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ABSTRACT

The onset of a solar eruption is formulated here as either a magnetic catastrophe or as an instability. Both start
with the same equation of force balance governing the underlying equilibria. Using a toroidal flux rope in an
external bipolar or quadrupolar field as a model for the current-carrying flux, we demonstrate the occurrence of a
fold catastrophe by loss of equilibrium for several representative evolutionary sequences in the stable domain of
parameter space. We verify that this catastrophe and the torus instability occur at the same point; they are thus
equivalent descriptions for the onset condition of solar eruptions.
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1. INTRODUCTION

The force-free equilibrium of a coronal magnetic flux rope
that carries a net current requires the presence of an external
poloidal field perpendicular to the current (Shafranov 1966;
van Tend & Kuperus 1978). Magnetic flux associated with the
current is squeezed between the current and the photospheric
boundary. This can be described as an induced current in
the boundary or, equivalently, as an oppositely directed image
current, implying an upward Lorentz force on the coronal flux
(Kuperus & Raadu 1974). The force is balanced by a Lorentz
force from the external poloidal field.

As the photospheric flux distribution and the corresponding
external field gradually change, the configuration evolves quasi-
statically along a sequence of stable equilibria for most of
the time. However, it may encounter an end point of such
a sequence, where continuing photospheric changes trigger a
dynamic evolution. The transition of an equilibrium flux rope
to a state of non-equilibrium has become a standard model
for the onset of eruptive phenomena, including the eruption of
prominences, coronal mass ejections, and flares. It has been
formulated as a catastrophe or as an instability in the framework
of ideal magnetohydrodynamics (MHD).

The formulation as catastrophe involves a sequence of equi-
libria, i.e., the equilibrium manifold in parameter space, and an
“evolutionary scenario” for the motion of the system point on
the manifold as a control parameter evolves continuously (rep-
resenting gradual changes at the boundary). Thus, it includes
a model for the pre-eruptive evolution. A catastrophe occurs if
the system point encounters a critical point on the equilibrium
manifold. Most relevant for solar eruptive phenomena is the
case that the critical point is an end point, or nose point, of the
equilibrium manifold in the direction of the changing parameter.
The catastrophe then occurs by a loss of equilibrium, sometimes
also referred to as “non-equilibrium.”

The formulation as instability considers the evolution of a
small perturbation acting on an equilibrium at any point on the

equilibrium manifold. A full description of instability includes
the temporal evolution of the perturbation, but in order to find
a criterion for onset of eruption, only the point(s) of marginal
stability must be located in parameter space. As a parameter
changes, the system point moves from the stable part of the
equilibrium manifold across a point of marginal stability to the
unstable part, i.e., in this formulation the equilibrium is not
lost but turns to an unstable equilibrium. A model for the pre-
eruptive evolution does not enter here; the points of marginal
stability are independent of the pre-eruptive evolution.

The modeling of solar eruptions has so far mostly used ei-
ther a catastrophe formulation or an instability formulation,
although they are related to each other. An analysis of this
relationship should be helpful for unifying some of the inde-
pendent developments in the modeling, which we summarize
next.

A model of eruption onset from the force-free equilibrium
of a flux rope was established by van Tend & Kuperus (1978),
who focused on instability, but also related the instability to
the fact that the equilibrium may be lost (see also Molodenskii
& Filippov 1987). They considered a translationally invariant
coronal current in the center of a magnetic flux rope above
a plane photospheric surface. The current was approximated
as a line current immersed in an external poloidal field Be,
and only its external, large-scale equilibrium was analyzed.
It was found that the height dependence Be(h) determines
whether the configuration is stable or unstable. The current is
unstable to an upward displacement if Be decreases sufficiently
rapidly with height h above the boundary surface. In the two-
dimensional (2D) translationally invariant geometry, the “decay
index” n = −d ln Be/d ln h must exceed ncr = 1 for instability.
This critical value was derived under the assumption that
any change of current produced by the perturbation can be
neglected, which is consistent with conservation of magnetic
flux between the current channel and the boundary surface
in the limit of vanishing current channel radius a (Forbes
1990). A slightly higher value results if the constraint of flux
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conservation is imposed for a > 0; then ncr = 1 + 1/(2c), where
c = ln(2h/a) + 1 (Démoulin & Aulanier 2010).

An MHD description of the configuration, including internal
force-free equilibrium of the current channel, was developed
by Priest & Forbes (1990) and Forbes & Isenberg (1991) and
further elaborated in a series of papers by Isenberg et al. (1993),
Forbes & Priest (1995), Lin & Forbes (2000), and Lin & van
Ballegooijen (2002). All of these investigations described the
onset of eruption as the occurrence of a catastrophe. The con-
dition of flux conservation between the current channel and the
photosphere was adopted in some cases, but other assumptions
were considered as well, in order to model the changes in pho-
tospheric flux budget (flux cancellation or emergence) which
are often observed in the pre-eruption phase (Martin et al. 1985;
Feynman & Martin 1995). Various evolutionary scenarios and
external field models were analyzed. Accordingly, various loca-
tions of the critical point in parameter space were obtained.

More recently, Longcope & Forbes (2014) have found that a
flux rope in quadrupolar external field can reach a catastrophe
along various evolutionary paths, depending on the detailed
form of the initial equilibrium. Some equilibria can be driven to
a catastrophe and instability through reconnection at a lower,
vertical current sheet, a process often referred to as “tether
cutting” (Moore et al. 2001). While other equilibria can be driven
to a catastrophe and instability through reconnection at an upper,
horizontal current sheet, a process referred to as “breakout”
(Antiochos et al. 1999). Some equilibria can be destabilized
by both processes, but others only by one and not the other.
Still other equilibria undergo no catastrophe and instability, but
evolve at an increasingly rapid rate in response to slow steady
driving.

The occurrence of a catastrophe has also been demonstrated
for toroidal current channels. Lin et al. (1998) considered a
toroidal flux rope encircling the Sun in the equatorial plane with
an induced current in the solar surface, or equivalently, an image
inside the Sun of the current channel. Lin et al. (2002) studied a
toroidal current channel one-half of which is submerged below
the (plane) photosphere. In this geometry, the submerged half of
the channel represents the image current, but the evolution of the
channel’s major radius implies that the footpoints move across
the solar surface. The latter unsatisfactory feature was remedied
by Isenberg & Forbes (2007); however, the resulting complex
expressions for line-tied equilibrium of a partial torus have not
yet allowed a determination of the location of catastrophe or the
onset of instability in general form.

The freely expanding toroidal current channel investigated
in Lin et al. (2002) is essentially a tokamak equilibrium
(or Shafranov equilibrium, Shafranov 1966) whose external
poloidal field is due to a pair of point sources. This equilibrium
was first explicitly given in Titov & Démoulin (1999). The
expansion instability of the Shafranov equilibrium is referred
to in fusion research as one of the axisymmetric tokamak
modes (the other one being a rigid displacement along the
axis of symmetry). Its first consideration (Osovets 1959) gave
the threshold for instability as n = −d ln Be/d ln R > ncr =
3/2− (c−1)/[2c(c + 1)], where c = L/(μ0R) = ln(8R/a)−2,
and L, R, and a are the inductance and the major and minor radii
of the torus, respectively. The derivation used the large aspect
ratio approximation R � a for the inductance L, neglected the
internal inductance of the current channel, and assumed that the
minor radius does not change as the torus expands in a vacuum
field. The term (c − 1)/[2c(c + 1)] < 0.1 for all c > 1, so the
threshold of instability lies close to 3/2. The instability was also

considered by Titov & Démoulin (1999), who estimated ncr ∼ 2,
and by Kliem & Török (2006), who obtained ncr = 3/2−1/(4c),
assuming that the minor radius expands proportionally to the
major radius, and they called the instability a “torus instability”;
both investigations were performed without awareness of the
original work by Osovets. An instability of this type was also
realized (without quantifying it) as a possible cause of eruptions
by Krall et al. (2000). Olmedo & Zhang (2010) proposed an
analytical model for the instability of a line-tied partial torus,
and found ncr → 2 in the limit of a full torus but surprisingly
low values for ncr (even below unity) if one-half or less of the
torus extends above the boundary. Numerical verifications of
the instability for line-tied partial tori found threshold values in
the range ncr ≈ 1.5–2 (Török & Kliem 2007; Fan & Gibson
2007; Aulanier et al. 2010; Fan 2010).

