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ABSTRACT

We present SCUBA-2 850 μm observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three
are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect
two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks,
our 3σ limits correspond to a dust mass of 1.2 M⊕ in Taurus and a mere 0.2 M⊕ in the TWA (3–10× deeper
than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus,
ρ Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a
gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find
the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is
∼100 AU for intermediate-mass stars, solar types, and VLMS, and ∼20 AU for BDs. (2) While the upper envelope
of apparent disk masses increases with M∗ from BDs to VLMS to solar-type stars, no such increase is observed from
solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate
stellar masses. (3) Many of the disks around Taurus and ρ Oph intermediate-mass and solar-type stars evince an
opacity index of β ∼ 0–1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with
multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks
are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 μm fluxes with the known
accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied
TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102)
remains largely unknown. (5) A Bayesian analysis shows that the apparent disk-to-stellar mass ratio has a roughly
constant mean of log10[Mdisk/M∗] ≈ −2.4 all the way from intermediate-mass stars to VLMS/BDs, supporting
previous qualitative suggestions that the ratio is ∼1% throughout the stellar/BD domain. (6) Similar analysis shows
that the disk mass in close solar-type Taurus binaries (sep <100 AU) is significantly lower than in singles (by a
factor of 10), while that in wide solar-type Taurus binaries (�100 AU) is closer to that in singles (lower by a factor
of three). (7) We discuss the implications of these results for planet formation around VLMS/BDs, and for the
observed dependence of accretion rate on stellar mass.
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1. INTRODUCTION

The masses of the primordial disks girdling newborn stars and
brown dwarfs (BDs), and the degree of grain growth in these
disks, are key to the processes of accretion, planet formation,
and migration within them. Much work has gone into inferring
disk masses and grain growth around solar-type and higher-
mass stars (e.g., Beckwith et al. 1990; Andrews & Williams
2005, 2007a; Ricci et al. 2010a, 2010b, hereafter B90, AW05,
AW07a, R10a,b, respectively), and such studies now extend into
the substellar domain as well (Klein et al. 2003; Scholz et al.
2006; Schaefer et al. 2009).

Here, we present the results of a JCMT/SCUBA-2 850 μm
pilot survey of seven very low mass stars (VLMS) and BDs,
spanning 0.02–0.2 M� in mass, and located in the ∼1 Myr old
Taurus star-forming region and the ∼10 Myr old TW Hydrae
Association (TWA). All the sources are known to be accreting

from surrounding primordial disks. The study, undertaken as
part of SCUBA-2 first-light observations, is 3–10 times deeper
than previous such surveys of young VLMS/BDs, and includes
four out of the five confirmed VLMS/BD accretors in the TWA,
none of which have been examined at these wavelengths before.9

Our goals are twofold. First, by combining our data with
previous large submillimeter/millimeter (sub-mm/mm) disk
surveys (specifically, those of AW05; AW07a; Scholz et al.
2006; Schaefer et al. 2009), we wish to investigate trends in
disk mass and grain growth as a function of stellar mass, and

9 The one other confirmed TWA VLMS accretor, Hen 3-600A, has been
observed earlier and is included in our final analysis, along with another
(higher mass) accretor in the region, TW Hya. Two additional VLMS TWA
members—TWA 33 and 34—have been reported very recently by Schneider
et al. (2012); they are not included in our analysis, but discussed briefly in
Section 2.1. The only other (higher mass) accretor in the region, TWA 5A, has
not been observed in the sub-mm/mm, and is also excluded from our study.
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the attendant implications for planet formation and accretion.
Our analysis generally follows that of AW05 and AW07a,
with a few significant differences: (1) we concentrate solely
on Class II objects (or, roughly equivalently, classical T Tauri
(cTT) sources), in order to avoid confusion by both envelope
contamination in earlier evolutionary types and a possible lack
of primordial disks altogether in more evolved sources; (2) we
combine the Taurus and ρ Oph samples of AW05 and AW07a,
and extend the study to much lower (sub)stellar masses by the
addition of objects from our own and other surveys; (3) we
take advantage of various more recent investigations of disk
radii, surface densities, and temperatures, in order to define
a set of realistic fiducial disk parameters that allows us to
focus on the primary unknowns of interest here—disk mass
and grain growth; and (4) we explicitly frame the analysis in
terms of generalized equations that extend the Rayleigh–Jeans
(RJ) formalism of B90 to the non-RJ regime (which we show is
especially vital for VLMS/BDs).

Second, and equally important, we wish to present a Bayesian
framework for some of the above analysis, which makes
maximal use of the non-detections/upper limits in the combined
data set. The majority of disks around VLMS and BDs,
as well as a significant fraction of those around solar-type
and higher-mass stars, remain undetected in the sub-mm/mm.
While these non-detections clearly have something to say about
the underlying disk mass distribution, the question is how
to combine them with the detections in order to extract the
maximum information encoded in all the data. This is obviously
not an issue restricted to studies of disk masses, but one that is
central to all surveys that include upper limits. Unfortunately, it
has often not been addressed satisfactorily in the young stellar
community. Non-detections are frequently simply ignored, or
upper limit values—ranging arbitrarily from 2σ to 5σ—used
as true detections in order to estimate the sample distribution.
A more sophisticated approach has sometimes been to invoke
survival analysis, based on the classic work by Feigelson &
Nelson (1985). However, as the latter authors explicitly caution,
this technique (1) is not appropriate when the upper limits are
correlated with the variable under discussion (e.g., if the upper
limits on the observed flux are primarily due to the sensitivity
of a flux-limited survey), which is clearly the case in many if
not most astronomical studies; and (2) does not account for
noise in the data. A Bayesian approach, on the other hand,
provides an elegant and intuitively simple way of dealing with
both upper limits and noise. We outline the general method,
and apply it to our combined disk mass data set; we hope that
the community adopts the technique more widely for analyzing
analogous surveys.

Our sample, observations, and data reduction procedure
are summarized in Section 2, and our derivation of stellar
parameters is described in Section 3. Section 4 provides a brief
overview of the equations we use to model the disk spectral
energy distribution (SED), with more details in Appendix A. We
summarize our method for analyzing grain growth and disk mass
in Section 5, and discuss our choice of fiducial disk parameters
for this analysis in Appendix B. Our results are described in
Sections 6–8, which cover the validity of the RJ approximation
(Section 6), trends in grain growth and disk mass (Section 7),
and a Bayesian analysis of the ratio of disk to stellar mass
(Section 8, with an outline of the general Bayesian technique in
Appendix C). The implications for planet formation and mass
accretion rates are discussed in Section 9, and our conclusions
presented in Section 10.

2. DATA

2.1. SCUBA-2 Sample and Additional Sources

We were awarded 10 hr of shared-risk (first light) time
on JCMT/SCUBA-2 to investigate primordial disks around
VLMS/BDs. The observed sample consists of seven young
objects: CHFT-BD Tau 12 (M6.5), GM Tau (M6.5), and
J044427+2512 (M7.25) in Taurus, and TWA 30A (M5), TWA
30B (M4), 2MASS 1207-3932 (M8), and SSSPM 1102-3431
(M8) in the TWA. All are optically revealed sources (i.e., with-
out surrounding remnant envelopes) known to host accretion
disks (from optical/UV accretion signatures and infrared dust
emission), i.e., they are Class II cTT analogs. This choice allows
us to focus on disk properties, without confusion from either
envelope emission (Class 0/I sources) or the absence of a disk
altogether (Class III). J044427+2512 had been detected earlier
over 450 μm–3.7 mm (Scholz et al. 2006; Bouy et al. 2008), and
was selected to test our sensitivity; GM Tau had been observed
before at 1.3 mm and 2.6 mm but not detected (Schaefer et al.
2009); and the rest had never been observed earlier in the sub-
mm/mm. Our four TWA sources, combined with the previously
observed Hen 3-600A and TW Hya (see below), comprised all
known VLMS/BD accretors, and six out of the seven known
accretors of any stellar mass, in this association at the time of
observation. The one confirmed TWA accretor excluded here is
TWA 5A (Mohanty et al. 2003), which is a roughly solar-type
cTT multiple not yet observed in the sub-mm/mm.10 Very re-
cently, Schneider et al. (2012) have announced two new VLMS
TWA members, TWA 33 and 34. Their relatively weak Hα
emission suggests very little accretion (applying the Hα equiva-
lent width criterion devised by Barrado y Navascues & Martin);
nevertheless, the mid-infrared excesses in WISE bands indicate
surviving primordial disks (Schneider et al. 2012). These two
sources have not yet been observed in the sub-mm/mm, and
were announced too late for inclusion in our survey.

To our sample observed with SCUBA-2, we add most of the
Taurus, ρ Oph, and TWA Class II and/or cTT analogs (i.e., opti-
cally revealed accretors) observed in the sub-mm/mm (850 μm
and/or 1.3 mm) so far. The Taurus and ρ Oph data are taken from
the surveys by AW05, AW07a, Scholz et al. (2006), and Schaefer
et al. (2009). From the first two, we select only those classified
as Class II (based on power-law fits over 2–60 or 2–25 μm; see
AW05, AW07a). From Scholz et al. (2006), we only choose
the nine objects classified as cTTs by Mohanty et al. (2005),
Muzerolle et al. (2005), or Luhman (2004) based on
optical/infrared diagnostics: CFHT-BD Tau 4, J041411+2811,
J043814+2611, J043903+2544, J044148+2534, J044427+2512,
KPNO Tau 6, KPNO Tau 7, and KPNO Tau 12. These are all
in Taurus, and many of them are also known to harbor disks
from Spitzer mid-infrared data (Luhman et al. 2010). There is
a potential danger that such a selection criterion might discard
very weak accretors which nonetheless still harbor disks (which
describes a number of Class II sources). In practice, however,
we find that this criterion includes all the sources Scholz et al.
detect at 1.3 mm, as well as a few which they do not. In other
words, the sources we have dropped present no evidence at all
of disks, from optical to mm wavelengths, and there is no ra-
tionale for including them at this point: while a few may very
well harbor disks that are currently completely undetected, the

10 The TWA 5A system (see Torres et al. 2003, and references therein for
component details) also has a BD companion TWA 5B; the latter, however,
does not have measurable accretion (Mohanty et al. 2003).
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same may be said of objects classified as Class III by AW05 and
AW07a, which we have also ignored.

From the Taurus survey by Schaefer et al. (2009), we include
all sources with spectral-type M4 or later (i.e., VLMS/BDs)
that have been classified as cTTs by Mohanty et al. (2005) or
Muzerolle et al. (2003), and/or as Class II by Luhman et al.
(2010; based on mid-infrared Spitzer data out to 24 μm). This
yields seven objects: CIDA 1, CIDA 14, FN Tau, FP Tau, GM
Tau, MHO 5, and V410 Anon 13 (an eighth object fitting these
criteria, CIDA 12, has been previously observed by AW05, and
we use their value for consistency). We ignore the remaining 13
stars (all earlier than M4) from Schaefer et al.’s survey, for the
following reasons. Seven of these have also been observed by
AW05, of which six are classified by them as Class II (GO Tau,
DN Tau, IQ Tau, CIDA 7, CIDA 8, and CIDA 11); these are
already included in our study (with AW05’s values). Among the
remaining six stars not observed by AW05, various issues arise
in some (e.g., large spectral-type uncertainty, or not classified
as cTTs or Class II), so we conservatively choose to discard all
six. Given the large sample at these spectral types that our study
already includes, from AW05 and AW07a, this decision has no
discernible impact on our results.

Finally, we include the sub-mm/mm fluxes for the TWA
cTTs Hen 3-600A and TW Hya from Zuckerman (2001) and
Weintraub et al. (1989), respectively.

Our combined sample consists of 134 objects—48 in ρ Oph,
80 in Taurus, and 6 in the TWA—spanning masses of ∼15 MJ
to 4 M�. For uniformity, we recalculate the stellar and disk
parameters for all our sources taken from the literature, based on
the spectral types and disk fluxes cited by the authors and using
the methods discussed in Sections 3 and 5. The full final sample
is listed in Table 1, with our SCUBA-2 sub-sample marked with
asterisks.

2.2. SCUBA-2 Observations and Fluxes

Exhaustive descriptions of the SCUBA-2 instrument, its cal-
ibration and performance, and its pipeline reduction procedure
are supplied by Holland et al. (2013), Dempsey et al. (2013),
and Chapin et al. (2013), respectively; we refer the reader to
these for details, and simply summarize our data acquisition
and reduction procedures here. Each of our sources was ob-
served simultaneously at 450 and 850 μm, with an FWHM
beam size at 850 μm of 14′′. Integration times were ∼30–60
minutes per source, employing a constant speed “daisy” scan
pattern appropriate for point sources (Holland et al. 2013). The
450 μm data were discarded due to weather-related noise issues,
but the 850 μm observations were suitable. The data were re-
duced using the makemap routine within the smurf package in
the SCUBA-2 pipeline orac-dr, with a parameter file specifi-
cally designed for faint point sources; point-source detection and
calibration was carried out using a Mexican hat-type “matched-
filter” method, with Mars and Uranus as the primary absolute
calibrators (Chapin et al. 2013). We note that the relative flux cal-
ibration uncertainties at 850 μm with SCUBA-2 are better than
5% (Dempsey et al. 2013), significantly superior to the 10%
uncertainty at this wavelength in its predecessor SCUBA. For
our sources, which are all very faint, the errors are dominated by
photon noise; the final 1σ noise levels achieved range from ∼0.8
to 1.8 mJy (Table 1). AW05 and AW07a mention the systematic
calibration uncertainties for their sample (∼10% at 850 μm and
∼20% at 1.3 mm), which dominate the errors for a number of
their brighter sources, but do not include it in their calculations;
for comparison to their results, we do not include these un-

certainties either, but mention their effect at relevant junctures.
These do not affect our overall results and conclusions.

Assuming optically thin isothermal dust at 20 K with an
opacity of κdust,[850] ≈ 3.5 cm2 g−1 (standard cTT disk grain
parameters used in the literature, e.g., Scholz et al. 2006;
AW05; AW07a; see detailed discussion below in Section 5),
this translates to 3σ detection limits on the dust mass of
∼0.15–0.20 M⊕ in the TWA and ∼0.70–1.2 M⊕ in Taurus
(employing the distances supplied in Table 1; for Taurus, we
adopt a constant mean d = 140 pc, while for the TWA sources,
we use the individual values based on measured parallaxes).
This is 3–10× deeper than any previous survey of VLMS/BD
disks. For a standard gas-to-dust mass ratio of 100:1 (i.e., total
opacity of κ[850] ≈ 0.035 cm2 g−1), these numbers imply total
disk mass detection limits of 0.05–0.06 MJ and 0.2–0.4 MJ in
the TWA and Taurus, respectively. J044427+2512 was strongly
detected at 9.85 ± 0.76 mJy, consistent with its previous 850 μm
detection at 10 ± 1.5 mJy (Bouy et al. 2008), while CFHT-BD
Tau 12 was marginally detected at 4.06 ± 1.32 (3.1σ ). The
remaining five sources remained undetected at the 3σ level.

3. STELLAR PARAMETERS

We calculate stellar masses, radii, and effective temperatures
for all our sources using previously determined spectral types, a
single assumed age for all sources in a given star-forming region
or association, and the predictions of theoretical evolutionary
tracks. Spectral types are converted to effective temperatures
using the conversion scheme in Kenyon & Hartmann (1995) for
types M0 and earlier, and the scheme devised by Luhman et al.
(2003) for later types. Objects in Taurus and ρ Oph are assumed
to have an age of ∼1 Myr, and those in the TWA are assumed to
have an age of ∼10 Myr. The derived temperatures are then com-
pared to solar-metallicity evolutionary model predictions for the
assumed ages to infer stellar masses and radii. We use (1) the
models of Siess et al. (2000) for stars with mass >1.4 M�; (2) the
models of Baraffe et al. (1998) for stellar masses 0.08–1.4 M�,
specifically, models with a mixing length to pressure scale
height ratio of αmix = 1.0 for 0.08–<0.6 M� and models with
αmix = 1.9 (value required to fit the Sun) for 0.6–1.4 M� (see
discussion in Baraffe et al. 2002); and (3) the “Dusty” models
of Chabrier et al. (2000) for masses <0.08 M� (which are mid-
to late-M types at ages of a few mega-years, the spectral-type
regime where photospheric dust starts to become important).

We divide our sample into four stellar mass bins:
intermediate-mass stars (>1–4 M�), solar-type stars (0.3–1 M�),
VLMS (0.075–<0.3 M�), and BDs (�0.075 M�). Within each,
we adopt the median stellar mass as a representative of its
class: 2.5 M� for intermediate-mass stars (⇒ R∗ ≈ 4 R� and
T∗ ≈ 5000 K at 1 Myr); 0.75 M� for solar types (2 R�, 4000 K;
the usual parameters adopted for solar-type cTTs in the litera-
ture); 0.2 M� for VLMS (1.5 R�, 3200 K); and 0.05 M� for BDs
(0.55 R�, 2850 K). These fiducial masses will serve to illustrate
the trends in disk mass and grain growth implied by our disk
models for each mass bin. In Taurus, we have 11 intermediate-
mass stars, 49 solar types, 9 VLMS, and 11 BDs; in ρ Oph, we
have 9, 32, 7, and 0 in the same bins; and in the TWA, we have
0, 1, 3, and 2, respectively.

4. DISK SPECTRAL ENERGY DISTRIBUTION: THEORY

The theory of disk SEDs is outlined in Appendix A. The main
assumptions and resulting equations relevant to our analysis are
as follows.
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Table 1
Sub-mm/mm Fluxes, Binarity, and Derived Properties for Class II/cTTs in ρ Oph, Taurus, and the TWA

IDa SpT Teff M∗ F[850]
b 1σ Errorb F[1300]

b 1σ Errorb α850−1.3
c Md,ν

d 1σ Error Region Dist Refe Multf Refg

(K) (M�) (mJy) (mJy) (mJy) (mJy) (MJup) (MJup) (pc)

AS 205 K5 4350 1.000 891 11 450 10 1.61 ± 0.06 59.0070 0.7285 ρ Oph 150. 1, 1 w, sb 1

AS 209 K5 4350 1.000 551 10 300 10 1.43 ± 0.09 36.4903 0.6623 ρ Oph 150. 1, 1 . . . . . .

DoAr 16 K6 4205 0.850 47 8 <50 . . . > −0.15 3.1126 0.5298 ρ Oph 150. 1, 1 . . . . . .

DoAr 24 K5 4350 1.000 . . . . . . <30 . . . . . . <6.0340 . . . ρ Oph 150. . . ., 1 . . . . . .

DoAr 24E K1 5080 2.481 158 6 70 20 1.92 ± 0.68 10.4636 0.3974 ρ Oph 150. 1, 1 w 1

DoAr 25 K5 4350 1.000 461 11 280 10 1.17 ± 0.10 30.5300 0.7285 ρ Oph 150. 1, 1 . . . . . .

DoAr 28 K5 4350 1.000 . . . . . . <75 . . . . . . <15.0851 . . . ρ Oph 150. . . ., 1 . . . . . .

