see Figure 6).  

The text page-result descriptions consisted of Wikipedia featured-

page text fragments of 30 words in average and were selected to 

have Flesch readability scores [12] between 50 and 62, represent-

ing text at 10-11th grade reading level. The 12-point Sans-Serif 

text was left-aligned. Each page-result text was 23x31cm on the 

large display, and 5.6x9cm on the mobile screen, using a similar 

number of pixels across displays. The search fragments to be 

found were, on average, 3 words long. 

 
Figure 6. Text search task shown on mobile and large display 

In small data size, participants had to select one page-result out of 

five displayed in a single column. In large data size, participants 

had to select three page-results containing the specified text 

among fifteen possible answers. In the mobile and hybrid condi-

tions, the fifteen page-result texts were distributed in three pages. 

Two arrows at the top of the small screen indicated the presence 

of another page to the left, to the right or both (see Figure 6). 

Switching between pages was possible through the standard hori-

zontal swipe gesture implemented in most modern touch devices. 

Paging was chosen over scrolling for three reasons: evidence 

shows that paging is better for text on small screens [26]; pilot 

tests showed that three pages were easier to navigate than a con-

tinuous vertical scroll; and, horizontal paging makes the large 

display configuration more equivalent in terms of control and 

visual configuration to the other two. Selection in the large dis-

play condition was achieved through a visible cursor controlled 

using the mobile device as buttonless trackpad. We considered 

alternative mechanisms based on block-selection (without a visi-

ble cursor) but we found that these were less familiar and per-

formed worse in 3 participant pilot tests. 



5.1 Results 
In this experiment we excluded the data from four participants 

according to the a priori criteria. 

5.1.1 Performance 
An omnibus ANOVA with configuration and data size as main 

factors and participant as random factor revealed a strong effect of 

configuration (F2,42 = 11.22, p < 0.001, ηp
2 = 0.35), and data size 

(F1,21 = 943.77, p < 0.001, ηp
2 = 0.98) on completion time. Be-

cause no interaction was found between configuration and data 

size (F2,42 = 1.42, p > 0.05, ηp
2 = 0.06), we performed the post-hoc 

analysis of small and large data tasks together. 

 
Figure 7. Text search: mean completion time (error bars indi-

cate 95% confidence intervals) 

For the text task, mobile was the fastest configuration (M=28.55s) 

followed by large display (M=33.26s, 16% slower) and hybrid 

(M=39.145s, 37% slower) configurations. Post-hoc tests corrected 

for multiple comparisons (Tukey’s HSD) showed statistically 

significant differences between hybrid (the slowest) and the other 

conditions, but not between mobile and large display. Figure 7 

shows a summary of the completion time data for the text task. 

Error data was again analyzed using Friedman tests, which 

showed no statistically significant differences between configura-

tions (χ²(2) = 3.95, p > 0.05). On average, the number of trials 

with errors was lowest in hybrid (M=2%), followed by mobile 

(M=4%) and large display (M=6%). 

5.1.2 Subjective Evaluation 
Responses to the questions were analyzed separately using Fried-

man tests. In this task we only found differences in performance 

(χ²(2) = 6.21, p < 0.05)  as shown in Table 3.   

Table 3. Text search: average ratings in the TLX questions. 

 
Table 4. Text search: configuration preference rankings. 

 

Best   Worst 

Mobile 8 10 4 

Hybrid 2 6 14 

Large Display 12 6 4 

 

In the overall ranking hybrid was the least preferred configuration 

(14/22 participants, 64%). The large display was the most pre-

ferred configuration (12/22, 54%) followed by mobile (8/22, 

36%). A Friedman test of the rankings shows significant differ-

ences between the three configurations (χ²(2) = 9.82, p < 0.01). 

Table 4 shows the complete preference choices. 

Most participants commented that they found it easier to scan text 

on the large display, although some preferred the mobile display 

for this task because they were not accustomed to reading on large 

screens. In general, participants said that they found themselves 

shifting attention between displays in the hybrid configuration, 

even though they realized that it did not help them. Note that par-

ticipants were explicitly told at the beginning of these trials to 

make use of either or both displays as they pleased. 