Démoulin & Aulanier (2010) extended the consideration of
both catastrophe and instability to arbitrary geometry of the cur-
rent channel, intermediate between linear and toroidal shapes.
They estimated that the instability threshold then typically falls
in the range ncr ∼ 1.1–1.3 and argued that catastrophe and in-
stability are “compatible and complementary. In particular, they
agree on the position of the instability if no significant current
sheets are formed during the long-term evolution of the mag-
netic configuration.” Their arguments are based on the facts that
catastrophe and instability are related in general and that the
investigations cited above employed the same force balance de-
termining the external equilibrium of the current channel. This
suggests that torus instability (and its 2D variant) could possibly
occur at the critical point in these catastrophe models.

Here we perform a detailed consideration of the relationship
between catastrophe and instability in toroidal geometry, verify-
ing that torus instability is indeed the instability occurring at the
catastrophe studied by Priest, Forbes, Lin and co-workers. The
catastrophe point is located exactly at the major torus radius R
where n(R) = ncr, for all cases considered. We also show a case
in which the change of a control parameter (i.e., a certain evolu-
tionary scenario) leads to neither a catastrophe nor an onset of
instability. However, another control parameter in this system
does yield catastrophic/unstable behavior.

For simplicity, we will use solar nomenclature in the follow-
ing, bearing in mind that the situation is generic for eruptions
originating in the low-density hot atmosphere of a magnetized,
dense star or accretion disk (Yuan et al. 2009). Similarly, we will
use “expansion” of the current channel to represent any change
of the current channel’s major radius in response to changes
at the photospheric boundary. Typically, expansion is observed
prior to solar eruptions, and the models considered here all ex-
hibit expansion.

We present a discussion of the general relationship between
catastrophe and instability in Section 2, introduce the basic
eruption model in Section 3, and then study a number of
catastrophe scenarios in bipolar (Section 4) and quadrupolar
(Section 5) ambient field. Section 6 gives the conclusion.

2. CATASTROPHE AND INSTABILITY

Catastrophe theory analyzes nonlinear systems that exhibit
abrupt changes of behavior, called catastrophes, and are gov-
erned, at least locally in the vicinity of the point(s) of change,
by a smooth potential function Va(x) that depends upon at least
one “behavior” variable (or “active” variable) x and at least
one “control parameter” a. The force acting on the system
in the space of the behavior variable is given by −dVa/dx,
so that the equilibrium positions are given by dVa/dx = 0.
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Figure 1. Fold catastrophe. Left: Potential Va(x) = −(1/3)x3 + ax for a = 1.
Right: Equilibrium manifold x2 − a = 0; the stable (unstable) branch is plotted
solid (dashed). The two equilibrium positions are marked in both plots.

Catastrophes occur where these are not simple minima or max-
ima, but one or more higher derivatives of the potential van-
ish as well at so-called degenerate critical points. The simplest
catastrophe thus occurs for a cubic potential with one control
parameter, Va = −(1/3)x3 +ax, which has an inflexion point at
x = a = 0. Figure 1 (left panel) illustrates this potential in the
domain a > 0, where it has a minimum (stable equilibrium) at
x = −a1/2 and a maximum (unstable equilibrium) at x = a1/2.
The equilibrium branches in the a–x plane are plotted in the
right panel of Figure 1. As a approaches zero, the two extrema
of the potential approach each other and disappear upon merg-
ing in the inflexion point of the pure cubic function, which is an
end point of the pair of equilibrium branches. The catastrophe
occurring at a = 0 is the fold catastrophe. It occurs by a loss
of equilibrium, since both equilibria are lost when the control
parameter a is reduced below zero.

From the above it is obvious that every fold catastrophe must
be associated with an instability. The two equilibrium branches
that join at the catastrophe point are a continuous curve, and the
catastrophe point lies at the transition between the stable and
unstable parts of the curve, i.e., it is a point of marginal stability.
For a system evolving along a sequence of stable equilibria,
both x and a may be regarded as parameters of the equilibrium.
For the toroidal current channel studied below, the major radius
R is a natural choice for the behavior variable, and one of the
parameters specifying the external poloidal field Be is a natural
choice for the control parameter, for example, the strength of
its sources, q, or its decay index n. However, it is equally
justified to regard R as a parameter describing the geometric
properties of the equilibria. One can consider an equilibrium
sequence of toroidal current channels of varying R, with fixed
geometry of the sources of Be, and compute the source strength
qeq(R) giving equilibrium for each R. This is equivalent to
following the equilibrium curve a(x) in Figure 1 by changing
x. In this consideration, a loss of equilibrium in the sense of
catastrophe theory does not occur, but instability will set in as
the degenerate critical point is crossed, resulting in an abrupt
transition x → ∞ that is identical to the catastrophe occurring
as a is reduced below zero.

In most cases, the problem is not symmetric in x and a.
Often the derivative ∂Va/∂a does not represent any physical
quantity and is not related to the equilibrium positions of the
system. The latter is true in particular in catastrophe theory
which considers linear dependencies on the control parameters
in the vicinity of the degenerate critical points. Nevertheless,
the consideration of instability is not restricted to changes in the
control parameters, but analyzes in general how the change of
any variable describing the equilibrium affects its stability.

Since both the control parameter a and the behavior variable
x change as the system point moves along the stable equilibrium
branch toward the point of catastrophe and instability, it is not
trivial to distinguish in a remote observation, like in the case of
a solar eruption, whether an equilibrium ceases to exist or goes
unstable (see also the discussion in Démoulin & Aulanier 2010).
However, by definition, it is a control parameter whose evolution
causes the system point to move along the stable equilibrium
branch toward the critical point. Typically, this can be the total
flux of the external field (Bobra et al. 2008; Su et al. 2011;
Savcheva et al. 2012a), the geometry of its sources which sets
the height profile of the decay index (Török & Kliem 2007),
its shear whose increase causes a magnetic arcade to expand
and eventually collapse, forming a flux rope (Mikic & Linker
1994), or the twist of a flux rope rooted in a rotating sunspot
(Amari et al. 1996; Török & Kliem 2003; Yan et al. 2012). The
observations do not indicate that an external driver typically
operates directly at the height of current-carrying flux, although
a gradual increase of its footpoint separation may cause the flux
to ascend in some cases. In the vicinity of the critical point,
a fluctuation of any variable can cause the abrupt change of
system behavior.

On the other hand, in a numerical simulation one has the
freedom to evolve a control parameter (e.g., Chen & Shibata
2000; Amari et al. 2003; Török & Kliem 2003; Mackay & van
Ballegooijen 2006; Aulanier et al. 2010; Török et al. 2013) or to
change the behavior variable (lifting a flux rope into the torus-
unstable height range by a prescribed velocity perturbation, Fan
& Gibson 2007; Kliem et al. 2012). One can of course also test a
configuration on any position of the equilibrium manifold for its
stability, independent of an evolutionary scenario (e.g., Lionello
et al. 1998; Török et al. 2004; Kliem et al. 2013).

