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Abstract 1 

Time geography represents a powerful framework for quantitative analysis of individual 2 

movement. Time geography effectively delineates the space-time boundaries of possible 3 

individual movement by characterizing movement constraints. The goal of this paper is to 4 

synchronize two new ideas, probabilistic time geography and kinetic-based time 5 

geography, to develop a more realistic set of movement constraints that consider 6 

movement probabilities related to object kinetics. Using random-walk theory, the existing 7 

probabilistic time geography model characterizes movement probabilities for the space-8 

time cone using a normal distribution. The normal distribution has a symmetric 9 

probability density function and is an appropriate model in the absence of skewness – 10 

which we relate to an object’s initial velocity. Moving away from a symmetric 11 

distribution for movement probabilities, we propose the use of the skew-normal 12 

distribution to model kinetic-based movement probabilities, where the degree and 13 

direction of skewness is related to movement direction and speed. Following a 14 

description of our model, we use a set of case-studies to demonstrate the skew-normal 15 

model: a random walk, a correlated random walk, wildlife data, cyclist data, and athlete 16 

movement data. Our results show that for objects characterized by random movement 17 

behavior the existing model performs well, but for object movement with kinetic 18 

properties (e.g., athletes), the proposed model provides a substantial improvement. Future 19 

work will look to extend the proposed probabilistic framework to the space-time prism.  20 

  21 
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1 – Introduction 1 

Over the past decade there has been rekindled interest in using ideas from 2 

Hägerstrand’s (1970) time geography (Figure 1) in quantitative geographic analysis 3 

(Kwan 1998, 2004, Lenntorp 1999, Miller 2003). This resurgence is largely due to 4 

availability of movement data, obtained using various methods for tracking individual 5 

level movements. Concepts from time geography are now routinely used as an analytic 6 

framework for quantitative movement analysis (Lenntorp 1999). Supported by recent 7 

developments presenting rigorous mathematical definitions for time geography (Miller 8 

2005), increasingly sophisticated quantitative analyses of movement data are emerging. 9 

For example, Delafontaine et al. (2011) have introduced algorithms for incorporating 10 

physical barriers and obstacles into quantitative time geographic analysis.   11 

< approximate location Figure 1 > 12 

 Object kinetics, defined by an objects current speed and direction of movement, 13 

along with acceleration, can similarly influence movement opportunities defined by time 14 

geography (Kuijpers et al. 2011). For instance, in classical time geography, movement 15 

boundaries are calculated with the unrealistic expectation that an object can make 16 

instantaneous changes in velocity. With object kinetics (and other physical constraints) 17 

ignored, time geographic structures (i.e., the space-time cone and space-time prism) 18 

substantially overestimate movement opportunities. Kuijpers et al. (2011) have quantified 19 

the influence of object kinetics (from velocity and acceleration) on time geographic 20 

boundaries, termed kinetic-based time geography. Consideration of object kinetics 21 

provides a more realistic representation of time geography’s boundaries, as kinetic-based 22 



4 

 

time geography will exclude locations in space-time not accessible based on an 1 

individual’s kinetic movement abilities.  2 

As a quantitative framework, time geography (and kinetic-based time geography) 3 

is used to characterize the space-time boundaries on object movement, delineating 4 

locations in space and time as either accessible or not. Such a binary definition (i.e., 5 

accessible, not accessible) of time geography does not account for unequal movement 6 

probabilities within time geographic structures (e.g., those in Figure 1). Unequal 7 

movement probabilities are a result of locations and paths that are more likely to be 8 

visited than others, for instance due to shorter, more direct movement routes.  9 

Several approaches have been proposed to model movement probabilities within 10 

time geographic volumes (Miller and Bridwell 2009, Winter 2009, Downs 2010), 11 

determining, for instance, the probability an object will be found at a given location in 12 

space and time. Such a model for modeling movement probabilities is termed 13 

probabilistic time geography, which quantifies variation in movement probabilities in 14 

time geography (Winter and Yin 2010, 2011). With the current probabilistic models, 15 

calculations typically assume random movement (i.e., random walks), resulting in the use 16 

of a bivariate normal distribution for modeling potential movements in space. A random 17 

movement assumption has been used extensively in wildlife movement models, 18 

especially with coarser tracking intervals (Turchin 1998, Codling et al. 2008). Assuming 19 

random movement is a limitation, as most objects move non-randomly with directed, 20 

linear movements and often revisit specific locations with regularity (Gonzalez et al. 21 

2008).   22 
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 Kuijpers et al. (2011) identify several lingering questions in terms of kinetic-1 

based time geography, the first of which is quantifying unequal movement probabilities 2 

in kinetic time geography structures, much like probabilistic time geography. The 3 

objective of this research is to develop a model for quantifying movement probabilities 4 

for kinetic-based time geography. We generalize the current model for probabilistic time 5 

geography, proposed by Winter & Yin (2010, 2011), to account for an object’s initial 6 

velocity. The skew-normal distribution is proposed in place of the normal distribution 7 

used in Winter & Yin to model future movement probabilities in the space-time cone 8 

building upon previous attempts at factoring object kinetic properties into movement 9 

uncertainty models (Prager and Yu 2005) and interpolation algorithms (Yu and Kim 10 

2006).  11 

The paper is organized as follows. We introduce and develop the proposed skew-12 

normal model in section 2, followed by a short discussion of the model. Section 3 13 

outlines a case study, with five different datasets (a random walk, a correlated random 14 

walk, wildlife data, cyclist data, and athlete data), used to compare the skew-normal 15 

model against the existing probabilistic time geography model from Winter & Yin.  In 16 

section 4, we discuss case-study results and model limitations, followed by some 17 

potential applications of the proposed model. Finally, with section 5, we conclude with 18 

remarks on the impact of this work along with some areas for future research.  19 

