
Classification of large acoustic datasets using machine
learning and crowdsourcing: Application to whale calls

Lior Shamira) and Carol Yerby
Lawrence Technological University, 21000 Ten Mile Road, Southfield, Michigan 48075

Robert Simpson
University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom

Alexander M. von Benda-Beckmann
The Netherlands Organization for Applied Scientific Research, P.O. Box 96864, The Hague,
Zuid Holland, 2509 JG, The Netherlands

Peter Tyack, Filipa Samarra, and Patrick Miller
University of St. Andrews, St. Andrews, Fife, KY16 9ST, Scotland, United Kingdom

John Wallin
Middle Tennessee State University, 1301 East Main Street, Murfreesboro, Tennessee 37130

(Received 7 April 2013; revised 12 November 2013; accepted 17 December 2013)

Vocal communication is a primary communication method of killer and pilot whales, and is used

for transmitting a broad range of messages and information for short and long distance. The large

variation in call types of these species makes it challenging to categorize them. In this study, sounds

recorded by audio sensors carried by ten killer whales and eight pilot whales close to the coasts of

Norway, Iceland, and the Bahamas were analyzed using computer methods and citizen scientists as

part of the Whale FM project. Results show that the computer analysis automatically separated the

killer whales into Icelandic and Norwegian whales, and the pilot whales were separated into

Norwegian long-finned and Bahamas short-finned pilot whales, showing that at least some whales

from these two locations have different acoustic repertoires that can be sensed by the computer

analysis. The citizen science analysis was also able to separate the whales to locations by their

sounds, but the separation was somewhat less accurate compared to the computer method.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4861348]
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I. INTRODUCTION

Whales and dolphins produce a series of whistles,

clicks, and other sounds to survey their surroundings, hunt

for food, and communicate with each other (Schevill and

Watkins 1966; Ford, 1989). Killer whales (Orcinus orca)

and pilot whales (Globicephala spp.) are species of dolphins.

Killer whales, which are the largest dolphin species, have

been studied in more detail than pilot whales (Ottensmeyer

and Whitehead, 2003), and some populations have been con-

tinually studied for over three decades (Ford et al., 2000).

Animals within socially stable family units known as “pods”

share a unique repertoire (also known as dialect) of stereo-

typed calls, which are comprised of a complex pattern of

pulsed and tonal elements that may be inherited genetically,

culturally, or learned from members of the group (Miller and

Bain, 2000). Pods that share any parts of their repertoire are

grouped into acoustic clans (Yurk et al., 2002; Miller et al.,
2004), and calls of killer whales have been collected and

categorized for understanding the function or usage patterns

of the calls. It is believed that pilot whales live in matrilineal

groups or pods similar to killer whales where offspring stay

with their mother, but less is known about whether pilot

whale call structure may follow matrilineal bonds (Sayigh

et al., 2012).

Studies have supported the hypothesis that pod-specific

calling behavior in killer whales is due to the differences

between matrilineal units that accumulate over time (Ford,

1991; Miller and Bain, 2000). It has also been observed that

communities may share whistle types. Studies reported that

pods of killer whales that have different call repertoires may

use the same set of stereotyped whistles (Riesch et al., 2006).

This communication might provide a way for the whales to

recognize each other on a community-level that facilitates

association and affiliation of different clan members, which

otherwise use distinct calls. Riesch et al. (2006) suggest that

vocal learning occurs between groups and plays an important

role in the spread of whistle types.

For both killer and pilot whales, the complex sounds

they produce can be labeled as “calls” and the tonal sounds

as “whistles” (Samarra et al., 2010; Sayigh et al., 2012). The

whistles appear to play an important role in the whales’

underwater acoustic communication when socializing, and

the calls have been recognized as a form of long-range com-

munication (Thomsen et al., 2002; Miller, 2006). The click-

ing sounds have been found to be used for echolocation

(Barrett-Lennard et al., 1996), which allows the whale to

navigate its underwater surroundings and search for prey.
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Researchers are not the only ones interested in understand-

ing whale communication. It has been determined that harbor

seals in the northeastern Pacific Ocean can distinguish between

the vocalization of local fish-eating killer whales and the tran-

sient mammal-eating killer whales. Clearly, the ability of a

prey species to identify certain elements in the communication

of its predator can be vital for survival. While many studies

have focused on detailed analyses of vocalizations within a

population of killer or pilot whales (Ottensmeyer and

Whitehead, 2003; Ford et al., 2000), fewer have sought to

resolve the extent to which closely related species or subpopu-

lations of a single species might vary in their sound production

behavior. Distinguishing between species and populations

within species is important for use of acoustic data in survey

methodologies (Oswald et al., 2003).

