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Abstract: Accurate estimation of the shape of human faces has many applications from the movie industry to psycholog-
ical research. One well known method is to fit a Three Dimensional Morphable Model to a target image. This
method is attractive as the faces it constructs are already projected onto an orthogonal basis making further
manipulation and analysis easier. To date use of Morphable Models have been limited by the inaccuracy and
inconvenience of current face-fitting methods. We present a method based on Genetic Algorithms that avoid
the local minima and gradient image errors that current methods suffer from. It has the added advantage of
requiring no manual interaction to initialise or guide the fitting process.

1 INTRODUCTION

Accurate analysis of the 3D shape of human faces
has been limited by the relative lack of data from
three-dimensional scanners. Databases of 2D face im-
ages are often far more complete, easier to produce,
and have a long history that pre-dates 3D scanners.
However accurate shape estimating using landmarks,
or other measures, is limited by problems of pose and
orientation. Blanz and Vetter proposed a solution in
the form of a Morphable Model that captures in a sta-
tistical model the space of human face shapes and
then attempts to find from this face-space a model
that most closely matches the target image (Blanz
and Vetter, 1999). The advantage of this algorithm is
that shape can be estimated from a far wider variety
of poses than with a two-dimensional method such
as the commonly used AAM (Cootes et al., 1998).
Also, illumination is less of an issue as the illumina-
tion of the three-dimensional model can be computed
by physical simulation. Widespread adoption of these
models has been hampered by the lack of accuracy in
the fitting of the model.

Most current methods involve minimizing a cost
function based on the L2-norm between a rendered
face model with a particular set of parameters and a
target image. As the derivatives of this function can be
approximated, many previous authors have used gra-
dient descent methods. However these methods are
prone to local-minima problems. Also the derivatives
are approximated and are only valid if the face is al-

ready closely aligned with the target image. These
derivatives introduce a new source of error to the fit-
ting that is most pronounced when the gradient is
shallow, as well as a windowing effect that makes
it difficult to detect shape updates that differ signifi-
cantly in scale.

We used an alternative minimization approach that
avoids many of the problems associated with gradi-
ent descent, called a Genetic Algorithm. This algo-
rithm uses the ‘best’ results from the previous itera-
tion to seed a new set of trial parameters. This allows
a greater proportion of the parameters’ space to be
analysed and so is less likely to become ‘stuck’ in a
local-minima and so find a global optimum.

2 Background

In their original paper on Morphable Models,
Blanz and Vetter used a stochastic gradient descent
method to minimize the L2-norm between a synthe-
sized face image and a target image (Blanz and Vet-
ter, 1999). A significant contribution to the field of
3D face fitting was made by Romdhani who together
with Blanz and Vetter investigated estimation of shape
changes via optical-flow (Romdhani et al., 2002).
They also adapted a version of the inverse Lucas
Kanade algorithm (Baker and Matthews, 2004) for
3D face models (Romdhani and Vetter, 2003). They
found this method efficient at estimating face shapes
provided no change in pose was detected, in which
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case the derivative images would have to recalculated
in their entirety. The most promising was a multi-
feature fitting strategy that combined, in a Bayesian
fashion, a set of different differentiable cost functions
designed to extract different aspects of the image; for
example, edges and particular illumination artefacts
such as specular reflection (Romdhani, 2005). Like
previous methods, these functions were differentiable
and required a good initial estimate of parameters.
Faggian et al. adapted the method for multiple views
of the same face, however we will be working with
just one view (Faggian et al., 2008).

Xiao et al. used a 2D to 3D method whereby
an Active Appearance Model was constructed from
a 3DMM. Thus methods developed to fit and track
AAMs can be used with 3D models. However the
combined model also spans a large set of parameter
values that result in invalid 3D shape models (Xiao
et al., 2004). These methods all suffer from both
the local-minima and windowing problems described
above.