2 – Model Development 20 

2.1 - Model Derivation – One Dimension  21 

We will first demonstrate the concept using the 1-Dimensional situation (i.e., an 22 

object moving along a straight line), where an object at a moment in time (t), located at 23 
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point xt, moves with some velocity (vt). As in traditional time geography, the object has a 1 

maximum travelling velocity parameter (vmax). The goal of the proposed model is to 2 

derive  future movement probabilities at time t + Δt that include consideration of object 3 

kinetics, defined here simply as a function of its current velocity vt (see Figure 2).  4 

< approximate location Figure 2 > 5 

To be a candidate, the model should satisfy three general characteristics in order 6 

to relate to object movement. First, the candidate model should revert back to the normal 7 

model proposed by Winter & Yin (2010, 2011) in the absence of kinetic properties. 8 

Reducing to the normal model in the absence of initial kinetics seems reasonable, as 9 

movement in any direction should be equally probable. Second, the shift in the 10 

probability mass should be proportional to the objects current velocity (as demonstrated 11 

in Figure 2). Here, interpretation of the initial kinetic properties may differ based on 12 

application, allowing flexibility in model development. Finally, the mode of the resultant 13 

distribution should be identifiable. The mode of the resulting distribution relates clearly 14 

to the most probable location of future movement, which can be used as an expectation in 15 

more formal analysis and model goodness-of-fit testing.  16 

A candidate model that satisfies the aforementioned properties, is the skew-17 

normal distribution (Azzalini 1985) which we propose as a generalization of the normal 18 

probability density function (pdf) from Winter & Yin (2010, 2011). Thus in order to 19 

develop the model in the one-dimensional case, we are interested in modeling the 20 

movement possibilities of an object in a probabilistic fashion using a univariate skew-21 

normal pdf (denoted SN1) which takes the following form (Azzalini 1985): 22 
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Where the functions     and are the pdf and cumulative distribution function 1 

respectively of the standard normal distribution.  The SN1 model requires the selection of 2 

three parameters that govern the location (ξ ∈ ℝ), scale (ω ∈ ℝ+), and shape (α ∈ ℝ) of 3 

the SN1 pdf.  Given its form, equation [1] can be expressed alternatively as: 4 
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Following Azzalini (1985) and Arellano-Valle & Azzalini (2008), an alternative 6 

parameterization may be used to represent the pdf in terms of the first three moments of 7 

the distribution (i.e., mean – μ, variance – σ
2
, and skewness – γ) with respect to ξ, ω, and 8 

α. Using measurable object movement properties, and some existing theory from 9 

probabilistic time geography (Winter & Yin, 2010; 2011) we will build a probabilistic 10 

model for object movement that considers object velocity using the SN1 distribution. To 11 

do so we will work with the alternative parameterization (Azzalini 1985), to relate known 12 

movement properties to SN1 parameters. A system composed of three non-linear 13 

equations (in ξ, ω, and α) is used to derive a realistic SN1 parameterization to 14 

probabilistically define object movement possibilities that incorporates object velocity. 15 

As will be seen, it is advantageous to investigate the three alternate parameters in reverse 16 

order starting first with γ.  17 

The third moment (γ) of a SN1 can be related to the shape parameter (α) directly 18 

by: 19 
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We wish to restrict γ to [-1, 1] as the maximum theoretical skewness is ~ 1, obtained by 1 

setting δ = 1 in [3]. Further, the goal is to relate γ to the properties of object motion, 2 

which will vary depending on the object type and context (Prager and Yu 2005). We 3 

propose a model where the skewness of the SN1 (modeled via parameter γ), is calculated 4 

directly from the object’s initial velocity , and is relative to the object’s maximum 5 

velocity. A simple formulation for γ which satisfies the above conditions is the ratio of vt 6 

to vmax. 7 

max

t

v

v
            [4] 8 

The negative sign in [4] reflects the fact that if initial velocity is in the positive direction, 9 

the direction of the skewness is negative (i.e., if vt is positive the bulk of the distribution 10 

should be in the positive direction). By substituting [4] into [3] one can solve for the 11 

shape parameter α, which will have a unique, real-valued solution.  12 

The second moment (σ
2
) can be expressed in terms of the shape parameter (α – 13 

which has already been identified) and the scale parameter (ω) by: 14 

2

2

22
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We are motivated to use what has already been shown from probabilistic time geography 16 

(Winter & Yin, 2010; 2011) to relate the variance of the SN1 to time geography 17 

properties.  Winter and Yin (2010) suggest that the variance of a normal pdf relates 18 

directly to the maximum extent of the space-time cone volume (i.e., tv
max

 ) through 19 

the simple idea that at its maximum extent, the pdf is zero. Following Winter and Yin 20 

(2010) we can approximate that the pdf is 0 at 3σ (i.e., by definition 99.7 % of the normal 21 
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pdf volume is within three standard deviations of the mean). We adopt an identical 1 

assumption for use with the SN1 pdf; that is: 2 

tv
max

3         [6] 3 

By substituting the solved values for σ [6], and α [3], into [5], one can obtain a quadratic 4 

equation in terms of ω. Since the scale parameter (ω) is strictly positive, of interest is the 5 

positive solution. This leaves only the remaining parameter (ξ) to identify. 6 

Unfortunately, the first moment (μ) of a SN1 is not very meaningful in the context 7 

of object movement. However, the mode of a SN1 (denoted as 


) can be used to model 8 

the most probable location of future movement
†
. For a SN1 pdf 


 is not available in 9 

analytic form, but can be found by solving for the root of the first derivative of the SN1 10 

pdf (Gupta & Gupta, 2004), that is we must solve: 11 
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The SN1 pdf is unimodal and therefore [7] possesses a single, unique root. Unfortunately, 13 