Classification of killer whale and pilot whale calls is usu-

ally performed by a small group of experts who inspect the

sound recordings. However, devices such as hydrophones

deployed from ships, attached to buoys, or mounted on the

seafloor (Glotin et al., 2008; van Parijs et al., 2009; von

Benda-Beckmann et al., 2010), or digital acoustic recording

tags (DTAGs) placed on marine mammals (Johnson and

Tyack, 2003; Tyack et al., 2006) are used to acquire increas-

ingly large datasets of whale sound samples. The increasing

size of acoustic databases makes the process of expert-based

auditing increasingly time consuming and requires new analy-

sis approaches that are capable of dealing with such large

databases. Different approaches for analyzing large datasets

are being developed. For instance, methods for processing

these large datasets include supervised machine learning such

as neural networks (Deecke et al., 1999), but the high dimen-

sionality makes accurate analysis of sound data challenging

(Tzanetakis and Cook, 2002). Recently, a citizen science pro-

ject, Whale FM, has constructed a large database of killer

whale and pilot whale calls with the aim of testing the possi-

bility of using crowdsourcing to process large acoustic data-

sets. Citizen science can be defined as scientific research done

with the participation of non-professional scientists, in most

cases voluntarily, performing tasks that do not require formal

training or experience in science. These tasks can include the

collection of data, basic analysis of scientific data, develop-

ment and operation of basic scientific equipment, placement

of sensors and other scientific equipment in rarely visited

locations, and more. The non-scientist participants of these

projects are referred to as “citizen scientists.”

The purpose of Whale FM is to demonstrate how both

citizen science analysis and machine learning can be used to

analyze and categorize a large dataset of calls of killer and

pilot whales. We test whether these methods can be used to

analyze large call repositories and identify differences

between and within species based on the variation in geo-

graphical locations of the whales.

II. MATERIALS AND METHODS

A. Whale FM

Whale FM is a citizen science project from Zooniverse

and Scientific American. Built originally for Galaxy Zoo 2,

the Zooniverse software and its successive versions have

now been used by more than 20 different projects across a

range of research disciplines. The Zooniverse toolset is

designed primarily as a way of serving a large collection of

“assets” (audio/visual spectrograms, in the case of Whale

FM) to a user interface, and collecting back user-generated

interactions with these assets.

Galaxy Zoo (Lintott et al., 2008; Lintott et al., 2011)

and the larger suite of Zooniverse projects have successfully

built a large community of volunteers eager to participate in

scientific activities. Over 800 000 registered volunteers have

contributed to Zooniverse projects at the time of writing.

Upon viewing the Whale FM web site, volunteers see a

large spectrogram and a series of smaller thumbnail spectro-

grams beneath it. The citizen scientist clicks on the spectro-

gram to listen to its corresponding sound. It also shows where

the whale sound was recorded on a map. The citizen scientist

then compares the sound with the series of 36 whale calls

beneath to find a matching call. The series of 36 calls from

which the volunteer chooses are selected randomly, but the

selection is limited to calls of the same species and excludes

calls that are clearly different from the target call as deter-

mined by the length of the call and its base frequency. If a

matched call is declared, it is saved in the project’s database.

Calls can also be manually removed from the list (to enable

easier filtering by the volunteers) and these “anti-matches” are

also recorded. Anti-matches annotated by a certain citizen sci-

entist will not remove the same calls from the list of calls

given to another citizen scientist. Figure 1 shows the user

interface used by the citizen scientists when they compare a

certain main whale call to a set of matching calls.

This method can be used to analyze a large set of audio

files far faster than any single researcher or group of

researchers. The approach is limited by the ability of

untrained volunteers to accurately recognize the whale calls.

However, the Zooniverse projects have shown that enlisting

these citizen scientists via the Internet is a powerful way to

analyze large amounts of data. Enlisting citizen scientists

enables researchers to extend human classification to com-

plex data, having each sample examined by a large number

of independent classifiers. Tapping into the “wisdom of the

crowd” effect, researchers can rely on the consensus of a

group of non-experts, which is often more accurate than the

testimony of a single expert. Much success has been had

with other Zooniverse projects in this regard, notably Galaxy

Zoo (Lintott et al., 2008), Planet Hunters (Fischer et al.,
2011), and the Milky Way Project (Simpson et al., 2012). In

all cases, the classifications of a large number of volunteers

have led to the creation of data catalogs superior to those

created by their expert predecessors.

