📕 CrossMark

research papers

Acta Crystallographica Section C Structural Chemistry ISSN 2053-2296

(8RS)-4-Amino-6-(4-chlorophenyl)-8-(2,4-dichlorothiazol-5-yl)-8,9-dihydro-7*H*-pyrimido[4,5-*b*][1,4]diazepine *N*,*N*-dimethylformamide monosolvate: sheets built from N—H···N and C—H···O hydrogen bonds

Juan Ramírez,^a Braulio Insuasty,^a Justo Cobo^b and Christopher Glidewell^c*

^aDepartamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, ^bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ^cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

Correspondence e-mail: cg@st-andrews.ac.uk

Received 24 March 2014 Accepted 19 April 2014

In the title compound, $C_{16}H_{11}Cl_3N_6S\cdot C_3H_7NO$, the sevenmembered ring adopts a conformation which is close to the twist-boat form. The molecular components are linked into sheets by a combination of two $N-H\cdots N$ hydrogen bonds and two $C-H\cdots O$ hydrogen bonds. Comparisons are made with other aminopyrimidine derivatives.

Keywords: crystal structure; biological properties; pharmacological properties; pyrimido[4,5-b][1,4]diazepine; hydrogen bonding.

1. Introduction

Seven-membered nitrogen-containing heterocyclic compounds, such as 1,4-diazepines, are important structural units in drug discovery due to their wide spectrum of biological and pharmacological properties (Sternbach, 1971), including antimicrobial (Parmar et al., 2012), anti-HIV (Fader et al., 2011, 2013) and anticancer activity (Smith et al., 2006), while compounds such as pyrimido[1,4]diazepines have shown important antitumour activity (Insuasty, Orozco, Lizarazo et al., 2008; Insuasty, Orozco, Quiroga et al., 2008; Insuasty et al., 2010; Deng et al., 2013). Continuing our work on the synthesis of diverse pyrimido [4,5-b][1,4] diazepines from α,β -unsaturated carbonyl (chalcone-type) derivatives, in order to explore their antitumour activities, we have now prepared (8RS)-4amino-6-(4-chlorophenyl)-8-(2,4-dichlorothiazol-5-yl)-8,9-dihydro-7H-pyrimido[4,5-b][1,4]diazepine, the structure of which is reported here as its monosolvate, (I) (Fig. 1), with N,N-dimethylformamide (DMF).

The fused heterocyclic component of (I) was prepared by the thermal reaction of 4,5,6-triaminopyrimidine as its dihydrochloride salt, (II), and the chalcone derivative 1-(4chlorophenyl)-3-(2,4-dichlorothiazol-5-yl)propan-1-one, (III) (see Scheme), which had itself been prepared by the basecatalysed condensation reaction between 4-chloroacetophenone and 2,4-dichlorothiazole-5-carbaldehyde; crystallization from DMF yielded monosolvate (I).

The purposes of the present study were threefold: firstly, to establish the regiochemistry of the reaction between (II) and (III) to form the title pyrimidodiazepine, rather than the alternative isomeric form (IV) (see Scheme); secondly, to compare the geometry of the fused pyrimidine ring in (I) with those of other unfused but heavily substituted pyrimidines; and thirdly, to compare the supramolecular assembly in (I) with that in simpler aminopyrimidines.

2. Experimental

2.1. Synthesis and crystallization

For the synthesis of (8*RS*)-4-amino-6-(4-chlorophenyl)-8-(2,4-dichlorothiazol-5-yl)-8,9-dihydro-7*H*-pyrimido[4,5-*b*]-

Table 1	
Experimental	details.

Crystal data Chemical formula C16H11Cl3N6S·C3H7NO 498 82 М., Triclinic, P1 Crystal system, space group Temperature (K) 120 9.2934 (6), 10.968 (1), 11.7071 (10) a, b, c (Å) α, β, γ (°) V (Å³) 69.610 (8), 87.450 (6), 74.688 (6) 1077.34 (17) 7 2 Radiation type Μο Κα $\mu \text{ (mm}^{-1})$ 0.55 Crystal size (mm) $0.32\,\times\,0.21\,\times\,0.07$ Data collection Diffractometer Bruker-Nonius KappaCCD areadetector diffractometer Absorption correction Multi-scan (SADABS; Sheldrick, 2003) T_{\min}, T_{\max} 0.884, 0.962 23893, 4908, 3534 No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 0.065 Rint $(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$ 0.650 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.042, 0.090, 1.06 No. of reflections 4908 282 No. of parameters H-atom treatment H-atom parameters constrained $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.32. -0.42