DoAr 32 K6 4205 0.850 . . . . . . <45 . . . . . . <9.0511 . . . ρ Oph 150. . . ., 1 . . . . . .

DoAr 33 K4 4590 1.295 79 7 40 10 1.60 ± 0.62 5.2318 0.4636 ρ Oph 150. 1, 1 . . . . . .

DoAr 44 K3 4730 1.538 181 6 105 11 1.28 ± 0.26 11.9868 0.3974 ρ Oph 150. 1, 1 . . . . . .

DoAr 52 M2 3560 0.579 . . . . . . <55 . . . . . . <11.0624 . . . ρ Oph 150. . . ., 1 . . . . . .

EL 18 K6 4205 0.850 . . . . . . <10 . . . . . . <2.0113 . . . ρ Oph 150. . . ., 1 . . . . . .

EL 24 K6 4205 0.850 838 8 390 10 1.80 ± 0.06 55.4970 0.5298 ρ Oph 150. 1, 1 . . . . . .

EL 26 M0 3850 0.691 <51 . . . 15 5 <2.88 3.0170 1.0057 ρ Oph 150. 1, 1 . . . . . .

EL 27 K8 3955 0.740 678 10 300 10 1.92 ± 0.09 44.9009 0.6623 ρ Oph 150. 1, 1 . . . . . .

EL 31 M0 3850 0.691 . . . . . . <10 . . . . . . <2.0113 . . . ρ Oph 150. . . ., 1 . . . . . .

EL 32 K7 4060 0.785 . . . . . . <50 . . . . . . <10.0567 . . . ρ Oph 150. . . ., 1 . . . . . .

EL 36 A7 7850 3.639 . . . . . . <10 . . . . . . <2.0113 . . . ρ Oph 150. . . ., 1 . . . . . .

GSS 26 K8 3955 0.740 298 7 125 20 2.04 ± 0.38 19.7352 0.4636 ρ Oph 150. 1, 1 . . . . . .

GY 284 M3 3415 0.478 . . . . . . 130 10 . . . 26.1475 2.0113 ρ Oph 150. . . ., 1 . . . . . .

IRS 2 K3 4730 1.538 . . . . . . <25 . . . . . . <5.0284 . . . ρ Oph 150. . . ., 1 . . . . . .

IRS 37 M4 3270 0.286 93 8 <10 . . . <5.25 6.1590 0.5298 ρ Oph 150. 1, 1 . . . . . .

IRS 39 M2 3560 0.579 63 5 <15 . . . >3.38 4.1722 0.3311 ρ Oph 150. 1, 1 . . . . . .

IRS 49 K8 3955 0.740 52 5 25 5 1.72 ± 0.52 3.4437 0.3311 ρ Oph 150. 1, 1 . . . . . .

RNO 90 G5 5770 3.220 162 4 25 5 4.40 ± 0.47 10.7285 0.2649 ρ Oph 150. 1, 1 . . . . . .

ROXs 25 M2 3560 0.579 . . . . . . 30 5 . . . 6.0340 1.0057 ρ Oph 150. . . ., 1 . . . . . .

ROXs 42C K6 4205 0.850 . . . . . . <30 . . . . . . <6.0340 . . . ρ Oph 150. . . ., 1 . . . . . .

ROXs 43A G0 6030 3.354 . . . . . . <35 . . . . . . <7.0397 . . . ρ Oph 150. . . ., 1 . . . . . .

SR 4 K5 4350 1.000 142 7 31 6 3.58 ± 0.47 9.4040 0.4636 ρ Oph 150. 1, 1 . . . . . .

SR 9 K5 4350 1.000 <25 . . . 15 5 <1.20 3.0170 1.0057 ρ Oph 150. 1, 1 . . . . . .

SR 10 M2 3560 0.579 . . . . . . <25 . . . . . . <5.0284 . . . ρ Oph 150. . . ., 1 . . . . . .

SR 13 M4 3270 0.286 118 6 60 10 1.59 ± 0.41 7.8146 0.3974 ρ Oph 150. 1, 1 c 1

SR 21 G3 5830 3.251 397 6 95 15 3.37 ± 0.37 26.2916 0.3974 ρ Oph 150. 1, 1 w 2

SR 22 M4 3270 0.286 31 3 <20 . . . 1.03 2.0530 0.1987 ρ Oph 150. 1, 1 . . . . . .

Wa-Oph 4 K4 4590 1.295 . . . . . . <13 . . . . . . <2.6148 . . . ρ Oph 150. . . ., 1 . . . . . .

Wa-Oph 5 M2 3560 0.579 . . . . . . <25 . . . . . . <5.0284 . . . ρ Oph 150. . . ., 1 . . . . . .

Wa-Oph 6 K6 4205 0.850 379 7 130 10 2.52 ± 0.19 25.0995 0.4636 ρ Oph 150. 1, 1 . . . . . .

WL 10 K8 3955 0.740 . . . . . . <60 . . . . . . <12.0681 . . . ρ Oph 150. . . ., 1 . . . . . .

WL 14 M4 3270 0.286 . . . . . . 30 10 . . . 6.0340 2.0113 ρ Oph 150. . . ., 1 . . . . . .

WL 18 K7 4060 0.785 . . . . . . 85 10 . . . 17.0965 2.0113 ρ Oph 150. . . ., 1 w 1

WSB 19 M3 3415 0.478 <78 . . . . . . . . . . . . <5.1656 . . . ρ Oph 150. 1, 1 . . . . . .

WSB 37 M5 3125 0.150 . . . . . . <25 . . . . . . <5.0284 . . . ρ Oph 150. . . ., 1 . . . . . .

WSB 46 M2 3560 0.579 . . . . . . <20 . . . . . . <4.0227 . . . ρ Oph 150. . . ., 1 . . . . . .

WSB 49 M4 3270 0.286 . . . . . . <25 . . . . . . <5.0284 . . . ρ Oph 150. . . ., 1 . . . . . .
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Table 1
(Continued)

IDa SpT Teff M∗ F[850]
b 1σ Errorb F[1300]

b 1σ Errorb α850−1.3
c Md,ν

d 1σ Error Region Dist Refe Multf Refg

(K) (M�) (mJy) (mJy) (mJy) (mJy) (MJup) (MJup) (pc)

WSB 52 K5 4350 1.000 . . . . . . 51 10 . . . 10.2579 2.0113 ρ Oph 150. . . ., 1 . . . . . .

WSB 60 M4 3270 0.286 149 7 89 2 1.21 ± 0.12 9.8676 0.4636 ρ Oph 150. 1, 1 . . . . . .

WSB 63 M2 3560 0.579 . . . . . . <25 . . . . . . <5.0284 . . . ρ Oph 150. . . ., 1 . . . . . .

YLW 16C M1 3705 0.596 . . . . . . 60 5 . . . 12.0681 1.0057 ρ Oph 150. . . ., 1 . . . . . .

04113+2758 M2 3560 0.579 . . . . . . 410 40. . . . 71.8364 7.0084 Taurus 140. . . ., 2 w 3

04278+2253 F1 7050 3.567 36. 7. . . . . . . . . . 2.0768 0.4038 Taurus 140. 2, . . . . . . . . .

AA Tau K7 4060 0.785 144. 5. 88 9. 1.16 ± 0.25 8.3073 0.2884 Taurus 140. 2, 2 . . . . . .

AB Aur A0 9520 3.791 359. 67. 103 18. 2.94 ± 0.60 20.7107 3.8652 Taurus 140. 2, 2 . . . . . .

BP Tau K7 4060 0.785 130. 7. 47 0.7 2.39 ± 0.13 7.4997 0.4038 Taurus 140. 2, 2 . . . . . .

CFHT-BDTau 4 M7 2880 0.057 10.8 1.8 2.38 0.75 3.56 ± 0.84 0.6230 0.1038 Taurus 140. 3, 4 . . . . . .

∗CFHT-BDTau 12 M6.5 2935 0.074 4.06 1.32 . . . . . . . . . 0.2342 0.0762 Taurus 140. 5, . . . . . . . . .

CIDA 1 M5.5 3058 0.125 . . . . . . 13.5 2.8 . . . 2.3653 0.4906 Taurus 140. . . ., 6 . . . . . .

CIDA 3 M2 3560 0.579 <9. . . . . . . . . . . . . <0.5192 . . . Taurus 140. 2, . . . . . . . . .

CIDA 8 M4 3270 0.286 27. 3. . . . . . . . . . 1.5576 0.1731 Taurus 140. 2, . . . . . . . . .

CIDA 9 M0 3850 0.691 71. 7. . . . . . . . . . 4.0960 0.4038 Taurus 140. 2, . . . w 4

CIDA 11 M3 3415 0.478 <8. . . . . . . . . . . . . <0.4615 . . . Taurus 140. 2, . . . c 4

CIDA 12 M4 3270 0.286 <7. . . . . . . . . . . . . <0.4038 . . . Taurus 140. 2, . . . . . . . . .

CIDA 14 M5 3125 0.150 . . . . . . <4.5 . . . . . . <0.7884 . . . Taurus 140. . . ., 6 . . . . . .

CI Tau K7 4060 0.785 324. 6. 190 17. 1.26 ± 0.22 18.6915 0.3461 Taurus 140. 2, 2 . . . . . .

CoKu Tau/1 M0 3850 0.691 35. 7. <12 . . . >2.52 2.0191 0.4038 Taurus 140. 2, 2 . . . . . .

CoKu Tau/3 M1 3705 0.596 <8. . . . <16 . . . . . . <0.4615 . . . Taurus 140. 2, 2 w 4

CoKu Tau/4 M2 3560 0.579 9.0 2.9 <15 . . . >−1.20 0.5192 0.1673 Taurus 140. 2, 2 c 4

CW Tau K2 4900 1.971 66. 6. 96 8. −0.88 ± 0.29 3.8075 0.3461 Taurus 140. 2, 2 . . . . . .

CX Tau M3 3415 0.478 25. 6. <40 . . . >−1.11 1.4422 0.3461 Taurus 140. 2, 2 . . . . . .

CZ Tau M2 3560 0.579 <9. . . . <30 . . . . . . <0.5192 . . . Taurus 140. 2, 2 c 4

DD Tau M1 3705 0.596 <42. . . . 17 4. <2.13 2.9786 0.7008 Taurus 140. 2, 2 c 4

DE Tau M2 3560 0.579 90. 7. 36 5. 2.16 ± 0.37 5.1921 0.4038 Taurus 140. 2, 2 . . . . . .

DF Tau M1 3705 0.596 8.8 1.9 <25 . . . >−2.46 0.5077 0.1096 Taurus 140. 2, 2 c 4

‡ DH Tau M1 3705 0.596 57. 9. <57 . . . >0.00 3.2883 0.5192 Taurus 140. 2, 2 w 2

DK Tau K7 4060 0.785 80. 10. 35 7. 1.95 ± 0.56 4.6152 0.5769 Taurus 140. 2, 2 w 4

DL Tau K7 4060 0.785 440. 40. 230 14. 1.53 ± 0.26 25.3835 2.3076 Taurus 140. 2, 2 . . . . . .

DM Tau M1 3705 0.596 237. 12. 109 13. 1.83 ± 0.30 13.6725 0.6923 Taurus 140. 2, 2 . . . . . .

DN Tau M0 3850 0.691 201. 7. 84 13. 2.05 ± 0.37 11.5957 0.4038 Taurus 140. 2, 2 . . . . . .

DO Tau M0 3850 0.691 258. 42. 136 11. 1.51 ± 0.43 14.8840 2.4230 Taurus 140. 2, 2 . . . . . .

DP Tau M1 3705 0.596 <10. . . . <27 . . . . . . <0.5769 . . . Taurus 140. 2, 2 c 4

DQ Tau M0 3850 0.691 208. 8. 91 9. 1.95 ± 0.25 11.9995 0.4615 Taurus 140. 2, 2 sb 3

DR Tau K5 4350 1.000 533. 7. 159 11. 2.85 ± 0.17 30.7487 0.4038 Taurus 140. 2, 2 . . . . . .

FM Tau M0 3850 0.691 32. 8. <36 . . . >−0.28 1.8461 0.4615 Taurus 140. 2, 2 . . . . . .

FN Tau M5 3125 0.150 . . . . . . <17.5 . . . . . . <3.0662 . . . Taurus 140. . . ., 6 . . . . . .

FO Tau M2 3560 0.579 13. 3. <14 . . . >−0.17 0.7500 0.1731 Taurus 140. 2, 2 c 4

FP Tau M4 3270 0.286 . . . . . . <9.3 . . . . . . <1.6295 . . . Taurus 140. . . ., 6 . . . . . .

‡ FV Tau K5 4350 1.000 48. 5. 15 4. 2.74 ± 0.67 2.7691 0.2884 Taurus 140. 2, 2 w 4

‡ FV Tau/c M4 3270 0.286 <25. . . . <16 . . . . . . <1.4422 . . . Taurus 140. 2, 2 w 4

FX Tau M1 3705 0.596 17. 3. <30 . . . >−1.34 0.9807 0.1731 Taurus 140. 2, 2 w 4
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Table 1
(Continued)

IDa SpT Teff M∗ F[850]
b 1σ Errorb F[1300]

b 1σ Errorb α850−1.3
c Md,ν

d 1σ Error Region Dist Refe Multf Refg

(K) (M�) (mJy) (mJy) (mJy) (mJy) (MJup) (MJup) (pc)

‡ FY Tau K7 4060 0.785 <27. . . . 16 5. <1.23 2.8034 0.8761 Taurus 140. 2, 2 . . . . . .

‡ GG Tau A K7 4060 0.785 1255. 57. 593 53. 1.76 ± 0.24 72.4007 3.2883 Taurus 140. 2, 2 c 4

‡ GH Tau M2 3560 0.579 15. 3. <30 . . . >−1.63 0.8653 0.1731 Taurus 140. 2, 2 c 4

‡ GK Tau K7 4060 0.785 33. 7. <21 . . . >1.06 1.9038 0.4038 Taurus 140. 2, 2 . . . . . .

GM Aur K3 4730 1.538 . . . . . . 253 12. . . . 44.3283 2.1025 Taurus 140. . . ., 2 . . . . . .

∗GM Tau M6.5 2935 0.074 0.86 0.87 <4.8 . . . . . . 0.0496 0.0502 Taurus 140. 5, 6 . . . . . .

GN Tau M2.5 3488 0.571 12. 3. <50 . . . >−3.36 0.6923 0.1731 Taurus 140. 2, 2 c 4

GO Tau M0 3850 0.691 173. 7. 83 12. 1.73 ± 0.35 9.9803 0.4038 Taurus 140. 2, 2 . . . . . .

Haro 6-37 K6 4205 0.850 245. 7. <88 . . . >2.41 14.1340 0.4038 Taurus 140. 2, 2 m 4

HN Tau K5 4350 1.000 29. 3. <15 . . . >1.55 1.6730 0.1731 Taurus 140. 2, 2 w 4

HO Tau M1 3705 0.596 44. 6. <30 . . . >0.90 2.5384 0.3461 Taurus 140. 2, 2 w 3

IQ Tau M1 3705 0.596 178. 3. 87 11. 1.68 ± 0.30 10.2688 0.1731 Taurus 140. 2, 2 . . . . . .

IS Tau K7 4060 0.785 30. 3. <20 . . . >0.95 1.7307 0.1731 Taurus 140. 2, 2 c 4

IT Tau K2 4900 1.971 22. 3. <33 . . . >−0.95 1.2692 0.1731 Taurus 140. 2, 2 w 4

J041411+2811 M6.25 2963 0.086 . . . . . . 0.91 0.65 . . . 0.1594 0.1139 Taurus 140. . . ., 4 . . . . . .

J043814+2611 M7.25 2838 0.049 . . . . . . 2.29 0.75 . . . 0.4012 0.1314 Taurus 140. . . ., 4 . . . . . .

J043903+2544 M7.25 2838 0.049 . . . . . . 2.86 0.76 . . . 0.5011 0.1332 Taurus 140. . . ., 4 . . . . . .

J044148+2534 M7.75 2753 0.035 . . . . . . 2.64 0.64 . . . 0.4626 0.1121 Taurus 140. . . ., 4 . . . . . .

∗J044427+2512 M7.25 2838 0.049 9.85 0.76 7.55 0.89 0.63 ± 0.33 0.5682 0.0438 Taurus 140. 5, 4 . . . . . .

JH 112 K6 4205 0.850 30. 10. <18 . . . >1.20 1.7307 0.5769 Taurus 140. 2, 2 m 4

JH 223 M2 3560 0.579 <7. . . . <19 . . . . . . <0.4038 . . . Taurus 140. 2, 2 w 4

KPNO Tau 6 M8.5 2555 0.020 . . . . . . −0.66 0.79 . . . −0.1156 0.1384 Taurus 140. . . ., 4 . . . . . .

KPNO Tau 7 M8.25 2633 0.025 . . . . . . 0.70 0.88 . . . 0.1226 0.1542 Taurus 140. . . ., 4 . . . . . .

KPNO Tau 12 M9 2400 0.014 . . . . . . −0.92 0.70 . . . −0.1612 0.1226 Taurus 140. . . ., 4 . . . . . .

LkCa-15 K5 4350 1.000 428. 11. 167 6. 2.22 ± 0.10 24.6912 0.6346 Taurus 140. 2, 2 . . . . . .

MHO 5 M6 2990 0.096 . . . . . . <9.0 . . . . . . <1.5769 . . . Taurus 140. . . ., 6 . . . . . .

RW Aur K3 4730 1.538 79. 4. 42 5. 1.49 ± 0.30 4.5575 0.2308 Taurus 140. 2, 2 w 4

RY Tau K1 5080 2.481 560. 30. 229 17. 2.10 ± 0.22 32.3063 1.7307 Taurus 140. 2, 2 . . . . . .

St 34 M3 3415 0.478 <11. . . . <15 . . . . . . <0.6346 . . . Taurus 140. 2, 2 sb, w 3, 4

SU Aur G2 5860 3.267 74. 3. <30 . . . >2.12 4.2690 0.1731 Taurus 140. 2, 2 . . . . . .

T Tau K0 5250 2.847 628. 17. 280 9. 1.90 ± 0.10 36.2292 0.9807 Taurus 140. 2, 2 m 3

UX Tau K2 4900 1.971 173. 3. 63 10. 2.38 ± 0.38 9.9803 0.1731 Taurus 140. 2, 2 m 4

UY Aur K7 4060 0.785 102. 6. 29 6. 2.96 ± 0.51 5.8844 0.3461 Taurus 140. 2, 2 w 4

UZ Tau M1 3705 0.596 560. 7. 172 15. 2.78 ± 0.21 32.3063 0.4038 Taurus 140. 2, 2 m 3, 4

V410 Anon 13 M5.75 3024 0.109 . . . . . . <9.0 . . . . . . <1.5769 . . . Taurus 140. . . ., 6 . . . . . .

‡ V710 Tau M1 3705 0.596 152. 6. 60 7. 2.19 ± 0.29 8.7689 0.3461 Taurus 140. 2, 2 w 3, 4

V836 Tau K7 4060 0.785 74. 3. 37 6. 1.63 ± 0.39 4.2690 0.1731 Taurus 140. 2, 2 . . . . . .