The next higher catastrophe arises with a potential Vab(x) =
(1/4)x4 + (1/2)ax2 + bx. For a > 0 this potential has one
minimum, but for a < 0 there is a range of the second parameter,
|b| < 2(−a/3)3/2, inside which the potential has two minima
enclosing a maximum. Outside this range there is again only
one minimum (Figure 2, left four panels). For a < 0 this maps
to the well-known S-shaped equilibrium curve in b–x space
which has three branches in the range |b| < 2(−a/3)3/2 and one
branch outside (Figure 2, right panel). The nose points of the
equilibrium curve correspond to the merging of the maximum
of the potential with one of the minima in an inflexion point,
i.e., they represent fold catastrophes. Again, these are points
of marginal stability, where the unstable branch in the middle
part of the S-shaped equilibrium curve smoothly connects to a
stable branch. Now, if a increases, approaching zero, the three
extrema of the potential approach each other. In b–x space
this corresponds to a shrinkage of the S-shaped part of the
equilibrium curve. The points of fold catastrophe lie on two
sections of a curve which approach each other as a increases. As
a → 0, all three extrema of the potential and the two sections of
the fold curve merge in the point of higher degeneracy, x = a =
b = 0, where the cusp catastrophe occurs. This is a cusp point
of the projected fold curve in the b–a plane, but the projection
in the a–x plane shows that the curve is smooth in b–a–x space.
More generally, the equilibrium manifold, the surface given by
x3 + ax + b = 0, is everywhere smooth, although it is folded in
{a < 0} (Figure 2, right), since both derivatives ∂b(x, a)/∂x
and ∂b(x, a)/∂a are everywhere continuous.

With the exception of the cusp point, a loss of equilibrium
occurs as the system point crosses the line of fold catastrophes
on a path lying in the equilibrium manifold and coming from
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Figure 2. Cusp catastrophe. Left four panels: Potential Vab(x) = (1/4)x4 + (1/2)ax2 + bx. Top plot: a = 0.6, b = 0. Bottom row: a = −1.2 and b = 2(−a/3)3/2, 0,
and −2(−a/3)3/2 (from left to right). Right panel: Equilibrium manifold x3 + ax + b = 0. The fold curve, 4a3 + 27b2 = 0, is shown as a red line on the equilibrium
manifold and also projected on the b–a and a–x planes; the enclosed regions of unstable equilibria are colored in cyan. The line x = b = 0 is added in the a–x
projection to complete the bifurcation diagram. The same four equilibrium positions are marked in the plots of the potential and bifurcation diagram.

(A color version of this figure is available in the online journal.)

the stable part of the manifold. At the cusp point, the fold line
can be crossed along a smooth path that stays on the equilibrium
manifold; coming from the stable side, this must always occur
by a change from a � 0 to a < 0 along the path. These two
facts are perhaps most obvious from the three-dimensional plot
of the equilibrium surface and fold curve in Figure 2, but they
can also be seen in the b–a plane of the control parameters,
where they represent crossings of the projected fold curve in
opposite directions. Once arrived on the unstable part of the
equilibrium manifold after passing through the cusp point, any
perturbation will cause the system to rapidly move to one of the
neighboring stable equilibrium positions, which is a catastrophe
although the move will only be a tiny one in practice, and, of
course, is an instability as well. Thus, the cusp catastrophe does
not occur by a loss of equilibrium, but by a change of the nature
of the equilibrium from stable to unstable. This evolutionary
sequence can be termed a loss of stability. The different types
of catastrophe are also obvious in the plots of the potential on
the left side of Figure 2. A loss of equilibrium occurs in the
horizontal transition from the middle panel to and beyond one
of the outer panels in the bottom row, and a loss of stability
occurs in the downward vertical transition between the middle
panels.

Two important aspects must be noted for the relationship
between catastrophe and instability. First, instability is part of
the cusp catastrophe as this catastrophe occurs by the motion
of the system to the unstable part of the equilibrium manifold.
Second, the term “loss of stability” is not synonymous with
“instability.” Both types of catastrophe—by loss of equilibrium
and by loss of stability—are associated with instability. The
latter is visualized by the (pitchfork) bifurcation diagram in
the a–x plane (Figure 2, right): here both the fold and cusp
catastrophes occur when the fold line is crossed from the stable
to the unstable part of the diagram.

We have seen that the cusp catastrophe occurs at a sub-
manifold of the manifold of fold catastrophes, which itself is a
sub-manifold of the equilibrium manifold. The dimensionality

is reduced by one at each level. This relationship extends to the
manifolds of the higher catastrophes, since the degenerate crit-
ical points of a certain order are always also degenerate critical
points of lower order. Consequently, the fold catastrophe is in
general infinite times more likely than any higher catastrophe.

The sample plots of the potential in Figure 2 also show that a
catastrophe can occur only by either a loss of equilibrium or a
loss of stability. In the first case the minimum disappears as the
slope dV/dx changes sign only on one side, and in the second
case the slope changes sign on both sides simultaneously. In the
case of more than one behavior variable, this holds true for each
behavior variable and thus in general. Hence, any catastrophe is
related to an instability.

For the modeling of solar eruptions, the values of the control
parameters can vary in a wide range from event to event.
Therefore, only the loss of equilibrium occurring in a fold
catastrophe and the associated instability are relevant in practice
if the model contains only one behavior variable. The occurrence
of a higher catastrophe is a special case, but any eruption
mechanism must be able to operate in a wide parameter range.
Here it doesn’t matter whether the loss of equilibrium occurs in
the potential of the fold catastrophe or in a potential associated
with one of the higher catastrophes. Additionally, some of the
higher catastrophes, like the cusp catastrophe, do not provide a
large change of the system.

If the model includes a second behavior variable, for example
the horizontal position of current-carrying flux, which may
change in response to asymmetric changes in the photospheric
flux distribution, then umbilic catastrophes arise. Lin et al.
(2001) demonstrated this for a 2D flux rope equilibrium subject
to flux emerging only on one side of the rope. The potentials for
the umbilic catastrophes are at least cubic in at least one behavior
variable. Therefore, these catastrophes are sub-manifolds of the
fold catastrophe for at least one behavior variable (see Poston
& Stewart 1978, Chapters 9.6–9.8 for details). It thus appears
that the fold catastrophe and its associated instability are most
relevant in this case as well.
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3. MODEL AND BASIC EQUATIONS

We consider a self-similarly evolving toroidal current channel
of major radius R and minor radius a immersed in a given bipolar
or quadrupolar external field as our model for the source region
of eruptions. The current channel runs in the center of a toroidal
flux rope. Pressure and gravity are neglected, since the Lorentz
force dominates in strong active-region fields low in the corona,
where most major eruptions arise. While the model appears
simplistic at first glance, particularly in apparently missing the
solar surface, it does contain all the basic elements needed
to describe a catastrophe or instability of flux carrying a net
current located above the photospheric boundary: (1) a realistic
representation of the external poloidal field in bipolar and simple
quadrupolar active regions; (2) the flux rope of a prominence or
filament channel; and (3) the oppositely directed image current,
given by the lower half of the torus. Also see the discussion of
the proper elements to be included in such a model in Lin et al.
(2002) and Démoulin & Aulanier (2010) and the support for the
presence of net currents from recent investigations of the current
distribution in active regions (Ravindra et al. 2011; Georgoulis
et al. 2012; Török et al. 2014). We also neglect any external
toroidal field components to facilitate an analytical description.
The simplicity of the model serves our aim to determine the
relation between catastrophe and torus instability. The model
yields a transparent expression for the equilibrium manifold,
allowing us to consider a number of cases without mathematical
complexity, one of them fully analytically.

Essentially the same model was used in the consideration of
the torus instability by Osovets (1959) and Kliem & Török
(2006), so that we can directly refer to their results. For
the purpose of comparing catastrophe and instability, it is
necessary that both are described using the same or compatible
approximations.

The model in its simplest form lacks photospheric line tying
of the flux and implies that the footpoints of the current channel
move across the solar surface. We demonstrate below for one of
our cases that a simple modeling of the line tying effect can be
included and does not change the result in this particular case.
The motion of the footpoints across the solar surface hardly
affects the threshold of instability, since only infinitesimally
small changes of the major radius are considered in determining
the threshold. However, the threshold does depend on the shape
of the flux rope and on the strength of the external toroidal
(shear) field component, with our choice of full toroidal shape
(i.e., no line tying) and vanishing external toroidal field giving
a relatively low threshold value.