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

[1,4]diazepine, equimolar quantities (0.5 mmol of each) of 4,5,6-triaminopyrimidine dihydrochloride, (II) (see Scheme), and chalcone (III) were dissolved in methanol (10 ml), and the mixture was heated under reflux for 24 h. The resulting solution was allowed to cool to ambient temperature, and it was then neutralized with aqueous ammonia solution (6 M). The neutralized mixture was then extracted exhaustively with dichloromethane, the combined extracts were dried and the solvent was removed under reduced pressure. The compound was purified by column chromatography on silica using dichloromethane-methanol (30:1 v/v) as eluent (yield 68%; m.p. 511-513 K). MS (EI, 70 eV), m/z (%): 428/426/424 (10/29/30, M^+), 391/389 (58/80), 247/245 (31/100), 218 (15), 149 (16). Analysis found: C 45.2, H 2.8, N 19.9%; C₁₆H₁₁Cl₃N₆S requires: C 45.1, H 2.6, N 19.7%. Slow evaporation, at ambient temperature and in air, of a solution in DMF gave pale-yellow crystals of the title solvate, (I), suitable for single-crystal X-ray diffraction.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located in difference maps and then treated as riding atoms. C-bound H atoms were treated as riding in geometrically idealized positions, with C-H = 0.95 (aromatic, heteroaromatic and formyl), 0.98 (CH₃), 0.99 (CH₂) or 1.00 Å (aliphatic C-H), and with $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2

for all other C-bound H atoms. N-bound H atoms were permitted to ride at the positions located in difference maps, with $U_{iso}(H) = 1.2U_{eq}(N)$, giving the N-H distances shown in Table 2. Six low-angle reflections (011, 101, 110, 111, 111 and 111), which had been totally or partially attenuated by the beam stop, were omitted from the final refinements. When the common site-occupancy factor for the atoms of the DMF component was permitted to vary, the refined value was 1.004 (4), confirming the full occupancy of the solvent site.

3. Results and discussion

The molecular constitution of the heterocyclic component confirms that the reaction between precursors (II) and (III) produces the fused diazepine (8RS)-4-amino-6-(4-chlorophenyl)-8-(2,4-dichlorothiazol-5-yl)-8,9-dihydro-7*H*-pyrimido-[4,5-*b*][1,4]diazepine, as shown in the Scheme as a component of compound (I), rather than the alternative isomer (IV). The heterocyclic component of (I) contains a stereogenic centre at atom C8, and the reference molecule was selected to be one having the *R* configuration at atom C8. However, the centrosymmetric space group confirms that the compound crystallizes as a racemic mixture. In addition, the asymmetric unit was selected such that the two molecular components were linked within the asymmetric unit by the shorter of the two C-H···O hydrogen bonds (Table 2).

The diazepine ring of (I) adopts a conformation close to the twist-boat form (Evans & Boeyens, 1989), with ring-puckering parameters (Cremer & Pople, 1975) calculated for the atom sequence N5–C4a–C9a–N9–C8–C7–C6 of Q = 0.739 (2) Å, $\varphi_2 = 12.8$ (2)° and $\varphi_3 = 117.3$ (4)°. On the other hand, the pyrimidine ring is effectively planar, with a maximum deviation from the mean plane of the six ring atoms of 0.031 (3) Å for atom C4. This contrasts with the behaviour often observed in highly substituted pyrimidines, particularly in those having three adjacent substituents at positions 4, 5 and 6, where markedly nonplanar ring conformations are often adopted, with boat forms most commonly observed (Melguizo *et al.*, 2003; Quesada *et al.*, 2004; Cobo *et al.*, 2008). The geometry at amino atom N41 is slightly pyramidal, with a sum of the interbond angles of 353.7°, but, despite this slightly pyramidal

The molecular components of (I), showing the atom-labelling scheme and the C-H···O hydrogen bond (dashed line) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

A stereoview of part of the crystal structure of (I), showing the formation of a chain of centrosymmetric $R_2^2(8)$ rings running parallel to the [001] direction. Hydrogen bonds are shown as dashed lines. For the sake of clarity, the DMF solvent molecules and H atoms bonded to C atoms have been omitted.

geometry, atom N41 does not act as an acceptor of hydrogen bonds. The closest H atom which might participate in an intermolecular interaction with atom N41 is atom H65 at (-x+1, -y+2, -z+1), at a distance of 3.10 Å, far too long to be regarded as structurally significant. The bond distances present no unusual features.

The heterocyclic component of (I) participates in two intermolecular N-H···N hydrogen bonds (Table 2), which lead to the formation of a chain of centrosymmetric $R_2^2(8)$ (Bernstein *et al.*, 1995) rings running parallel to the [001] direction (Fig. 2). The rings containing inversion-related pairs of atoms N1 as hydrogen-bond acceptors are centred at $(\frac{1}{2}, \frac{1}{2}, n)$, while those containing inversion-related pairs of atoms N3 as hydrogen-bond acceptors are centred at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} + n)$, where *n* represents an integer in both cases. The formation of this chain of rings utilizes only two of the three available N-H bonds. The third bond of this type does not participate in the formation of intermolecular hydrogen bonds, but merely forms a rather short intramolecular contact to atom N5, which likewise does not participate in any intermolecular hydrogen bonds. The N-H···N angle associated with this intra-