B. Data

The audio samples were collected using several record-

ing devices. Hydrophone arrays were towed by ships, and

other hydrophone systems were deployed from buoys or

overboard from stationary vessels and towed by moving ves-

sels near Iceland and Norway (Miller et al., 2004; Nousek

et al., 2006; Riesch and Deecke, 2011; Miller et al., 2012),

recording sounds of whales from between tens to hundreds of
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meters away from the subjects. Several different arrays

were used. A 16-element array recorded to a Pioneer

(Kawasaki, Kanagawa, Japan) D-9601 (frequency response

0.020–44 kHz, 60.5 dB) and resampled to 96 kHz with an

Edirol (Hamamatsu, Japan) FA-101 soundcard (frequency

response 0.02–40 kHz, þ0/�2 dB) and recording onto a lap-

top using Adobe (San Jose, CA) Audition. Other arrays that

were used were a 16-element towed array recorded to Alesis

(Cumberland, RI) ADAT-HD24 XR (frequency response

0.022–44 kHz, 60.5 dB), a two element Benthos (North

Falmouth, MA) AQ-4 (frequency response 0.01–40 kHz,

63 dB) array recording using an M-Audio (Cumberland, RI)

66 soundcard (frequency response 0.022–40 kHz, 60.3 dB),

and a two element Benthos AQ-4 with Magrec (London, UK)

HP-02 pre-amplifiers (frequency response 0.1–40 kHz,

63 dB) array recording using a Marantz (Kew Gardens, NY)

PMD671 (frequency response 0.02–44 kHz, 60.5 dB).

The other device is the DTAG (Johnson and Tyack,

2003; Tyack et al., 2006), which was used in two thirds of

the recordings. The DTAG device is attached to individual

whales with suction-cups, and records the sounds the whale

makes as well as calls from other animals nearby and

human-generated sounds. It also has motion sensors that

allow following the movement of the whale underwater. The

DTAGs have frequency response of 0.6–45 kHz and �3 dB

points at 48 kHz for 96 kHz sampling rate (Johnson and

Tyack, 2003). The audio was sampled at 96 or 192 kHz, and

the spectrograms described in Sec. II A were all created

using MATLAB (MathWorks, Natick, MA) with the same fast

Fourier transform size (1024, Hann window).

Visual identification of killer whales recorded in

Norway ensures that the tagged animals were not the same.

However, it cannot be excluded that the tagged animals were

part of the same larger group of whales that consisted of

multiple pods, which were, by coincidence, encountered in

the area in different years. The visual identification also

ensured as much as possible that the recordings were of the

same identified species, and not the sounds of animals of

species that are not the target species of the recording.

The data consist of 15 500 MP3 audio files ranging

between 1 s to 8 s in 23 separate recording events (15 killer

whales and 11 pilot whales; see also Table I) used in the

Whale FM project, but just 18 recordings had more than 300

different calls and were used in the analysis, and 10 of these

were from killer whales and the remaining 8 were from pilot

whales. The calls recorded by each DTAG can include the

calls of the whale that carries the tag, but also calls of other

whales near it, normally members of the same pod. Since the

exact identity of the whale making the call is unknown, the

calls are identified throughout the paper by the whale that

carries the DTAG that was used to record it. Table I shows

the list of the recordings, and the time and location of the

data acquisition.

The MP3 audio files were converted to two-dimensional

(2D) spectrograms, processed with the compound hierarchi-

cal algorithms described in Sec. II C. Since killer whales of-

ten emit calls at high frequencies, the Whale FM

spectrograms visualize sounds that have been slowed down

by a factor of three in order for listeners to hear them, other-

wise, the call or part of the call will be at a pitch beyond

what the human ear can sense. Figure 2 is an example of a

Whale FM spectrogram.

C. Computer analysis method

The spectrograms described in Sec. II B were analyzed

using the Wndchrm scheme (Shamir et al., 2008a; Shamir

et al., 2009a; Shamir et al., 2009b), which is based on a large

set of 2883 numerical 2D content descriptors, allowing it to

reflect complex morphology (Shamir et al., 2008b; Shamir

et al., 2010a; Shamir and Tarakhovsky, 2012). The numeri-

cal content descriptors include the following:

(1) 2D texture features, which include the Haralick and

Tamura textures.