[7] cannot be easily represented in an analytical form, requiring the use of numerical 14 

methods to obtain the root. It is intuitive enough to visualize the most probable location 15 

of future movement occurring at the mode (e.g., Figure 1b). We propose a simple model 16 

where 


 is a function of the objects current location (xt), current velocity (vt), and the 17 

time difference into the future (Δt). 18 

 tvx
tt




            [8] 19 

                                                 
†
 Here we assume, as in physics, that moving objects tend to continue their motion unless acted on by other 

forces. That is, it is most probable that the object does not change speed or direction. 
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More sophisticated formulations for 


 may be warranted that consider the ratio of vt to 1 

vmax, the magnitude of Δt, and the objects acceleration. By substituting 


 (obtained from 2 

[8]) for x into [7], along with the previously computed values for ω and α, one can obtain 3 

a function for the single remaining unknown – ξ, which can be solved using numerical 4 

methods. 5 

 In summary, using known values for xt, vt, Δt, and vmax, we derive a system of 6 

three non-linear equations to solve for SN1 parameters α, ω, and ξ using the following 7 

steps. 8 

1. Substitute [4] into [3] in order to explicitly solve for the shape parameter – α.  9 

2. Substitute α and [6] into [5] and solve for the scale parameter – ω, where ω > 0. 10 

3. Substitute values for α and ω, along with the computed value for 


 from [8] into 11 

[7], to solve for the location parameter – ξ.  12 

Recall that in step 3 this procedure requires that [7] be solved numerically as it is not 13 

analytically tractable. Solving of the above system of non-linear equations is done in the 14 

mathematical software Maple (Maplesoft, Waterloo, Ontario). The resulting values for 15 

parameters ξ, ω, and α can be used to model the future movement possibilities for the 16 

object based on the SN1 model. We have used the ‘sn’ package available in R (R 17 

Development Core Team 2012) to build and sample from skew-normal distributions. 18 

2.2 - Extending the Model – Two Dimensions (Spatial Movements) 19 

 Extension of the univariate model to two dimensions for application with 20 

movement data recorded in the spatial plane (i.e., with XY coordinates) requires the 21 

consideration of several key properties. When an object exhibits kinetic effects, this 22 

movement is associated with a direction in the spatial plane. Consider this direction to be 23 
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the axis-of-movement (AoM), and thus there is an associated axis perpendicular to the 1 

movement (A+M). In practice it may be useful to examine movement based on these two 2 

axes using rotations of the natural (XY) coordinates (Figure 3). These two newly defined 3 

axes (AoM and A+M) are useful properties for developing and comparing candidate 4 

models.  5 

< approximate location Figure 3 > 6 

 Again, we consider the three basic characteristics required for candidate models, 7 

as suggested for the univariate case, that is: 1) if no initial velocity exists, the model 8 

should reduce back to the normal model from Winter & Yin (2010, 2011); 2) the initial 9 

velocity is proportional to the shift in the probability mass; and 3) the mode of the model 10 

distribution is identifiable. In the two dimensional case, we consider two alternative 11 

properties of candidate models. Let fm(s) be the function describing the movement 12 

probability surface across space (s) for model m. First, the model should exhibit 13 

reflectional symmetry about the AoM; defined as: 14 

    srfsf
AoMmm

    [9] 15 

where rAoM signifies a reflection along the line defined by the AoM . For most objects, 16 

moving in unconstrained space, turning left and right are equally probable. For objects 17 

moving along a network turning probabilities may favor left or right turns in specific 18 

scenarios.  19 

The second consideration is the structure  of the resulting distribution. This 20 

consideration arose after experimentation with multiple candidate models that seemed 21 

reasonable, but exhibited differing resultant shape characteristics. We can examine the 22 

structure of fm(s) to examine symmetry, but also discuss how well the shape of fm(s)  23 
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aligns with boundaries proposed by Kuijpers et al. (2001). The multivariate skew-normal 1 

distribution (Azzalini and Dalla Valle 1996) offers a potentially useful model for 2 

modeling future movement probabilities in the spatial plane (i.e., bivariate skew-normal 3 

model – Figure 4a). The bivariate skew-normal uses the same three parameters as the 4 

univariate skew-normal, replacing scalar values by their multidimensional vector/matrix 5 

alternatives, where ξ is a location vector, Ω is a scale/covariance matrix, and α is a 6 

skewness vector. Again using the proposed alternate parameterization (Arellano-Valle & 7 

Azzalini, 2008) one could attempt to relate these parameters to the moments of the 8 

bivariate skew-normal distribution, similar to the univariate case. However, 9 

parameterizing the bivariate skew-normal is extremely difficult. Recall that we used 10 

numerical methods to solve for ξ in the univariate case, which become intractable for the 11 

bivariate situation. Further, in the bivariate case the scale/covariance matrix induces 12 

assymetries into the model by interrelating the scale and skewness parameters (Arellano-13 