V892 Tau A0 9520 3.791 638. 54. 234 19. 2.36 ± 0.28 36.8061 3.1153 Taurus 140. 2, 2 w 3

‡ V955 Tau M0 3850 0.691 14. 2. <19 . . . >−0.72 0.8077 0.1154 Taurus 140. 2, 2 c 4

VY Tau M0 3850 0.691 <10. . . . <17 . . . . . . <0.5769 . . . Taurus 140. 2, 2 c 4

∗2M1207-3932 M8 2710 0.035 0.07 1.75 . . . . . . . . . 0.0006 0.0141 TWA 52.4 5, . . . c 5

Hen3-600A M4 3270 0.218 65. 5. . . . . . . . . . 0.4783 0.0368 TWA 50. 7, . . . c, sb 6

∗SSPM1102-3431 M8 2710 0.035 −0.94 1.57 . . . . . . . . . −0.0084 0.0141 TWA 55.2 5, . . . . . . . . .
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Table 1
(Continued)

IDa SpT Teff M∗ F[850]
b 1σ Errorb F[1300]

b 1σ Errorb α850−1.3
c Md,ν

d 1σ Error Region Dist Refe Multf Refg

(K) (M�) (mJy) (mJy) (mJy) (mJy) (MJup) (MJup) (pc)
∗TWA 30A M5 3125 0.114 1.70 1.63 . . . . . . . . . 0.0088 0.0085 TWA 42. 5, . . . w 7

∗TWA 30B M4 3270 0.218 0.013 1.86 . . . . . . . . . 6.7e–5 0.0097 TWA 42. 5, . . . w 7

TW Hya K6 4205 0.949 1450. 310. 874.h 54. 1.19 ± 0.52 13.3840 2.8614 TWA 56. 8, 8 . . . . . .

Notes.
a “∗” marks sources observed in this paper, at 850 μm on SCUBA-2. “‡” marks sources with more binarity information in footnote 21 of the main text.
b Measured fluxes and 1σ errors, or 3σ upper limits (for sources from the literature where the measured value is not cited).
c Md,[850] if either a measured value of the 850 μm flux is available, or the upper limit on Md,[850] is smaller than the upper limit on Md,[1300]; otherwise Md,[1300].
Computed using Equation (9). These are the values used in our Bayesian analysis.
d Measured values of α with 1σ error bars, or 3σ upper or lower limits. See Equation (8) and discussion in Section 5.
e References for fluxes at 850 μm (first reference) and 1.3 mm (second reference). (1) AW07a, and references therein; (2) AW05, and references therein; (3) Klein
et al. 2003; (4) Scholz et al. 2006; (5) This study (these sources are also marked with an asterisk); (6) Schaefer et al. 2009; (7) Zuckerman 2001; and (8) Weintraub
et al. 1989.
f c = close binary (sep < 100 AU), w = wide binary (sep � 100 AU), sb = spectroscopic binary, and m = multiple.
g References for multiplicity information. (1) R10a, and references therein; (2) Reipurth & Zinnecker 1993; (3) AW05, and references therein; (4) Kraus et al. 2011,
and references therein; (5) Chauvin et al. 2005; (6) Andrews et al. 2010, and references therein; and (7) Looper et al. 2010a. See also footnote 21 in the main text, for
sources IDs marked with ‡.
h For TW Hya, this is the flux (and 1σ error) at 1.1 mm (Weintraub et al. 1989); we have cited it here for completeness, since close to 1.3 mm.

We assume that the disk surface density and temperature have
power-law radial profiles11:

Σ(r) = Σ0

(
r

r0

)−p

, T (r) = T0

(
r

r0

)−q

, (1)

where Σ0 and T0 are the values at the disk inner edge r0. We
further assume that the opacity is a power law in frequency:

κν = κf

(
ν

νf

)β

, (2)

where κf is the opacity at some appropriate fiducial frequency
νf . The spectral index of the emission is defined as

α ≡ d(lnFν)

d(ln ν)
, (3)

where Fν is the disk flux density at frequency ν measured by an
observer.

In the RJ limit, the flux density is given by a polynomial
expression (B90), derived in Appendix A. In this case, the
spectral index reduces to

α ≈ 2 +
β

1 + Δ
, (4)

where Δ is the ratio of optically thick to optically thin emission
(see Appendix A).12 For grains much larger than the wavelength
observed, the opacity κν is independent of the frequency (i.e.,
β ∼ 0), yielding α ≈ 2 regardless of the disk optical thickness.
Conversely, optically thick emission (Δ → ∞) also implies
α ≈ 2, independent of β and hence grain size. In the optically
thin limit (Δ → 0), on the other hand, α ≈ 2 + β.

11 More precisely, truncated power-law profiles, since we impose a finite inner
and outer radius for the disk, as noted further below.
12 Note that some papers (e.g., B90) define α ≡ d(ln Lν )/d(ln ν), where
Lν ∝ νFν , which yields an extra additive factor of one in the expression for α
compared to ours in Equation (4).

If the RJ approximation is not valid, then the general expres-
sion for the flux density is

Fν ≈ ν3

(
4πh

c2

)
f0

(
cos i

D2

) [
(2 − p)τ̄ν

2
R

p

d

]

×
[∫ Rd

r1

r1−p

exp[hν/kT (r)] − 1
dr

]
(1 + Δ) (5)

for a disk with inner radius r0, outer radius Rd, situated at
a distance D from the observer, and inclined at an angle i
relative to the line of sight (so that i = 90◦ for an edge-on
orientation). r1 is the radius at which the emission at ν changes
from optically thick to thin, τ̄ν is the average optical depth in the
disk (≡ (κνMd )/(πR2

d cos i), where Md is the disk mass), and
f0 ∼ 0.8 is a correction factor (see Appendix A). The product
of all the terms outside the last parentheses is the optically thin
contribution to the flux density; the ratio Δ of the optically thick
to thin contributions is given by

Δ ≡
(

2

(2 − p)τ̄ν R
p

d

) ⎡
⎣

∫ r1

r0

r
exp[hν/kT (r)]−1 dr∫ Rd

r1

r1−p

exp[hν/kT (r)]−1 dr

⎤
⎦ . (6)

Equations (5) and (6) must be evaluated numerically, and
the spectral index α computed directly from its definition,
Equation (3). In particular, even if the opacity remains a power
law in frequency, α does not reduce to the simple form of
Equation (4), and will generally be smaller in the sub-mm/mm
(because the spectrum is flatter) than the RJ asymptotic values
of 2 and 2+β for optically thick and thin disks, respectively. We
show in Section 6 that the RJ limit is not ideal at 850 μm and
1.3 mm for our sample, and instead use the generalized forms of
Fν and α to estimate disk masses and grain growth in Section 7,
via the technique described below.

5. GRAIN GROWTH AND DISK MASS:
METHOD OF ANALYSIS

For sources observed at both 850 μm and 1.3 mm, we
have an estimate of Fν as well as α. Using the foregoing

7
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equations, we wish to investigate their disk masses and grain
properties. The latter, however, are specified by three unknown
parameters—Md, κf , and β—while Fν and α represent only
two independent observables. As such, we can only derive β
and the product κf Md from the observed SED (e.g., Natta
et al. 2004; R10a, b, note that only this product enters the
expression for the observed flux, Equation (5), through the
quantity τ̄ν).

Even this, of course, still requires specifying the other six
parameters that Fν and α depend on the disk inclination i,
the disk inner and outer radii r0 and Rd, the surface density
power-law index p, the temperature power-law index q, and the
temperature at the disk inner edge T0. A rigorous determination
of these entails spatially resolved photometry and spectroscopy
from optical to mm wavelengths, which have not been obtained
for the vast majority of sources. Instead, we adopt fiducial
parameters guided by theory and current observations, which
suffices to estimate the broad trends in κf Md and β. The detailed
rationale behind our choices is presented in Appendix B; the
final adopted values are

i = 60◦, r0 = 5 R∗, Rd = 100 AU, p = 1,

q = 0.58, T0 = 880(T∗/4000 K) K. (7)

Additionally, we stipulate that the disk temperature cannot fall
below a minimum value Tmin ≡ 10 K, the temperature declines
with radius as a power law until this value is reached, and
remains at a constant 10 K at larger radii. This is justified in
Appendix A, on the basis of heating by the interstellar radiation
field (ISRF). Note that such a broken power law does not do
any violence to our generalized Equations (5) and (6), where
the precise form of T (r) is unspecified. Finally, we also test
the consequences of varying Rd over the range 10–300 AU
and p over the range 0.5–1.5, for different stellar mass bins.
With these six parameters specified, we determine κf Md and β
by comparing the observed α and Fν to the predictions of the
generalized equations in Section 4, as follows.

With only two observed wavelengths, 850 μm and
1.3 mm, the spectral index defined by Equation (3)
reduces to

α ≡ ln F[850] − ln F[1300]

ln 1300 − ln 850
. (8)

We use this expression to calculate α for both the data and
the SED models they are compared to. Above, and henceforth,
the subscript [λ] denotes a quantity evaluated at a frequency
ν = c/λ. For sources detected at 1.3 mm but not at 850 μm,
we compute the 3σ upper limits on α by replacing F[850]
above by its 3σ upper limit. Similarly, for sources detected
at 850 μm but not at 1.3 mm, we find 3σ lower limits on α
by replacing F[1300] by its 3σ upper limit. Sources with only
upper limits at both 850 μm and 1.3 mm, or those not observed
at all at one or the other wavelength, are excluded from this
analysis.13

Next, following common practice, we choose to normalize
our opacity power law, Equation (2), at a fiducial frequency
νf ≡ 2.3×1011 Hz, corresponding to λf = 1300 μm (1.3 mm).
We denote κf , the (a priori unknown) opacity at this frequency,

13 AW05 and AW07a—the source of most of our flux data—do not cite lower
limits on α for sources detected at 850 μm but not at 1.3 mm, because they
either compute α using shorter wavelength (350 and/or 450 μm) data in these
cases, or exclude these disks altogether (when shorter wavelength data are
absent). We however restrict ourselves to 850 μm and 1.3 mm, in order to
remain in as optically thin a regime as possible.

explicitly as κ[1300]. We further denote the commonly adopted
value of this fiducial opacity by κ̃[1300] ≡ 0.023 cm2 g−1 (e.g.,
B90). Note that the latter value assumes an interstellar medium
(ISM) like gas-to-dust mass ratio of 100:1.

Finally, we define the apparent disk mass Md,ν as the mass
derived from the observed flux at some frequency ν, assuming
that the emission (1) is optically thin, (2) arises from an
isothermal region of the disk with known temperature T̃ , and
(3) is due to material with a known opacity κ̃ν . Thus,

Md,ν ≡ FνD
2

κ̃νBν(T̃ )
. (9)

We adopt T̃ = 20 K and κ̃ν = κ̃[1300] (ν/2.3 × 1011 Hz)β , with
κ̃[1300] as defined above and β = 1. We will write Md,ν explicitly
as Md,[850] or Md,[1300] when Fν is the flux density at 850 μm
or 1.3 mm. With T̃ and κ̃ν fixed, Md,ν is simply a proxy for
the specific disk luminosity FνD

2. The advantage of using this
formulation is that Md,ν (evaluated at 850 μm or 1.3 mm, with T̃
and κ̃ν similar or identical to our adopted values) is widely used
as a simplistic estimate of the disk mass (e.g., AW05; AW07a;
Klein et al. 2003; Scholz et al. 2006). This allows us to directly
compare our results to literature values for disk masses.

Turning now to the theoretical models, we define the
opacity-normalized disk mass as

Mκ
d ≡ κ[1300]Md

κ̃[1300]
=

(
κ[1300]

0.023 cm2 g−1

)
Md, (10)

Mκ
d is merely a scaled proxy for the real variable κ[1300]Md ,

but is useful to employ in lieu of the latter as a more intuitive
quantity (e.g., Natta et al. 2004), specifically, Mκ

d equals the real
disk mass Md if the true opacity κ[1300] equals the fiducial value
κ̃[1300]. Without knowing the true value of the opacity, Mκ

d is the
closest we can get to the real disk mass.

Our analysis now is straightforward. We first show, in
Section 6, that the RJ approximation is not ideal at the disk
temperatures expected in our sample. We thus use the general-
ized equations (5), (6), and (3) (with the latter approximated by
Equation (8)). From these, we calculate the Fν , Δ, and α pre-
dicted by our six fixed disk parameters and a physically plausi-
ble range of Mκ

d and β; we further convert the predicted Fν to a
predicted Md,ν using Equation (9). Comparing these theoretical
Md,ν and α values to the values derived from the observed fluxes
enables us to (1) gauge what fraction of the emission is optically
thin; and (2) estimate the true Mκ

d and β when the emission is
predominantly optically thin, or put lower limits on Mκ

d (and no
constraints on β) when it is optically thick.

Basically, all we are doing is calculating (within the context
of our fiducial disk parameters) what the emitted flux and α
should be for any specified Mκ

d and β, and comparing these to
the observed flux and α to infer what the Mκ

d and β for a source
really are; i.e., a simple inversion. The only potential confusion
for the reader is that, instead of directly using flux in these
comparisons, we use its scaled proxy Md,ν , a quantity which
is often cited in the literature and thus useful to have at hand.
However, the various assumptions that go into calculating Md,ν

(fixed T = 20 K, fixed β = 1) have no effect on our results:
the predicted and observed fluxes are converted to predicted and
observed Md,ν using exactly the same multiplicative factors, so
the end result is precisely the same as simply using flux instead.

8
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Figure 1. α (derived from the general equation (8)) vs. minimum disk
temperature (Tdisk at the outermost radius Rd = 100 AU), for a fiducial disk
around a representative BD (brown), VLMS (red), solar-type star (green), and
intermediate-mass star (blue). The minimum disk temperature flattens at 10 K
for VLMS and BDs, due to heating by the ISRF. Top panel: optically thick disk.
Bottom panel: optically thin disks with β = 0, 1, and 2. For both optically thick
and thin disks, the RJ approximation (α = 2 for thick and α = 2 + β for thin)
becomes increasingly poor for cooler (less massive) objects. See Section 6.

(A color version of this figure is available in the online journal.)

6. RESULTS I: INACCURACY OF THE
RAYLEIGH–JEANS APPROXIMATION

Figure 1 shows the α predicted by the generalized equations
for our fiducial disk model, Equation (7), for the median stellar
temperature and radius within each of our four stellar mass
bins: intermediate-mass stars, solar-type stars, VLMS, and BDs.
The abscissae of the plots show the corresponding minimum
temperature in the disk (i.e., the temperature at the outer disk
radius Rd = 100 AU); in VLMS and BDs, this value levels out
at our fixed lower limit of 10 K. Note that the plotted α refers to
emission integrated over the entire disk, not just from Rd. The
opacity-normalized disk mass, Mκ

d , is either fixed at a very large
value, so that the entire disk is optically thick (i.e., the transition
radius r1 from Equation (A4) formally satisfies r1 � Rd ; top
panel of Figure 1), or fixed at a very small value, so that the
entire disk is optically thin (r1 � r0; bottom panel). β is varied
from 0 to 2.

The top panel shows that, as expected, α in the optically
thick limit is independent of the opacity index β. However, the
asymptotic RJ value in this case, α = 2, is not achieved for any
of our stars. For the relatively hot disks around intermediate-
mass stars, the deviation from RJ is quite small, ∼0.25. For

the cooler disks around solar-type stars to BDs, on the other
hand, the SED is markedly flatter, yielding an α significantly
smaller—by 0.5–0.8—than the RJ expectation. Similarly, the
bottom panel shows that while α does depend on β in the
optically thin limit, as expected, the asymptotic RJ value in this
limit, α = 2+β, is not reached. Again, the deviation is relatively
small for intermediate-mass stars (∼0.2), but appreciable in
VLMS and BDs (∼0.4–0.6).

It is often assumed that the RJ limit applies at ∼mm wave-
lengths for disk temperatures �15 K. Figure 1 shows that
this is not very accurate, with a discernible α deviation of
∼0.2 even for intermediate-mass stars, where the minimum
disk temperature is ∼20 K (and most of the disk is consid-
erably hotter still). More importantly, disks significantly larger
than 100 AU around solar-type and intermediate-mass stars,
as are often observed, as well as even 100 AU disks around
VLMS/BDs (like those plotted in Figure 1), may have temper-
atures down to ∼10 K in their outer regions, where most of
the mass resides. Figure 1 shows that the RJ approximation is
severely strained under these circumstances.14 The danger in
assuming RJ values is that a low observed α from an optically
thin disk will lead one to infer a spuriously low β (i.e., too much
grain growth), and/or a spuriously high optically thick contri-
bution. Equally importantly, a number of disks appear to have
α < 2 (as we shall shortly see); these cannot be explained at all
under the RJ assumption.

Even in the general non-RJ case, however, we see that α
remains very sensitive to β for optically thin emission, with a
roughly linear relationship between the two when all other disk
parameters are fixed (i.e., analogous to the RJ case, except that
now the precise value of α depends on the disk temperature as
well, in both optically thin and thick limits). Thus, α from the
general equations can still be used to probe grain growth, as we
do next.

7. RESULTS II: GRAIN GROWTH AND DISK MASS

7.1. Spectral Slopes and Apparent Disk Masses
from the Observed Fluxes

We first discuss some general trends in the spectral slopes
(α) and apparent disk masses (Md,ν) that we derive from the
observed fluxes, before comparing to model predictions.

Figure 2 shows the α for our sample as a function of stellar
mass, for sources observed at both 850 μm and 1.3 mm and
detected at at least one of these two wavelengths. Sources
detected at both are shown as filled circles with 1σ error bars,15

while 3σ upper and lower limits are plotted as downward and
upward triangles, respectively. Note that the plotted sources
are mainly at M∗ � 0.5 M�, since most lower mass stars
and BDs have either not been observed at both wavelengths
or are undetected at both (see Table 1). The lower limits are also
concentrated at the lower end of this stellar mass range, where
the disks are still bright enough to be detected at 850 μm but
too faint for 1.3 mm; this reflects the empirical fact that disks
become fainter with diminishing M∗.

14 The blackbody function Bν [T ] peaks at ν ≈ 6 × 1011 Hz for T = 10 K,
which is within a factor of 2–3 of the 3.5–2.3 × 1011 Hz (i.e., 850–1300 μm)
range over which α is determined; hν � kT is thus poorly satisfied, and it is
unsurprising that the RJ approximation becomes inaccurate.
15 These errors refer to photon noise; systematic calibration uncertainties
(Section 2) yield in general an additional error of ∼0.5 in α. For sources
plotted with errors �0.5, therefore, the total 1σ error including systematics
rises to ∼0.5–0.7; for sources plotted with larger errors, including the
systematics has negligible effect.
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Figure 2. α for sources in our sample observed at both 850 μm and 1.3 mm,
and detected in at least one of these bands vs. stellar mass. Green filled circles
indicate α for sources detected at both wavelengths, with green vertical lines
denoting the ±1σ uncertainty in these values; purple downward triangles are
3σ upper limits on α, for sources detected only at 1.3 mm; and blue upward
triangles are 3σ lower limits on α, for detections only at 850 μm. The four red
horizontal dashed lines show the expected α in the RJ limit, for optically thin
disks with β = 0, 1, and 2 as well as optically thick disks (note that α = 2
for both optically thick disks and optically thin ones with β = 0, in the RJ
limit; note also from Figure 1 that the RJ approximation becomes less valid
with decreasing stellar mass). The mean slope for all our sources detected in
both bands is 〈α〉 ≈ 2 (solid black horizontal line); the gray zone delimits the
±3σ (±0.18) errors on the latter. See Section 7.1.