Fitting a model by matching it to prominent fea-
tures in the target image is an appealing option. The
most obvious of these are the boundaries such as
those between the face and background and inter-
nal boundaries such as the edges of eyes, the mouth
etc. Moghaddam et al. used face silhouette taken
of the same source from multiple angles to capture
a 3DMM. They used an XOR based cost function
where a high cost was applied to silhouette edge
points that are found in one image but not at the equiv-
alent point in the other. Not all the boundaries on the
images and models are appropriate for fitting. Hair,
for example, provides false edges, and the model it-
self can provide false silhouettes as it is defined over
the face only and not the full head. The cost func-
tion was therefore weighted towards appropriate sil-
houettes (Moghaddam et al., 2003).

A number of techniques make use of shape-from-
shading, solving a partial differential equation linking
the image intensity to the reflectance map based on
the assumption that the surface is Lambertian. Patel
and Smith estimated the 3D shape by minimising the
arc-distance between the surface normal of the Mor-
phable Model and the illumination cone. These con-
straints applied only to vertex points and as such al-
lowed the shape-from-shading model to capture fine-
scale surface details. Current Shape from shading for-
mulations rely on specific lighting and camera set-
ups, for example a distant light source or a light
source at the optical centre of the image. This con-
straint is not present when the lighting model is calcu-
lated by physical simulation (Patel and Smith, 2009).

3 Constructing a Morphable Model

Three dimensional Morphable Models, introduced by
Blanz and Vetter, use Principle Components Analysis
to describe the space of human faces as a set of or-
thogonal basis vectors. Given a set of 3D dimensional
face models we find a set of one-to-one correspon-
dences between vertices by delineating key points on
the models, such as eyes, nose, mouth etc. The ex-
emplar is warped into alignment with the target face
using the landmarks to drive a 3D thin-plane-spline
model. Correspondences between face models and an
exemplar face model are found by casting rays out
from the vertices of the exemplar models in the di-
rection of the surface normal at the vertex, the posi-
tion on the target model intersected by the ray is con-
sidered to be the corresponding vertex. The meshes
are remapped by warping the vertices of the exem-
plar mesh to the corresponding vertices of the target
mesh, thus creating a new mesh with the vertex count
and structure of the exemplar and the shape of the tar-
get mesh. Colour is warped similarly using the cor-
respondences defined to between the two shapes. We
concatenate the resulting vertex positions and colour
values as,

s = (x1,y1,z1,x2,y2,z2, · · · ,xn,yn,zn)
T , (1)

t = (r1,g1,b1,r2,b2,g2, · · · ,rm,gm,bm)
T (2)

Each face is centred by subtracting the mean of all
the faces and PCA performed. A reduced set of 40
eigenvectors for each of shape and colour were used
to describe the face space. The shape s and colour t
of a new face are generated as a linear combination of
weighted PCA vectors s j, t j and the averages ŝ and t̂.

s = ŝ+
k

∑
j=1

α js j, t = t̂+
k

∑
j=1

β jt j (3)

With the probability distribution over the PCA face-
space defined as

p(s)≈ e
− 1

2 ∑i
α2

i
σs,i (4)

where σs,i is the standard deviation of the ith shape
component. The PDF for colour is defined similarly.

The weights α j and β j form the parameter vectors
α and β. New faces are created by varying these pa-
rameters. In order to render the model a set of camera
parameters specifying the position, pose and scale of
the face relative to a camera position are required. In
the rest of this paper we will be referring to the con-
catenated shape and colour parameters α,β, together
with the camera parameters, as the Morphable Model
with parameters p. The image of the rendered Mor-
phable Model with parameters p is denoted M (p).
This process is described in more detail in (Blanz
and Vetter, 1999).



4 Genetic Algorithm

4.1 Cost function

In order to extract three dimensional facial features
we minimize the L2-norm of the difference between a
rendered 3D face model and the target image.