The system is governed by three equations which describe
the external equilibrium (i.e., the force balance in the major
toroidal direction at the toroidal axis), the internal force-free
equilibrium of the current channel (in the direction of the minor
radius), and the evolution of the flux enclosed by the torus as
the major radius changes.

The external equilibrium of a toroidal current channel in
a low-beta plasma is known as the Shafranov, or tokamak,
equilibrium (Shafranov 1966; Bateman 1978). It is obtained
from the following force balance

ρm

d2R

dt2
= μ0I

2

4π2a2R

[
ln

(
8R

a

)
− 3

2
+

li

2

]
− IBe(R)

πa2
= 0,

(1)

where the first term describes the Lorentz self-force of the
current (also referred to as the hoop force) and the second term

describes the Lorentz force provided by the external poloidal
field Be(R). In the present configuration, the hoop force includes
the repulsive force due to the image current. Here ρm is the mass
density in the torus, I is the total ring current, and li is the internal
inductance per unit length of the ring. li is of the order of unity if
the radial profile of the current density is not strongly peaked in
the center of the torus, a situation expected to be representative
of the flux in solar filament channels, and thus its specific value
is only of minor influence on the equilibrium. We adopt the value
li = 1 as in Lin et al. (1998, 2002), valid for the linear force-
free equilibrium of a current channel (Lundquist 1951), which
is a natural choice for a relaxed force-free equilibrium. The
value li = 1/2 for a force-free equilibrium with uniform current
density, used in Kliem & Török (2006), yields nearly the same
locations of the catastrophe and instability points for the cases
considered in Sections 4 and 5, which of course also coincide in
each case. The expression in brackets in Equation (1) is exact for
large aspect ratio, R → ∞. It remains a good approximation
(within 10% of the exact value) down to relatively moderate
aspect ratios of the order of R/a ∼ 10 and deviates from the
exact value by up to a factor ≈2 for lower aspect ratios (Žic
et al. 2007). The force balance (1) yields an equilibrium current

I (R, a) = 4πRBe(R)

μ0c1(R/a)
, (2)

where c1(R/a) = [ln(8R/a) − 3/2 + li/2] has been used as an
abbreviation.

The internal equilibrium of the current channel must be close
to a force-free field for the low plasma beta characteristic of
source regions for solar eruptions (β ∼ 10−4–10−2 in the core
of active regions). If a force-free field expands, it remains force
free if the expansion is self-similar. Therefore, assuming

R

a
= const (3)

is a reasonable approximation for the gradual pre-eruptive
evolution of a single torus along a sequence of nearly force-free
equilibria. This is even more so because the expressions depend
on the ratio R/a only logarithmically. Numerical simulations
of the torus instability for small plasma beta indicate its
initial evolution to be approximately self-similar as well. The
assumption of self-similarity implies that the distribution of
the current density in the cross section of the current channel
remains unchanged; it is thus consistent with the assumption
li = const, which has usually been adopted in modeling
the evolution toward solar eruptions, and with the relation
aI (R, a) = const, which has been used in Lin et al. (2002)
and other studies of the catastrophe.

It should be kept in mind that self-similarity is not always a
good approximation. For the model of a flux rope encircling the
Sun considered in Lin et al. (1998), it does not apply as long as
the major rope radius is comparable to the solar radius. While
the rope expands, its image contracts, which is opposite to self-
similar behavior of the system as a whole. This model behaves
approximately self-similar when R � R�. Two-dimensional
models that place the source of the external field under the
current channel, e.g., a line dipole or quadrupole (Forbes &
Isenberg 1991; Isenberg et al. 1993), are similar in this regard.

Finally, the equation governing the evolution of the poloidal
flux enclosed by the torus yields an expression for I(R, a). In the
solar case, the enclosed poloidal flux has two sources, namely
subphotospheric sources of the external poloidal flux and the
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coronal current that provides the free magnetic energy for the
eruption; they are considered to be essentially independent of
each other. The sources of the external poloidal flux generally
change in strength and geometry on the long timescale of the
gradual pre-eruptive evolution, with the former implying emer-
gence or submergence of flux through the photosphere. The flux
in the corona adjusts to these slow changes along a sequence of
equilibria, which obey magnetostatic expressions. The sources
of the external flux do not change significantly on the short
timescale of the eruption (Schuck 2010), i.e., during the de-
velopment of instability. The coronal current generally changes
both in the equilibrium sequence and during the eruption, al-
though its subphotospheric roots tend to stay unchanged on the
short timescale of the eruption. The conservation of frozen-in
flux on the global scale of the coronal current loop takes dom-
inance over the conditions at its footpoints in constraining the
current.

We note that not all of the considerations above carry over
to related laboratory plasmas, the details depending on the
specific setup. For example, Osovets (1959) considered a pulsed
tokamak operation with no external current drive. In this case,
the current channel expands and contracts in vacuum, and its
current stems solely from induction by the changing external
poloidal flux generated in external coils and linked by the torus.

The flux enclosed by the torus is Ψ = ΨI + Ψe, where the
poloidal flux due to the ring current,

ΨI (R, a) = L(R, a)I (R, a), (4)

is expressed in terms of the inductance of the torus, L(R, a) =
μ0R [ln(8R/a) − 2 + li/2], and the external poloidal flux is
given by

Ψe(R) = −2π

∫ R

0
Be(r) r dr. (5)

Here we have dropped the common factor 1/2 referring to
the upper half of the enclosed flux (above the photosphere)
and extended the integral to r = R instead of the accurate
value r = R − a = R(1 − a0/R0), where R0 and a0 are the
initial values, to be consistent with the treatment in Kliem
& Török (2006). This approximation simplifies the resulting
algebraic expressions. The neglect of the factor (1 − a0/R0)
causes only small quantitative changes in the large aspect
ratio approximation underlying Equation (1). It could easily
be incorporated in the resulting expressions, without changing
the qualitative results.

The evolution of the enclosed flux during changes of the major
torus radius depends on the occurrence of reconnection. We first
consider a case in which the field under the current channel has
an X-type magnetic configuration. This is a two-dimensional
X-point field if the external field is purely poloidal, an X-line in
the 3D view of our axisymmetric model. (The X-line becomes
a separator field line if an external toroidal field component
is present, and it coincides or approximately coincides with a
quasi-separator line running within a hyperbolic flux tube if
the photospheric boundary is also taken into account, Priest &
Démoulin 1995; Titov et al. 2002). Expansion of the current
channel in the presence of an X-type structure is likely to be
associated with reconnection, both before the eruption (e.g.,
Aulanier et al. 2010) and during the eruption (e.g., Török &
Kliem 2005). The X-line acts as a seed for the formation of
a vertical current sheet and the onset of reconnection. Since
the timescale of reconnection in the corona is shorter than the
timescale of photospheric driving, typically reconnection acts

efficiently at the X-line and a large-scale vertical current sheet
does not develop in the evolution of a system on the equilibrium
manifold (different from the fast evolution during eruption).
In the rest of the volume the flux is assumed to be frozen in.
Reconnection under the current channel in this non-ideal MHD
case adds equal amounts of positive and negative poloidal flux to
the area between the current and the photosphere. It also allows
the flux rope to “slide through” the external poloidal field: the
amount of originally overlying flux transferred by reconnection
to the flux rope equals the amount of flux added below the
X-line.

Since the flux rope slides through the external field in the
non-ideal case, to a first approximation the functional form of
Be(R) remains invariant as the major torus radius changes. This
approximation is supported by the agreement of the resulting
threshold value with many numerical and observational studies
of the torus instability. Gradual changes of the external field can
thus be described by changes of the parameters, p, in a given
function Be(R,p).