FIG. 1. (Color online) Whale FM user interface used by the citizen scientists.
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(2) Statistical distribution of pixel intensities, which are the

first four moments (mean, standard deviation, skewness,

and kurtosis) of the pixel intensities in four different

directions (0, 45, 90, 135 deg), and multi-scale histogram

of the pixel intensities using 3, 5, 7, and 9 bins.

(3) Polynomial decomposition using Chebyshev coefficients

as well as Zernike polynomials (Teague, 1980).

(4) Fractal features as thoroughly described in Wu et al.
(1992).

(5) High-contrast features, which are the Prewitt gradient

statistics such as the distribution of the edge magnitude

and edge directionality, and statistics of the eight-

connected Otsu objects, such as size and location distri-

bution of the objects.

Other descriptors that are used are Gabor wavelets and

Radon features as described in Shamir et al. (2008a), Shamir

et al. (2009b), and Shamir et al. (2010a). These features are

extracted not just from the raw values, but also from the 2D

transforms and multi-order image transforms. The transforms

that are used are Fourier transform, Chebyshev transform,

Wavelet (symlet 5, level 1) transform, and edge magnitude

transform. A detailed description and performance analysis of

the image features and image transforms can be found in

Shamir et al. (2008a) and Shamir et al. (2010a).

It should be noted that the set of numerical image con-

tent descriptors described above was not tailored to analyze

the sounds of whales, but was initially designed for analysis

of cell and tissue images (Shamir et al., 2008a; Shamir et al.,
2009b; Shamir et al., 2010b). However, the number and vari-

ety of measurements makes the method work well also on a

number of tasks that involve complex morphological analy-

sis such as satellite images (Svatora and Shamir, 2012), as-

tronomy (Shamir, 2009), and visual art (Shamir et al.,
2010a; Shamir and Tarakhovsky, 2012). Source code and bi-

nary executable files for the method are available for free

download (Shamir et al., 2008a).

After the numerical content descriptors are computed,

the sounds recorded by the DTAGS of each whale are

TABLE I. List of recordings of pilot whale and killer whale sounds using Dtags. Listed are recording identification (ID), type of species, locations, device ID,

and year of recording.

Recording ID Species Location Device ID Year

1 Short-finned pilot whales Bahamas (24.39,�77.55) gm07_229a 2007

2 Short-finned pilot whales Bahamas (24.44,�77.56) gm07_229b 2007

3 Short-finned pilot whales Bahamas (24.31,�77.57) gm07_259a 2007

4 Short-finned pilot whales Bahamas (24.62,�77.62) gm07_260a 2007

5 Killer whales Iceland (63.45,�20.32) oo09_209a 2009

6 Killer whales Iceland (63.42,�20.34) oo09_201a 2009

7 Killer whales Iceland (63.42,�20.44) oo09_194a 2009

8 Killer whales Norway (68.27,16.09) oo05_316a 2005

9 Killer whales Norway (68.26, 16.09) oo05_320a 2005

10 Killer whales Norway (68.25,16.19) oo05_320b 2005

11 Killer whales Norway (68.27,16.25) oo05_321a 2005

12 Killer whales Norway (68.20,16.23) oo05_322a 2005

13 Killer whales Norway (68.19,16.40) oo05_322b 2005

14 Killer whales Norway (68.18,16.36) oo05_324a 2005

15 Long-finned pilot whales Norway (67.48,13.79) gm09_138b 2009

16 Long-finned pilot whales Norway (68.04,15.06) gm08_150c 2008

17 Long-finned pilot whales Norway (68.18,15.44) gm08_154d 2008

18 Long-finned pilot whales Norway (68.21,15.79) gm09_156b 2009

19 Long-finned pilot whales Norway (67.82,14.42) gm08_159a 2008

20 Killer whales Norway (68.22,14.89) oo06_313s 2006

21 Killer whales Norway (68.33,15.91) oo06_314a 2006

22 Killer whales Norway (68.27,15.59) oo06_314s 2006

23 Killer whales Norway (68.26,15.38) oo06_317s 2006

FIG. 2. Example spectrograms of calls of a Norwegian pilot whale (right)

and a Norwegian killer whale (left). The calls can vary since each whale has

many different types of calls.
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separated into training and test sets, and the feature values

are normalized to the interval [0,1] such that the minimum

value of the features across the entire training set is set to 0,

and the maximum value is set to 1. The values in the test set

are normalized according to the minimum and maximum

values in the training set. The purpose of this step is to avoid

a situation in which features with a smaller range have less

effect on the overall distance, as will be explained later in

this section.