Table 2	
Hydrogen-bond geometry ((Å,

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N9 - H9 \dots N1^{i}$	0.86	2.07	2 924 (3)	176
$N41 - H41A \cdots N3^{ii}$	0.99	2.09	3.024 (3)	156
$N41 - H41B \cdot \cdot \cdot N5$	0.98	2.26	2.689 (3)	105
C2-H2···O91	0.95	2.41	3.265 (3)	149
$C7 - H7B \cdots O91^{iii}$	0.99	2.57	3.497 (3)	156
C8−H8···Cl84 ^{iv}	1.00	2.81	3.756 (3)	158
C62-H62···N5	0.95	2.44	2.763 (3)	100
C92−H92A···O91	0.98	2.39	2.809 (4)	105
		1		1 . 1 (

°).

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y + 1, z; (iv) -x + 1, -y + 2, -z + 2.

Figure 3

A stereoview of part of the crystal structure of (I), showing the formation of a $C_2^1(9)$ chain running parallel to the [010] direction. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif shown have been omitted.

molecular contact is only 105° (Table 2), so this contact cannot be regarded as having any structural significance (*cf.* Wood *et al.*, 2009). Thus, the only acceptors in the N-H···N hydrogen bonds are the two N atoms of the pyrimidine ring, and none of the other N atoms present acts as a hydrogen-bond acceptor.

Figure 4

Part of the crystal structure of (I), viewed approximately along the [010] direction, showing the location of the DMF components between the chains of rings parallel to [001]. Hydrogen bonds are shown as dashed lines.

Figure 5

A stereoview of part of the crystal structure of (I), showing the formation of a sheet parallel to (100) containing four types of hydrogen-bonded ring. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms bonded to the C atoms which are not involved in the motifs shown have been omitted.

One chain of $R_2^2(8)$ rings passes through each unit cell, but chains of this type which are related by translation along the [010] direction are linked by means of two C-H···O hydrogen bonds involving the O atom of the DMF component as a double acceptor (Table 2). These two hydrogen bonds generate a $C_2^1(9)$ chain running parallel to the [010] direction (Fig. 3), such that the DMF components lie between the chains of rings (Fig. 4). The combination of the chains along [010] and [001] generates a sheet lying parallel to (100) (Fig. 5) in which rings of types $R_5^4(18)$ and $R_6^4(24)$ can be identified, in addition to the two types of $R_2^2(8)$ ring discussed above.

There are a number of other short intra- and intermolecular contacts within the crystal structure of (I) (Table 2). However, those involving atoms C62 and C92 both have very small D- $H \cdots A$ angles and so are unlikely to have any structural significance (Wood et al., 2009). In addition, the contact involving atom C92 lies wholly within the DMF component, while the C92-H92A bond forms part of a methyl group which is likely to be undergoing very rapid rotation about the adjacent C-N bond, even in the solid state at low temperature (Riddell & Rogerson, 1996, 1997). The C-H···Cl contact involving atom C8 has an H...Cl distance which is only slightly less than the sum of the van der Waals radii of 2.84 Å (Bondi, 1964; Rowland & Taylor, 1996) and, in addition, it is well established (Brammer et al., 2001; Thallypally & Nangia, 2001) that Cl atoms bonded to C atoms are extremely poor acceptors of hydrogen bonds, even from good donors such as N and O atoms; hence, this contact is unlikely to have any structural significance. There are no intermolecular $Cl \cdots Cl$ contact distances within the sum of the van der Waals radii (3.50 Å; Bondi, 1964; Rowland & Taylor, 1996).

Chains of $R_2^2(8)$ rings are a common hydrogen-bonding motif in aminopyrimidines (Rodríguez et al., 2008), but disruption of such chain formation can result either from steric hindrance arising from bulky substituents or from the presence of an alternative hydrogen-bond acceptor which effectively competes with the pyrimidine ring N atoms. In the first of these circumstances, the supramolecular aggregation may be restricted to the formation of a simple dimer (Quesada et al., 2004), or to the formation of a linear tetramer (Bowes et al., 2003) where each of these aggregates can be regarded as a short fragment of a continuous chain. In the presence of alternative hydrogen-bond acceptors, such as O atoms, chains containing combinations of $R_2^2(8)$ and $R_4^4(16)$ rings (Quesada et al., 2002), or $R_2^2(8)$ and $R_4^4(18)$ rings (Bowes et al., 2003), and sheets containing $R_2^2(8)$ and $R_6^6(40)$ rings (Bowes *et al.*, 2003), have all been observed. In every case, the $R_2^2(8)$ motif is present, as in (I) described here, but different additional ring motifs always occur in the presence of hydrogen-bond acceptors other than the N atoms of pyrimidine rings.