Valle and Azzalini 2008) and therefore would not satisfy the reflectional symmetry 14 

property we desire. The absence of symmetry suggests that the bivariate skew-normal 15 

distribution may not be useful in this particular application. A seemingly logical 16 

alternative would be to model the movement of the object as two independent SN1 17 

distributions (Figure 4b), one for movement in the X direction and one for the Y 18 

direction. However, when the magnitude of vx ≠ vy this form of a model also introduces 19 

similar unwanted assymetries in fm(s), and therefore does not satisfy the reflectional 20 

symmetry condition.  21 

< approximate location Figure 4 > 22 
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Given our success at implementing the univariate skew-normal, a potential 1 

bivariate skew-normal model would include the product of a skew-normal aligned with 2 

the AoM and a normal model aligned with the A+M (Figure 4c). The selection of the 3 

normal for the A+M is to satisfy the symmetry requirement, although any symmetric 4 

distribution could be accommodated here. The use of the normal distribution here 5 

however ensures that we satisfy criterion 2); that the model reduces to that of Winter & 6 

Yin in the absence of initial velocity.  7 

Alternatively, we propose the use of two univariate skew-normal distributions 8 

aligned at 45° of either side of the AoM (Figure 5). The motivation for choosing this 9 

formulation is based on repeated experimentation with two independent SN1 10 

distributions. Based on this orientation it can be shown that the initial velocity (along the 11 

AoM) can be decomposed into two equal and orthogonal vectors along these 12 

corresponding axes. Given an object located at the origin with an initial velocity in 13 

direction θ (i.e., θ from the horizontal axis) it is trivial to compute the rotated coordinate 14 

system (see Figure 5). Under this rotated coordinate system, the initial velocity will be 15 

identical in the rotated axis (x’ and y’) and computed by: 16 

2

2
v

vv
yx



      [10] 17 

Where x’ and y’ are the rotated coordinates for two orthogonal axes taken to be 45° from 18 

the AoM. Based on this model we can construct a bivariate skew-normal as the product 19 

of two identical univariate skew-normal distribution aligned at 45° from the AoM. As can 20 

be seen in Figure 4d, this model accommodates all of the requirements of a candidate 21 

model.  22 

< Approximate location Figure 5 > 23 
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Unlike with random movement where a strong foundation of theory exists for 1 

using the bivariate normal distribution for modeling future movement probabilities (e.g., 2 

Pearson, 1905; Skellam, 1951), no general theory exists for deriving future movement 3 

probabilities for kinetic movements. Thus, we chose to further evaluate only the rotated 4 

skew normal model, based on qualitative assessment and initial data-driven comparisons 5 

between models. Based on our observations and trials we found the rotated skew-normal 6 

model provided better alignment with the kinetic time geographic boundaries  (Kuijpers 7 

et al., 2011; see also Figure 6), but also showed better agreement with movement data 8 

based on initial tests. However, the skew-normal / normal model and rotated skew-9 

normal models generate rather similar fm(s) surfaces (i.e., Figure 4 c and d), and a more 10 

thorough investigation of the differences between the models is warranted. From here 11 

forward, the rotated SN model (with two axis at 45° from the AoM – Figure 4d) will be 12 

implemented and referred to as the SN-model.  13 

< Approximate location Figure 6 > 14 

2.3 – Model Discussion 15 

The model we have proposed is impacted by the assumptions necessarily made to 16 

solve the system of equations associated with the skew-normal parameters (i.e., equations 17 

[3] to [8]). The first assumption is that the skewness parameter (γ) is proportional to the 18 

ratio of the objects current velocity – vt to vmax (i.e., in [4]). Setting the skewness to the 19 

ratio of vt to vmax is logical as this bounds γ on [-1, 1], which is the natural range for this 20 

parameter. However, the relationship between initial velocity (defined here using the 21 

ratio of vt to vmax) and γ may be non-linear and alternative definitions of [4] may be 22 

warranted provided they maintain γ on the range [-1, 1]. For instance, here we ignore the 23 
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effect of acceleration (Kuijpers et al. 2011), an integral component of object kinetics, in 1 

our model definition. A more complete model would include the effect of acceleration on 2 

γ and on the variance component (ω). Thus, the proposed skew-normal model represents 3 

a first step towards a kinetic-based probabilistic time geography, with further 4 

developments necessary to adequately factor in kinetic effects associated with 5 

acceleration, and generate the appropriate theory. 6 

The second assumption we make is on the variance parameter in [6], where 7 

existing theory from Winter & Yin (2010, 2011) suggests that at three standard deviations 8 

the pdf should equal the time geographic boundary of movement (i.e., vmax × Δt). Use of 9 

this formulation for σ
2
 means that in the absence of initial velocity the model reverts to 10 

that proposed by Winter & Yin, a property of the model we intended to maintain. For 11 

moving objects, increased model skewness and deviation away from the Winter & Yin 12 

model occurs as a result of a faster relative initial velocity, or a finer sampling interval. 13 

Using the definition in [5] and keeping variance constant, it can be shown that at higher 14 

levels of observed skewness the scale parameter (ω), which roughly describes the width 15 

of the skew-normal distribution, will be smaller in magnitude then with a lower level of 16 

skewness. A smaller width associated with increased  initial velocity is a positive result in 17 

light of what we might expect with movement situations (i.e., lesser movement 18 

opportunities with increased initial velocity – Kuijpers et al., 2011) and further evidence 19 

that the proposed model is suited to movement applications. A lingering issue with the 20 

Winter & Yin model is probability surfaces defined beyond the physical limits imposed 21 

by time geography. Winter & Yin (2011) use the classical time geographic boundaries in 22 

order to truncate the model distribution. Similarly, here it would be appropriate to 23 
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truncate the SN model surfaces using the kinetic boundaries defined by Kuijpers et al. 1 