5.2 Auxiliary Analyses 
An omnibus ANOVA of length of interaction with configuration 

and data size as main factors and participant as random factor 

yielded main effects of data size (F1,21 = 25.31, p < 0.001, ηp
2  = 

0.55), configuration (F2,42 = 23.24, p < 0.001, ηp
2 = 0.52), as well 

as an interaction between the two (F2,42 = 16.39, p < 0.001, ηp
2 = 

0.44). A post-hoc analysis (Tukey’s HSD) showed statistical dif-

ferences in the interaction length between large display (Msmall = 

2947px, Mlarge = 24815px) and the other configurations (mobile: 

Msmall = 16px, Mlarge = 1921px; hybrid: Msmall = 12px, Mlarge = 

1973px), but not between mobile and hybrid. Figure 8 shows the 

length of interaction with different configurations and data sizes 

for text search. 

  

Figure 8. Text search: length of interaction. Hybrid and mo-

bile LI for small data are too small to be visible. 

The regression between gaze shifts and time was not significant in 

any data size (F1,21 = 0.15, p > 0.05; F1,21 = 0.00, p > 0.05). 

5.3 Summary 
In the text search task, configuration had a large impact on per-

formance; mobile and large display were equivalent and hybrid 

was worst, regardless of whether the data fit the mobile screen or 

not. Although we did not find statistical evidence of a relationship 

between gaze shifts and completion time, we can only attribute 

the poorer performance of the hybrid condition to the availability 

of two possible foci of attention, regardless of the number of gaze 

shifts performed. Note that the length of interaction does not 

match the completion time results; even though length of interac-

tion was at least an order of magnitude larger for the large display 

configuration, completion time was still equivalent to mobile, and 

15% faster than hybrid. 

The problems of the hybrid technique were reflected in the overall 

ranking of the technique by the participants. The tie in perfor-

mance between mobile and large display is solved in favor of the 

latter in the subjective data. 

6. EXPERIMENT 3: PHOTO SEARCH 
The task for the photo search experiment is analogous to the text 

search task but with face photographs. A photo of a famous Hol-

lywood female celebrity was displayed on top of the interface. 

Participants had to find and tap on the photos of the same person 

that appeared amongst photos from other celebrities. Photos were 

arranged on 3x6 grids per page (see Figure 9). In each trial partic-

ipants had to find a different person. All photos shown were dif-

ferent, although some represented the same person (e.g., the pho-

tos for the correct answer). The photos had 106x159px (i.e. 

7.8x5cm on the large display, 1.8x1.2cm on the mobile device). 

In the small data size condition a single photo had to be selected 

among those in a 3x6 grid. For large data, there were three correct 

Factor χ² (2) p Mobile Hybrid Large D.

Physical Demand 4.48 >0.05 4.14 4.39 3.71

Mental Demand 4.73 >0.05 2.75 3.25 2.66

Temporal Demand 4.45 >0.05 3.86 3.68 2.98

Performance 6.21 <0.05* 8.34 7.45 8.41

Effort 4.86 >0.05 4.34 4.43 3.66

Frustration 1.69 >0.05 3.07 3.18 2.64



answers among three 3x6 grids. Paging and input were identical to 

those in Experiment 2. 

 
Figure 9. Photo search task on mobile and large display. 

6.1 Results 
In this experiment we excluded the data from six participants 

according to the a priori criteria. 

6.1.1 Performance 
An omnibus ANOVA with configuration and data size as main 

factors and participant as random factor revealed a strong effect 

on completion time of configuration (F2,38 = 4.29, p < 0.05, ηp
2 = 

0.18), and data size (F1,19 = 933.58, p < 0.001, ηp
2 = 0.98), as well 

as interaction between the two main factors (F2,38 = 7.71, p < 

0.001, ηp
2 = 0.29). To follow up the interaction, we performed 

separate analysis on the large and small data conditions. 