The authors thank the Centro de Instrumentación Científico-Técnica of the Universidad de Jaén and the staff for the data collection. Financial support from COLCIENCIAS, the Universidad del Valle, the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) and the Universidad de Jaén is gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SF3229).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-452.
- Bowes, K. F., Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, 04–08.
- Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Cobo, J., Trilleras, J., Quiroga, J., Marchal, A., Nogueras, M., Low, J. N. & Glidewell, C. (2008). Acta Cryst. B64, 596–609.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Deng, X., Elkins, J. M., Zhang, J., Yang, Q., Erazo, T., Gomez, N., Choi, H. G., Wang, J., Dzamko, N., Lee, J.-D., Sim, T. & Kim, N. (2013). *Eur. J. Med. Chem.* 70, 758–767.
- Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.

- Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
- Fader, L. D. et al. (2011). Bioorg. Med. Chem. Lett. 21, 398-404.
- Fader, L. D. et al. (2013). Bioorg. Med. Chem. Lett. 23, 3401-3405.
- Insuasty, B., García, A., Quiroga, J., Abonía, R., Nogueras, M. & Cobo, J. (2010). Eur. J. Med. Chem. 45, 2841–2846.
- Insuasty, B., Orozco, F., Lizarazo, C., Quiroga, J., Abonía, R., Hursthouse, M., Nogueras, M. & Cobo, J. (2008). *Bioorg. Med. Chem.* 16, 8492–8500.
- Insuasty, B., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M. & Cobo, J. (2008). Eur. J. Med. Chem. 43, 1955–1962.
- Melguizo, M., Quesada, A., Low, J. N. & Glidewell, C. (2003). Acta Cryst. B59, 263–276.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Parmar, N. J., Barad, H. A., Pansuriya, B. R., Teraiya, S. B., Gupta, V. K. & Kant, R. (2012). *Bioorg. Med. Chem. Lett.* 22, 3816–3821.
- Quesada, A., Marchal, A., Melguizo, M., Low, J. N. & Glidewell, C. (2004). Acta Cryst. B60, 76–89.
- Quesada, A., Marchal, A., Melguizo, M., Nogueras, M., Sánchez, A., Low, J. N., Cannon, D., Farrell, D. M. M. & Glidewell, C. (2002). Acta Cryst. B58, 300–315.
- Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493– 504.
- Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256.
- Rodríguez, R., Nogueras, M., Cobo, J., Low, J. N. & Glidewell, C. (2008). Acta Cryst. C64, 0376–0378.
- Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, L. et al. (2006). Bioorg. Med. Chem. Lett. 16, 5102-5106.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sternbach, L. H. (1971). Angew. Chem. Int. Ed. Engl. 10, 34-43.
- Thallypally, P. K. & Nangia, A. (2001). CrystEngComm, 3, 114-119.
- Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.

supplementary materials

Acta Cryst. (2014). C70, 536-540 [doi:10.1107/S2053229614008936]

(8*RS*)-4-Amino-6-(4-chlorophenyl)-8-(2,4-dichlorothiazol-5-yl)-8,9-dihydro-7*H*pyrimido[4,5-*b*][1,4]diazepine *N*,*N*-dimethylformamide monosolvate: sheets built from N—H…N and C—H…O hydrogen bonds

Juan Ramírez, Braulio Insuasty, Justo Cobo and Christopher Glidewell

Computing details

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *DIRAX/LSQ* (Duisenberg *et al.*, 2000); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

(8*RS*)-4-Amino-6-(4-chlorophenyl)-8-(2,4-dichlorothiazol-5-yl)-8,9-dihydro-7*H*-pyrimido[4,5-*b*][1,4]diazepine *N*,*N*-dimethylformamide monosolvate