(2011; see also Figure 6).  2 

The final assumption we make in the model is given by [8]. Here we assume that 3 

the most likely location of future movement (the mode of the resulting two-dimensional 4 

surface) is at the location (Δt into the future) associated with unchanging speed and 5 

direction by the object. By assuming that moving objects are most likely to maintain both 6 

speed and direction, the SN model is founded on fundamental rules from motion-based 7 

physics (i.e., Newton’s first law of motion). This assumption is also apparent in models 8 

used to match movement data (e.g., GPS traces) to road networks (e.g., Krumm, 9 

Letchner, & Horvitz, 2007). However, the assumption that movement speed and direction 10 

are most likely to be constant and unchanging may not hold as Δt increases (e.g., in [8]), 11 

however there may be some psychological factor that suggests this relationship is 12 

approximately true. In ecology, the tendency of organisms to continue moving in the 13 

same direction is termed persistence (Othmer et al. 1988). In most cases this is unlikely 14 

to be related to physical kinetics, but rather other underlying motivations, such as 15 

migratory phases, or habitat requirements. It may be useful to consider a persistence-16 

based definition of motion in ecological examples to more appropriately factor in these 17 

types of properties of wildlife movements. This would allow kinetic-based ideas from 18 

time geography to be included with more coarsely collected wildlife movement datasets 19 

(i.e., those with sampling intervals of minutes to hours).  20 

3 Case Study 21 

3.1 – Data 22 
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 We have attempted to evaluate the proposed SN model using a combination of 1 

simulated and real-world movement datasets (Table 1; Figure 7). The first dataset is a 2 

random walk. Similar random models have been suggested by early ecologists as null 3 

models for organism movement (Skellam 1951). The second dataset is a correlated 4 

random walk. Correlated random walk models are considered one of the best models for 5 

the movements of wildlife (Kareiva and Shigesada 1983, Turchin 1998), and commonly 6 

used to simulate movement data for method testing (Nams 2005, Börger et al. 2008, 7 

Long and Nelson 2012). The first empirical dataset used is Caribou data tracking the 8 

movement of a single caribou across northern British Columbia over the course of a 9 

single year. Location fixes were obtained at a sampling interval of Δt = 4 hour, using a 10 

VHF telemetry system resulting in minimal missing fixes. The second empirical dataset 11 

is a GPS track of a commuter cyclist. Cycling data were recorded using a commercial, 12 

handheld GPS set to a sampling interval of Δt = 5 seconds. The final empirical dataset is 13 

generated using sport-specific GPS units (GPSports, Fyshwick, Australia) from athletes 14 

participating in an ultimate frisbee game. Here GPS relocations of an athlete are collected 15 

at a sampling interval of 5 Hz (Δt = 0.2 s), representing an extremely detailed dataset on 16 

individual movement. This sports data has been previously explored in Long & 17 

Nelson(2013), in the context of measuring dynamic interactions in player movements. 18 
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< approximate location Figure 7 > 20 

3.2 – Methods 21 

3.2.1 – Model Set-up 22 
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 Movement datasets can be used for examining predictive movement models by 1 

attempting to predict successive movement fixes based on the previous fixes. In order to 2 

do this, we compare the observed location of each fix with the modeled probabilities 3 

obtained from either the Winter & Yin model or the SN model. That is, for each fix i in a 4 

trajectory we compute two probability surfaces fW&Y(x) and fSN(x) (e.g., figure 6) that can 5 

be used to predict, probabilistically, future movement locations (i.e., fix i+1). We extract 6 

the observed fix probability from both the Winter & Yin and SN models, along with the 7 

maximum observed probability in order to evaluate the two models.  8 

3.2.2 – Model Evaluation 9 

It is useful to evaluate the predictive ability of the model by examining how well 10 

the predictive model aligns with the observed movement data. Typically, one would use a 11 

measure of, in this case spatial, distance (e.g., ||observed – expected ||) to quantify this 12 

agreement. Given that we use the mode explicitly in our derivation of skew-normal 13 

models (which is not necessarily equivalent to the expected value) we suggest some 14 

alternative measures of model agreement. 15 

 When one model is a special case of another, as in our situation where the normal 16 

model is a special case of the SN-model, the likelihood ratio of the two models can be 17 

used as a comparison statistic (Kalbfleisch 1985). Owing to its mathematical properties, 18 

the natural logarithm of this ratio, termed the log-likelihood ratio is routinely 19 

implemented:   20 

 

  














ib

ia

i

xp

xp
ln       [11] 21 

here Λi is the log-likelihood ratio for observation i, and p(xi) is the modeled probability 22 

(for model a or b) at observation i. Positive values favor the model a, while negative 23 
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values favor the model b, values near 0 signify that both models perform equally. In our 1 

examples, model a is the normal model from Winter & Yin (2010, 2011) and model b is 2 

the skew-normal (SN) model incorporating object kinetics. As a result, Λi < 0 indicate the 3 

SN model provided a better fit to the data, while Λi > 0 indicate the Winter & Yin model 4 

demonstrates better agreement. We plot the Λi of a particular movement dataset as a 5 

time-series to examine temporal trends in model differences and report the mean values (6 

i
 ). Further, a global measure of agreement, the log-likelihood ratio statistic, can be 7 

computed as: 8 

 
i

2LLR  [12] 9 

where LLR is the log-likelihood ratio statistic, which is approximated by a chi-square 10 

distribution, with degrees of freedom (df) equal to the difference in the free parameters in 11 

model a and b. In our case, model a is the Winter & Yin model and contains 1 free 12 

parameter; while model b is the SN model and contains 3 free parameters. Therefore, the 13 

d.f. for the LLR test statistic is 3 - 1 = 2. We use LLR to test for whether the use of the 14 

more complex SN model provides a significant improvement (with α = 0.01) over the 15 