After the values are normalized, each of the 2883 fea-

tures computed on the training set is assigned a Fisher dis-

criminant score (Bishop, 2006), as described by

Wf ¼

XN

C¼1

Tf � Tf ;c

� �2

XN

C¼1

r2
f ;c

� N

N � 1
; (1)

where Wf is the Fisher discriminant score, N is the total num-

ber of classes, Tf is the mean of the values of feature f in the

entire dataset, Tf,c is the mean of the values of feature f in the

class c, and s2
f,c is the variance of feature f among all sam-

ples of class c. Conceptually, the Fisher discriminant score

of a feature is higher if the variation of the feature values

within the classes is low, but the variation of the values

between the classes is high.

Since not all 2D content descriptors are expected to be

informative for the analysis of whale sounds, the features are

ordered by their Fisher discriminant score, and 85% of the

features with the lowest scores are rejected in order to filter

non-informative features. The 85% feature rejection rate was

determined experimentally by changing the feature rejection

rate and then automatically classifying the whales by the

audio of their calls as will be described in Sec. III. The high-

est classification accuracy was achieved when 15% of the

features were used. It should be noted that the features were

selected by their efficacy in differentiating between calls of

all whales in the dataset, and no information about the spe-

cies or geographic location of the whales was used in the

selection of the features. The separation into species and ge-

ographic location was done automatically by the computer

without using pre-defined knowledge, as will be described in

Sec. III.

The similarity between each pair of whale calls can be

estimated by the weighted distance between two feature vec-

tors X and Y as described by the Eq. (2),

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XjXj

f¼1

Wf ðXf � Yf Þ2
vuut ; (2)

where Wf is the assigned Fisher score of feature f, and d is

the computed weighted distance between the two feature

vectors. Naturally, the predicted class of a given sound is

determined by the class of the training sample that has the

shortest weighted distance, d, to the test sample.

The purpose of the algorithm is not necessarily to clas-

sify the sounds of whales, but primarily to quantify the

similarities between the sets of sounds in an unsupervised

fashion. Unlike supervised machine learning, unsupervised

machine learning is not based on existing knowledge and

pre-labeled training data, but aims at analyzing the structure

of unlabeled data (Barlow, 1989). That is, in unsupervised

learning, the data are processed with no prior assumptions or

human guidance to detect subsets of samples that are similar

to each other, outliers, etc. In the case of the whales, the

analysis is done without using any knowledge about the spe-

cies or the geographic location of the whale. The only

knowledge the algorithm uses is that there are different

whales in the database, but no information about these

whales is known to the algorithm.

The similarity between a sound in the test set and a class

in the training set is determined by first computing a vector

of size N (N is the total number of classes), such that each

entry in the vector represents the computed similarity of the

feature vector f to the class c, deduced using

Mf ;c ¼
1

minðDf ;cÞ �
XN

i¼1

1

minðDf ;iÞ

; (3)

where Mf,c is the computed similarity of the sound f to the

sound class c, and min(Df,c) is the shortest weighted

Euclidean distance among the distance vector D, which is

the distances between the feature vector f and all feature vec-

tors in class c, computed using Eq. (2).

Averaging the similarity vectors Mf,c of all sound sam-

ples in the test set to a certain class c provides the computed

similarities between class c and all other classes in the data-

set. Repeating this for all sound classes provides a similarity

matrix that represents the similarities between all pairs of

sound classes in the dataset. The similarity matrix contains

two similarity values for each pair of classes, i.e., the cell n,m
is the similarity value between class n to class m, which may

be different from the cell m,n. Although these two values are

expected to be close, they are not expected to be fully identi-

cal due to the different sound samples used when comparing

n to m and m to n. Averaging the two values provides a single

distance between each pair of classes. The method was used

to deduce the similarity of complex image data and is fully

described in Shamir et al. (2008a) and Shamir et al. (2010a).

The distance values in the similarity matrix are then

visualized by using phylogenies inferred automatically by

the Phylip package (Felsenstein, 2004), which is an open

source originally developed for visualizing genomic similar-

ities between different organisms, but in this study is used to

visualize similarities between the sounds acquired by the

audio sensors carried by the different whales.