In determining the instability threshold, the parameters of the
external field are treated as given. The enclosed flux is then
conserved in the non-ideal case,

Ψ(R, a) = L(R, a)I (R, a) + Ψe(R) = Ψ0, (6)

where Ψ0 = Ψ(R0, a0). Here and in the following we use the
subscript 0 to denote initial values (of a reference equilibrium at
an arbitrary point on the stable part of the equilibrium manifold
in parameter space).

As the parameters of the external field Be(R,p) change
in the pre-eruptive evolution considered in the description of
catastrophe, both the force IBe in Equation (1) and the external
flux Ψe given by Equation (5) change. Including the change ΔΨe
in the equation for the enclosed flux yields

Ψ(R, a, p) = L(R, a)I (R, a) + Ψe(R,p) = Ψ0 + ΔΨe(R0, p),

(7)

ΔΨe(R0, p) = −2π

∫ R0

0
[Be(r, p) − Be(r, p0)] r dr. (8)

If the sources of the external field change in strength on the
Sun, flux must emerge or submerge through the photosphere.
This is represented by the term ΔΨe. In our model with toroidal
symmetry, where the sources of Be must be symmetric with
respect to the photosphere, this can still be thought of as a gain
or loss of flux through the photosphere. On the other hand, if the
photospheric flux distribution is rearranged with a fixed strength
of its sources, then the change is not associated with emergence
or submergence of flux for the frozen-in conditions on the Sun.
However, in the parametric representation of geometric changes
with fixed functional form Be(R,p) in the present formulation,
the enclosed flux generally changes as p changes. The flux
is exchanged between the area enclosed by the torus and the
exterior area in this case, not through the photosphere (this is
obvious from considering a varying distance of the sources from
the plane of the torus). As the torus slides through the external
field in response to a change of Be, it regains part or all of the flux
exchanged between the two areas. In particular, if the sources of
Be are simply moved along the symmetry axis of the torus, the
torus radius can change proportionally to keep equilibrium, and
in this case the enclosed external flux stays invariant. Therefore,
we choose to use Equation (6) for the enclosed flux if p describes
the geometry of the sources of Be, and Equation (7) if p describes
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their strength. The resulting differences in the location of the
catastrophe point remain minor in large parts of parameter space
(e.g., in the cases displayed in Figures 4, 6, 7, and 10 below) but
they can be considerable for some parameter combinations (the
case shown in Figure 9 is an example).

If there is no X-line but rather a bald-patch separatrix surface
below the current-carrying flux, then a vertical current sheet
cannot immediately form if the current channel expands; it will
form only after a considerable expansion has led to sufficient
horizontal constriction of the flux below the channel. For thin
channels this occurs relatively early (e.g., Forbes & Isenberg
1991; Lin et al. 2002), so that the remaining evolution on the
equilibrium manifold can be described using Equation (6) or (7),
but for thick channels this does not occur before the eruption
develops strongly (e.g., Gibson & Fan 2006). In the resulting
absence of reconnection in the pre-eruptive evolution, both parts
of the enclosed flux are conserved individually, giving us the
simple equation for the case of ideal-MHD evolution

ΨI (R, a) = L(R, a)I (R, a) = ΨI0. (9)

Since the torus cannot “slide through” the external field in ideal
MHD, the functional form of Be(R) must change in this case if
the flux rope expands. This generally also includes the formation
of currents in the ambient volume.

Topological considerations of active-region evolution suggest
that either case can be realized (Titov & Démoulin 1999). Both
possibilities were also supported by data analysis (e.g., Green
& Kliem 2009; Green et al. 2011), active-region modeling (e.g.,
Su et al. 2011; Savcheva et al. 2012b), and numerical simulation
(e.g., Gibson & Fan 2006; Aulanier et al. 2010).

It is worth noting that Equations (6) and (7) do not describe
evolution in a vacuum, although they are based on the assump-
tion that the flux rope moves through the external poloidal field.
If the flux rope expanded in vacuum, ΨI (R) would be con-
served (Equation (9)), while Ψe(R) would change according to
Equation (5) with the functional form of Be(R,p) being pre-
served exactly. Although the description of the evolving ex-
ternal field as a parameter dependence of Be(R,p) with fixed
functional form still contains an element of vacuum behavior, it
represents a reasonable approximation to the MHD behavior of
the system, as discussed above in relation to Equation (7).

Moreover, the modeling approach laid out above and also
employed in Kliem & Török (2006) should not be categorized
as a “circuit model,” since it does not contain any element of
an electric circuit. There are no current sources or sinks. Rather
the current is a secondary quantity depending on the evolution
of the magnetic flux, and given by Equation (1), combined with
Equation (6), (7), or (9) which express MHD considerations.
Similarly, the assumption made for the internal equilibrium
(Equation (3)) expresses a property of a force-free field.

In the following, we consider only the non-ideal case, since
a reliable analytical description of the changing function Be(R)
does not yet exist for the ideal-MHD case. Kliem & Török
(2006) have formally derived a torus instability threshold ncr =
2 in this case, using the parameterized form Be(R) = B̂R−n,
where n is not prescribed but determined from the condition of
marginal stability; however, they noted that the formulation was
not self-consistent. A closer consideration of this case suggests a
completely different description, focusing on the Lorentz forces
formed in the ambient flux. If the current channel expands
self-similarly in the ideal-MHD case, then the frozen-in field
component Be(R) within the channel decreases proportionally
to R−2. Since I ∝ R−1 in this case (from Equations (9)

and (3)), the external force balance (1) is not affected, i.e., in this
approximation no force resisting or amplifying the expansion is
induced within the channel. Numerical simulations of this case
in the zero-beta limit indicate that the expansion indeed tends to
be approximately self-similar (a result of force-freeness). The
expansion piles up the ambient flux above the current channel,
creating a downward-directed magnetic pressure gradient in the
ambient flux. Below the current channel, the flux is stretched
upward, reducing the curvature radius of the upward concave
field lines, which creates an upward Lorentz force. The global
force balance tends to be dominated by the opposing Lorentz
forces created in the compressed or stretched ambient flux.
Their ratio, and hence the stability of the current channel,
again depends on the decay index of the external field, but also
quite significantly on the aspect ratio R0/a0, with thicker tori
being more stable. Numerical simulations indicate a threshold
of instability closer to the canonical value of 3/2 for moderate
aspect ratio but rising even above 2 for very thick tori; these will
be reported in a future study.

The flux equation (7) yields the following expression for the
current

I (R, a, p) = L0I0 + Ψe0 − Ψe(R,p) + ΔΨe(R0, p)

L(R, a)
. (10)

The cases that are instead described by Equation (6) are
covered by this expression if the term ΔΨe is dropped. Inserting
Equation (2) into Equation (10) to eliminate the current, and
using Equation (3), we obtain the expression for the equilibrium
manifold in the non-ideal case,

0 = R2Be(R,p) − R2
0Be0

+
c1

4πc2
[Ψe(R,p) − Ψe0 − ΔΨe(R0, p)], (11)

where the abbreviation c2(R/a) = L(R, a)/(μ0R) = c1 − 1/2
has been introduced. Since the geometry of the flux rope
is assumed to be invariant in our model, the expression for
the equilibrium manifold shows in a particularly transparent
form that the properties of the equilibria are determined by
the external field. For the consideration of catastrophe and
instability in our model, we do not need to compute the whole
field (although it is well known for the specific choices of
Be(R,p) treated below).