Winter & Yin model.  16 

 To further examine the agreement of the models with the data, we define a 17 

statistic that compares the observed probability for movement i as a ratio of the maximum 18 

modeled probability (the mode of the predictive surface). Termed the predictive 19 

probability, the statistic takes the form: 20 
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Where PPk,i is the predictive probability of the k
th

 model for observation i. The numerator 1 

is simply the observed probability from the model at observation i. This value is then 2 

taken as a ratio of the observed maximum probability (expected value – or mode) of the 3 

model, denoted  
ik

p 


 which is used here to appropriately scale values. The ratio defined 4 

by [11] can be thought of as a performance measure of the model at each data point, with 5 

values closer to 1 signifying that the data and model show good agreement, while values 6 

near 0 suggest the model and data are not well aligned. The mean values (PPk) are 7 

reported for each model and a pairwise t-test (with α = 0.01) was used to examine 8 

whether the evaluative measure (PPk,i) differs significantly between the two models. 9 

With these five datasets, we have differing expectations of SN model performance 10 

when compared with the existing Winter & Yin model. Given that the model of Winter & 11 

Yin is based on random walks, we expect the Winter & Yin model to perform better with 12 

the random walk dataset. With the correlated random walk dataset we might expect the 13 

SN model provide a better agreement, although decreasing the correlation parameter (r – 14 

see Table 1) could change this outcome as the correlated random walk would exhibit 15 

more random-like behavior. Similarly, wildlife movements are commonly modeled as 16 

variations of correlated random walks. We expect that at a relatively coarse sampling 17 

interval (Δt = 4 hr) we will see similar results with the wildlife data as with the correlated 18 

random walk. In the cyclist example, we expect that the directed and linear nature of 19 

cyclist movement will favor the SN model. Further, the effect of object kinetics is likely 20 

dependent on the sampling interval chosen (here Δt = 5 s), and further decreasing the 21 

sampling interval would initiate an even greater influence. Finally, with the athlete 22 

movement data we expect the SN model to outperform the existing model due to the 23 
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relatively high influence of initial velocity in athlete movement and the extremely fine 1 

sampling interval (Δt = 0.2 s). 2 

 3.3 – Results 3 

 As expected, for the random walk dataset, the probabilistic time geography model 4 

from Winter & Yin (2010, 2011) performed better based on both evaluative tests. The 5 

log-likelihood ratio plot (Figure 8a) demonstrates the unpredictable nature of a random 6 

walk, with both models outperforming the other in some cases, but on average the normal 7 

model of Winter & Yin seems to provide better agreement (
i

 =  0.424), further 8 

supported by the non-significant LLR. For the random walk dataset, the predictive 9 

probability of the SN model (PPk = 0.456) is lower than the Winter & Yin model (PPk = 10 

0.599), a difference that is highly significant (Table 2). However, both values are 11 

relatively low, which suggests that neither model is particularly adept at predicting 12 

successive locations of this particular random walk dataset. 13 
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 Similarly, as expected with the correlated random walk, the SN model 15 

outperformed the model of Winter & Yin using both visual and statistical tests. As can be 16 

seen in the log-likelihood ratio plot (Figure 8b), the difference between the two models in 17 

the correlated random walk is similar but opposite than the random walk (
i

 = -0.179). A 18 

significant LLR = 359 suggests that the SN outperforms the Winter & Yin model. With 19 

the correlated random walk, the predictive probability (PPk = 0.682) of the SN model is 20 

higher than the Winter & Yin model (PPk = 0.618), a difference that is significant (Table 21 

2).  22 
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 Plotting the Λi from the caribou dataset (Figure 8c) demonstrates that, for the 1 

most part, the Λi values are near 0. With the caribou example 
i

 = 0.0148, an indication 2 

that the model from Winter & Yin slightly outperforms the SN model. However, during 3 

specific intervals the SN model outperforms the Winter & Yin model (e.g., the interval 4 

occurring in late May). These periods correspond with more active caribou movements 5 

associated with annual migration phases. When the caribou is making extensive 6 

movements the SN model may be superior, but during low movement phases the two 7 

models perform similarly. The LLR indicates that indeed there is no significant 8 

advantage of choosing the more complex SN model over the simpler model of Winter & 9 

Yin. The test comparing the PPk,i of each model for the caribou dataset revealed that, on 10 

average, the SN model has lower predictive probability (PPk = 0.958) than the Winter & 11 

Yin model (PPk = 0.973) for this dataset, a small difference, but one that is still 12 

significant (Table 2).  13 

From the plot of the Λi for the cyclist dataset (Figure 8d) it is clear that during 14 

specific intervals the SN model demonstrates better agreement (negative Λi values). 15 

However, at other instances the two models perform identically (i.e., when Λi = 0). Here 16 

the cyclist has stopped moving, and in the absence of an initial velocity the two models 17 

are equivalent, thus Λi = 0. With the cyclist dataset, 
i

 = -0.877, which suggests that the 18 

SN model outperforms the Winter & Yin model, further supported by the significant LLR 19 

= 430. A PPk = 0.945 was observed with the SN model, while a much lower PPk = 0.548, 20 

was found with the Winter & Yin model, a difference again found to be highly significant 21 

(Table 2). 22 
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The results from the athlete dataset are similar to those from the cyclist dataset. 1 

During specific mobile periods the SN model shows better agreement, while during other 2 

periods (of stationary behaviour) the two models are similar (Figure 8e). The fact that 
i