(A color version of this figure is available in the online journal.)

For the sub-sample detected at both wavelengths, we find
a mean spectral index of 〈α〉 = 1.98 ± 0.06 (1σ error; mean
and associated 3σ error plotted in Figure 2), in agreement with
the average α derived by AW05.16 While our mean is driven
predominantly by stars �0.5 M�, the four VLMS/BDs with
measured α are consistent with this value. Also, while we have
ignored upper and lower limits in this calculation, Figure 2
shows that all but two of the lower limits and two out of the four
upper limits are compatible, within the errors, with this mean;
including the four deviant points negligibly affects the outcome.

In the upper panels of Figure 3, we plot Md,[850] and Md,[1300]
for our sample (derived via Equation (9), using the distances
D discussed in Section 3), as a function of stellar mass. Going
from BDs to solar-type stars, there is a clear trend of Md,ν

increasing on average with higher M∗; we return to this in
Section 8. For now, note that this simply reflects an increase
in the average emitted specific disk luminosity (FνD

2) with
stellar mass. Conversely, there is a decline in the upper envelope
of Md,ν from the solar-type to intermediate-mass stars, going
approximately as [Md,ν]max ∝ M

−1/2
∗ (shown by a dotted line in

Figure 3). While this relationship is defined by only a handful of
stars, we can at least state that there is no evidence of [Md,ν]max
increasing with M∗ for these stars; we discuss this in Section 7.3.

In the lower panels of Figure 3, we plot the corresponding
Md,[850]/M∗ and Md,[1300]/M∗ as a function of stellar mass.
Excluding the four upper limits among the VLMS/BDs in TWA
(green downward triangles), the mean Md,ν/M∗ appears roughly
constant from BDs to solar types, reflecting the increase in
Md,ν with M∗ noted above. Conversely, the decline in the upper
envelope from solar-type to intermediate-mass stars is now more

16 Including the systematic uncertainties in calibration modestly increases our
1σ error on 〈α〉 from 0.06 to ∼0.08 (AW05’s cited error would increase
similarly), and does not change any of our conclusions.

pronounced, as expected: [Md,ν]max ∝ M
−1/2
∗ in the upper panel

translates to a steeper slope [Md,ν/M∗]max ∝ M
−3/2
∗ in the

lower one. The limiting mass ratio above which gravitational
instabilities set in, Md/M∗ ∼ 0.1 (e.g., Lodato et al. 2005), is
also marked for later reference.

Finally, since the Md,ν results at 1.3 mm are nearly identical
to those at 850 μm, we focus henceforth on the latter for clarity.
To estimate the true grain growth and opacity-normalized disk
masses, we must now compare these Md,[850] and α to the model
predictions.

7.2. Model Predictions

Our model calculations are carried out for four fiducial M∗
(with corresponding R∗ and T∗ at 1 Myr), representing median
values within the four stellar mass bins in our sample (see
Section 3): 2.5 M� (intermediate-mass stars), 0.75 M� (solar
types), 0.2 M� (VLMS), and 0.05 M� (BDs). For each of these
M∗, models are constructed for β = 0–2 (lowest possible
to standard ISM) in steps of 0.1, and Mκ

d = 10−6–1 M� in
steps of 1 dex (sufficient to capture the observed range in
Md,[850], as illustrated shortly). Furthermore, if Mκ

d represents
the true disk mass Md (i.e., if the true opacity κ[1300] equals the
fiducial value 0.023 cm2 g−1), then the disk would nominally
become gravitationally unstable above Mκ

d,GI ≡ 0.1 M∗. We
explicitly include this value in our models for each stellar bin,
for reasons explained further below. We examine a range of Rd
over 10–300 AU, and also vary the surface density exponent p
over 0.5–1.5 (instead of fixing it at 1) in some cases. The rest of
the parameters are as specified in Equation (7). Inserting these
into Equations (5), (6), and (8), we compute the theoretical Fν ,
Δ, and α, and further convert the predicted F[850] to a predicted
Md,[850] with Equation (9).

The model predictions are plotted in Figures 4–7. Each figure
is for a fixed M∗; the top and bottom sets of plots in each figure
correspond to two illustrative values of Rd. The four panels
in each plot show (from left to right and top to bottom) the
following.

1. The predicted F[850] (arbitrarily scaled to the distance of
Taurus for illustration) versus β, for the range of β and
Mκ

d examined. For optically thin emission, the flux density
increases with both Mκ

d and β. As the optically thick
contribution rises with Mκ

d , F[850] becomes less sensitive
to both parameters, until finally, in the thick limit, the flux
density is independent of β and Mκ

d , and saturates at a level
set by the disk temperature and radial extent.

2. The predicted α versus Md,[850] (the latter calculated from
the predicted F[850]; independent of distance), for our grid of
β and Mκ

d . As discussed in Section 6, α increases roughly
linearly with β for optically thin disks, and saturates to
a fixed value when the emission becomes optically thick.
Unlike in the RJ limit, however, the value of α in both
cases depends on the disk temperature (and thus on T∗, or
equivalently M∗, as well as on Rd).

Overplotted in this panel for comparison are the α and
Md,[850] derived from our observed fluxes, for sources in the
relevant stellar mass bin (objects with upper/lower limits
in α are excluded for clarity). The horizontal dashed line
marks the mean index for the full sample, 〈α〉 ≈ 2. The ver-
tical dashed line denotes the maximum observed Md,[850]
(equivalently, maximum observed 850 μm flux) in our data
for the relevant stellar mass bin. This observed upper limit
sets a lower boundary on the size Rd of the brightest disks, as
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Figure 3. Apparent disk mass Md,ν (from Equation (9), using the flux at either 850 μm or 1.3 mm) vs. stellar mass. Top panels: Md,[850] vs. M∗ (left) and Md,[1300]
vs. M∗ (right). Bottom panels: Md,[850]/M∗ vs. M∗ (left) and Md,[1300]/M∗ vs. M∗ (right). Circles are measured values, triangles are upper limits; either symbol
with a central black dot represents a source observed at both wavelengths. Taurus objects in blue, ρ Oph in red, and TWA in green. Vertical dashed lines distinguish
between intermediate-mass stars, solar types, VLMS, and BDs. A sloping dotted line marks the falling upper envelope from solar-type to intermediate-mass stars
(Md,ν ∝ M

−1/2
∗ in the upper panels and Md,ν/M∗ ∝ M

−3/2
∗ in the lower ones). The bottom panels also show the boundary above which disks are expected to become

gravitationally unstable, Md/M∗ ∼ 0.1 (horizontal dashed line). See Section 7.1.

(A color version of this figure is available in the online journal.)

follows. For a given surface density and temperature profile,
a disk of a specified size has a maximum allowed flux, which
is its optically thick limit, and this maximal value increases
with disk size. Thus, a minimum disk size is required to
explain the maximum observed flux (or equivalently, max-
imum observed Md,[850]).17 This minimum Rd changes as a
function of the adopted density and temperature profiles.

An additional constraint may be set by the disk mass.
The optically thick limit for a disk of a given size is
reached above a threshold disk mass, and this threshold
value increases with disk size. Thus, the minimum Rd
derived above also corresponds to a minimum disk mass.
However, one expects the gravitational instability limit,
Md ∼ 0.1 M∗, to set a reasonable upper limit to the allowed
disk mass. Thus, the minimum mass corresponding to the
derived lower bound on Rd must not greatly exceed the
instability limit. If it does, then some other parameter must
be changed (e.g., p or q) to resolve the discrepancy.

This analysis is complicated by the fact that we do
not know the real opacity κ[1300], so we cannot associate
our disk models with a true mass Md, but only with its
opacity-normalized counterpart Mκ

d . Nevertheless, the mass
constraint described above can still be implemented by
setting plausible limits on how far the true opacity may

17 Disks that are fainter than the observed upper limit in flux may of course be
smaller.

deviate from our fiducial value κ̃[1300] = 0.023 cm2 g−1.
Using detailed self-consistent dust models, R10b show
that the fiducial opacity may be an underestimation by
up to a factor of 10 for β ∼ 2, and an overestimation
by the same factor for β ∼ 0. If the true opacity equaled
the fiducial one, then Mκ

d,GI (≡0.1 M∗, as defined earlier)
would represent a disk that was actually at the unstable
limit; the R10b analysis suggests that in fact, the instability
limit may lie anywhere in the range 0.1–10 Mκ

d,GI . As such,
in determining the minimum disk radius, we must verify
that the corresponding minimum Mκ

d does not exceed at
least the upper limit 10 Mκ

d,GI .
3. Predicted Δ versus Md,[850], explicitly showing the relative

contributions of optically thin and thick emission for each
Mκ

d and β. The emission flux, and thus the corresponding
Md,[850], saturates to a fixed value in the optically thick
limit.

4. Predicted ratio of Md,[850] to Mκ
d , versus Md,[850]. For hot

stars with optically thin disks, the assumption of isothermal
emission at T̃ = 20 K in deriving Md,[850] can cause the
latter to exceed the true value Mκ

d , since a good fraction of
the emission is from radii hotter than 20 K for these sources.
For cooler stars/BDs in the optically thin limit, the same
assumption can make Md,[850] an underestimation of Mκ

d ,
due to emission from radii cooler than 20 K. In optically
thick disks, Md,[850] saturates and always represents a lower
limit on the true Mκ

d .
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Figure 4. Our generalized model predictions (using Equations (5), (6), and (8)) for our fiducial disk parameters (Equation (7)), for the case of an intermediate-mass
star at ∼1 Myr (2.5 M�, 4 R�, 5000 K). Top set of four plots is for Rd = 100 AU and bottom set is for Rd = 300 AU. Each set of plots shows the predictions for
various input β (ranging over 0–2; asterisk: β = 0, diamond: 1, and square: 2) and Mκ

d (red: Mκ
d /M� = 10−5, magenta: 10−4, yellow: 10−3, green: 10−2, aqua: 10−1,

blue: 100, and brown: gravitational instability limit Mκ
d,GI /M∗ = 0.1 ⇒ Mκ

d,GI /M� = 0.25; note that the real instability limit may occur anywhere in the range
0.1–10 Mκ

d,GI ). The four panels in each set of plots show the following. Top-left panel: predicted 850 μm flux (in mJy, scaled to a distance of 140 pc) vs. β. Top-right
panel: predicted α vs. predicted Md,[850] (in units of M�, independent of distance). The dashed horizontal line shows the mean value α ≈ 2 for our sample. Sources
with measured α and Md,[850] are overplotted as black filled circles with error bars. The thick vertical line marks the maximum observed Md,[850] in our data for this
stellar mass bin. Bottom-left panel: predicted ratio of optically thick to thin emission at 850 μm vs. Md,[850]. The horizontal dotted line marks equal contributions
from each. Bottom-right panel: ratio of Md,[850] to the opacity-normalized disk mass Mκ

d of the model, as a function of Md,[850]. The ratio is unity along the horizontal
dotted line. The ratio corresponding to the mean value α ≈ 2 in our sample is shown by the dashed curve. See Sections 7.2 and 7.3.1.

(A color version of this figure is available in the online journal.)
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Figure 5. Same as Figure 4, for solar-type stars (0.75 M�, 2 R�, and 4000 K). The gravitational instability limit (brown) is now at Mκ
d,GI /M∗ = 0.1 ⇒ Mκ

d,GI /M� =
0.075.

(A color version of this figure is available in the online journal.)
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Figure 6. Same as Figure 4, for VLMS (0.2 M�, 1.5 R�, and 3200 K). The gravitational instability limit (brown) is now at Mκ
d,GI /M∗ = 0.1 ⇒ Mκ

d,GI /M� = 0.02.

(A color version of this figure is available in the online journal.)

14



The Astrophysical Journal, 773:168 (33pp), 2013 August 20 Mohanty et al.

Figure 7. Same as Figure 4, for BDs (0.05 M�, 0.55 R�, and 2850 K). The top set of plots is now for Rd = 20 AU, and the bottom set of plots is for Rd = 100 AU.
The gravitational instability limit (brown) is now at Mκ

d,GI /M∗ = 0.1 ⇒ Mκ
d,GI /M� = 0.005.

(A color version of this figure is available in the online journal.)
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The dashed line in this panel plots the [Mκ
d , β] locus,

derived from point (2) above, corresponding to the mean
spectral index of the sample 〈α〉 ≈ 2. This reveals the
average trend in Md,[850]/M

κ
d among our sources in each

stellar mass bin.

7.3. Implications of Model Comparisons to Data

7.3.1. Implications for Full Sample

Using the techniques described above, and within the context
of our fiducial disk model, we can in principle derive the opacity
index β and the opacity-normalized disk mass Mκ

d (or only
upper limits on the latter, if the disk is optically thick) for every
source observed at both 850 μm and 1.3 mm. However, given
the uncertainties in each of the six parameters in our fiducial
disk model (most of which have not been measured for the
majority of our sources), this is not a very useful exercise. The
interested reader can of course simply read off the β and Mκ

d

implied by our fiducial model for any source, by comparing the
observed Md,[850] and α listed in Table 1 to the predicted values
plotted in the top-right panels of Figures 4–7. We concentrate
here instead on determining the broad trends in disk and dust
properties implied by our sample as a whole; these are likely
to be more valid than the results for any particular source. We
find that the data-model comparisons in Figures 4–7 imply the
following.

1. Minimum disk radius. In point (2) of Section 7.2, we
discussed how the maximum observed Md,[850] sets a lower
bound on Rd for any given surface density and temperature
profile. We assume below (unless noted otherwise) that the
temperature profile is fixed (given by Equation (7)), and
find the minimum Rd for the fiducial density exponent p =
1 as well as for the limits p = 0.5 and 1.5. In all cases, we
confirm that the minimum Mκ

d associated with this Rd,min
is comfortably below the instability upper limit 10 Mκ

d,GI ,
as required (see Section 7.2); the one exception is noted
explicitly and investigated. We emphasize that these Rd,min
apply only to the brightest disks, and are moreover not
necessarily the actual size of these disks, but only a lower
limit assuming optically thick conditions. Fainter disks may
certainly be smaller; conversely, the brightest ones may be
much larger than Rd,min if they are in fact optically thin.

(a) For intermediate-mass stars, assuming p = 1, the max-
imum observed Md,[850] corresponds to the optically
thick limit for disks with Rd = 100 AU (Figure 4,
top plot). Thus, the minimum disk size for p = 1 is
Rd,min ∼ 100 AU. Changing p to 0.5 or 1.5 alters this
only by ∼ ±10 AU.

(b) For solar-type stars, adopting p = 1, the optically thick
flux from a 100 AU model disk is only half the amount
required to explain the four brightest objects, though
the large number of next brightest sources are fully
consistent with this radius (Figure 5, top plot). To
explain the four brightest, a disk size of at least 300 AU
is required for p = 1 (bottom plot); worryingly in this
case, the corresponding minimum disk mass is only
marginally consistent with the instability upper limit of
10 Mκ

d,GI . It is thus worth investigating whether these
sources are somehow anomalous. It turns out that at
least three of them are: AS 205, EL 24, and GG Tau A.
First, while AW05 and AW07a derive a median value
of T1 ∼ 150 K for the temperature normalization at
1 AU based on a large sample of mainly solar-type

stars—a value we adopt (see Appendix B)—AW07a
derive a much higher T1 = 304 K for AS 205 and
229 K for EL 24. With these normalizations, these two
stars become consistent with 100 AU disks as well
(not shown); indeed, AS 205 can even accommodate a
50 AU disk (in line with the disk size expected given
the presence of a companion ∼1.′′3 away). Rd ∼ 50 and
100 AU for AS 205 and EL 24, respectively, is also in
agreement with the spatially resolved data presented
by Andrews et al. (2009, 2010). Second, GG Tau A is
a close binary, and the circumbinary material girdling
it has a complicated ring+disk structure that is very
poorly represented by our disk model here (Guilloteau
et al. 1999; Harris et al. 2012).

With these three sources removed/explained, only
the fourth disk, around 04113+2758, remains enig-
matic. Without any further explicit information about
its properties, we cannot comment on why it appears
so (anomalously) bright. However, we can now con-
fidently state that, bar this one source, the brightest
disks among solar-type stars are indeed consistent with
Rd,min ∼ 100 AU, for p = 1. Varying p between 0.5
and 1.5 changes this by ∼ ±10 AU.

(c) For VLMS, assuming p = 1, the maximum observed
Md,[850] corresponds to optically thick flux from disks
with Rd ≈ 100 AU (Figure 6, top plot). Thus, Rd,min ∼
100 AU for p = 1; this changes by ∼ ±10 AU for p
varying from 0.5 to 1.5.

(d) For BDs, the same analysis implies Rd,min ∼ 20 AU
for p = 1 (Figure 7, top plot); this changes negligibly
(by a few AU) for p ranging from 0.5 to 1.5. This is
in good agreement with the size estimates for the two
BD disks marginally resolved so far (both in Taurus):
∼20–40 AU for 2MASS J0428+2611 (Luhman et al.
2007, from optical scattered-light imaging of the nearly
edge-on disk), and ∼15–30 AU (and at least >10 AU
for all p = 0–1.5) for J044427+2512 (Ricci et al.
2013, from high angular resolution 1.3 mm continuum
imaging; this is also one of the two objects used by us
to derive Rd,min in Figure 7; see also (2) below).

2. Evidence for grain growth.
(a) Among the solar-type and intermediate-mass stars, the

individual measured α (as well as the mean value
〈α〉 ≈ 2) correspond to β ∼ 0–1 for a large number
of sources, if they are optically thin. While a fraction
of these sources may be optically thick instead, this
cannot be true of all of them: mainly because some
have already been spatially resolved into sizes too
large to be optically thick (see detailed discussion in
R10a, b). Thus, β is in fact likely to be low in a
significant number of sources with α � 2, which in
turn implies substantial grain growth in these disks
(as R10a, b show all realistic grain models require a
maximum grain size of �1 mm to explain β � 1).

(b) Among the Taurus and ρ Oph VLMS/BDs, the evi-
dence for grain growth is not so clear (TWA sources
are discussed in Section 7.3.2). Only four of these ob-
jects have measured α. Of these, Figure 6 shows that
the α ∼ 1.5 observed in the two VLMS—SR 13 and
WSB 60, both in ρ Oph—corresponds to β ∼ 0, i.e.,
large grains, if the disks are optically thin. Figure 6
also shows, though, that optically thin conditions are
obtained only if these disks are significantly larger than
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100 AU; for Rd ∼ 100 AU, they become optically
thick. With hardly any constraints so far on VLMS
disk sizes via resolved observations, we cannot rule
out optically thick disks mimicking grain growth in
these two sources.