C(p)l =
1
|Ω| ∑

x∈Ω

(M (p)lab− Ilab)
2 (5)

where Ω is the subset of all samples in the image cov-
ered by the rendered face image and |Ω| is the num-
ber of samples in Ω. The cost function is scaled to
the number of rendered samples to avoid degenerate
minimisation.

The calculation is performed in L*a*b* space as
this allows an emphasis on the Intensity of the im-
age (the L* values are on average larger than the a*
and b*) with some colour information included in the
model.

We found that fitting to an L2-norm alone was
unsatisfactory as the model tended to have difficulty
matching the edges of the face. The cost function is
unspecified outside the area of the rendered model so
the edges of the face are generally undefined by this
method. We added an edge fitting metric as defined
by (Romdhani, 2005). A Sobel edge detector is used
to find edges in the target image. For each position
in the target image the distance to the nearest edge
point is found. The error metric for the edge detector
becomes

C(p)e =
1

ΨM (p) ∑
x∈ΨM (p)

(argmin
x
x

|x−ΨI |22) (6)

ΨI and ΨM (p) denotes the set of detected edge points
after a Sobel edge detector has been applied to the
target image and rendered Morphable Model respec-
tively.

The error metrics are combined into a single cost
function

C(p) = λC(p)l +µC(p)e (7)
Where λ and µ were chosen to be 1 and 15 respec-
tively. These numbers were chosen such that the ratio
λ

µ = median(Cl)
median(Ce)

. The medians of Cl and Ce were es-
timated empirically by rendering a set of Morphable
Models with random parameters and estimating the
respective error metrics between them and a randomly
selected target image.

4.2 Minimisation using a Genetic
Algorithm

The minimization method employs a standard genetic
algorithm. There are many books and papers on

this topic, and just as many variations on the basic
method. For completeness we will outline the exact
method used, much of which is from the book ‘Es-
sentials of Meta-heuristics’ (Luke, 2009). The algo-
rithm is inspired by Darwinian evolution aims find the
global minimum by ‘breeding’ an optimal individual.
Each generation, i.e. iteration of the algorithm, a pop-
ulation of possible solutions is evaluated and using
the cost function (equation (7)). The best solutions
are kept and the parameters combined to create a new
population for the next iteration of the algorithm. In
this manner the algorithm converges to the global op-
timum, the parameters of which are the values of p
that minimise equation (7).

The algorithm begins by generating a set of sam-
ples from a distribution believed to contain the global
minima of an cost function. In the selection phase a
cost function is applied to this set of samples and the
m best selected as ‘parents.’ A new set of samples
are generated from the parent set by selecting random
pairs of parents and combining their parameters, this
is known as Cross-Over. In a final Mutation phase
the combined pairs are randomly altered to introduce
variation into the population. The cost function is ap-
plied to these child samples and the m best become
the ‘parents’ of the next generation. The algorithm
repeats until no further improvement is made over a
pre-defined number of generations.

Algorithm 1 Outline of Genetic Algorithm

Let P be a set of randomly generated Morphable
Models (with shape, colour and camera positions)
repeat

For each pi ∈ P compute the cost function C(pi)
(equation (7))
Let P(l) = subset of l best samples from P,
for k = 1 to m do {Create m new samples}

Select pair of samples at random from P(l), de-
note pi and p j, i 6= j.
for o = 1 to n do {For each parameter in pi}

Choose at random from each of the parents.
qk,o = pi,o|p(i,o)
0.25 chance of Applying mutation to qo ac-
cording to equation (8).

end for
end for
Combine best l samples with newly created sam-
ples and use in next iteration. i.e. Let P =
{P(l),Q} .

until Algorithm ceases to converge
Take sample with lowest cost as solution.

Selection Each subject in the current generation is
evaluated using the fitness function C and a subset



of 25 with the ’best,‘ i.e. lowest, scores selected
as parents for the next generation. These ‘parents’
survive into the next generation and are randomly
paired to produce offspring.