Crystal data	
C16H11Cl3N6S·C3H7NO	Z = 2
$M_{\rm r} = 498.82$	F(000) = 512
Triclinic. P1	$D_{\rm x} = 1.538 {\rm Mg}{\rm m}^{-3}$
Hall symbol: -P 1	Mo Ka radiation $\lambda = 0.71073$ Å
$a = 9\ 2934\ (6)\ Å$	Cell parameters from 4914 reflections
h = 10.968(1) Å	$\theta = 2.9 - 27.5^{\circ}$
$c = 11\ 7071\ (10)$ Å	$\mu = 0.55 \text{ mm}^{-1}$
$a = 69.610.(8)^{\circ}$	T = 120 K
$\beta = 87.450(6)^{\circ}$	Plate pale vellow
p = 37.450(0) $n = 74.688(6)^{\circ}$	$0.32 \times 0.21 \times 0.07 \text{ mm}$
V = 1077.24(17) Å ³	0.32 ^ 0.21 ^ 0.07 IIIII
$V = 1077.54(17) R^{2}$	
Data collection	
Bruker Nonius KappaCCD area-detector	$T_{\min} = 0.884, T_{\max} = 0.962$
diffractometer	23893 measured reflections
Radiation source: Bruker Nonius FR591	4908 independent reflections
rotating anode	3534 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.065$
Detector resolution: 9 091 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$ $\theta_{\text{max}} = 3.0^{\circ}$
and a scans	$h = -11 \rightarrow 12$
Absorption correction: multi-scan	$k = -14 \longrightarrow 14$
(SADARS: Shaldrick 2002)	$n \qquad 17 \rightarrow 17$
(SADADS, SHEILINK, 2003)	$l = 15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.090$	neighbouring sites
S = 1.06	H-atom parameters constrained
4908 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0223P)^2 + 1.1607P]$
282 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.32 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	v	7.	Uice*/Uce	
N1	0.5182 (2)	0.48915 (19)	0.85559 (17)		
C^2	0.5162(2) 0.5061(3)	0.4323(2)	0.33537(17) 0.7753(2)	0.0102(4)	
С2 H2	0.4724	0.3528	0.8052	0.021*	
N3	0.4724 0.5353 (2)	0.3320	0.65761 (18)	0.021 0.0187 (4)	
C4	0.5555(2) 0.5846(3)	0.47220(17) 0.5849(2)	0.6165(2)	0.0165(5)	
C42	0.5040(3)	0.5645(2)	0.0105(2) 0.6908(2)	0.0105(3)	
N5	0.5755(3)	0.0013(2) 0.77628(19)	0.63120(17)	0.0140(4)	
C6	0.6114(3)	0.77020(17) 0.8810(2)	0.65120(17)	0.0105(4)	
C0 C7	0.0114(3)	0.8019(2) 0.8031(2)	0.0022(2) 0.7653(2)	0.0157(5)	
U7 H7A	0.3113 (3)	0.8931 (2)	0.7055 (2)	0.0108 (3)	
117A 117B	0.4130	0.0854	0.7500	0.020*	
117B	0.4913	0.7806 (2)	0.7078	0.020	
	0.5844 (5)	0.7890 (2)	0.0093 (2)	0.0149 (4)	
118 NO	0.5209	0.65510 (18)	0.9348 0.00431 (17)	0.0150 (4)	
119	0.3744(2) 0.5427	0.03310 (18)	0.90431(17)	0.010*	
П9 С0а	0.3427	0.0131	0.9731	0.019°	
C9a	0.3010(2)	0.0007(2)	0.8130(2)	0.0147(4)	
IN41 II41 A	0.0270 (2)	0.0210 (2)	0.30087 (18)	0.0209 (4)	
H4IA	0.6028	0.5/80	0.4448	0.025*	
H41B	0.6364	0./13/	0.46/4	0.025*	
C61	0.6/83(3)	0.9934 (2)	0.5919 (2)	0.01/0 (5)	
C62	0.7680 (3)	0.9815 (2)	0.4950 (2)	0.0219 (5)	
H62	0.7829	0.9033	0.4/36	0.026*	
C63	0.8352 (3)	1.0813 (2)	0.4300 (2)	0.0257 (6)	
H63	0.8956	1.0723	0.3643	0.031*	
C64	0.8131 (3)	1.1952 (2)	0.4624 (2)	0.0220 (5)	
C164	0.90541 (9)	1.31785 (7)	0.38615 (7)	0.03536 (18)	
C65	0.7248 (3)	1.2111 (2)	0.5555 (2)	0.0226 (5)	
H65	0.7104	1.2899	0.5760	0.027*	
C66	0.6563 (3)	1.1109 (2)	0.6199 (2)	0.0208 (5)	
H66	0.5937	1.1222	0.6838	0.025*	
S81	0.89137 (7)	0.66025 (6)	0.89844 (6)	0.02024 (14)	
C82	1.0130 (3)	0.7462 (2)	0.9184 (2)	0.0219 (5)	
N83	0.9541 (2)	0.8612 (2)	0.93179 (19)	0.0210 (4)	
C84	0.8012 (3)	0.8852 (2)	0.9247 (2)	0.0178 (5)	
C85	0.7439 (3)	0.7908 (2)	0.9062 (2)	0.0151 (5)	