Among the two BDs, one (CFHT-BD Tau 4, in
Taurus) has a large α ∼ 3.5, consistent with β ∼ 2,
i.e., no substantial grain growth beyond ISM sizes
(Figure 7). In the other (J044427+2512, also in Taurus),
the small α � 1 corresponds to β ∼ 0, and thus
considerable grain growth, if optically thin. Figure 7
moreover implies optically thin conditions apply only
if the disk is significantly larger than 20 AU; for
Rd ∼ 20 AU, the disk becomes optically thick.
Very recently, Ricci et al. (2013) have resolved this
disk in 1.3 mm continuum emission, and estimate a
(somewhat model-dependent) radius of ∼15–30 AU,
suggesting (in the context of our modeling) either
optically thick conditions or large grains. Based on
their own modeling, Ricci et al. (2013) argue in
favor of grain growth: they find the disk would be
optically thin for Rd > 10 AU,18 and the size of their
resolved disk is indeed >10 AU for all plausible surface
density profiles (p = 0–1.5). The balance of evidence
therefore suggests large grains in this source; overall,
the conclusion is that more spatially resolved data are
sorely needed to verify disk sizes and hence degree of
grain growth in the VLMS/BD regime.

3. Estimates of the opacity normalized disk mass Mκ
d .

(a) For intermediate-mass stars, the observed 〈α〉 ≈ 2
corresponds to Md,[850]/M

κ
d ∼ 2–0.8 for optically thin

disks with Rd = 100–300 AU (Figure 4). In other
words, the apparent disk mass Md,[850] reasonably
approximates the true opacity-normalized mass Mκ

d ,
and may be an overestimation by a factor of two for
the lower end of disk sizes, Rd ∼ 100 AU.

(b) For solar-type stars with the same mean α (Figure 5),
Md,[850] may underestimate the true Mκ

d by a factor of
∼2–3 for disks extending out to 100–300 AU.

(c) For VLMS and BDs, the current paucity of sources with
measured α precludes the derivation of any reliable
average spectral slope for the full sample of these
objects. Nevertheless, the low value of α in three out
of the four individual sources, combined with their
derived Md,[850], implies that Md,[850] underestimates
the true Mκ

d of these three sources by a factor of ∼3–5,
depending on disk size (i.e., whether optically thin or
thick).

4. Decline in the maximum apparent disk mass among
intermediate-mass stars. As noted in Section 7.1 (see
Figure 3), the upper envelope of apparent disk masses (both
Md,[850] and Md,[1300]) inferred from the observed fluxes
rises from BDs to solar-type stars, but, puzzlingly, falls off
(or at least plateaus) from solar-type to intermediate-mass
stars. The increase from BDs to solar types is consistent
with the theoretical expectation that more massive objects
should form out of larger cores, and thus harbor larger and
more massive disks. Why should this trend appear to re-
verse (or level off) upon moving to intermediate-mass stars?

18 Somewhat smaller than our 20 AU limit, because they include the longer
wavelength 3.7 mm data from Bouy et al. (2008), and also because their
integrated 1.3 mm flux—5.2 ± 0.3 mJy—is a bit lower than the 7.6 ± 0.9 mJy
we use, from Scholz et al. (2006).

It cannot be due to changes in disk temperature, while we
have assigned a constant T̃ = 20 K to all the disks in
deriving our naive Md,ν estimates, the disks around more
massive stars should be hotter, and correcting for this ex-
acerbates the decline in the upper envelope of disk masses
from solar-type to intermediate-mass stars, instead of fixing
the problem. We offer one explanation, and examine two
others which seem less likely.

(a) Photoevaporation may actively decrease the disk mass
around intermediate-mass stars. Specifically, Gorti
et al. (2009) model FUV/EUV/X-ray-driven photo-
evaporation, complemented by viscous spreading of
the disk. They find disk lifetimes of a few Myr,
fairly independent of stellar mass, for M∗ � 3 M�;
for M∗ � 3 M�, however, the inferred lifetimes de-
crease strongly with rising M∗ due to the increasing
FUV/X-ray photoevaporative flux, falling to a few ×
105 Myr by 10 M�. This is roughly consistent with
the observations in Figure 3, which indicate an ap-
parent depletion in disk mass by an age of ∼1 Myr
for stars >1 M�, and significant depletion for stars
�3 M�. If photoevaporation is indeed the culprit, then
the data suggest that it becomes important at slightly
lower masses than Gorti et al. find; given the large un-
certainties in current predictions of photoevaporation
rates (see discussion by Gorti et al. 2009; Ercolano
et al. 2009), this remains a possibility.

(b) There are two other hypotheses that we consider un-
likely. The first is that grain growth to sizes much larger
than a few mm reduces the sub-mm/mm flux, yield-
ing spuriously low Md,ν estimates for the intermediate-
mass stars. In this case, one expects the entire grain size
distribution in these disks to be skewed to larger val-
ues, compared to disks around solar-type stars (which
do not show a comparable depression in Md,ν). This
would lead to a flatter sub-mm/mm spectral slope,
i.e., smaller α, for intermediate-mass stars relative to
solar types. However, the data do not show any sig-
nificant difference in α between the two stellar popu-
lations (see Figures 2, 4, and 5), making this scenario
improbable. (This is not to say that grains have not
grown large around both solar-type and intermediate-
mass stars—they almost certainly have in many cases,
as discussed earlier; just that they have not grown pref-
erentially larger around the latter stars.)

(c) The other possibility is that accretion onto the central
star has depleted the disks around intermediate-mass
stars more than around solar types. Assuming a stan-
dard α viscous accretion disk, with T (r) ∝ r−1/2 (ap-
proximately congruent with our adopted q = 0.58),
the viscosity goes as ν ∝ r (Hartmann et al. 1998).
In this case, the disk mass at any time t is given by
(Hartmann et al. 1998, 2006)

Md (t) = Md (0)

(1 + t/tv)1/2
⇒ Md (t)

≈ Md (0)

(
tv

t

)1/2

for t � tv, (11)

where Md (0) is the initial disk mass (at t = 0), tv is
the viscous timescale, and the second equality holds
for evolution over a time t much longer than tv . In the
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same limit, the instantaneous accretion rate is found by
differentiating the above with respect to time:

Ṁ(t) ∝ Md (0)

(
tv

t3

)1/2

for t � tv. (12)

If we make the usual assumption that Md (0) either
remains constant or increases with M∗, then for roughly
coeval sources (constant t), the observed falloff in the
estimated disk mass, Md,ν(t) ∝ M

−1/2
∗ , implies that the

viscous timescale should decrease at least as rapidly
as tv ∝ M−1

∗ . We cannot judge the plausibility of
this per se, without detailed information about how
the initial disk radius and viscosity change with stellar
mass (see Hartmann et al. 2006). However, note that the
instantaneous accretion rate has the same dependence
on tv and Md (0) as the instantaneous disk mass.
Thus, Ṁ(t), the accretion rate observed at the current
time, should decline in the same way with increasing
stellar mass, Ṁ(t) ∝ M

−1/2
∗ . There is no observational

evidence of this; if anything, the observed accretion
rate increases (albeit with large scatter) going from
solar-type to intermediate-mass stars (e.g., Muzerolle
et al. 2005). Hence, viscous accretion also seems
unlikely to cause the falloff in Md,ν .

5. Observed spread in the apparent disk mass. Within each
of our four stellar regimes—intermediate-mass stars, solar
types, VLMS, and BDs—the Md,ν (and Md,ν/M∗) span �2
orders of magnitude in the roughly coeval Taurus and ρ
Oph populations (Figure 3). While the statistics in the older
TWA are far too small for a meaningful general comparison,
at least the same range is seen among the VLMS in this
association as well (detected Hen 3-600A versus upper
limits for TWA30A and B; Figure 3). We examine several
mechanisms which might cause this spread.
(a) The most straightforward explanation is that similar

mass stars are nevertheless born with a wide range
of initial disk masses, due to differences in initial
conditions. The latter might be, e.g., a spread in
the parent core properties, or dynamical interactions
between several stellar embryos formed within a core
(e.g., Bate 2009).

(b) Another possibility is that disks with comparable initial
masses, around coeval stars of a given mass, are
depleted to varying degrees due to differences in their
accretion and/or photoevaporation rates. This requires
variations in initial disk properties other than mass
(e.g., outer radius and surface density profile), and/or
stellar properties other than mass (e.g., photoionizing/
photoevaporative X-ray/UV flux). In this context, it
is perhaps suggestive that, within a fixed (sub)stellar
mass bin, young stars and BDs in a given star-forming
region evince fractional X-ray luminosities (LX/Lbol)
spanning ∼1 dex (Grosso et al. 2007), and accretion
rates spanning ∼2 dex (e.g., Mohanty et al. 2005;
Muzerolle et al. 2005), ranges comparable to or not
much smaller than that in Md,ν . It appears possible
that the spread in apparent disk masses is related to the
range in photoevaporative or accretion efficiencies.

We note that AW05 and AW07a have tried to test
this, by comparing their estimated Md,ν in Taurus and
ρ Oph to the equivalent widths and luminosities of
Hα emission in the parent stars, where the latter is

an indicator of ongoing accretion. They find that stars
without detectable accretion (i.e., weak-line T Tauris)
are overwhelmingly likely to lack disks; however,
within the population of accretors (cTTs), they find no
correlation between Md,ν and the Hα equivalent width
or luminosity. Prima facie, this suggests that the range
in Md,ν is independent of accretion. However, while
the presence of strong Hα emission is an excellent
indicator of accretion, the actual value of its equivalent
width or luminosity is a poor quantitative measure of
the accretion rate: while Ṁ is broadly correlated with
the line width and luminosity, there is a ∼1–2 dex
dispersion in the correlation (e.g., Natta et al. 2004;
Herczeg & Hillenbrand 2008; Herczeg et al. 2009).
Some of this is due to variations in Ṁ coupled with
non-coeval measurements of Hα, and some is due
to variations in the line independent of Ṁ . Either
way, Hα widths and luminosities are of limited value
in determining accurate Ṁ , and it remains an open
question whether the spread in Md,ν is correlated with
the accretion rate or not. A more careful analysis,
using better and more direct Ṁ indicators, such as
UV continuum excess emission, is required to resolve
this issue.

(c) Conversely, one may postulate that the true disk masses
around coeval stars of a given mass are actually quite
similar, but variations in the rate of grain growth cause a
spread in the apparent disk masses (i.e., growth to sizes
much larger than a few mm in some disks depresses
their sub-mm/mm emission, yielding spuriously low
Md,ν estimates). In this case, one expects a shift in
the entire grain size distribution to larger values, and
thus a smaller spectral slope α, in stars with the lowest
fractional apparent disk masses (Md,ν/M∗).

To test this, we plot α versus both Md,[850]/M∗ and
Md,[1300]/M∗ in Figure 8. We see that in the stars
with measured α, which predominantly account for
the upper ∼1 dex in Md,ν/M∗, the distribution of α
is essentially flat: there is no sign of α decreasing in
step with Md,ν/M∗. The situation for the lower ∼1
dex of Md,ν/M∗ values is less clear. The majority
of these stars only have lower limits on α (detected
at 850 μm but not at 1.3 mm). While most of these
limits fall well below the mean (α ∼ 2) of the high
fractional mass disks, this merely reflects the survey
sensitivity thresholds; the true distribution of α here
is unknown. We note that for a small subset of these
Taurus and ρ Oph stars, R10a, b have obtained 3 mm
fluxes as well. Their data point to a slightly smaller
α1.3−3 among the fainter disks (i.e., those with lower
Md,ν in our formulation) compared to the brighter ones
in Taurus and no significant difference between the two
populations in ρ Oph. Overall, their number statistics
are too small to rule out the hypothesis that their
Taurus and ρ Oph samples are drawn from the same
population, or to prove that fainter disks indeed have
larger grains. The bottom line is that more observations
are needed to test the validity of this scenario.

7.3.2. Implications for Individual Sources in the TWA

1. Disk masses and grain growth for TWA VLMS (Hen 3-600A
and TWA 30A,B).
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Figure 8. Analogous to Figure 2, except for α vs. Md,ν/M∗. Top panel: α vs.
Md,[850]/M∗. Bottom panel: α vs. Md,[1300]/M∗. All symbols are the same as
in Figure 2. Arrows mark upper limits in Md,[850] (i.e., in 850 μm flux, and
hence also upper limits in α) or upper limits in Md,[1300] (and hence lower limits
in α). Sources with measured α (circles) are spread evenly around the sample
mean α ≈ 2, with no clear trend of α increasing with Md,ν/M∗ as might be
expected if grain growth causes spuriously low Md,ν estimates. For sources
with lower limits on α, the real distribution of α with Md,ν/M∗ is unknown.
See Section 7.3.1.

(A color version of this figure is available in the online journal.)

(a) Hen 3-600A. This a VLMS accretor in the ∼10 Myr old
TWA. It is actually a spectroscopic binary, part of the
hierarchical triplet Hen 3-600. Only the primary system
(A) appears to harbor a disk (Andrews et al. 2010).
Not much is known about the individual components
of the primary, but they seem to be of roughly equal
mass (Torres et al. 2003); the systemic spectral type
of ∼M3 then implies individual masses of ∼0.2 M�
for an age of ∼10 Myr, similar to TWA 30A and B.
The disk in this system shows significant grain growth,
comparable to that in TW Hya, and has a large central
hole extending out to ∼1.3 AU (Uchida et al. 2004).
Resolved sub-mm data show that the disk is observed
nearly face-on, and is also quite small, with Rd ∼
15–25 AU, compatible with tidal truncation by the third
component of the triplet (Andrews et al. 2010). The
observed 850 μm flux of 65 mJy (Zuckerman 2001)
yields Md,[850] ∼ 5 × 10−4 M� (Figure 3). Comparing
this to our models for the aforementioned star/disk

properties (not plotted), we find Mκ
d ∼ Md,[850] for

large grains (β = 0).19 For TW Hya, Weinberger et al.
(2002) deduced κν ≈ 0.008 cm2 g−1 at ∼1 mm, three
times smaller than our fiducial value for κ̃[1.3]; since
the grains in Hen 3-600A appear similar, we use the
Weinberger et al. value to arrive at a true disk mass
estimate of Md ∼ 1.5 × 10−3 M�.

We test the validity of this estimate by examining the
accretion rate. In particular, note from Equations (12)
and (13) that the viscous accretion rate at any time t is
given by Ṁ ≈ Md (t)/t , within a factor of order unity.
For Hen 3-600A, the Md inferred above, combined
with t ∼ 10 Myr for the TWA, then implies Ṁ ∼
1.5 × 10−10 M� yr−1. This is in excellent agreement
with the average Ṁ ∼ 3 × 10−10, with a spread
of ∼ ±0.5 dex, found by Curran et al. (2011) and
Herczeg et al. (2009) for Hen 3-600A from a number of
optical, X-ray, and UV spectroscopic diagnostics. This
bolsters our confidence in the derived Md; conversely,
it suggests that the theoretical relationship between the
accretion rate and disk mass may be profitably used
to investigate disk properties. We use this technique
below.

(b) TWA 30A and B. These two stars constitute a VLMS
binary system in the TWA, with a projected separa-
tion of ∼3400 AU and component masses of ∼0.1 M�
and 0.2 M�, respectively (Looper et al. 2010a, 2010b).
Moreover, various photometric and spectroscopic fea-
tures suggest that the disks around both components
are seen close to edge-on (discussed further below),
with the secondary (B) appearing significantly under-
luminous in the optical and NIR as a result (Looper
et al. 2010a, 2010b). Our SCUBA-2 850 μm observa-
tions yield a 3σ upper limit of Md,[850] < 3×10−5 M�
for both disks. Comparing to our model predictions
in Figure 6, we see that this corresponds to the op-
tically thin regime for 100–300 AU disks. The true
opacity-normalized disk masses in this case range from
Mκ

d ∼ Md,[850] (for β = 2 and Rd = 100 AU) to
∼5 Md,[850] (for β = 0 and Rd = 300 AU). Very
recently, our group has marginally resolved the disk
around TWA 30B with Hubble Space Telescope, find-
ing that it extends out to ∼30 AU in scattered light
(J. J. Bochanski et al. in preparation); the true extent
(below our detection limit for scattered light) may be
somewhat larger. Our model predicts that the 850 μm
emission from a 30 AU disk with the observed Md,[850]
is still optically thin, but the true Mκ

d in this case is
smaller, ranging over ∼ 0.3–1 Md,[850] (for β = 2–0;
not plotted). For very nearly edge-on orientations, of
course, Equation (A1), which forms the basis of our
model, is not strictly valid. However, semianalytic
models by Chiang & Goldreich (1999) indicate that,
while the observed optical and IR flux is severely de-
pressed in the edge-on case compared to smaller incli-
nations, the flux at ∼mm wavelengths is reduced by
only a factor of ∼2; detailed Monte Carlo radiative
equilibrium calculations by Whitney et al. (2003) bear
this out. Consequently, we expect the true Mκ

d in TWA
30A and B to be at most about twice as large as cited

19 Figure 6 shows that, for a 100 AU disk, the observed flux from Hen
3-600A corresponds to Mκ

d ∼ 2.5 Md,[850] for β ∼ 0. For a 15–25 AU disk
with the same flux, Mκ

d is smaller, because the disk dust is overall hotter.
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above. In summary, we predict a 3σ upper limit of
Mκ

d < (1.8–30) × 10−5 M� ∼ 6–100 M⊕ (for Rd ∼
30–300 AU and β ∼ 2–0) for these two disks. Are such
puny disk masses likely for TWA 30A and B?

To address this, note that our derived Mκ
d upper

limits, together with t ∼ 10 Myr, imply Ṁ < 1.8 ×
10−12–3 × 10−11 M� yr−1 for TWA 30A and B. The
question then becomes, are these rates plausible for the
two stars? The optical and NIR photometry and spectra
obtained by Looper et al. (2010a, 2010b) reveal very
strong signatures of accretion and outflow. The strength
of emission lines that arise at some distance from the
star, e.g., in the outflow or in the accretion funnels, may
be partially attributed to the edge-on viewing angle,
wherein the disk occults the star but not the line-
emitting regions, artificially enhancing the line flux
relative to the photospheric continuum. The strength of
accretion-related features that arise close to or on the
star, however, cannot be ascribed to the geometry (since
such features are suppressed by the edge-on disk just
as much as the stellar continuum), but must be related
to the actual accretion rate. In particular, TWA30A
evinces excess emission from accretion shocks on the
stellar surface, in the form of high optical veiling
(filling in of photospheric absorption lines) and line
emission signatures; TWA 30B shows similar excess
emission. While Looper et al. have not calculated
accretion rates, models by Muzerolle et al. (2003) show
that significant optical veiling is expected in VLMS
only for Ṁ � 10−10 M� yr−1. This is similar to the
Ṁ for Hen 3-600A, but 3–50× greater than our upper
limits on Ṁ for TWA 30A and B, calculated above
assuming fiducial grain properties.