3 

= -0.701 again suggests that the SN model demonstrates better agreement with this 4 

dataset, supported by a highly significant LLR = 401. The predictive probability test 5 

confirms this observation with PPk = 0.949 for the SN model and PPk = 0.650 for the 6 

Winter & Yin model, a highly significant difference (Table 2). 7 

4 - Discussion 8 

We have used two simulated examples along with three real-world datasets to 9 

demonstrate the usefulness of the SN  model for future movement possibilities in a time-10 

geographic framework. From these examples it is clear that with applications involving a 11 

relatively high relative initial velocity (i.e., fast moving objects, with finely sampled 12 

movement data), the SN model for probabilistic time geographic proposed here is a far 13 

more useful predictor of future movement probabilities than the existing definition based 14 

solely on random movement.  15 

As discussed by Kuijpers et al. (2011), ignoring object kinetics may be reasonable 16 

when estimating broad-scale patterns from finely sampled movement data; for example, 17 

when looking at long-term transportation trends. Similarly with coarsely sampled 18 

movement data the physical kinetics of movement will not be relevant. For instance, data 19 

collected by legacy radio-tracking systems of wildlife use sampling frequencies in the 20 

order of hours to days. However, the development of kinetic-based time geography has 21 

clear merit in applications where object kinetics are relevant in the construction of time 22 

geographic volumes. Such applications include the analysis of finely sampled wildlife 23 
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movement data (Cagnacci et al. 2010), human powered movements, such as by athletes 1 

(this paper), and the movements of vessels such as ships and airplanes (Knighton and 2 

Claramunt 2001), as well, the role of kinetics can be clearly demonstrated when 3 

examining automobile trajectories (Yu and Kim 2006). 4 

Wildlife tracking systems are now being equipped with real-time data transfer 5 

mechanisms in order to monitor wildlife movements in real-time (Urbano et al. 2010). 6 

These systems can be used to guide management strategies (e.g., forest harvesting) in 7 

important conservation areas based on the location of wildlife (Dettki et al. 2004). Here 8 

the proposed SN model could be used to improve movement predictions and guide 9 

conservation strategies by identifying, probabilistically, specific areas of concern. Video 10 

tracking systems are also commonly used to derive movement data of multiple target 11 

objects in a fixed spatial domain (e.g., athletes on a playing surface, Liu et al., 2009; Lu, 12 

Okuma, & Little, 2009). With video tracking, movement trajectories are often interrupted 13 

by visual occlusions, and a single trajectory will become divided into numerous segments 14 

(Liu et al. 2009, Lu et al. 2011). The SN model could also be useful as a tool for 15 

connecting trajectory segments in multi-object video tracking systems. Another area of 16 

spatial research that is rapidly expanding is the development of location based services 17 

(Raper et al. 2007). Location based services leverage a client’s location through a 18 

location aware device (e.g., GPS embedded in a cell-phone) in order to tailor services to 19 

clients based on location. Popular examples include restaurant locating or real-time 20 

navigation applications on a smart-phone. In such applications, the SN model could 21 

improve spatial locating or preference selection by incorporating the motion of the client, 22 

especially if they are travelling in a fast moving vehicle such as a car.  23 



25 

 

For many movement applications researchers are interested in extracting patterns 1 

from datasets where movement is confined to a (known) travel network (e.g., Miller & 2 

Wu, 2000). In these situations the spatial domain cannot be represented as an open two-3 

dimensional plane, but rather as a set of connected network links that facilitate essentially 4 

one-dimensional movement within the spatial plane. Turns can occur along network 5 

links, but primarily at nodes, where movement may proceed in one of multiple directions. 6 

The framework we have introduced for modeling kinetic-based movement probabilities 7 

can still hold in this situation (e.g., Figure 9). Along network links the univariate skew-8 

normal formulation can be used in lieu of the two-dimensional model. At network nodes, 9 

the probability density beyond the node can be divided between the available links based 10 

on individual node turning probabilities that may reflect pre-determined preferred route 11 

choices, and even turning times. A hybrid one-dimensional model draws on the 12 

calculations already being used in network analysis algorithms for computing travel times 13 

along street networks.  14 

< approximate location Figure 9 > 15 

Other models for modeling movement probabilities in time geography also exist. 16 

Miller and Bridwell (2009) propose field-based time geography where movement 17 

probabilities are defined using a movement cost surface. Field-based time geography 18 

represents the combination of time geography theory with common GIS operations, (i.e., 19 

those used in least-cost path analysis, Douglas, 1994). Downs (2010) has introduced 20 

ideas from time geography into kernel density estimation (commonly used in the study of 21 

wildlife movement). Downs replaces the traditional circular kernel (e.g., Gaussian, 22 

quartic) with the potential path area from time geography (Figure 1b) and computes a 23 
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density surface representing the probability an object visits a given location (termed a 1 

utilization distribution). Time geographic kernel density estimation can be used to define 2 

the interior structure of the potential path area, and has since been extended to work with 3 

network-based applications (Downs and Horner 2012).  4 

How to model movement probabilities has also been examined in the context of 5 

wildlife movement ecology. Horne et al. (2007) have derived a similar probabilistic 6 

surface to the Winter & Yin model based on the notion of a Brownian bridge (random 7 

walks connected by two end points). Benhamou (2011) has suggested that biased random 8 

bridges represent a more suitable model for such movement and has developed a biased 9 

random bridge movement model. Both the Brownian bridge and biased random bridge 10 

utilize a bimodal distribution for modeling movement probabilities between two fixed 11 