1.20168 (7)	0.67929 (7)	0.92165 (7)	0.03491 (17)
0.69444 (7)	1.03173 (6)	0.94045 (6)	0.02664 (15)
0.0742 (2)	0.2713 (2)	0.76010 (19)	0.0215 (4)
0.2073 (3)	0.2935 (2)	0.7662 (2)	0.0244 (5)
0.2080	0.3804	0.7652	0.029*
0.3290 (2)	0.21251 (17)	0.77315 (18)	0.0285 (4)
0.0625 (3)	0.1403 (3)	0.7639 (3)	0.0323 (6)
0.1628	0.0793	0.7717	0.048*
0.0109	0.1506	0.6885	0.048*
0.0059	0.1026	0.8339	0.048*
-0.0644 (3)	0.3766 (3)	0.7439 (3)	0.0350 (7)
-0.0434	0.4560	0.7525	0.053*
-0.1331	0.3437	0.8058	0.053*
-0.1102	0.4011	0.6624	0.053*
	$\begin{array}{c} 1.20168 \ (7) \\ 0.69444 \ (7) \\ 0.0742 \ (2) \\ 0.2073 \ (3) \\ 0.2080 \\ 0.3290 \ (2) \\ 0.0625 \ (3) \\ 0.1628 \\ 0.0109 \\ 0.0059 \\ -0.0644 \ (3) \\ -0.0434 \\ -0.1331 \\ -0.1102 \end{array}$	1.20168(7) $0.67929(7)$ $0.69444(7)$ $1.03173(6)$ $0.0742(2)$ $0.2713(2)$ $0.2073(3)$ $0.2935(2)$ 0.2080 0.3804 $0.3290(2)$ $0.21251(17)$ $0.0625(3)$ $0.1403(3)$ 0.1628 0.0793 0.0109 0.1506 0.0059 0.1026 $-0.0644(3)$ $0.3766(3)$ -0.1331 0.3437 -0.1102 0.4011	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0165 (10)	0.0174 (9)	0.0169 (10)	-0.0083 (8)	0.0023 (8)	-0.0061 (8)
C2	0.0176 (12)	0.0178 (11)	0.0198 (12)	-0.0068 (9)	0.0017 (9)	-0.0070 (10)
N3	0.0235 (11)	0.0192 (10)	0.0169 (10)	-0.0088 (8)	0.0025 (8)	-0.0087 (8)
C4	0.0152 (11)	0.0176 (11)	0.0173 (11)	-0.0038 (9)	0.0014 (9)	-0.0075 (9)
C4a	0.0147 (11)	0.0154 (10)	0.0145 (11)	-0.0049 (9)	-0.0008 (9)	-0.0052 (9)
N5	0.0177 (10)	0.0170 (9)	0.0151 (9)	-0.0073 (8)	0.0006 (8)	-0.0046 (8)
C6	0.0142 (11)	0.0175 (11)	0.0148 (11)	-0.0048 (9)	-0.0013 (9)	-0.0043 (9)
C7	0.0159 (12)	0.0156 (11)	0.0189 (11)	-0.0041 (9)	0.0013 (9)	-0.0062 (9)
C8	0.0150 (11)	0.0160 (10)	0.0163 (11)	-0.0066 (9)	0.0033 (9)	-0.0074 (9)
N9	0.0199 (10)	0.0172 (9)	0.0132 (9)	-0.0098 (8)	0.0038 (8)	-0.0052 (8)
C9a	0.0117 (11)	0.0167 (11)	0.0177 (11)	-0.0048 (9)	0.0010 (9)	-0.0077 (9)
N41	0.0300 (12)	0.0227 (10)	0.0152 (10)	-0.0120 (9)	0.0041 (9)	-0.0095 (8)
C61	0.0159 (12)	0.0163 (11)	0.0175 (11)	-0.0042 (9)	-0.0016 (9)	-0.0040 (9)
C62	0.0285 (14)	0.0158 (11)	0.0227 (12)	-0.0079 (10)	0.0035 (11)	-0.0070 (10)
C63	0.0321 (15)	0.0236 (12)	0.0231 (13)	-0.0107 (11)	0.0091 (11)	-0.0088 (11)
C64	0.0226 (13)	0.0171 (11)	0.0248 (13)	-0.0083 (10)	0.0013 (10)	-0.0031 (10)
C164	0.0460 (4)	0.0246 (3)	0.0392 (4)	-0.0209 (3)	0.0158 (3)	-0.0088 (3)
C65	0.0259 (14)	0.0185 (11)	0.0254 (13)	-0.0083 (10)	0.0005 (11)	-0.0083 (10)
C66	0.0253 (13)	0.0199 (12)	0.0184 (12)	-0.0069 (10)	0.0026 (10)	-0.0078 (10)
S81	0.0156 (3)	0.0179 (3)	0.0274 (3)	-0.0032 (2)	0.0014 (2)	-0.0091 (2)
C82	0.0154 (12)	0.0229 (12)	0.0251 (13)	-0.0054 (10)	-0.0011 (10)	-0.0050 (10)
N83	0.0193 (11)	0.0237 (10)	0.0206 (10)	-0.0099 (8)	-0.0001 (8)	-0.0053 (9)
C84	0.0177 (12)	0.0169 (11)	0.0196 (12)	-0.0056 (9)	0.0020 (9)	-0.0067 (9)
C85	0.0152 (11)	0.0162 (10)	0.0133 (11)	-0.0033 (9)	0.0031 (9)	-0.0051 (9)
C182	0.0139 (3)	0.0363 (4)	0.0479 (4)	-0.0036 (3)	0.0003 (3)	-0.0088 (3)
C184	0.0276 (3)	0.0211 (3)	0.0365 (4)	-0.0056 (2)	0.0017 (3)	-0.0170 (3)
N91	0.0208 (11)	0.0197 (10)	0.0254 (11)	-0.0068 (8)	0.0026 (9)	-0.0088 (9)
C91	0.0294 (15)	0.0199 (12)	0.0253 (13)	-0.0107 (11)	0.0050 (11)	-0.0067 (11)
O91	0.0219 (10)	0.0242 (9)	0.0379 (11)	-0.0073 (8)	0.0044 (8)	-0.0085 (8)
C92	0.0330 (16)	0.0263 (13)	0.0448 (17)	-0.0139 (12)	-0.0021 (13)	-0.0164 (13)
C93	0.0248 (15)	0.0314 (15)	0.0496 (18)	-0.0031 (12)	0.0020 (13)	-0.0183 (14)