The most straightforward way of resolving this
discrepancy is to invoke considerable grain growth.
Specifically, note that the closest parity achieved above,
between the Ṁ estimated from veiling versus that
predicted from disk masses, is for very extended
(300 AU) disks with β ∼ 0 (which already points
to very large grains). To make up the remaining factor
of three difference, we require the absolute opacity at
1.3 mm to be about three times smaller than our fiducial
κ̃[1300]. These values of β and κ[1300] are identical to
those indicated above for Hen 3-600A. Conversely, if
the disks around TWA 30A and B extend only up to
∼30 AU, comparable to the disk radius for Hen 3-600A
and consistent with our scattered-light image for 30B,
then even with β ∼ 0, κ[1300] would need to be 15×
smaller than our fiducial value, or five times lower than
estimated for Hen 3-600A (which is possible for grains
a few centimeters in size or larger, depending on the
grain geometry and composition; e.g., R10a, b; B90,
and references therein). To summarize, the similarity
between the estimated Ṁ in Hen 3-600A and TWA
30A and B, and their approximate coevality, suggests
similar disk masses; the relatively much fainter 850 μm
emission from TWA 30A and B then implies that their
disks have undergone at least as much grain growth as
that of Hen 3-600A (if the 30A, B disks are much larger
than the latter), or significantly more growth (with
possibly different grain geometry and composition as
well) if all three disks are comparable in extent.

2. Disk masses and grain growth for TWA BDs (2MASS 1207A
and SSSPM 1102).
(a) 2MASS 1207-3932A. This object (henceforth

2M1207A) has been the subject of intense study over
the last few years, as the nearest and oldest BD to
exhibit prominent signatures of both accretion and
outflow, and with a giant planetary-mass companion
to boot. Our SCUBA-2 850 μm data for this source
yield a 3σ upper limit of approximately Md,[850] <

4 × 10−5 M� (Figure 3). Since 2M1207A is less mas-
sive and older (and thus cooler and smaller) than the
fiducial 0.05 M� BD at ∼1 Myr used in our model
in Figure 7, we recalculate our model for its specific
parameters: [SpT, age] ≈ [M8, 10 Myr] ⇒ [M∗, R∗,
T∗] ≈ [0.03 M�, 0.25 R�, 2500 K]. The disk size is an
additional issue for this source. Its companion lies at a
projected separation of ∼40 AU; if this were the true
separation, tidal truncation would imply a maximum
disk size of ∼13 AU around the primary. Conversely,
a true separation �100 AU appears unlikely, dynam-
ical analyses (e.g., Close et al. 2007, and references
therein) indicate that, given the very small total mass
of this system, such a distended orbit would be very
unstable to disruption by encounters with other clus-
ter members over 10 Myr. Using 100 AU as an upper
limit for the separation yields a maximum disk size of
∼30 AU.

For these parameters, our model (not plotted) pre-
dicts an opacity-normalized disk mass ranging from
Mκ

d ∼ 2–3 Md,[850](for β = 2–0 and Rd = 13 AU) to
Mκ

d ∼ 3–10 Md,[850] (for β = 2–0 and Rd = 30 AU).
Spectroastrometry of the jet, as well as variations in the
accretion funnel flow signatures, further imply that the
disk is seen at a high inclination (Whelan et al. 2007;
Scholz & Jayawardhana 2006) (though not so close to
edge-on as to occlude the BD; Mohanty et al. 2007).
Assuming a maximum correction factor of ∼2 to ac-
count for the viewing angle (see TWA 30AB above),
we get Mκ

d < (8–40) × 10−5 M� for Rd = 13–30 AU
and β = 2–0.

Very recently, Harvey et al. (2012) have observed
2M1207A at 70 and 160 μm with Herschel. Com-
bining their data with earlier Spitzer fluxes, they es-
timate a most probable disk mass of ∼10−5 M�, with
a plausible range of a few×10−6–10−4 M�. These re-
sults are fully consistent with our estimate above.20

Finally, the accretion rate inferred for 2M1207A,
from various optical and UV diagnostics, is Ṁ ∼
10−12–10−11 M� yr−1 (Mohanty et al. 2005; Herczeg
et al. 2009, and references therein), suggesting a disk
mass of ∼10−5–10−4 M� for this 10 Myr old BD. This
is again consistent with both our and Harvey et al.’s
results.

Lastly, none of these data strongly constrain the de-
gree of grain growth in this disk (though the weakness/
absence of the 10 μm silicate feature indicates that
grains have grown beyond at least a few micrometers;

20 Riaz et al. (2012) use their own Herschel data to infer a disk mass more
than an order of magnitude higher than the upper limits that we and Harvey
et al. find; however, their Herschel fluxes are grievously inconsistent with
those of Harvey et al. (2012) and appear to be vitiated by a misidentification of
the source (as Riaz et al. 2012 also suggest in a later erratum to their original
paper).
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Sterzik et al. 2004; Riaz & Gizis 2008; Morrow et al.
2008).

(b) SSSPM 1102-3431. This BD (hereafter SSSPM 1102)
is nearly identical to 2M1207A in its intrinsic sub-
stellar properties, and in the 3σ flux upper limit we
obtain at 850 μm. However, there are no equivalent
observational constraints on the size of its disk. Adopt-
ing our fiducial limits for BDs, Rd ∼ 20–100 AU,
we find Mκ

d < 4–40 × 10−5 M� (for the full range
[Rd, β] = [20,2]–[100,0]). While Harvey et al. (2012)
cannot significantly restrict most of its disk parame-
ters, their 160 μm detection of SSSPM 1102 allows
them to put a fairly firm lower limit on its disk
mass at a few×10−6 M�, fully consistent with our
upper limits. Finally, using UV diagnostics, Herczeg
et al. (2009) have determined an accretion rate of
Ṁ ≈ 1.6 × 10−13 M� yr−1, the least known so far
for any object. For an age of ∼10 Myr, this indicates
a disk mass of ∼few×10−6 M�, at the lower end of
our and Harvey et al.’s estimates. Taken together, these
data suggest 10−6 < Md < 10−5 M�. Again, there
are no firm constraints on grain sizes (except that, as
in 2M1207A, the lack of 10 μm silicate emission im-
plies grain growth beyond at least a few micrometers;
Morrow et al. 2008).

Finally, it is noteworthy that AW07a perform a
similar comparison (albeit for a much larger number
of stars) between the disk mass based on fiducial disk/
dust parameters (Md,ν in our nomenclature) and that
implied by the accretion rate, to find that the accretion-
based mass is on average an order of magnitude higher.
This is comparable to our results for TWA 30A and
B; AW05, like us, propose that grain growth may be
responsible. Note that in our analysis of Hen 3-600A
above, we do not find such an offset when we adopt
the β and κ[1300] appropriate for the very large grains
known to exist in its disk; using the fiducial β and
κ[1300] instead would indeed yield a disk mass much
lower than the accretion-based value. This supports
grain growth as the culprit underlying such offsets.

8. RESULTS III. RELATIONSHIP BETWEEN
DISK MASS AND STELLAR MASS

In the bottom two panels of Figure 3, the mean values of
both Md,[850]/M∗ and Md,[1300]/M∗ appear roughly constant
with M∗, among the approximately coeval Taurus and ρ Oph
populations. This apparently flat distribution of Md,ν/M∗ has
been commented on in previous work as well; it suggests that on
average, Md,ν/M∗ ∼ 10−2 (e.g., Scholz et al. 2006). However,
the presence of a large number of upper limits, especially among
the VLMS and BDs, makes the veracity of this claim hard to
judge by eye alone. Instead, we use a Bayesian analysis to test
this. The technique is described in Appendix C, and the results
are discussed below.

We emphasize that we only analyze the distribution of the
apparent disk mass Md,ν , and not of the true disk mass Md, or
even of the opacity-normalized mass Mκ

d . As we have discussed,
translating the first into either of the latter two quantities
requires knowledge of a number of disk parameters, which
are unknown for most of our sample. As such, our discussion
above of various broad trends in Mκ

d and Md suggested by the
data is the best we can do; precise determination of these two
quantities for all the individual stars, required for a statistical

investigation of the underlying distribution, is not currently
possible. Nevertheless, the statistics of Md,ν alone are still
valuable as an initial indicator of the possible behavior of the true
disk mass. Equally importantly, the analysis serves to illustrate
the Bayesian techniques that can be applied to the true Md
distribution when it is derived in the future, as well as to any
other distribution that is both noisy and plagued by upper limits.

To begin with, we combine our Md,[850] and Md,[1300] esti-
mates to get the largest possible sample of apparent disk masses.
Specifically, we use Md,[850] if available, otherwise Md,[1300]
(see Table 1). Furthermore, our sample includes a number of
known binaries and higher-order multiples (Table 1). Within our
Taurus and ρ Oph sub-samples, most such systems have not been
resolved in the sub-mm/mm data presented here.21 As such, the
Md,ν we derive corresponds to the total apparent disk mass in
these systems; we do not know how this is partitioned between
the components.22 In all these cases, we assume that the disk
material is present solely around the primary, i.e., we adopt
Md,ν/M∗ ≡ Md,ν/Mprimary. This is because binarity studies are
very much incomplete for our sample (especially for the ρ Oph
sources and the VLMS/BDs), many of the objects assumed to
be single here have not been subject to as wide a companion
parameter search as the identified binaries, and many have not
been examined for multiplicity at all. For unidentified binaries
in our sample, the Md,ν/M∗ we calculate implicitly corresponds
to assigning the total disk mass entirely to the primary23; doing
the same for the known binaries/multiples is thus necessary for
uniformity.

The final combined sample is plotted in Figure 9. The full
sample is shown in the top panel, and the “single” objects (i.e.,
sample with known binaries/multiples removed) in the bottom
panel; some of the latter may have as yet unknown companions.
Note that most of the VLMS/BDs plotted as 3σ upper limits
have actual measured values at <3σ significance (Table 1). Our
plotting convention is simply to facilitate visual comparison to
objects from the literature for which only 3σ upper limits in flux
have been published. The actual measurements, where available,
are used in our subsequent Bayesian analysis.

For the analysis, we first divide our full sample into four popu-
lations: (1) Taurus solar-type stars (49 sources); (2) ρ Oph solar-
type stars (32 sources); (3) all (Taurus + ρ Oph) VLMS/BDs
(27 sources); and (4) all (Taurus + ρ Oph) intermediate-mass
stars (20 sources). Taurus and ρ Oph objects, which are roughly
coeval, are lumped together in the VLMS/BD and intermediate-
mass bins to increase the sample sizes therein. The small and

21 The exceptions are a handful of extremely wide systems (sep
∼1500–4000 AU), marked with a ‡ in Table 1: DH Tau AB/DI Tau AB; FV
Tau AB/FV Tau c AB; FY Tau/FZ Tau; GG Tau Aab/GG Tau Bab; GH Tau
AB/V807 Tau ABab; GK Tau/GI Tau; V710 Tau AB/V 710 Tau C; and V955
Tau AB/LkHa 332 G2 AB/LkHa 332 G1 AB; see Kraus et al. (2011) and
Harris et al. (2012). The flux and binarity data in Table 1 pertain to the
individual sub-systems DH Tau AB, FV Tau AB, FV Tau c AB, FY Tau, GG
Tau Aab, GH Tau AB, GK Tau, and V710 Tau AB (note that for those
sub-systems that are themselves binaries, the disk emission around the
individual stars is not resolved in the flux measurements listed). We treat these
sub-systems as isolated systems in our binary analysis in the text (e.g., GH Tau
AB, denoted as GH Tau in Table 1, is treated as a close binary (as noted in
Table 1), instead of one part of an extremely wide multiple system).
22 More recently, Harris et al. (2012) have resolved the sub-mm emission
around the individual components of some of our Taurus binaries. We have not
included their data here in the interests of homogeneity, since their study,
focused specifically on multiplicity effects, has different selection criteria
compared to ours. However, we do refer to their results where appropriate.
23 Since we infer stellar mass from the spectral type and age, the heightened
luminosity of close binaries compared to isolated stars does not influence us,
and the mass determined is essentially that of the primary.
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Figure 9. Md,ν/M∗ for our sample (same as bottom panels of Figure 3, but now
with the 850 μm and 1.3 mm data merged into a single set, as given in Table 1).
Same symbols as in Figure 3. Top panel: entire sample. Bottom panel: sample
with known binaries and multiples systems excluded (except the two TWA
VLMS TWA 30A and B, which are sufficiently widely separated for individual
SCUBA-2 measurements). Note that this sub-sample, though nominally denoted
as “single objects,” may contain undiscovered binaries/multiples. See Section 8.

(A color version of this figure is available in the online journal.)

much older set of six TWA objects is excluded from this analy-
sis. The population of Taurus solar-type stars, which is the best
constrained (in that it includes the most data and the least num-
ber of upper limits), serves as a baseline against which the other
populations are compared.

The Taurus solar types have also been subject to more
thorough binarity surveys than the other populations. To evaluate
the effects of multiplicity, therefore, we also compare the full
sample of Taurus solar types to the single Taurus solar types
(18 sources); the Taurus solar-type close binaries (projected
component separation <100 AU; 13 sources) to the singles; and
the Taurus solar-type wide binaries (�100 AU; 12 sources) to
the singles.

For each population, we assume that Md,ν/M∗ is described by
an underlying lognormal distribution specific to that population.
Our Bayesian analysis then reveals the probability distributions
for the mean (μ) and standard deviation (s) of this lognormal in
each case.

Finally, we include only the Gaussian photon noise in the
observed fluxes in our error analysis, and not the systematic
calibration uncertainties, nor the uncertainties in the assumed
values for disk parameters used to calculate Md,ν (T̃ = 20 K,
β = 1, κ̃[1.3] = 0.023 cm2 g−1, and gas-to-dust ratio =

100:1; see Section 5), nor the uncertainties in the M∗ inferred
in Section 2. Including the additional calibration uncertainty
would mostly only strengthen our results, as pointed out at
appropriate junctures below. Moreover, our lack of knowledge
about the true disk parameters for a large fraction of our sources
prevents us from deriving Md or Mκ

d for individual stars in
the first place, which is why we concentrate here only on
the apparent disk mass (we do point out the effect of using
β < 1, as seems appropriate for many of our stars, on our
results). Similarly, while uncertainties and systematic errors are
undoubtedly present in the evolutionary tracks used to calculate
M∗, these are difficult to quantify precisely with our present
knowledge. We therefore consider only the Gaussian noise in
the flux here.

Figures 10–15 show the outcomes of our analysis. In
Figures 10–12, we inter-compare the results for various sub-
samples of the Taurus solar-type population (full sample, sin-
gles, close binaries, and wide binaries). In Figures 13–15, we
compare the result for the full sample of Taurus solar types
to that for each of the other populations (ρ Oph solar types,
all intermediate masses, and all VLMS/BDs). In each figure,
the three panels show (clockwise from top right): (1) the full
two-dimensional (2D) probability distribution of the lognormal
parameters μ (mean) and s (standard deviation) for a given popu-
lation of stars, with the contours enclosing 68.27% (1σ ), 95.45%
(2σ ), and 99.73% (3σ ) of the distribution; (2) the 1D probabil-
ity distribution of the mean μ, marginalized (integrated) over
all standard deviations s (i.e., the distribution of μ independent
of the precise value of s), with contours again at 1σ–3σ ; and
similarly (3) the 1D probability distribution of s marginalized
over μ. Note that the μ and s of the actual lognormal distribu-
tion, Equation (C9), are in natural log units (ln[Md/M∗]); in
these figures, we plot them in base-10 (log10[Md/M∗]) units
instead (i.e., we plot μ log10e and s log10e instead of μ and s),
for greater intuition. We obtain four main results as following.

1. Md,ν/M∗ for Taurus solar-type stars. Figure 10 shows that
the lognormal for the full sample of Taurus solar-type stars
has a most likely mean of μ log10e = −2.4+0.3

−0.4, and a most
likely standard deviation of s log10e = 0.7+0.4

−0.2 (where the
ranges are the ±3σ spread in probable values around the
peak of the 1D μ and s distributions). Note that β for many
of the solar-type stars appears to lie in the range 0–1 (see
Section 7.3.2), lower than our adopted β = 1. Hence,
the mean of the true disk-to-stellar mass ratio Md/M∗
(modulo the absolute value of the opacity κ) may be a factor
of ∼3 higher for these stars (as noted in Section 7.3.2),
corresponding to μ log10e ∼ −2.

2. Effects of binarity in Taurus solar-type stars. Figure 10
also shows that the 1D distribution of the mean for the
Taurus single solar types deviates by nearly 2σ from that
for the full Taurus sample of these stars, with the most
probable mean for the singles occurring at μ log10e ≈ −2
(2.5 times higher than in the full sample). Since the full
sample comprises both singles and multiples, this result
suggests that multiplicity has some effect on the disk mass
distribution. To investigate this further, we follow AW05 in
dividing the Taurus solar-type binaries into close and wide
systems (projected separations of <100 AU and �100 AU,
respectively), and compare the two sub-samples separately
to the Taurus solar-type singles. To keep the analysis
clean, we exclude the handful of higher-order multiples
(which can have both close and wide components) and
spectroscopic binaries (whose circumbinary disks may be
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Figure 10. Distribution of posterior probability densities for lognormals, for the full Taurus sample of solar-type stars (solid curves) and the Taurus sample of
“single” solar-type stars (i.e., sample with known binaries/multiples excluded; dashed curves). Top-right panel: 2D distribution of posterior probability densities of
the lognormal mean (μ) and standard deviation (s) in our data (i.e., P(μ,s | data)), with the range of lognormal means along the X-axis and the range of lognormal
standard deviations along the Y-axis. For greater intuition, the means (μ) and standard deviations (s) are expressed here in base-10 units (log10[Md,ν/M∗]): μ log10e

and s log10e. Blue, green, and red contours enclose 68.27%, 95.45%, and 99.73% (i.e., 1σ , 2σ , and 3σ ) of the posterior probability, respectively. Top-left panel: 1D
distribution of posterior probability densities for s, marginalized over all μ. The colors again represent 1σ , 2σ , and 3σ levels: (68.27%, 95.45%, and 99.73%) of the
posterior probability is within the intervals indicated by the (blue,green, and red) horizontal lines. Bottom-right panel: 1D distribution of posterior probability densities
for μ, marginalized over all s; colors have the same meaning, except now pertain to μ. The highest posterior density model (i.e., the most probable model) for the full
sample of Taurus solar types has a mean log10[Md,ν/M∗] of μ log10e = −2.4 and standard deviation s log10e = 0.7, while the corresponding values for the Taurus
solar-type singles are μ log10e ≈ −2 and s log10e = 0.5. The distribution of means for the two samples are separated by nearly 2σ , suggesting that binarity may
influence the disk mass distribution. This is explored explicitly in the next two figures. See Section 8.

(A color version of this figure is available in the online journal.)

as bright as the disks in wide binaries and around single
stars; Harris et al. 2012).

Figure 11 shows that the 1D distribution of the mean
for the Taurus solar-type close binaries deviates by ∼3σ
from that for the single stars, with the most probable mean
for the close systems occurring at μ log10e ≈ −3 (i.e.,
10 times smaller than for the singles). The deviation be-
tween the wide binaries and singles is significantly smaller:
Figure 12 shows that the 1D distribution of the mean for
the wides is within 2σ of that for the singles, and peaks at
μ log10e = 2.5 (i.e., three times smaller than in the singles).
We note in passing that the 1D distribution of the standard
deviation shows much less variation between the singles
and close and wide binaries: as Figures 11 and 12 reveal,
the s distributions in all three cases lie within ∼1σ of each
other.