To find the point of marginal stability for this model, Kliem
& Török (2006) determined at which radius R the force
(Equation (1)) resulting from an infinitesimal perturbation of
the equilibrium changes sign,

d

dR

(
ρm

d2R

dt2

)∣∣∣∣
R=Req

= 0, (12)

where Req is a radius on the equilibrium manifold satisfying
d2R/dt2

∣∣
R=Req

= 0. In their treatment Equations (10) and (3)
were inserted in (1), which is equivalent to Equation (11), and
then the derivative was taken. The resulting torus instability
threshold is

ncr = 3

2
− 1

4c2
. (13)

This can readily be verified to hold for any smooth function
Be(R,p) by taking the derivative of expression (11) for the equi-
librium manifold (which immediately also yields the threshold
ncr = 2 if the terms proportional to c1/c2 are dropped). For as-
pect ratios in the range typically considered (i.e., R/a = 3–100),
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the second term in Equation (13) is a small number in the range
0.05–0.15.

Equation (12) explicitly demonstrates that instability and fold
catastrophe are equivalent descriptions of the transition to a
non-equilibrium state. At the point of marginal stability, the
force resulting from an infinitesimal deviation from equilibrium
changes from a restoring to an amplifying force (vanishing
derivative of the left-hand side of Equation (1)). This coincides
with a degenerate critical point of the underlying potential
(vanishing derivative of the expression for the equilibrium
manifold in the middle part of Equation (1), as discussed in
Section 2), i.e., with a point of catastrophe. Thus any catastrophe
occurring in the expansion of the torus in the model considered
in this paper must occur at the threshold of torus instability.

This also resolves an apparent problem indicated by the
different expressions for the enclosed flux in the description
of catastrophe (including the term ΔΨe in some cases) and
instability (excluding the term ΔΨe). Since ΔΨe(R0, p) does not
contribute to the derivative of the equilibrium manifold (11), the
torus instability threshold (13) is independent of its inclusion,
i.e., the two approximations are compatible with each other.
Although the position of the degenerate critical point in R–p
space depends on whether or not ΔΨe(R0, p) is included, it
coincides with the instability threshold (13) in either case.

For consistency of the presentation, we will use an aspect
ratio R/a = 10 in all applications that follow, so that the
Lorentz self-force of the current channel is well approximated
by Shafranov’s expression in Equation (1). It should be noted
that the considerations above, in particular the expression (11)
for the equilibrium manifold, remain valid for smaller aspect
ratio because the inductance, and hence the Lorentz self-
force, then still depend on R and a in the same form as
Shafranov’s expressions (Žic et al. 2007). Only the definition of
the numerical coefficients c1 and c2 differs.

The relatively high aspect ratio, in combination with the
assumption that half of the torus extends above the photosphere,
implies a high value of the twist. The field line pitch (the
axial length for one winding about the axis) in a force-free
current channel is comparable to the radial length scale of
the field, a. Therefore, a high twist is unavoidable for high
aspect ratio. We disregard the resulting susceptibility of the
current channel to helical kinking (Hood & Priest 1979) and
focus exclusively on the stability properties with respect to
toroidal expansion (a form of lateral kinking), since it is this
instability which is related to the catastrophes investigated
previously. A simultaneous consideration of both instabilities
in the framework of catastrophe theory (an umbilic catastrophe)
has, to our knowledge, not yet been performed. The observations
of filaments and prominences indicate that flux ropes in the solar
corona typically have a smaller aspect ratio and are stable against
the helical kink mode in the majority of cases.

4. CATASTROPHE VERSUS INSTABILITY
IN A BIPOLE FIELD

We first consider a bipole as the source of an external field,
with the poles of strength ±q located at the symmetry axis
of the torus at distances ±L from the torus plane. This is
identical to the Titov–Démoulin model of an active region
(Titov & Démoulin 1999), which has been successfully used
in qualitative and quantitative numerical modeling of a wide
range of solar eruptions (e.g., Török & Kliem 2005; Schrijver
et al. 2008; Kliem et al. 2012). The external field in the torus

plane is perpendicular to the plane and given by

Be(R) = μ0

2π

qL

(R2 + L2)3/2
. (14)

Such a configuration allows us to consider both scenarios
for a catastrophe considered previously in the context of so-
lar eruptions, i.e., changing the field amplitude (Forbes &
Isenberg 1991; Isenberg et al. 1993; Lin et al. 1998; Lin &
van Ballegooijen 2002), here parameterized by q, and chang-
ing the spatial scale of the field (Forbes & Priest 1995; Lin &
van Ballegooijen 2002), here parameterized by L. The catastro-
phe for this system has already been investigated in Lin et al.
(2002), using the more general approximation aI (R, a) = const
in place of Equation (3). For comparison with the torus insta-
bility threshold, we repeat the analysis here using Equation (3)
as in Kliem & Török (2006).

The decay index of the bipole field in the plane of the torus is

nbp = −d ln Be

d ln R
= 3(L2/R2 + 1)−1. (15)

The torus instability threshold in the non-ideal MHD case
(Equation (13)) lies here at R/L = [(6c2 − 1)/(6c2 + 1)]1/2,
i.e., slightly below unity. In terms of ξ = R/L, the expressions
required in Equation (11) are

R2Be(R) = μ0

2π

qξ 2

(ξ 2 + 1)3/2
(16)

and

Ψe(R) = μ0q

[
1

(ξ 2 + 1)1/2
− 1

]
. (17)

To see whether and where the torus in the bipole field exhibits
catastrophic behavior, we choose a reference equilibrium in the
stable part of parameter space, i.e., R = R0 < [(6c2 −1)/(6c2 +
1)]1/2L0 and q = q0, and vary either the bipole strength as
q(t) = σ (t)q0 with fixed geometry L = L0, or the geometry
as L(t) = λ(t)L0 with fixed bipole strength q = q0. In the
former case, the torus must expand to find a new equilibrium
if σ decreases (which represents flux cancellation under the
flux rope or a general decay of an active region). Since L is kept
fixed, this implies that the new equilibrium is situated at a radius
with a steeper slope for the external field, thus approaching
the threshold of the torus instability. If torus instability and
catastrophe are equivalent, a catastrophe must then occur. In
the latter case, the field strength at the original torus position
decreases if L increases (corresponding, for example, to active-
region dispersal), so that the torus must also expand to find a
new equilibrium. Since the equilibrium manifold depends on R
and L only in the combination ξ = R/L (Equations (11), (16),
and (17)), R increases proportionally to L, representing a simple
rescaling of the configuration without approaching a loss of
equilibrium or the torus instability threshold (see Lin et al. 2002
and Section 4.2 below).

4.1. Changing the Source Strength

We set q = σ (t)q0 and L = L0. Inserting the expressions (16)
and (17) into Equation (11) immediately yields an explicit
expression for the equilibrium curve σ = f (R,R0/L,R0/a0),

σ = 2ξ 2
0

(
ξ 2

0 + 1
)−3/2

2ξ 2(ξ 2 + 1)−3/2 − (c1/c2)
[(

ξ 2
0 + 1

)−1/2 − (ξ 2 + 1)−1/2
] .

(18)
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Figure 3. Bipolar active-region model (Titov & Démoulin 1999) showing Bz(x, y) in the bottom plane (saturated gray scale), the current channel of major radius R
and minor radius a = 0.1R as a transparent isosurface of current density, field lines of the force-free field in the current channel, field lines of the purely poloidal field
external to the current channel considered in this paper, and the toroidal X-line as a red ring. The bottom plane is positioned at z ≈ 0.2R. The locations of the peak
|Bz| values in the bottom plane indicate the positions of the sources of the external poloidal field at x = (±L, 0, 0). The major torus radius in this and the subsequent
field line plots lies on the stable equilibrium branch close to the catastrophe point.

(A color version of this figure is available in the online journal.)
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Figure 4. Equilibrium torus radius R/L as a function of bipole strength σ

with the term ΔΨe in Equation (11) included (thick line) and excluded (thin
line) for an aspect ratio of the current channel of R/a = 10. Solid (dashed)
lines represent stable (unstable) equilibria in this and all subsequent plots of the
equilibrium manifold.