III. RESULTS

The first experiment aimed at automatic classification of

the sounds recorded by DTAGS carried by killer and pilot

whales. The experiment was performed by using 800 sound

samples of each class for training and 400 for testing. If a

call recorded in a tag deployment was added to the training

set, no call recorded by the tag was also added to the test set,
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so that calls recorded in the same deployment cannot exist in

both the training and test sets. For instance, if 100 calls were

recorded in a certain tag deployment and one of the calls

was assigned for training, all other calls in the same tag

deployment are also assigned for the training set. The experi-

mental results show that in �92% of the cases, the computer

was able to automatically differentiate between the calls of

killer and pilot whales.

In the second experiment, sounds acquired by audio

devices carried by 18 different whales were used to test

whether the computer analysis can automatically differenti-

ate between sounds recorded by audio devices carried by dif-

ferent whales. The experiment was performed with 100 calls

recorded in each tag deployment such that the calls can be

calls of the whale carrying the tag or whales in close proxim-

ity to the tagged whale, normally from the same pod. In that

experiment, no separation was done between killer and pilot

whales or by the geographical location, and the computer

analysis was done without any pre-defined information about

the whales so that the computer could automatically deduce

the map of the similarities between the calls of the different

whales.

Eighty samples recorded by each audio sensor were

used for training, and 20 samples were used for testing. The

experiment was repeated 20 times with different calls from

each tag deployment randomly allocated to training and test

sets in each run. The results show that in �51% of the cases,

the computer was able to automatically associate the sound

sample to the correct whale. The variance of all 20 runs was

�15.46, and the classification accuracies in the runs ranged

between �44% and �62%. While the accuracy is clearly not

perfect, it is far higher than random guessing, which is

�5.5%, and therefore shows that the computer analysis is in-

formative for differentiating sounds recorded in different tag

deployments. When the feature weights are assigned with a

uniform value, the classification accuracy between whales

was dropped to �6.9%, demonstrating the importance of the

feature weights assigned using the Fisher discriminant scores

(Shamir et al., 2010a).

The similarities between the sound samples recorded by

each DTAG were computed as described in Sec. II C, and

the resulting phylogeny that visualizes the similarities is dis-

played in Fig. 3. As described in Sec. II B, each number is a

set of whale calls recorded by a single DTAG and therefore

can include calls of the whale carrying the DTAG, as well as

calls of whales in close proximity to the tagged whale.

As Fig. 3 shows, the computer analysis identified the simi-

larities between the whale populations by analyzing their

sounds. The pilot whales are clustered toward the bottom of

the tree, and the killer whales are at the upper part of the phy-

logeny. Inside the group of killer whales, the computer analy-

sis was also able to separate the Icelandic killer whales

(6,7,22) and the Norwegian killer whales (8,9,10,12,13,23,24),

indicating that the computer analysis could sense differences

in the calls made by whales of the two locations.

The algorithm also differentiated automatically between

Norwegian long-finned pilot whales (15,17,18,19) and

Bahamas short-finned pilot whales (1,2,3,4), showing that

these two sister species of pilot whales also recorded identifi-

able differences in their calls. The Norwegian pilot whale

calls were collected close to the coasts of Norway, but

placed by the algorithm far from the Norwegian killer

whales, showing that according to the data used in this study,

the difference in acoustic repertoires of killer whales and

FIG. 3. (Color online) Evolutionary

tree that was created automatically

separates the whales by populations

between and within species. The

Bahamas pilot whales were short-

finned pilot whales, while Norwegian

pilot whales were long-finned pilot

whales. The ten Killer whales are at

the top of the tree and the eight pilot

whales are at the bottom. The tight

cluster of pilot whales (15, 17, 18, and

19) are members of the same large

aggregation. The population of killer

whales is also separated into Icelandic

killer whales (6,7,22), and Norwegian

killer whales (8,9,10,12,13,23,24),

showing that whales from these two

areas have different acoustic reper-

toires that can be sensed by the com-

puter analysis.
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pilot whales is stronger than the difference in the acoustic

background that can be attributed to the geographic location.

This is a strong indication that the machine learning methods

are driven by real differences in whale calls instead of differ-

ences in acoustic background that may be location

dependent.

As described in Sec. II C, the analysis is based on very

many content descriptors that reflect the spectrograms in a

numerical fashion. These descriptors are weighted by their

Fisher discriminant scores for their informativeness, and that

score determines the impact of the content descriptor on the

analysis so that content descriptors with a high Fisher dis-

criminant score have a high impact on the results, while

descriptors with low Fisher scores are assumed to be uninfor-

mative and will have little or no effect on the analysis

(Shamir et al., 2008a; Shamir et al., 2010a). Figure 4 dis-

plays the values of the Fisher scores of the groups of features

used in the analysis.