An ANOVA test on the small data trials showed that configura-

tion had no significant effect on completion time (F2,38 = 2.91, p > 

0.05, ηp
2 = 0.13). For the small data condition hybrid was the fast-

est configuration (M=8.89s), followed by large display 

(M=10.35s, 16% slower) and mobile (M=12.01s, 35% slower).   

 
Figure 10. Photo search: completion time (error bars show 

95% confidence interval). 

An ANOVA test on the large data trials showed that configuration 

had a significant effect on completion time (F2,38 = 12.33, p < 

0.01, ηp
2 = 0.39). For the large data condition, large display was 

the fastest configuration (M=33.68s), followed by mobile 

(M=37.19s, 10.4% slower) and hybrid (M=48.47s, 44% slower). 

Post-hoc tests corrected for multiple comparisons (Tukey’s HSD) 

showed statistically significant differences between hybrid (the 

slowest) and the other conditions, but not between mobile and 

large display. Figure 10 shows completion times for photo search 

task. 

Error data was strongly non-parametric and was analyzed using a 

Friedman test, which showed no significant differences between 

configurations (χ²(2) = 1.73, p > 0.05). On average, the number of 

trials with errors was lowest in hybrid (31%) followed by large 

display (32%) and mobile (36%) configurations. 

6.1.2 Subjective Evaluation  
We found significant differences among UI configurations on 

physical demand (χ²(2) = 9.08, p < 0.05) and mental demand 

(χ²(2) = 7.25, p < 0.05). These results along with the mean values 

of these ratings for different configurations are shown in Table 5. 

For photo search, participants ranked large display as best (13/20, 

65%) and ranked mobile as worst (10/20, 50%). Rank counts are 

shown in Table 6. 

Table 5. Photo search: average ratings in the TLX questions.  

 

Table 6. Photo search: configuration preference rankings. 

 

Best   Worst 

Mobile 4 6 10 

Hybrid 3 9 8 

Large Display 13 5 2 

6.2 Auxiliary Analyses 
An omnibus ANOVA of length of interaction with configuration 

and data size as main factors and participant as random factor 

yielded effects of data size (F1,19 = 101.49, p < 0.001, ηp
2 = 0.84), 

configuration (F2,38 = 28.51, p < 0.001, ηp
2 = 0.60), as well as an 

interaction between the two (F2,38 = 21.47, p < 0.001, ηp
2 = 0.53). 

A post-hoc analysis (Tukey’s HSD) showed statistical differences 

in interaction length between large display (Msmall = 872px, Mlarge 

= 4217px) and the other configurations (mobile: Msmall = 11px, 

Mlarge = 1115px; hybrid: Msmall = 14px, Mlarge = 1132px), but not 

between mobile and hybrid. Figure 11 shows the mean length of 

interaction with small and large data. 

 

Figure 11. Photo search: length of interaction. 

To investigate the relationship between gaze shifts and completion 

time, we ran a linear regression test for the data in the hybrid con-

figuration which was not significant in either data size (F1,19 = 

2.34, p > 0.05; F1,19 = 1.59, p > 0.05). 

6.3 Summary 
In the photo search task, mobile and large display performed 

equivalently, despite the large differences in interaction length. 

The large data condition brought out the differences in perfor-

mance between techniques, which clearly showed that hybrid is 

the worst option. Paradoxically, the mobile configuration was 

rated by participants as inferior to hybrid for all workload ques-

tions, and ranked very similarly. 

7. DISCUSSION 

7.1 Distributing visual output has a cost 
In principle, the hybrid configuration allows people to take ad-

vantage of two very different displays, which could allow users to 

make the most of both for different aspects of the task at hand. For 

example, a user may employ the large display to get an overview 

of the data space (which also enables physical navigation [1]), and 

the mobile display when direct input and a more flexible position-

ing of the device (e.g., bringing the display closer to the eyes) is 

beneficial [4]. 

However, our experimental results indicate that distributing the 

visual output incurs significant performance overheads; hybrid 

Factor χ² (2) p Mobile Hybrid Large D.