Geometric parameters (Å, °)

N1—C2	1.319 (3)	C63—C64	1.390 (3)
N1—C9a	1.372 (3)	С63—Н63	0.9500
C2—N3	1.332 (3)	C64—C65	1.368 (4)
С2—Н2	0.9500	C64—C164	1.745 (2)
N3—C4	1.354 (3)	C65—C66	1.390 (3)
C4—N41	1.344 (3)	С65—Н65	0.9500
C4—C4a	1.422 (3)	C66—H66	0.9500
C4a—N5	1.402 (3)	S81—C82	1.721 (3)
С4а—С9а	1.403 (3)	S81—C85	1.727 (2)
N5—C6	1.289 (3)	C82—N83	1.296 (3)
C6—C61	1.489 (3)	C82—C182	1.709 (3)
С6—С7	1.509 (3)	N83—C84	1.376 (3)
С7—С8	1.545 (3)	C84—C85	1.363 (3)
C7—H7A	0.9900	C84—C184	1.718 (2)
С7—Н7В	0.9900	N91—C91	1.333 (3)
C8—N9	1.452 (3)	N91—C93	1.453 (3)
C8—C85	1.508 (3)	N91—C92	1.455 (3)
С8—Н8	1.0000	C91—O91	1.226 (3)
N9—C9a	1.364 (3)	C91—H91	0.9500
N9—H9	0.8600	С92—Н92А	0.9800
N41—H41A	0.9896	С92—Н92В	0.9800
N41—H41B	0.9805	C92—H92C	0.9800
C61—C66	1.399 (3)	С93—Н93А	0.9800
C61—C62	1.401 (3)	С93—Н93В	0.9800
C62—C63	1.380 (3)	С93—Н93С	0.9800
С62—Н62	0.9500		
C2—N1—C9a	117.0 (2)	C62—C63—C64	118.9 (2)
N1-C2-N3	128.1 (2)	С62—С63—Н63	120.5
N1—C2—H2	115.9	С64—С63—Н63	120.5
N3—C2—H2	115.9	C65—C64—C63	121.5 (2)
C2—N3—C4	115.25 (19)	C65—C64—Cl64	119.13 (19)
N41—C4—N3	116.5 (2)	C63—C64—Cl64	119.3 (2)
N41—C4—C4a	120.9 (2)	C64—C65—C66	119.3 (2)
N3—C4—C4a	122.6 (2)	С64—С65—Н65	120.4
N5—C4a—C9a	129.7 (2)	С66—С65—Н65	120.4
N5—C4a—C4	114.1 (2)	C65—C66—C61	121.0 (2)
C9a—C4a—C4	116.0 (2)	С65—С66—Н66	119.5
C6—N5—C4a	123.5 (2)	C61—C66—H66	119.5
N5-C6-C61	116.8 (2)	C82—S81—C85	89.12 (11)
N5-C6-C7	122.4 (2)	N83—C82—C182	122.87 (19)
C61—C6—C7	120.87 (19)	N83—C82—S81	116.73 (19)
С6—С7—С8	111.26 (18)	Cl82—C82—S81	120.40 (14)
С6—С7—Н7А	109.4	C82—N83—C84	108.1 (2)
С8—С7—Н7А	109.4	C85—C84—N83	118.0 (2)
С6—С7—Н7В	109.4	C85—C84—C184	124.08 (19)
С8—С7—Н7В	109.4	N83—C84—C184	117.93 (17)
H7A—C7—H7B	108.0	C84—C85—C8	130.8 (2)