Here only the denominator depends on ξ . It is straightforward
to verify that it has a maximum at ξ = [(6c2 − 1)/(6c2 +
1)]1/2, which is a minimum of the function σ (R), i.e., the
location of a fold catastrophe point (a nose point of R(σ )).
Inserting this critical radius in expression (15), the decay index
of the bipole field at the catastrophe point is found to be
nbp = 3/2 − 1/(4c2)—exactly the instability threshold given
in Equation (13)—, which verifies the correspondence between
catastrophe and torus instability of the flux rope. Figure 3
illustrates the equilibrium and Figure 4 plots the function R(σ )
for R/a = 10 (c2 = 2.88). The figure also shows a plot of the
equilibrium manifold obtained if Equation (6) is used instead of
Equation (7). Catastrophe then occurs at the same torus radius
(same decay index) but at a somewhat different value of the
control parameter.

For comparison, Lin et al. (2002) find that a catastrophe
occurs at R/L = 0.94. Using their value for the aspect ratio
R0/a0 = 100, our expressions locate the catastrophe/instability
point at nearly the same value, R/L = 0.97. Lin et al. (2002)
use the force balance (1) for the external equilibrium, I ∝ a−1

for the internal equilibrium, and (for this result) the conservation
of flux according to Equation (6). The close agreement of the
results indicates that the assumption (3), which considerably
simplifies the expressions for the equilibrium manifold, is
appropriate for our system.

4.2. Changing the Length Scale

Setting q = q0 and varying L(t) = λ(t)L0, Equation (11),
with the term ΔΨe dropped, becomes

2λ−2ξ 2

(λ−2ξ 2 + 1)3/2
− c1

c2

[
1 − 1

(λ−2ξ 2 + 1)1/2

]

= 2ξ 2
0(

ξ 2
0 + 1

)3/2 − c1

c2

[
1 − 1(

ξ 2
0 + 1

)1/2

]
, (19)

where ξ = R/L0 and ξ0 = R0/L0. One immediately sees that
this depends on λ and ξ only in the combination ξ/λ, so that the
equilibrium sequence ξ (λ) = λξ0 represents a simple rescaling
of the configuration, as discussed above and first demonstrated
in Lin et al. (2002). Thus, the length scale L of the bipole is
not an appropriate control parameter to obtain catastrophic or
unstable behavior of the model.

The simple scaling relationship between λ and ξ breaks down
if photospheric line tying is included. We have attempted to
model this by employing the approximation for the inductance
of a line-tied current channel

L(R) = μ0R

[
1

2

(
ln

8R

af
+ ln

8R

aa

)
− 2 +

li

2

]
developed by Garren & Chen (1994). Here af and aa are the
minor torus radii at the footpoints and apex of the current
channel, respectively. Setting af = a0 and using Equation (3) for
aa, the above average yields the additive correction ln(R/R0)/2
to the logarithmic term in the inductance of a freely expanding
torus, which must be applied to the logarithmic term in the force
balance (1) as well. The coefficients c1 and c2 are now functions
of R (or ξ ) but not of λ. However, since the correction is at
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Figure 5. Quadrupolar active-region model (generalized Titov–Démoulin equilibrium) shown in a format similar to Figure 3. The bottom plane is here positioned at
z = 0.1R to include the low-lying X-line in the display. The values of the parameters R/a, κ , and ε are identical to Figure 6.

(A color version of this figure is available in the online journal.)

most moderate (due to the logarithmic dependence on R), since
it is applied to both coefficients, and since only the ratio c1/c2
enters the equations, the effect on the equilibrium curve R(λ)
remains very minor, so that a catastrophe still does not occur.
This appears quite plausible, since line tying tends to hinder
the expansion of the current channel in comparison with free
expansion, so that it is more difficult for it to expand into the
torus-unstable range as L(t)/L0 increases.

5. CATASTROPHE VERSUS INSTABILITY IN THE FIELD
OF A LINEAR QUADRUPOLE

As a second realization of our model we consider the
expansion of a torus in the field of a linear quadrupole consisting
of two nested bipoles (denoted by subscripts 1 and 2); both
are placed symmetrically with respect to the torus plane at the
symmetry axis of the torus. This field can have a steeper slope
than that of a single bipole, especially below a magnetic null
line (X-line), which is present for a wide range of parameter
combinations (q2/q1, L2/L1) if the two bipoles are oppositely
directed (see Figure 5 for an illustration). Thus, torus instability
tends to occur at a smaller R, and the catastrophe has also
been found to occur at a small height above the photosphere
if the external field is quadrupolar (Isenberg et al. 1993). All
configurations considered below include an X-line above and
a second X-line below the current channel for parameters in
the vicinity of the catastrophe point, except the configuration in
Figures 8 and 9.

The external field in the torus plane is given by

Be(R) = μ0

2π

[
q1L1(

R2 + L2
1

)3/2) +
q2L2(

R2 + L2
2

)3/2)
]

= μ0

2π

q1

L2
1

[
1

(ξ 2 + 1)3/2
+

εκ−2

(ξ 2κ−2 + 1)3/2

]
, (20)

where now ξ = R/L1 and ε = q2/q1, κ = L2/L1. It has a
decay index

nqp = 3ξ 2 (ξ 2 + 1)−5/2 + εκ−4(ξ 2κ−2 + 1)−5/2

(ξ 2 + 1)−3/2 + εκ−2(ξ 2κ−2 + 1)−3/2
. (21)

This cannot be analytically solved for ξ to obtain the threshold
radii corresponding to the critical decay index value (13). The
expressions for R2Be(R) and Ψe(R) are fully analogous to (16)
and (17), with obvious extensions for the second pair of sources
in the linear quadrupole.

If the field strength or length scale of the quadrupole are
varied with constant ratios ε and κ , then one expects the system
to behave in a similar manner with regard to the catastrophe as in
the case of the bipole field. This is verified below. Additionally,
we consider changes of ε or κ leading to catastrophe.

5.1. Changing the Source Strength

First we consider a proportional decrease of all four sources
in the linear quadrupole, q1(t) = σ (t)q10, ε = const, L1 = L10,
κ = const. Inserting the expressions for Be(R) and Ψe(R)
into Equation (11) again yields an explicit expression for the
equilibrium curve σ = f (R,R0/L1, R/a, ε, κ),

σ = 2ξ 2
0

[(
ξ 2

0 + 1
)−3/2

+ εκ−2
(
ξ 2

0 κ−2 + 1
)−3/2]

2ξ 2[(ξ 2 + 1)−3/2 + εκ−2(ξ 2κ−2 + 1)−3/2]
−(c1/c2)

[(
ξ 2

0 + 1
)−1/2 − (ξ 2 + 1)−1/2

+ε
(
ξ 2

0 κ−2 + 1
)−1/2 − ε(ξ 2κ−2 + 1)−1/2

]
, (22)

but a closed analytical expression for the maximum of the
denominator can here no longer be obtained. The plot of this
expression in Figure 6, for the same value of the aspect ratio as
in Figure 4 and for κ = 2, ε = −1, demonstrates the expected
fold catastrophe at (σ,R/L1) = (0.2738, 0.7059), i.e., at a
smaller radius than for the external bipole field. At this radial
position the field of the linear quadrupole has a decay index of
nqp = 1.413, exactly the threshold (13) of torus instability for
the chosen aspect ratio and li.

Another path to catastrophe consists in varying the strength
of only one pair of sources in the quadrupole. We first let the
relative strength of the outer source pair increase as ε(t) = δ(t)ε0
for opposite polarity (ε < 0), which decreases the external
field in the torus plane as well. The current channel is thus
forced to find new equilibrium positions at larger R where
nqp is higher. Equation (11) can again be easily solved for

10
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Figure 6. Equilibrium torus radius R/L1 as a function of quadrupole strength
σ for an aspect ratio of R/a = 10, size ratio κ = 2, and charge ratio ε = −1.
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Figure 7. Equilibrium torus radius R/L1 as a function of relative strength of
the source pairs in the linear quadrupole, measured by δ = ε/ε0 = q2/q20, with
the outer pair increasing in strength and otherwise the same parameters as in
Figure 6.