Cross-Over In order to create a new ‘child’ subject
from two parents it is necessary to select indi-
vidual features from one parent or another, in the
hope that the ‘child’ will feature the best parame-
ters from each parent. As we do not know in ad-
vance which features offer the best improvement
we select the features at random. Thus, for each
parameter i in the parameter vector p we select,
randomly, one of the two parents and copy that
parents parameter. In our implementation we did
not bias towards either parent and thus each pa-
rameter has a 0.5 chance of being selected from
each parent.

Mutation The offspring that result from the Selec-
tion and Cross-over will differ from their parents
and uniqueness is enforced, however only param-
eter values randomly generated in the initialisa-
tion phase will be explored. In order that the pa-
rameter space is adequately explored by the al-
gorithm, each parameter has a chance of being
mutated, the probability of mutation is known as
the mutation factor. A trivial implementation of
the mutation would be to add a random amount
to the parameter determined by the Probability
Density Function (see equation (4)) for the pa-
rameter. However this adversely affects the con-
vergence time of the algorithm as the parameters
will frequently be far from the global optimum.
To avoid this we used a new method that con-
strained the new mutated value to be with-in or
close to the area that the population is converging
towards. We assume that the two ‘parent’ values,
being chosen from the amongst the best current
solutions, frame the global minimum and thus we
concentrate our search between these two values.
This is a trade-off between a search that covers the
whole space of possible Morphable Models and
the speed of convergence. Define the mutated pa-
rameters p′ as

p′i =
1
2
(p(1)+ p(2))−ρ+ r (8)

r ∈U(−1
2
(p(1)+ p(2)),

1
2
(p(1)+ p(2)))ρ

where p(1) and p(2) are the parameters of the two
selected parents and ρ is a constant that allows
the value of the new parameter p′ to randomly
stray beyond the limits described by p(1) and p(2),
preventing the algorithm from becoming too con-
strained. In our system ρ = 1.2. U(a,b) is the

uniform distribution defined over the range a to b
inclusive.

Elitism The best result from the previous generation
is preserved in the new generation. This makes
the search similar to a ‘down-hill’ search.

5 Results

3D models of 185 individuals (123 females, 62
males) of student age (17-23 years) were captured us-
ing a Cyberware scanner. A Morphable Model was
constructed using these heads as outlined in section 3.
Further, 43 photographs of female subjects, also stu-
dent aged were taken. These photographs were taken
under controlled lighting conditions; these conditions
were different from the lighting conditions of the 3D
capturing system.

Shape estimation of each of the 43 subjects was
carried out using both the Genetic-Algorithm method,
outlined above, and using a Taylor-Series gradient de-
scent method similar to (Blanz and Vetter, 1999). For
the Taylor-Series method the faces where initialized
by hand, placing a Morphable Model in the average
configuration in the location on the face that most
closely matched the subjects own face. To overcome
the windowing problem we used a multi-scale fitting
strategy.

Results of fitting using our GA algorithm are
shown in figures 1 and 3.

In order to get some empirical measures we would
ideally like to have a three-dimensional face model
that exactly matches the photographic image for com-
parison. As we have no access to such models we
opted for a feature point matching strategy. Each
of the 43 photographic images were hand delineated,
marking out clear feature points, e.g. corner of eyes,
mouth, chin etc. Identical landmarks were found on
the Morphable Model, and appropriate shape updates
found such that the landmarks were appropriately ad-
justed when the Morphable Models parameters were
updates. When fitting, either by the Taylor-series
method or the Genetic Algorithm, is completed the
landmarks are updated to match the Morphable Model
and projected onto the two-dimensional image. Each
landmark is compared with its corresponding hand-
placed landmark to determine the accuracy of the fit-
ting in an L2, least squares sense.