As Fig. 4 shows, the features with the highest Fisher dis-

criminant scores are the polynomial decomposition descrip-

tors such as the Chebyshev features and Zernike

polynomials (Teague, 1980). Polynomial decomposition fea-

tures are based on the representation of a wave using the

coefficients of the polynomials that approximate it, provid-

ing with an efficient mechanism to compare waves and

reduce the dimensionality of the data. Another group of fea-

tures that are informative is the fractal features (Wu et al.,
1992). Fractality analysis has been shown to be useful in

audio analysis (Kumar and Johnson, 1993) and, in particular,

analysis of waveform graphs such as speech audio (Pickover

and Khorasani, 1986). As can be seen in the example Fig. 2,

the density and distances between the different lines in the

spectrograms of killer and pilot whales can be different, and

therefore the differences can be sensed by the coefficients of

the polynomial decomposition. Another simple example of a

feature that can differentiate between the spectrogram is the

edge statistics computed from the raw pixels, as more lines

in the spectrogram can be reflected by more and sharper

edges.

To test the consistency of the method with different dis-

tance metrics, we also tested the method so that the distances

between the samples are measured using the weighted

Minkowski distance such that the exponent is set to 4 as

shown by

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XjXj

f¼1

Wf ðXf � Yf Þ4
4

vuut : (4)

Figure 5 shows the resulting graph, which is in agreement

with the graph generated with the weighted Euclidean dis-

tances and separates the whales into the same groups.

A. Comparison with the citizen scientists’ analysis of
individual calls

As described in Sec. II A, Whale FM citizen scientists

match each whale call with a set of other calls acquired by

whales of the same species, but these calls are not necessar-

ily recorded in the same tag deployment. In that sense, the

manual analysis is different from the computer analysis in

which each call is compared to all other calls, and not just

calls recorded by tags deployed in whales of the same

species.

Since the citizen scientists do not assign the calls with

features or continuous values, it is not possible to identify

features used by the citizens and the same method used in

the machine learning analysis. Instead, these manual classifi-

cations can be used to estimate the similarity between the

calls recorded by each pair of whale tag deployments {x,y},

deduced by the number of classifications of calls recorded

by the tag carried by whale x classified by Whale FM partici-

pants as most similar to a call recorded by the tag carried by

whale y, and the classifications of the calls recorded by

whale y as most similar to calls recorded by the tag carried

by whale x. High confusion between the calls recorded in

tags carried by two different whales indicates that according

to the perception of Whale FM citizen scientists, the calls

FIG. 4. (Color online) Fisher discriminant scores of the different groups of 2D numerical content descriptors used in the computer analysis of the

spectrograms.
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acquired in these two deployments are more similar to each

other compared to the other recordings.

At the time of writing, more than 10 000 volunteers

have contributed more than 190 000 matches (including anti-

matches) via Whale FM. Eighty-three thousand of these

matches were performed by unregistered users, the remain-

ing 107 000 classifications were contributed by 6458 people.

Whale FM registered volunteers perform a median of 5 clas-

sifications each, 200 people contributed 100 or more classifi-

cations, and 8 people contributed 500 or more.

The matches in Whale FM are combined together, and

the ratio of matches to anti-matches between two calls is

used to determine if they are alike. In this analysis, we con-

sider pairs of calls that have been independently matched

more often than they are anti-matched by volunteers. The

result is a set of 25 512 “cleaned” pairs of whale calls.

Based on the association of the whale calls to calls of

other whales, the similarity value Sx,y between the calls of

whale x and whale y was then computed by

Sx;y ¼
1

2

xyX
i

xi

þ yxX
i

yi

0
@

1
A; (5)

where xy is the number of whale calls of whale x classified

by Whale FM participants as whale y, and yx is the number

of calls of whale y classified as whale x. This similarity

value can be conceptualized as the mean of the number of

calls of whale x identified as whale y, divided by the total

number of call classification of whale x, and the number of

calls of whale y identified as whale x, divided by the total

number of call classifications of whale y.