Physical Demand 9.08 <0.05* 5.03 4.85 3.9

Mental Demand 7.25 <0.05* 1.8 2.22 1.45

Temporal Demand 4.95 >0.05 3.85 3.37 3.18

Performance 4.82 >0.05 6.12 6.68 7.18

Effort 4.35 >0.05 4.5 3.9 3.25

Frustration 0.95 >0.05 2.93 2.38 2.92



showed the worst performance in the text and photo search and 

equivalent to worst in the map search. We now explore several 

factors which might explain this disadvantage including, attention 

shift, visual/input space mismatch and distraction.  

Attention Shifts. In general, a user can only look at one display at 

a time. Shifts of attention require gaze shifts which force the user 

to quickly adapt to a display that is at a different distance [31], has 

a different resolution, and where visual objects are shown at a 

different size. Moreover, the visual content represented on the 

mobile display is often a subset of what a large display can show 

(with large data). Typically, this requires a user to reorient them-

selves within the new visual space after a transition, i.e., to find 

what they were looking at in the previous display. The necessary 

mapping operation between the two visual representations might 

have an added cognitive cost. We were able to observe a direct 

relationship between the number of gaze shifts and the completion 

time for the map task which suggests that each shift can cost an 

average of 1.8s for this specific task and context. Smaller (but 

comparable) time costs are shown in [27] for a lower-level multi-

display targeting task (580ms). Part of the shifting cost might 

stem from the additional cognitive effort involved in deciding 

whether and when to switch displays. The design of multi-display 

applications to support particular tasks should carefully consider 

the inherent attention shift costs versus the projected interaction 

design benefits.  

Visual/input space mismatch. Because the two displays show 

different views of the same information space, a mismatch can 

arise between the region being looked at on the large display and 

the information currently visible on the mobile display. Since 

input is only available on the mobile device, once users locate the 

appropriate element on the large display they need to explicitly 

align their mobile view of the information to the focus of attention 

on the large display. In other words, there is a duplication of the 

navigation task: physical navigation with body, head and eye 

movement; and virtual navigation through explicit interaction. We 

observed instances of this behavior in the video, and three partici-

pants explicitly commented on it. Researchers and designers con-

sidering this configuration should develop and employ techniques 

to aid the user in better aligning their mobile view with their locus 

of attention on the large display. 

Distraction. It is also possible that the mere presence of a large 

display, sometimes with moving elements (the scope window 

frame) is a source of distraction that users cannot avoid looking at. 

This would explain why most participants used both displays in 

the hybrid configuration even when the data also fit the mobile 

display, and even though performance was poorer. This suggests 

the design of multi-display applications needs to carefully consid-

er the overall distraction factor versus scope for improved interac-

tion within and across tasks.  

These experiments were not designed to tease out which of these 

cost elements is dominant for explaining the poorer performance 

of hybrid configurations across all tasks. However, they helped 

identify possible culprits, and provide evidence that, for these 

tasks, the overheads introduced by the availability of two sources 

of visual output overpower any advantages of having dual views. 

7.2 Tasks and Configurations 
The primary goal of this study was to investigate which configura-

tions are best for which tasks. The large display configuration was 

best or equivalent to best in all tasks and data sizes. The mobile-

only configuration was worst in the map task and equivalent to 

best in the photo and text tasks.  

These results also help clarify the role of interaction in the distri-

bution of the interface; although the separation of input and output 

has been extensively studied as a factor influencing performance 

we found that considerable differences in the amount of interac-

tion for the photo and text tasks did not impact on the correspond-

ing completion time differences. The large display configuration 

required amounts of interaction orders of magnitude above mobile 

and hybrid but still performed best or equivalent to best. This 

suggests that for tasks that do not require continuous navigation 

such as photo and text search, how we distribute visual infor-

mation across displays is more relevant than the directness of the 

interface (i.e., direct vs. indirect input). 