χ
2 = ∑

i
|li−M[ŝi +

k

∑
j=1

α jsi, j]|22 (9)

Here li is the 2D position of the ith hand-placed land-
mark. ŝi denotes the position in the 3D shape average



(a) (b)

(c) (d)
Figure 1: Example results of the GA face fitting algorithm.
The left column shows the original subjects the right col-
umn the rendered shape estimation that approximately min-
imises the cost function C. The right most image shows the
final result of the algorithm.

and s j, i the shape update of the ith landmark in the jth

principal shape component. M is a linear transform
from 3D to 2D built using the camera parameters.

Table 1 shows the results of fitting to 43 example
images using both the Taylor-Series and Genetic Al-
gorithm methods. From these results we can see that
the GA method offers a clear improvement over the
Taylor-Series method, the difference is significant to
p=0.005, using a single-tailed paired t-test.

Method Mean Standard Deviation
Taylor-Series 44.0 12.9

GA 38.8 4.5
Table 1: Average error from template fitting computed as
mean squared difference in pixels between landmark pairs.
The images are 378 by 478 pixels. The results are averaged
across 43 fitted images.

(a) Original Image (b) GA Fitted Image

(c) Taylor-Series Fitted Im-
age

(d) Model only - Front View (e) Model only - Profile
View

Figure 3: Example results from the face fitting algorithms.
The top-left image shows the target face image for one of
the subjects. The top right image is the result of the Ge-
netic Algorithm applied to the target image. The middle
row shows the results of fitting using the Taylor-Series al-
gorithm for comparison. On the bottom row the models pro-
duced by the Genetic Algorithm are shown in both full-face
(left) and profile (right) views.

6 Conclusion

Previous authors have either evaluated the results
by visual inspection or by using the algorithm to iden-
tify an individual from a set of images (Romdhani
et al., 2002; Patel and Smith, 2009). As far as we are
aware we the first to have attempted to evaluate the
accuracy of the fitting independently of the cost func-
tion, albeit limited to 2D projection rather than using
a specific target model.



(a) 1st iteration (b) 3rd iteration (c) 5th iteration (d) 11th iteration (e) 28th iteration
Figure 2: The progress of the Genetic Algorithm in fitting to an example face. Each image shows the best sample from the
indicated iteration.

The algorithm described offers a clear improve-
ment over the simple Taylor-Series method. The Ge-
netic Algorithm is able to reasonably accurately esti-
mate the shape of the face without guidance by fea-
ture landmarks or other form of initialization. We be-
lieve this offers a significant improvement over cur-
rent techniques as the method can be applied easily to
large data-sets. One drawback of the algorithm that
is worth mentioning is the speed. The average time
taken for each subject in our set was 18.4 minutes
on a 2.4GHz Intel(R) Core(TM)2 CPU. Gradient de-
scent methods are significantly faster, taking an aver-
age of 4.7 minutes each. Although slower our method
is more accurate than the Taylor-Series method. The
standard deviation of the errors is significantly larger
for the Taylor-Series method as this method produces
highly inaccurate fits in a number of cases, whereas
the GA method is more consistent.

Rather than implement exactly some of the state-
of-the-art techniques we have used a simplified ver-
sion that distils the various algorithms down to their
essence as iterative gradient descent methods. Some
of the methods such as (Romdhani and Vetter, 2003)
and (Xiao et al., 2004) which attempt to exchange
accuracy for speed are not considered as accuracy is
our main aim. At the other end of the spectrum the
multi-features fitting strategy of Romdhani’s thesis
uses many different error metrics in combination to
produce a face model (Romdhani, 2005). We have
not attempted use all of these metrics in our compar-
ison, however we believe that they are likely to ex-
hibit many of the same problems as the Taylor-Series
method. This is due to the problems of local-minima
and errors in derivative calculation, a problem inher-
ent in gradient descent techniques. It is also worth
noting that both Romdhani’s algorithm (Romdhani,
2005) and (Blanz and Vetter, 1999) both rely on man-
ual placement of landmarks on each face image both
initialise and to guide the fitting. In this respect our
method provides a clear advantage in that no land-
mark placement is required.
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