locations, which effectively models movement probabilities within the potential path 12 

area. Winter & Yin (2010) model movement locations in the space-time prism where 13 

movement probabilities are the result of unimodal distributions computed for slices of the 14 

space-time prism. Computing the integral (over time) of the  Winter & Yin (2010) model 15 

would produce a surface for comparison with the Brownian bridge and biased random 16 

bridge, providing novel insight on the differences and similarities between these 17 

approaches.  18 

5 - Conclusion 19 

 We quantify movement probabilities for the space-time cone from time geography 20 

using a formulation that incorporates object kinetics, specifically considering initial 21 

velocity. Quantifying the interior structure of time geography volumes is currently an 22 

area of active research with different methods relying on various underlying assumptions. 23 
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The SN modeling approach we describe is useful for studying movement data at fine 1 

temporal granularities, or where kinetic properties (physical or otherwise) are expected, 2 

but may not be appropriate with coarser temporal granularities or slow moving objects. A 3 

time geography that incorporates movement kinetics, both in the calculation of volume 4 

boundaries as in Kuijpers et al. (2011), and in the interior structure of those volumes as 5 

we describe here, will provide a more powerful, and realistic model for studying object 6 

movement when kinetic properties are inherent. Future endeavors will involve extending 7 

the SN model to the space-time prism, necessary for evaluating movement datasets where 8 

fixes are most appropriately represented as start and end anchor points of prisms. Further, 9 

we hope to investigate ways for examining intersection probabilities with the SN model, 10 

similar to those proposed by Winter & Yin (2010, 2011), which will allow more 11 

sophisticated time geographic questions to be investigated.  12 
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Table 1: Two simulated and three real-world datasets used to evaluate the existing probabilistic 

time geography model with the proposed kinetic-based probabilistic time geography model. 

Dataset Type n Δt Vmax
1
 Comments 

RW Simulated 1000 - 3.7 simm.brown() function in R 

package 'adehabitatLT', h = 1. 

CRW Simulated 1000 - 3.8 simm.crw() function in R package 

'adehabitatLT', h = 1, r = 0.8. 

Caribou
 

Real 1772 4 hr 0.77 m/s Caribou tracked via satellite VHF 

telemetry during 2000. 

Cyclist Real 247 5 s 13.5 m/s Movements of the first author 

while cycling; tracked using a 

commercial GPS. 

Athlete Real 288 0.2 s 7.6 m/s Ultimate frisbee player, over a 1 

minute interval of a training 

match. Collected using a sport-

specific GPS device. 
1
Vmax estimated from the data following Long & Nelson (2012). 
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Table 2: Results for each of the five example datasets comparing the SN model against the 

existing model of Winter & Yin.  
 

i
  LLR PPk (SN) PPk (W&Y) Diff. 

RW -0.184 -848 0.456 0.599 -0.143*  

CRW 0.0779 359* 0.682 0.618 0.0642*  

Caribou -0.00643 -52.4 0.958 0.973 -0.0151*  

Cyclist 0.381 430* 0.945 0.548 0.396* 

Athlete 0.304 401* 0.949 0.650 0.299*  
 

        

*denotes significant value (p < 0.01)         
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Captions: 

 

Figure 1:  Structures originating from Hägerstrand’s time geography. a) space-time cone, along 

with an isochrone – a line of equal movement possibility in the future. b) space-time prism, along 

with the potential path area – the projection of the prism onto the spatial plane. 
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Figure 2: a) Probabilistic time-geography for an object moving in a single dimension; b) 

Incorporating object kinetics (e.g., vt); c) and d) Extension of a) and b) to two-dimensions: the 

spatial plane.  
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Figure 3: Diagram showing how axis of movement (AoM) and axis perpendicular to movement 

(A+M) can be interpreted from a movement dataset.  
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Figure 4: Output probability surfaces, termed fm(s), for candidate models for predicting future 

movement possibilities in spatial (2-dimensional) movement applications. a) bivariate skew-

normal, b) two univariate skew-normals, aligned with the x- and y-axis, c) univariate skew-

normal aligned with the AoM, normal aligned with the A+M, and d) two univariate skew-

normals, each aligned at 45° to the AoM, constructed as in Figure 3b. 
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Figure 5: Diagram showing how a rotated coordinate system set up at 45° angles from the AoM 

can be used to decompose a movement vector into two orthogonal velocities of equal magnitude 

(vx,θ and vy,θ). 
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Figure 6: Comparison of proposed SN model (probability surface in greyscale) with kinetic time 

geographic boundaries (dashed line) defined by Kuijpers et al. (2011). The classic time 

geographic boundary (large grey circle) is shown for comparison. 
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Figure 7: Five example datasets used in evaluating the SN model against the Winter & Yin 

model; see Table 1 for more details on each dataset.  
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Figure 8: Λi results for each of the five sample datasets: a) RW, b) CRW, c) Caribou, d) Cyclist, 

and e) Athlete. As an example, a map – f), of the Λi values associated with the athlete movement 

dataset can be used to visualize in which parts of the movement trajectory the SN model 

outperforms the Winter & Yin model (and vice versa). Values for Λi > 0 indicate where the 

Winter & Yin model agrees better with the movement data, while values for Λi < 0 indicate 

where the SN model shows better agreement. 
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Figure 9: Example of how a hybrid one-dimensional model for kinetic-based probabilities could 

be applied on a network. a) Kinetic probabilities derived for a moving object along a network 

link; modeled probabilities extend along the current link, but go beyond the node. b) Turning 

incorporated at the node, with probability of right turn > left turn. 