Surprisingly, the hybrid configuration was ranked more favorably 

by participants than how it corresponds to its performance or their 

own subjective workload ratings; hybrid was clearly ranked worst 

for the text task, but it came close second for the map task and 

was second in the photo task even though performance was sub-

stantially inferior than mobile. Although this anomaly requires 

further study, we speculate that users may like the freedom of 

choosing which display to use, regardless of performance.  

7.3 Large display indirect vs. small dis. direct 
Our results also provide a valuable comparison between the mo-

bile and large display configurations. Large display was, on aver-

age, ranked above mobile in all three tasks, and participants con-

sistently rated it as better performing and less demanding across 

all 18 Likert scales. 

The possible explanations for these results are varied. First, it is 

better to have more simultaneous pixels without the need to inter-

actively manipulate the viewport. This is in line with results from 

previous studies on vertical large display scenarios [1], and sug-

gests that eye/head/body navigation is superior to interactive nav-

igation. This is not merely a resolution issue: our maps, texts and 

photos all had the same resolution and layout regardless of the 

configuration. Second, it is possible that for a given fixed amount 

of visual information people prefer to interact with larger objects. 

Third, people might prefer the large display because it is more 

stable, and does not require looking down or holding the device at 

a certain angle or distance. 

Importantly, we found no evidence suggesting that the loss of 

‘directness’ between input and output is important in the dis-

cussed scenario, or that the ability of users to place the visual 

output of a mobile device anywhere in their field of view is bene-

ficial for these tasks.  

7.4 Limitations 
Although these experiments cover a broad range of tasks that are 

common in mobile scenarios, there are other tasks such as text 

composition, photo manipulation or web browsing that might be 

affected differently across the various configurations. Exploration 

of these tasks will be valuable to expand and complete these re-

sults. Due to the limited nature of experimental design, we only 

tested two levels of data size; further experiments with data that 

requires viewport changes on a large display should be valuable in 

improving the understanding of how to support interaction with 

very-large-data in mobile scenarios.  

The configurations chosen are representative of the single- and 

multi-display options that are already feasible in many scenarios 

(e.g., wherever there is a large public display and a communica-

tion channel between the mobile and the large display devices). 

However, by excluding configurations that require input sensing 

in the environment we constrained ourselves to scenarios that are 

already feasible with widely installed infrastructure. Other alterna-



tives such as direct touch on the large display [24], the use of the 

mobile devices as ray-pointing input [27, 20], or more sophisticat-

ed combinations of small and large display content [4] fall outside 

the scope of this research and need to be addressed in the future. 

Although we did not explicitly consider the use of mobile project-

ed large displays (e.g., [14, 17]) we believe that the results found 

in our study provide valuable guidance to the effects that different 

ways of distributing the interface might have on future mobile 

projector-based systems. 

7.5 Lessons for Practitioners 
Our study provides useful evidence for the design of mobile and 

multi-display distributed interfaces: 

 Large displays can be used in mobile tasks to enhance user per-

formance and preference, and reduce perceived workload. 

 Showing same visual elements of an interface across displays 

should be avoided for single-user tasks. 

 Tasks that require continuous navigation of the data space (e.g. 

map search) benefit most from the addition of a large display. 

8. CONCLUSIONS 
Supplementing a mobile device with large displays found in the 

environment has been widely considered as an opportunity to 

overcome some of the limitations of small mobile displays. How-

ever, there is very little evidence to guide designers on how to 

distribute the interface in these cases. In this paper we provide 

empirical evidence of how different distribution of input/output 

across mobile and large display affects user performance, subjec-

tive workload and subjective preferences in a wide range of com-

mon mobile tasks. We show that mobile-controlled large displays 

are generally the best option across the tasks, followed by not 

using a large display at all. Although we observed that a configu-

ration with distributed visual content was worst or equal to worst 

across tasks, participants seemed to prefer it in many cases to the 

mobile-only baseline. We have also suggested several sources of 

overhead derived from splitting the interface across different dis-

plays, backed by empirical evidence, and provided advice for 

practitioners on how to apply our findings to design the next gen-

eration of multi-display environments. 
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