Repeating this process for all possible pairs of whales

using 25 512 human classifications of the whale calls

produced a similarity matrix that was visualized as a phylog-

eny using the Phylip package as described in Sec. III. Since

all citizen scientist classifications were by matching target

calls to calls made by whales of the same species, the analy-

sis of the manual classifications was separated to killer and

pilot whales. Figures 6 and 7 display the phylogenies that

visualize the citizen scientist classifications of the killer and

pilot whales, respectively.

As Fig. 6 shows, the analysis of the classifications of the

citizen scientists shows separation between Norwegian and

Icelandic killer whales, indicating that the human partici-

pants preferred to match the target calls with calls recorded

by tags carried by whales of the same geographical location,

even if the calls were not recorded in the same tag deploy-

ment. Figure 7 also shows separation between Bahamas

short-finned and Norwegian long-finned pilot whales.

However, the analysis of the citizen scientists placed the

calls recorded by whale 2 in the Bahamas close to the

FIG. 5. (Color online) The evolution-

ary tree created automatically when

using Minkowski distances instead of

the weighted Euclidean distances.

FIG. 6. (Color online) The phylogeny that was generated using Phylip from

the Whale FM citizen scientist classifications of the calls of killer whales.
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Norwegian pilot whales, indicating that the citizen scientists

found it difficult to differentiate between these calls and the

calls recorded by the tags carried by whales 15, 17, 18, and

19. It is important to note that the manual analysis of a single

volunteer can only compare a whale call to a limited number

of other calls, and therefore the citizen scientists could only

match a call with the most similar call within a subset, while

the faster computer analysis compared each call to all other

whale calls in the dataset, and therefore could find more sim-

ilar matches leading to a more accurate analysis.

IV. CONCLUSION

The purpose of this study was to demonstrate two meth-

ods for analyzing large acoustic datasets, and study differen-

ces between sounds of different species or subpopulations of

whales. First, a method that can automatically identify and

analyze whale calls is developed and tested. This method is

compared to human perception of killer whale and pilot

whale sounds, which is based on classifications performed

by over 10 000 volunteers in the Whale FM citizen science

project. Unlike previous machine learning studies of whale

sounds, the acoustic characteristics being measured were

automatically determined by their information content

instead of being selected by scientists.

Although we use Fisher discriminant scores to weigh

the features, the features are weighted by their ability to dif-

ferentiate between whales, and not by their ability to differ-

entiate between the groups of whales. The only knowledge

used by the algorithm is that there are different whales in the

dataset, but no annotation of the species or geographical

locations of the whales is used at any point, and the algo-

rithm finds the structure and separates the whales into the

different groups automatically and without any prior knowl-

edge about the nature or existence of such groups in the data.

Our experimental results show that the machine percep-

tion is sensitive to the different calls of whales, and the

method was able to correctly separate the dataset of whales

into different species and populations in an unsupervised

fashion. The results also show that data taken from manual

classification of the sounds performed by citizen scientists

also provided an informative analysis, despite the fact that

the citizen scientists were asked to identify calls, and not

individual whales or species. Citizen science analysis and

computer methods are likely to be used in the future for fur-

ther analysis of large datasets of whale sounds for the pur-

pose of profiling the way whales communicate.

Both computer and human analysis show sound differen-

ces between Norwegian and Icelandic killer whales, and also

between Norwegian long-finned and Bahamas short-finned

pilot whales. The ability of the system to classify between

whale calls can be attributed to differences in the audio sys-

tems that were used to acquire the sounds. However, the main

purpose of the paper is not to classify between whales, but to

measure the similarities between the calls of whales and char-

acterize the similarities in an unsupervised fashion. The unsu-

pervised analysis of the similarities is more informative

compared to merely measuring the classification accuracy

into one of a discrete set of whale call classes, and is therefore

less sensitive to false positives due to differences between the

audio acquisition systems. For instance, all Bahamas pilot

whales are placed closer to all Norwegian pilot whales, and

are more distant from the killer whales. A possible bias caused

by geographic location is rejected by the observation that the

audio from different sites in the same geographic location are

similar to each other when recording the sounds of the same

species, but are very different when recording the sounds of

whales of different species, as the Norwegian killer whales

and Norwegian pilot whales are positioned in distant areas in

the phylogeny. Also, the sounds of the Norwegian killer

whales were acquired in two different years (2005 and 2006),

but still the Norwegian killer whales are positioned on the

same branch in the phylogeny, showing that the sounds are

not separated by the audio acquisition campaign. Another

example is the Norwegian pilot whale data, which were also

collected in two different years (2008 and 2009), and are still

grouped very close to each other in the phylogeny.
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