δ = f (R,R0/L1, R/a, ε, κ). The resulting expression

δ =

2ξ 2
0

[(
ξ 2

0 + 1
)−3/2

+ ε0κ
−2

(
ξ 2

0 κ−2 + 1
)−3/2]

−2ξ 2(ξ 2 + 1)−3/2

+(c1/c2)
[(

ξ 2
0 + 1

)−1/2 − (ξ 2 + 1)−1/2
]

2ε0ξ
2κ−2(ξ 2κ−2 + 1)−3/2

−ε0(c1/c2)
[(

ξ 2
0 κ−2 + 1

)−1/2 − (ξ 2κ−2 + 1)−1/2
] (23)
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Figure 9. Equilibrium torus radius R/L1 as a function of relative strength of the
source pairs in the linear quadrupole, with the inner pair increasing in strength,
size ratio κ = 1/3, and aspect ratio R/a = 10.

is similar in structure to (22) and also requires a numerical
evaluation to demonstrate the catastrophe. Using κ = 2 and
ε = −1 as in Figure 6, the catastrophe point is found at
(δ, R/L1) = (1.846, 0.5396) where nqp = 1.413, again exactly
at the threshold of the torus instability (see Figure 7). It lies
in the radial range of steeply increasing decay index below the
magnetic null point at R/L1 = 1.2.

By placing the second bipole inside the first, κ < 1, and
considering relatively small ratios of their source strengths,
|ε| = |q2/q1| < 1, we can address the influence of flux emer-
gence on the equilibrium, a process thought to be an efficient
trigger of eruptions (Feynman & Martin 1995). Although the
dynamical behavior caused by reconnection between emerging
and preexisting flux is likely to play an important role in the
triggering (e.g., Archontis & Hood 2012; Kusano et al. 2012),
the effects of the new flux on the force balance of the current
channel and on the decay index profile nqp(R) alone can facili-
tate the transition to eruptive behavior. Figures 8 and 9 show this
for flux emerging with an orientation anti-parallel to the main
flux in the region, ε0 = −0.1, and κ = 1/3. This configuration
contains two X-lines which do not lie in the plane of the torus.
Equations (7), (8), (11), and thus (23) apply here as well, since
reconnection will occur at the X-lines as the torus expands, al-
lowing it to “slide through” the external poloidal field without
changing the amount of enclosed flux. Reconnected external flux

Figure 8. Quadrupolar active-region model (generalized Titov–Démoulin equilibrium) shown in a format similar to Figure 3 for values of R/a and κ as in Figure 9.

(A color version of this figure is available in the online journal.)
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is here transferred into the side lobes under the X-lines instead
of being added under the current channel. The increase of the
enclosed flux due to the emergence, which drives the expansion
of the torus, is described by the term ΔΨe in Equation (7). The
torus radius before flux emergence (R/L1 ≈ 0.47 for δ → 0)
lies on the stable part of the equilibrium manifold (compare
with Figure 4). The emergence of anti-parallel flux weakens the
external poloidal field at the position of the current channel (in-
volving reconnection in the corona), so that the channel expands
to find a new equilibrium. Since now the profile Bep(R) is flatter
in the range around the original position R0, a catastrophe occurs
at a larger radius than in Figure 4, (δ, R/L1) = (5.603, 1.283),
but again exactly at the threshold of torus instability: at this
point nqp = 1.413.

We did not find a catastrophe for κ < 1 and ε increasing
from zero (modeling the emergence of flux with a parallel
orientation). An occurrence of catastrophe in this part of
parameter space requires the positive ε to decrease to a small
value, which weakens the external poloidal field in the plane
of the torus, as in all other cases considered in this paper. For
completeness we note that catastrophe and instability can be
found for ε increasing from zero if the term ΔΨe is dropped
in expression (7) for the enclosed flux. This changes the
relationship I(R, p) and thus the balance between the hoop
force (quadratic in I) and the retracting force (linear in I)
in Equation (1), allowing the torus to expand in a range
of increasing small positive ε values. Since the new flux is
of smaller spatial scale, it raises the decay index and the
expansion leads to catastrophe, again at the threshold of torus
instability.

5.2. Changing the Length Scale

A proportional change of both length scales in the linear
quadrupole, L1(t) = λ(t)L10 with κ = const, has the same
effect as scaling the length scale of the bipole field. The
equilibrium radius of the current channel changes proportionally
to λ(t) if the term ΔΨe is dropped, and neither instability nor
catastrophe are reached in this case (Equation (11), evaluated
for this equilibrium, again depends on R/R0 and λ only in the
combination R/(λR0)).

We thus consider the evolution driven by changing the size
ratio of the bipoles, κ(t) = ν(t)κ0, with all other parameters held
fixed, corresponding to a rearrangement of the flux distribution
in the photosphere. Similar to the increase of |ε| in Figures 7
and 9, an approach of L1 and L2 reduces the external field at
the position of the current channel. We show this for a decrease
of κ from the value used in Figures 6 and 7. The equilibrium
manifold (Equation (11) with the term ΔΨe dropped) is given by

2ξ 2[(ξ 2 + 1)−3/2 + ε(νκ0)−2(ξ 2(νκ0)−2 + 1)−3/2]

− (c1/c2)[1 + ε − (ξ 2 + 1)−1/2 − ε(ξ 2(νκ0)−2 + 1)−1/2]

= 2ξ 2
0

[(
ξ 2

0 + 1
)−3/2

+ εκ−2
0

(
ξ 2

0 κ−2
0 + 1

)−3/2]
− (c1/c2)

[
1 + ε − (

ξ 2
0 + 1

)−1/2 − ε
(
ξ 2

0 κ−2
0 + 1

)−1/2]
.

(24)

This implicit equation in both ξ = R/L1 and ν must be
evaluated numerically. The result, plotted in Figure 10, ex-
hibits a fold catastrophe at (ν, R/L1) = (0.5710, 0.5630) where
nqp = 1.413, exactly at the threshold of torus instability.
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Figure 10. Equilibrium torus radius R/L1 as a function of the size ratio
of the outer and inner source pairs in the linear quadrupole, measured by
ν = κ/κ0 = L2/L20, for the same parameters as in Figure 6. Excluding
(including) the term ΔΨe in Equation (11) yields the equilibria on the thick
(thin) line.

6. SUMMARY AND CONCLUSION

Using a toroidal flux rope embedded in a bipolar or quadrupo-
lar external field as a model for current-carrying coronal flux and
its associated image current, we have demonstrated the occur-
rence of fold catastrophe by loss of equilibrium when magnetic
reconnection can proceed at an X-line under the flux rope. Sev-
eral evolutionary scenarios have been considered, which include
changing the source strength and length scale of the external
field. In each case, the critical point for occurrence of the catas-
trophe coincides exactly with the threshold for torus instability
if the same or compatible approximations are used, a result
demonstrated to hold in general for the adopted model. Catas-
trophe and torus instability are thus equivalent descriptions for
the onset of an eruption. They are based on the same force bal-
ance for equilibrium and produce an onset of eruption at the
same point.

Thus, the merits of each description can be exploited while
one can be sure that the other description will yield the
same onset point of eruption. Analyzing an equilibrium for
the occurrence of catastrophe always includes a model for
the pre-eruptive evolution and avoids the consideration of
unstable equilibria far away from the critical point, which may
be impossible to reach in reality. Analyzing the stability of
an equilibrium localizes the critical point without the need
to model the pre-eruptive evolution and in a formulation
independent of the specifics of such a model. Moreover, since
only infinitesimally small changes of the parameters must be
considered in a stability analysis, the adopted approximations
may be better satisfied than during the whole modeled pre-
eruptive evolution in an analysis of catastrophe. It is clear,
however, that the approximations are equally satisfied in the
vicinity of the critical point.
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