These results are consistent with those of AW05 and
Harris et al. (2012), who found (in samples consisting pre-
dominantly of solar-type stars, in line with the sample tested
here) that the total disk mass in wide binaries is similar to (or
modestly smaller than) around singles, while it is substan-
tially smaller in close binaries. It is also worth recalling that
the means cited above refer to log10[Md,ν/Mprimary], i.e., are
calculated under the assumption that all the disk material is
associated with the primary. Since, in reality, the material

is often distributed between both binary components (albeit
possibly with disproportionately more around the primary;
see Harris et al. 2012), the disk mass per individual com-
ponent stellar mass in binaries is likely to deviate even
more from the disk-to-stellar mass ratio in singles, than
the numbers above indicate. Overall, these effects proba-
bly arise from a combination of tidal truncation of disks
in binaries and the binary formation mechanism itself; we
refer the reader to Harris et al. (2012) for a more detailed
discussion.

Our goal here is to examine how the disk-to-stellar mass
ratio changes as a function of stellar mass. Ideally, therefore,
we should conduct the same fine analysis—distinguishing
between singles, close binaries, and wides—when compar-
ing the Taurus solar-type population to the ρ Oph sample,
and to the other stellar mass bins. However, as noted earlier,
binarity surveys at all stellar masses in ρ Oph, and among
VLMS/BDs in both Taurus and ρ Oph, are far less com-
plete than among the Taurus solar types, precluding such a
detailed investigation at present. Instead, we conservatively
compare the full sample of Taurus solar types, regardless of
binarity, to the other populations (whose binarity fraction
is largely unknown), with the stipulation (as before) that in
binaries and higher-order multiples our Md,ν/M∗ refers to
the total disk mass per primary stellar mass.
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Figure 11. Same as Figure 10, except the Taurus solar-type sample of single stars (solid curves) is now compared to the Taurus solar-type sample of close binaries
(dashed curves). The distribution of means for the two samples are separated by ∼3σ , implying a significant difference in disk mass between close binaries and singles.
The most probable mean disk mass in the close binaries (log10[Md,ν/M∗] ≈ −3) is 10× lower than in the singles. See Section 8.

(A color version of this figure is available in the online journal.)

3. Md,ν/M∗ for different stellar mass bins.
(a) The ρ Oph solar-type sample, and the [Taurus + ρ

Oph] VLMS/BD and intermediate-mass samples, are
all somewhat less constrained than the Taurus solar-
type population, due to a combination of fewer data
points and more upper limits. Nevertheless, the μ and
s of their lognormal models are all consistent with
that of the Taurus solar types to within 1σ (both in
the full 2D and marginalized 1D parameter spaces;
Figures 13–15). We thus conclude that the current data
are consistent with a constant log10[Md,ν/M∗] ≈ −2.4
all the way from intermediate-mass stars to low-mass
BDs. Note that including the flux calibration uncer-
tainties would only broaden each of the probability
distributions, increasing the overlap with the Taurus
solar types. Whether the binary and single star popula-
tions in these different mass bins are also individually
similar to the corresponding populations among the
Taurus solar types remains to be clarified in the future,
with better binary statistics.

4. Validity of a lognormal distribution. We have so far assumed
that the underlying distribution of Md/M∗ for any stellar
mass bin is a lognormal. Since Md/M∗ starts out relatively
large (with the disk making up most of the star+disk system
in the earliest evolutionary phases) and evolves eventually
to zero (as the material either accretes on the star, or forms
planetary bodies, or is ejected from the system), it is rea-
sonable to suppose that in roughly coeval objects known to
have disks but be more evolved than the earliest (Class 0/I)

phases, Md/M∗ will be clustered about some mean, with
fewer systems remaining very far above or having evolved
very far below this value. The most natural such distribution
is the lognormal, hence our choice.24

Nevertheless, our analysis thus far does not provide evi-
dence that the distribution is a lognormal, but only supplies
the most probable model parameters if it is one. There
are two ways to investigate the validity of the lognormal
assumption itself. In the Bayesian context, one would un-
dertake a model comparison to derive the relative merits
of various possibilities (e.g., lognormal versus power law
versus exponential25). We defer such rigorous analysis to
the future, when more data become available. The other op-
tion is to compare the best-fit lognormals we have derived
to the results of a survival analysis, where the latter yields
an estimate of the underlying distribution of the data in-
dependent of any particular model, under the assumptions
that the upper limits are randomly distributed and measure-
ment errors are negligible. The general invalidity of these
assumptions is what led us to a Bayesian inference in the
first place. The comparison is still useful, however, both
as a consistency check when upper limits do not dominate

24 Conversely, for example, if our sample were drawn randomly from all ages
without the existence of disks being a prerequisite for inclusion, then a power
law or exponential, rising with decreasing Md/M∗, would have been more
appropriate instead, since older stars without disks vastly outnumber younger
ones with.
25 Note that, in the presence of measurement errors, no analysis can prove or
disprove the absolute merit of a particular model; one can only say whether
one model is better or worse than another.
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Figure 12. Same as Figure 10, except the Taurus solar-type sample of single stars (solid curves) is now compared to the Taurus solar-type sample of wide binaries
(dashed curves). The distribution of means for the two samples are separated by <2σ , implying that the disk mass in wide binaries is much more similar to that in the
singles, compared to the close binaries in the previous figure. The most probable mean disk mass in the wide binaries (log10[Md,ν/M∗] ≈ −2.5) is 3× lower than in
the singles. See Section 8.

(A color version of this figure is available in the online journal.)

the data and measurement noise is relatively small, and as
a means of underlining the limitations of survival analysis
when this is not true.

Figure 16 illustrates the comparison between our
Bayesian results and the outcome of a survival analysis
based on the KM estimator26 (Feigelson & Nelson 1985;
AW05; AW07a). For each of the four stellar mass bins
we have considered, we plot the cumulative distribution
corresponding to the lognormal with the most probable
mean and standard deviation inferred from the Bayesian
1D marginalizations (see Figures 13–15). This is compared
to the underlying cumulative distribution predicted by the
Kaplan–Meier (KM) estimator. Note that the error bars on
the latter only reflect the uncertainty in binning the (as-
sumed random) upper limits in the survival analysis, and
do not include any actual measurement noise in the data
(which, as mentioned before, cannot be treated in survival
analysis).

We see that, for the Taurus solar-type stars and the Tau-
rus + ρ Oph intermediate-mass stars—the two popula-
tions with the lowest fraction of upper limits and the least
noise—our lognormals are in excellent agreement with the
KM estimator. For the ρ Oph solar-type stars—comprising
more upper limits, but still dominated by detections—our
lognormal deviates slightly more from the KM esti-
mator, but is still in good overall agreement with it.

26 Calculated using the ASURV code (Isobe & Feigelson 1990).

Finally, for the Taurus + ρ Oph VLMS/BDs, in which
upper limits outnumber detections and the noise is great-
est, our most-probable lognormal departs significantly from
the survival analysis prediction. These results argue that (1)
a lognormal distribution is indeed valid for the solar-type
and intermediate-mass stars; and (2) by Occam’s razor,
it is also appropriate for VLMS/BDs, with the mismatch
here between our lognormal and the KM estimator aris-
ing from the breakdown of the assumptions underlying
survival analysis itself. Rigorous evidence for the valid-
ity of a lognormal for the VLMS/BDs must await more
detections.

9. IMPLICATIONS FOR PLANET FORMATION
AND DISK ACCRETION

Payne & Lodato (2007) have carried out simulations of planet
formation via core accretion around a range of stellar/substellar
masses. They find that low-mass stars with M∗ ∼ 0.3 M� and
a mean Md/M∗ ∼ 5% can form terrestrial mass planets effi-
ciently, as well as intermediate-mass and giant planets (though
recovering the observed semimajor axis distribution of the lat-
ter two classes requires some fine tuning of Type I migration).
0.05 M� BDs with the same mean Md/M∗ (translating to disk
masses of a few Jupiters), on the other hand, form terrestrial
mass planets less frequently, with Mplanet � 0.3 M⊕ arising in
∼10% of cases, while giant planets are completely absent in this
domain (timescales for collisionally driven planetesimal growth
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Figure 13. Same as Figure 10, except the full Taurus sample of solar-type stars (solid curves) is now compared to the full ρ Oph sample of solar-type stars (dashed
curves). The distributions of means and standard deviations in the two populations lie within 1σ of each other. See Section 8.

(A color version of this figure is available in the online journal.)

Figure 14. Same as Figure 10, except the full Taurus sample of solar-type stars (solid curves) is now compared to the full sample of Taurus + ρ Oph intermediate-mass
stars (dashed curves). The distributions of means and standard deviations in the two populations lie within 1σ of each other. See Section 8.

(A color version of this figure is available in the online journal.)

26



The Astrophysical Journal, 773:168 (33pp), 2013 August 20 Mohanty et al.

Figure 15. Same as Figure 10, except the full Taurus sample of solar-type stars (solid curves) is now compared to the full sample of Taurus + ρ Oph VLMS/BDs
(dashed curves). The distributions of means and standard deviations in the two populations lie within 1σ of each other. See Section 8.

(A color version of this figure is available in the online journal.)

are longer around such low masses, and the disk gas dissipates
before rocky cores become large enough to initiate runaway
growth).

Given that the upper envelope of our observed distribution
of Md,ν/M∗ for VLMS/BDs at ∼1 Myr lies at about 1%–2%,
and that our most probable mean Md,ν/M∗ for these objects
is only about ∼0.5%, it would appear that terrestrial planets
may be hard to form around VLMS, and be extremely rare
around BDs (for 0.05 M� BDs with mean Md a fraction of
a Jupiter mass; Payne & Lodato find Mplanet � 0.3 M⊕ in
only 0.035% of cases). However, for the few VLMS/BDs
with measured continuum slopes α, we showed that Md,ν may
underestimate the true opacity-normalized disk-mass Mκ

d by a
factor of �3–5; in general, underestimates Mκ

d by a factor of
at least a few in VLMS/BDs. Md,ν , if their average continuum
slope is comparable to that in more massive stars, 〈α850−1.3〉 ∼ 2
(Section 7.3.1). Thus, disk masses of a few percent of the
(sub)stellar mass may in fact be more appropriate than the naive
estimate Md,ν . Moreover, Payne & Lodato’s simulations refer
to the initial Md (at ∼104 yr); the values we observe at ∼1 Myr
must be somewhat lower due to subsequent accretion/outflow.
Putting the two effects together, an initial mean Md/M∗ ∼ 5% is
plausible, implying that terrestrial mass planets may indeed form
copiously around VLMS, and albeit less frequently, around BDs
as well. This must be tested through future multi-wavelength
observations that constrain the spectral slope and degree of grain
growth in VLMS/BD disks.

Our inferred disk masses have implications for accretion too.
Empirically, the accretion rate Ṁ onto the central star/BD seems
to falloff with stellar mass roughly as Ṁ ∝ M2

∗ (though with

considerable scatter), all the way from intermediate-mass stars
to very low mass BDs (Mohanty et al. 2005; Muzerolle et al.
2005; Natta et al. 2006). Padoan et al. (2005) proposed that
this is linked to Bondi–Hoyle accretion onto the disk from the
surrounding molecular cloud as the star+disk system moves
through the cloud. However, there are severe problems with this
hypothesis (see discussion by Mohanty et al. 2005; Hartmann
et al. 2006), and it is unlikely to be the main reason for the
observed relationship. Dullemond et al. (2006) and Vorobyov
& Basu (2008, 2009) have presented two alternate theories.
According to the former authors, the dependence of Ṁ on M∗
ultimately results from the distribution of rotation rates of the
parent molecular cloud cores; according to the latter, it derives
from gravitational instability-driven accretion. In both cases,
Ṁ ∝ Md ; insofar as the Ṁ ∝ M2

∗ trend is real, therefore, both
require Md ∝ M2

∗ . Our results, on the other hand, indicate a
significantly shallower trend, Md,ν ∝ M∗, all the way from
intermediate-mass stars to very low mass BDs, and therefore
do not support either of these two theories. Note that we have
assumed a constant characteristic disk temperature T̃ = 20 K
independent of stellar mass, for estimating Md,ν ; this is likely
to be systematically slightly in error, with the appropriate
temperature being somewhat higher for the hot stars and lower
for BDs, as discussed in Sections 7.3.2 and 9. Correcting for
this, however, leads to disks systematically less massive with
increasing stellar mass than our naive Md,ν estimate, making
the true disk mass an even shallower function of stellar mass
than we find, which is opposite to the required effect. As such,
theories requiring Md ∝ M2

∗ to explain the observed Ṁ appear
unsupported by data.
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Figure 16. Comparison of the cumulative distribution of objects implied by our Bayesian analysis assuming a lognormal distribution (black curves) to the cumulative
distribution implied by a KM survival analysis (denoted by the crosses; the blue horizontal and red vertical bars of each cross represent the errors implied by the
KM analysis assuming that upper limits are randomly distributed; they do not include the actual noise in the data). Top-left panel: comparison for full sample of
Taurus solar-type stars. Top-right panel: comparison for full sample of ρ Oph solar-type stars. Bottom-left panel: comparison for full sample of Taurus + ρ Oph
intermediate-mass stars. Bottom-right panel: comparison for full sample of Taurus + ρ Oph VLMS/BDs. The two distributions agree very well for the Taurus solar-type
and Taurus + ρ Oph intermediate-mass samples where the measurement noise is least and upper limits are relatively few; they deviate more for the ρ Oph solar-type
stars and most for the Taurus + ρ Oph VLMS/BDs, as the noise increases and upper limits become abundant. See Section 8.

(A color version of this figure is available in the online journal.)

Alternatively, Alexander & Armitage (2006) show that the
Ṁ ∝ M2

∗ relationship can be reproduced even if Md ∝ M∗ (as
our Md,ν results suggest), if the initial disk radius increases with
decreasing (sub)stellar mass. They note that viscous spreading
means that stellar disks should rapidly expand to BD disk sizes,
and moreover that external factors such as binary truncation
can strongly influence the disk size, so that the inverse scaling
of the initial disk radius with M∗ may not be easily observable.
However, their model does predict that few if any objects should
have Ṁ < 10−12 M� yr−1, and that the observed scatter in ac-
cretion rates (assumed to be age-related) should be smaller in
BDs than in higher-mass stars. Sensitive UV measurements by
Herczeg et al. (2009) have revealed Ṁ ∼ 10−12–10−13 M� yr−1

in three BDs so far, nominally at odds with this hypothe-
sis, but more data are required to clarify whether such low
rates are indeed common in BDs or a rarity as this scenario
predicts.

However, the trend Ṁ ∝ M2
∗ itself remains open to question

(e.g., Clarke & Pringle 2006); for instance, it is unclear whether
it applies to the average Ṁ at any given mass or only to the upper
envelope, and also whether the exponent is indeed 2 everywhere
or smaller (e.g., Vorobyov & Basu 2009 argue that Ṁ ∝ M1.3

∗
among solar-type stars). A more careful consideration of the
selection effects and upper limits in the data (as suggested
by Clarke & Pringle 2006), as well as more sensitive Ṁ
observations, are required to resolve this question.

10. CONCLUSIONS

We have obtained SCUBA-2 850 μm data for seven accreting
VLMS and BDs in Taurus and the TWA, and combined our
observations with other recent sub-mm/mm surveys of Taurus,
ρ Ophiuchus, and the TWA to investigate the trends in disk
mass and grain growth during the cTT phase. Assuming a
disk gas-to-dust ratio of 100:1 and fiducial surface density and
temperature profiles guided by current observations (Σ ∝ r−1

and T ∝ r−0.6), and using generalized equations for the disk
emission, we find that:

1. The RJ approximation is less than ideal for disks around
solar-type and intermediate-mass stars, and even worse
VLMS and BD disks.

2. The minimum disk outer radius required to explain the
upper envelope of sub-mm/mm fluxes is ∼100 AU for
intermediate-mass stars, solar types, and VLMS, and
∼20 AU for BDs.

3. There is a marked flattening/decrease in the upper envelope
of observed fluxes going from solar-type to intermediate-
mass stars, given roughly by Fν ∝ M

−1/2
∗ ; this may be due

to greater photoevaporation with increasing stellar mass.
Grain growth and accretion, while present, appear unlikely
to cause this trend.

4. Many of the (likely) optically thin disks around Taurus and
ρ Oph intermediate-mass and solar-type stars evince an
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opacity power-law index of β ∼ 0–1 (as found in previous
studies as well), suggesting substantial grain growth. The
situation for the VLMS/BDs in these regions is not clear:
most have been observed at only one wavelength, and the
few with a small measured α are consistent with either grain
growth or optically thick disks.

5. We have observed the TWA VLMS TWA30A and B only
at 850 μm, but a comparison of their derived apparent
disk masses and their observed accretion rates and age
suggests substantial grain growth, similar to that in the
TWA accretors Hen 3-600A and TW Hya.

6. For the TWA BD 2M1207A, an analogous analysis suggests
Md/M∗ ∼ 10−3, comparable to the lower end of measured
values among Taurus and ρ Oph VLMS/BDs; the disk
mass for the similar TWA BD SSSPM1102 appears to be
a factor of 10 smaller still (of order 1 M⊕). The available
data put no strong constraints on grain growth in the two
disks.

7. The observed spread of �2 dex in apparent disk masses,
in all stellar mass bins, may reflect a spread in initial
disk masses, or in accretion and/or photoevaporation rates.
There is no strong evidence at present of this spread being
caused by a reduction in disk flux due to grain growth,
but more data on faint disks are required to test this
proposition.

We have also examined the relationship between apparent
disk mass and stellar mass through a Bayesian analysis
(with the caveat that the trend in the real disk mass
may be different, depending on grain properties and the
absolute value of the opacity, which are unknown for a large
fraction/most of the sources). We find the following.

8. Among Taurus solar-type stars, the disk mass in close
binary systems (projected separation <100 AU) is ∼10×
smaller than around single stars, while the disk mass in
wide binaries (�100 AU) is closer to that around singles
(∼3× smaller), in line with previous studies.

9. The apparent disk-to-stellar mass ratio is consistent with a
lognormal distribution with a mean of log10[Mdisk/M∗] ≈
−2.4, all the way from intermediate-mass stars to
VLMS/BDs, in agreement with previous qualitative sug-
gestions that the ratio is roughly 1% throughout the
stellar/substellar domain.

10. We caution against the application of survival analysis
techniques to astrophysical data sets in which upper limits
are not random, but dependent on survey sensitivities.
Finally, we have examined the implications of our results for
planet formation around VLMS/BDs, and accretion rates
as a function of stellar mass. We find that:

11. While the apparent disk masses, Md,ν , suggest that there
may not be enough material around VLMS/BDs to effi-
ciently form terrestrial mass planets, our detailed analysis
suggests that these estimates might be systematically too
low by factors of a few to 10. If so, terrestrial mass plan-
ets may form copiously around VLMS, and in the most
massive BD disks as well.

12. The observations do not support theories which require
Md ∝ M2

∗ in order to explain the apparent empirical
correlation Ṁ ∝ M2

∗ from intermediate-mass stars to BDs.
Either the mechanism behind this relationship is different
(e.g., related to a mass-dependent variation in disk size),
or the relationship itself is more nuanced (either not as
universal as thought, or driven by observational selection
effects).
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APPENDIX A

DISK SPECTRAL ENERGY DISTRIBUTION

We outline the theory of disk SEDs, initially following the
exposition by B90. The disk flux density at a frequency ν,
measured by an observer a distance D away, is

Fν = cos i

D2

∫ Rd

r0

Bν(T )(1 − e−τν ) 2πrdr, (A1)

where i is the inclination of the disk relative to the observer (with
i = 90◦ for edge-on), Bν(T ) is the Planckian specific intensity
emitted by a locally blackbody disk with temperature T (r) at a
radial distance r from the central star, τν(r) is the line-of-sight
optical depth of the emitting material, and r0 and Rd are the
disk inner and outer edge radii, respectively. This formula is
only valid if the source function (=Bν(T )) is roughly constant
with optical depth through the disk, and thus inapplicable for
very large viewing angles (i → 90◦); we assume that the
disk is sufficiently far from edge-on to satisfy this constraint.
The optical depth is then τν(r) = κνΣ(r)/cos i, where Σ(r)
is the surface density of the disk at r (so that the total disk
mass is Md = ∫ Rd

r0
Σ(r) 2πrdr), and κν is the total opacity

(gas + dust) of the emitting material (i.e., the actual opacity of
the emitting dust grains scaled by the gas-to-dust ratio). We
assume the surface density and temperature are power laws in
radius, Σ(r) = Σ0 (r/r0)−p and T (r) = T0 (r/r0)−q , where Σ0
and T0 are the values at the disk inner edge r0.

Since the surface density declines with increasing radius, the
inner regions of the disk are more optically thick than the outer
parts at any frequency, by the definition of τν . For a given ν, the
change from optically thick (τν � 1) to optically thin (τν � 1)
conditions occurs at a radius r1, found by setting τν(r1) ∼ 1:

r1 = τ
1/p

0 r0 ≈
[

(2 − p)τ̄ν

2

]1/p

Rd. (A2)

Here, τ0 is the optical depth at the inner edge r0, and τ̄ν is the
average optical depth in the disk at ν, τ̄ν ≡ κν Md/(πR2

d cos i).
The latter uses the definition of Md in terms of the integral of
Σ(r), and assumes that Rd � r0 (i.e., we have a disk, not a
narrow annulus).

Lastly, for a disk with some global minimum temperature
Tmin, the flux densities emitted from all radii lie in the RJ limit
for all frequencies ν � kTmin/h. If the observed frequencies are
in this regime, then the Planck spectrum reduces to Bν(T )RJ ≈
(2ν2/c2)kT .

Expressing Equation (A1) as the sum of two integrals repre-
senting the flux densities from optically thick radii (r0 � r � r1)
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and optically thin ones (r1 � r � Rd ), noting that the attenu-
ation factor (1 − e−τν ) becomes ∼1 for τν � 1 and ∼ τν for
τν � 1, and stipulating that we are in the RJ regime, finally
yields

Fν ≈ ν2

(
4πk

c2

)
f0

(
cos i

D2

) [
T0r

q

0

(2 − p)τ̄ν

2
R

p

d

]

×
[

R
2−p−q

d − r
2−p−q

1

2 − p − q

]
(1 + Δ), (A3)

where the dimensionless factor f0 corrects for our having
neglected the curvature of (1−e−τν ) over the transition from op-
tically thick to thin regimes; f0 ∼ 0.8 yields good agreement be-
tween Equation (A3) and numerical integration of Equation (A1)
in the RJ limit (B90). The product of all the terms outside the
last parentheses is the optically thin contribution to the flux den-
sity, while the term Δ is the ratio of the optically thick to thin
contributions:

Δ ≡
[

2

(2 − p)τ̄ν R
p

d

] (
2 − p − q

2 − q

) (
r

2−q

1 − r
2−q

0

R
2−p−q

d − r
2−p−q

1

)
.

(A4)
Note that B90 further simplify the product of the two square
brackets in Equation (A3); their expression implicitly assumes
that the r1 derived from Equation (A2) satisfies r0 � r1 � Rd . If,
however, Equation (A2) formally yields r1 < r0, then the entire
disk is optically thin, and we must set r1 ≡ r0 for a physical
solution to Equation (A3); similarly, if formally r1 > Rd , then all
radii are optically thick, and we must set r1 ≡ Rd . In either case,
B90’s contraction does not hold, but our explicit Equation (A3)
remains valid.

If the opacity is moreover a power law in frequency, κν =
κf (ν/νf )β , where κf is the opacity at some fiducial frequency
νf , and the spectral index is defined as α ≡ d(lnFν)/d(ln ν),
then Equation (A3) can be manipulated to find α ≈ 2+(β/1 + Δ)
in the RJ limit.

We now depart from B90’s discussion. If the RJ approxima-
tion is not valid, then Equations (A3) and (A4) fail. General
expressions for Fν and Δ can still be derived by dividing the
disk into optically thick and thin parts, as above, but now using
the general Planck formula instead of its RJ limit. The results
are cited in Equations (5) and (6) in Section 4.

APPENDIX B

FIDUCIAL DISK PARAMETERS

We assume i ≈ 60◦, corresponding to the mean value of
cos(i) for a random distribution of orientations (note that for
optically thin disks, Fν becomes independent of i). We also
adopt r0 ≈ 5 R∗, the usual value for a magnetospherically
truncated inner edge (the precise location of the hot inner edge
has negligible impact on the long wavelength emission). The
location of the outer edge Rd is harder to constrain; we adopt a
fiducial value of Rd = 100 AU, but also examine a large range
of Rd = 10–300 AU, consistent with most sources in resolved
observations of stars (e.g., AW07a; Isella et al. 2009; Andrews
et al. 2010), and with the few available constraints for BDs
(Scholz et al. 2006; Luhman et al. 2007).

For the minimum mass solar nebula, Hayashi (1981) derived
a surface density exponent of p = 1.5. More recent spatially
resolved observations of disks all imply shallower radial pro-
files, mostly in the range 0.5–<1.5 (e.g., Wilner et al. 2000;

Isella et al. 2009; Andrews & Williams 2007b; Andrews et al.
2009, 2010). Specifically, Andrews et al. (2010) find that the
surface densities are consistent with a uniform exponent of ∼1
independent of stellar mass, for solar-type to intermediate-mass
stars (∼0.3–4 M�). We thus adopt a fiducial p = 1, and discuss
the effects of varying this over the range 0.5–1.5 at appropriate
junctures.

Finally, both the normalization of the temperature (T0 here)
and its radial exponent q can be estimated from SED fits to
optically thick emission in the mid- to far-infrared (see B90).
AW05 do this for sources in their sample with infrared data, to
find median values of q = 0.58 and T(1 AU) = 148 K (they
choose to normalize at 1 AU instead of at the inner edge r0).
This q is intermediate between that for flat disks, q = 3/4, and
fully flared ones, q = 3/7 (Chiang & Goldreich 1997, here-
after CG97), suggesting some degree of dust settling. While
the majority of stars AW05 examine in this regard are solar
types, a significant fraction of the small number of intermediate-
mass stars they analyze also evince intermediate q. Similarly,
VLMS/BD disks exhibit mid-infrared signatures of disk flat-
tening as well (Apai et al. 2005; Scholz et al. 2006). We thus
adopt AW05’s median q = 0.58 as a reasonable fiducial value.

Furthermore, we scale AW05’s temperature normalization,
applicable mainly to solar-type stars, to the wide range of
stellar/BD masses in our sample as follows. We assume that the
disks are passive, i.e., heated predominantly by stellar irradiation
instead of by accretion (a good assumption for average stellar/
BD accretion rates in the Class II phase). The general expression
for the disk effective temperature at a radius r is then (CG97),
T (r) = (α/2)1/4(R∗/r)1/2 T∗, where α is the grazing angle
at which stellar photons impinge on the disk at r. Assuming
now that α is roughly constant at the disk inner edge for all
stellar masses (justified below), and recalling that we adopt
r0/R∗ ≈ 5 in all cases, then yields T0 ∝ T∗, with the constant of
proportionality independent of stellar parameters. Moreover, for
solar-type stars with fiducial values T∗ ∼ 4000 K and R∗ ∼ 2 R�
(Section 3), AW05’s median T(1 AU) and q (derived mainly from
solar types) imply T0(solar types) = 148 (5 R∗/1 AU)−0.58 K ≈
880 K. The disk temperature normalization at r0 for any stellar
temperature T∗ is then

T0 ≈ 880 (T∗/4000 K) K. (B1)

In fact, the T0 derived this way turn out to be very close to
those expected for a flat disk at r0 (T0 ≈ 0.21/4(R∗/r0)3/4 T∗;
CG97). In the latter case, α ≈ 0.4 R∗/r0, which is constant for
all stars with our choice of r0. Since passive disks should indeed
be nearly flat very close to the star (where the flaring term in α
is negligible; CG97), we see that our assumption of a constant
α at our chosen r0, and hence adoption of Equation (B1), is
self-consistent.

Note that for the range of T∗ covering most of our sample,
∼2500–5500 K, the T0 we derive are lower than the dust
sublimation temperature ∼1500 K; our adoption of r0 = 5 R∗
(set by magnetospheric truncation) as the inner edge of the
dust disk is thus formally self-consistent (in the sense that dust
can exist at these temperatures). In reality, the disk may be
significantly hotter here due to accretion and/or frontal heating
of the disk inner wall; the real inner edge of the dust disk may
then be set by sublimation instead, and lie at somewhat larger
radii (e.g., Eisner et al. 2005). However, the hot emission from
regions close to r0 contributes negligibly to Fν in the sub-mm/
mm, so the precise temperature and location of r0 is not crucial in
itself to our calculations. The true importance of T0 for us is as a
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scaling factor for the temperatures at larger (cooler) radii, which
do contribute to the sub-mm/mm emission. Heating at these
radii is expected to be dominated by stellar irradiation instead
of accretion (CG97; D’Alessio et al. 1999), and not subject to
frontal irradiation effects either, so the temperatures here can
be self-consistently derived by scaling under the assumption of
a passive disk throughout (tapering to a small grazing angle at
r0), as we have done.

Lastly, the disk temperature cannot continue decreasing as a
power law indefinitely; eventually, other heating sources, such
as cosmic rays, radionuclides, and the ISRF must dominate
over the stellar irradiation. Cosmic rays and radionuclides do
not appear important in this context (e.g., for a disk around
a solar-type star, heating from these two sources becomes
important only when the temperature due to stellar irradiation
has formally dropped to <3 K, i.e., below the cosmic microwave
background temperature; see D’Alessio et al. 1998). The ISRF,
however, is critical. Specifically, Mathis et al. (1983) calculate
the temperature of grains in both the ISM and in Giant Molecular
Clouds (GMCs) due to ISRF heating. Given the very high visual
extinction to the midplane of accretion disks, the GMC case is
more germane to our analysis. For their calculated ISRF near the
galactocentric distance of the Sun, they find a grain temperature
of ∼8–15 K, for silicate and graphite grains, respectively.
We therefore adopt a minimum disk temperature of 10 K due
to the ISRF. Note that the gas does not influence this grain
temperature at all; when the density is sufficiently high (as it is
in accretion disks), the gas simply reaches thermal equilibrium
with the dust at the same temperature.

Thus, our final adopted temperature profile is one that declines
as a power law in radius, due to stellar irradiation, until the
10 K threshold is reached, and then remains constant at this
temperature, due to ISRF heating, at all larger radii.

APPENDIX C

BAYESIAN ANALYSIS

Consider a specified model Mi invoked to explain a set of
data D. Then, the fundamental equation of Bayesian statistics
states that

P (Mi |D) = P (Mi) P (D|Mi)

P (D)
, (C1)

where P (Mi |D) is the posterior probability that the model
is correct given the data (posterior for short); P (Mi) is the
prior probability that we assign to the model’s veracity (before
comparing to the data), given all our pre-existing information/
biases about the world (prior for short); P (D|Mi) is the
probability of obtaining the data given this model (known as
the likelihood); and P (D) ≡ ∑

i P (Mi) P (D|Mi)—where the
summation is over all possible models—is a normalization
factor (known as the evidence) that ensures

∑
i P (Mi |D) = 1.

Equation (C1) elegantly expresses the intuitive notion that the
probability of a given model being correct, in light of the data, is
proportional to both our a priori preference for the model and the
likelihood of actually obtaining the observed data if the model
were true. Thus, a model which fits the data well but is judged
outlandish for whatever other reason must still be considered
improbable, and so must a model which seems reasonable to
start with but fits the data very poorly. The normalization factor
simply expresses the condition that the data must be explicable
by some subset of the available models.

This technique can be used for either model comparison (eval-
uating the posterior probabilities of different models) or param-

eter estimation (evaluating the posteriors for different parameter
values within the context of a single model). In this work, we
are concerned with the latter; we will consider one model (in
particular a lognormal, discussed further below), specified by
N parameters. Our task is to estimate the probability of these
parameters taking on any particular set of values {θn=1..N} (in
our case, a specific mean and standard deviation), given a set
of actual measurements, upper limits, and uncertainties. Thus,
consider data with Nd measured values {m̂d=1..Nd

} and associ-
ated errors {σd}, and Nu upper limits {m̂lim,u=1..Nu

} with errors
{σu}. Then, from Equation (C1), the posterior probability of the
model parameters taking on the values {θn} may be explicitly
written as

P ({θn} | {m̂d}, {m̂lim,u}) = P ({θn}) P ({m̂d}, {m̂lim,u} | {θn})∫
P ({θn})P ({m̂d}, {m̂lim,u} | {θn}) ,

(C2)
where the evidence in the denominator is expressed as an
integral, instead of a summation, for a continuous instead of
discrete range for each model parameter.

The evidence integral is immaterial for inferring the relative
probabilities of model parameters. We will also assume here that
the prior is a uniform distribution, expressing our lack of any
strong preference for one set of model parameters over another.
Then, the posterior is simply proportional to the likelihood:

P ({θn} | {m̂d}, {m̂lim,u}) ∝ P ({m̂d}, {m̂lim,u} | {θn}). (C3)

The likelihood is given by the product of the likelihood of
each measured value or upper limit, i.e.,

P ({m̂d}, {m̂lim,u} | {θn}) =
[

Nd∏
d=1

P (m̂d | {θn})
]

×
[

Nu∏
u=1

P (m̂lim,u | {θn})
]

. (C4)

The one subtlety in evaluating the above is that the true value of
each data point (as opposed to the measured or upper limit value,
which is the true value scattered by the measurement noise) must
be taken into account (i.e., marginalized over), since we want the
underlying distribution of the population. This is accomplished
by making use of the known uncertainties (noise) as follows.

C.1. Measured Values

We will assume that the true value md is non-negative, and
that the noise is additive and Gaussian. Then, for objects with
measurements, the individual likelihoods are given by

P (m̂d | {θn}) =
∫ ∞

0
P (md | {θn}) 1

(2π )1/2σd

× exp

[
−1

2

(
m̂d − md

σd

)2
]

dmd. (C5)

In general, the integral must be evaluated numerically once the
model is specified, which is nevertheless usually straightforward
since the integrand is only significant in the approximate range
MAX(0, m̂d −3σd ) � md � (m̂d +3σd ). Note that the measured
value m̂d may well be negative; it is only the true value md that
is required to be non-negative.
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Figure 17. Illustration of our posterior probability calculation. Top row: case where actual measured value is known. Left panel: specific lognormal model to be tested
(Equation (C9), with some specified μ and s). Middle panel: Gaussian distribution of possible true values (in green), centered on the measured value (shown by the
vertical dotted line). The lognormal from the left panel is overplotted as a dashed line. Right panel: product of the lognormal and Gaussian, giving the integrand of the
likelihood integral (Equation (C5), proportional to the posterior). Bottom row: case where only a 3σ upper limit is known. Left panel: same lognormal model as in
top row. Middle panel: distribution of possible true values, given by the complementary error function. The value of the 3σ upper limit is shown by the vertical dotted
line. Note that the distribution rapidly flattens to a constant value below the upper limit (since the true value may be any value below this limit), and quickly goes to
zero above the upper limit (since the probability of the true value being greater than this limit rapidly diminishes). Right panel: product of the left and middle panels,
giving the integrand of the likelihood integral in this case (Equation (C8)).

(A color version of this figure is available in the online journal.)

C.2. Upper Limits

For objects without reported measured values, the individual
likelihood is complicated by the fact that the upper limit is
consistent with any case in which the unreported measurement
m̂u (i.e., the true value mu scattered by the measurement noise
σu) is less than or comparable to the reported limit m̂lim,u.
Hence, it is necessary to marginalize not only over the unknown
true value mu, but also over the unknown measurement m̂u.
Assuming again that the noise is additive and Gaussian, the
likelihood for each object with a reported upper limit becomes

P (m̂lim,u | {θn}) =
∫ ∞

0
P (mu | {θn})

{∫ m̂lim,u

−∞

1

(2π )1/2σu

× exp

[
− 1

2

(
m̂u − mu

σu

)2]
dm̂u

}
dmu. (C6)

The inner integral is given by

∫ m̂lim,u

−∞

1

(2π )1/2σu

exp

[
−1

2

(
m̂u − mu

σu

)2
]

dm̂u

= 1

2
erfc

(
m̂lim,u − mu

σu

)
, (C7)

where erfc is the complementary error function, so that the
likelihood simplifies to

P (m̂lim,u|{θn}) =
∫ ∞

0
P (mu|{θn})1

2
erfc

(
m̂lim,u − mu

σu

)
dmu.

(C8)
This integral must be evaluated numerically, but this is again
straightforward, with the integrand appreciable only over the
range 0 � mu � (m̂lim,u + 3σu).

C.3. Model

We assume that the underlying distribution of Md,ν/M∗
is a lognormal (justified at the end of Section 8), specified
by two parameters: θ1 ≡ μ (the mean) and θ2 ≡ s (the
standard deviation). For any given μ and s, the probability of
any particular positive value m (≡ Md,ν/M∗) in this distribution
is

P (m | {μ, s}) ≡ 1

(2π )1/2 m s
exp

[
−1

2

(
ln(m) − μ

s

)2
]

.

(C9)
Substituting this into Equation (C5) with m ≡ md , and into
Equation (C8) with m ≡ mu, then gives us the individual
likelihoods for any measured value m̂d or upper limit m̂lim,u.
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The product of these, as specified in Equation (C4), yields
the total likelihood of the data given any particular parameter
set {μ, s}, which leads to the posterior probability of this set
via Equation (C3). Repeating this procedure over the whole
range of model parameters then gives the posterior probability
distribution of the model parameters (in reality, we carry this
out over a fine but discrete and finite mesh covering the range
of plausible μ and s). This method of calculating posterior
probabilities is graphically illustrated in Figure 17.
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