N9—C8—C85	111.20 (18)	C84—C85—S81	108.02 (17)
N9—C8—C7	111.28 (18)	C8—C85—S81	121.12 (16)
C85—C8—C7	111.74 (18)	C91—N91—C93	122.2 (2)
N9—C8—H8	107.5	C91—N91—C92	120.6 (2)
С85—С8—Н8	107.5	C93—N91—C92	117.1 (2)
С7—С8—Н8	107.5	O91—C91—N91	126.2 (2)
C9a—N9—C8	126.71 (19)	O91—C91—H91	116.9
С9а—N9—H9	114.6	N91—C91—H91	116.9
C8—N9—H9	115.0	N91—C92—H92A	109.5
N9—C9a—N1	112.26 (19)	N91—C92—H92B	109.5
N9—C9a—C4a	126.9 (2)	H92A—C92—H92B	109.5
N1—C9a—C4a	120.8 (2)	N91—C92—H92C	109.5
C4—N41—H41A	120.5	H92A—C92—H92C	109.5
C4—N41—H41B	114.0	H92B—C92—H92C	109.5
H41A—N41—H41B	119.2	N91—C93—H93A	109.5
C66—C61—C62	118.1 (2)	N91—C93—H93B	109.5
C66—C61—C6	122.3 (2)	H93A—C93—H93B	109.5
C62—C61—C6	119.7 (2)	N91—C93—H93C	109.5
C63—C62—C61	121.2 (2)	Н93А—С93—Н93С	109.5
С63—С62—Н62	119.4	H93B—C93—H93C	109.5
C61—C62—H62	119.4		
C9a—N1—C2—N3	2.3 (4)	C7—C6—C61—C62	-178.6(2)
N1-C2-N3-C4	0.6(4)	$C_{66} - C_{61} - C_{62} - C_{63}$	12(4)
$C_2 - N_3 - C_4 - N_{41}$	174.5 (2)	C6-C61-C62-C63	-178.2(2)
$C_2 N_3 C_4 C_4$	-48(3)	$C_{61} - C_{62} - C_{63} - C_{64}$	0.2(4)
N41 - C4 - C4a - N5	20(3)	C62 - C63 - C64 - C65	-10(4)
$N_3 - C_4 - C_{42} - N_5$	-1787(2)	C62 - C63 - C64 - C164	1.0(1) 1767(2)
N41 - C4 - C4a - C9a	-1734(2)	C63 - C64 - C65 - C66	0.4(4)
N_{3} C_{4} C_{42} C_{92}	59(3)	$C_{164} - C_{64} - C_{65} - C_{66}$	-177 22 (19)
C_{92} C_{42} N_{5} C_{6}	-313(4)	C64 - C65 - C66 - C61	10(4)
C4-C4a-N5-C6	1540(2)	C62 - C61 - C66 - C65	-1.7(4)
$C_{42} = N_{5} = C_{6} = C_{61}$	134.0(2) 178.1(2)	C6-C61-C66-C65	1.7(4) 1776(2)
$C_{4a} = N_5 = C_6 = C_{01}$	-1.2(3)	$C_{85} = S_{81} = C_{82} = N_{83}$	177.0(2)
$V_{+a} = V_{-} = V_{-} = V_{-}$	1.2(3)	$C_{00} = 581 = C_{00} = C_{0$	-170,70,(17)
13-00-07-08	-113.8(2)	C_{03} C_{02} C	1/9.79(17) -170.03(18)
$C_{01} = C_{0} = C_{1} = C_{0}$	-76.7(2)	$C_{102} - C_{02} - N_{03} - C_{04}$	-0.6(2)
$C_{0} - C_{1} - C_{8} - N_{9}$	-70.7(2)	501 - C02 - 1003 - C04	-0.0(3)
$C_0 - C_1 - C_0 - C_0$	46.3(2)	$C_{02} = N_{03} = C_{04} = C_{03}$	-0.1(3)
C_{0} C_{0} C_{0} C_{0}	-100.0(3)	102 - 103 - 104 - 104	1/9.04(18)
C^{2} NO CO- N1	25.2(5)	$N_{0} = C_{0} + C_{0$	-1/7.2(2)
$C_{0} = N_{0} = C_{0} = C_{0}$	-103.0(2)	104 - 004 - 005 - 001	5.1(4)
C_{8} N9 C_{9a} C4a	1/./(4)	N83 - C84 - C85 - S81	0.7(3)
$C_2 = N_1 = C_2 = N_2$	-1/8.4(2)	C184 - C84 - C85 - S81	-1/8.99(14)
U_2 —INI—U9a—U4a	-0.9(3)	$1NY - U\delta - U\delta - U\delta 4$	-104.9(2)
$N_{2} = C_{4} = C_{9} = N_{2}$	-0.3(4)	$U / - U \delta - U \delta \delta - U \delta \delta \delta$	/0.1 (3)
C4-C4a-C9a-N9	1 /4.3 (2)	NY - US - US - SS1	1/.4 (3)
N_{-C4a} C_{9a} N_{1}	-17/.4(2)	U/U8	-107.63 (19)
C4—C4a—C9a—N1	-2.8 (3)	C82—S81—C85—C84	-0.82 (18)
N5-C6-C61-C66	-177.3(2)	C82—S81—C85—C8	177.33 (19)

C7—C6—C61—C66	2.0 (3)	C93—N91—C91—O91	-175.8 (3)
N5—C6—C61—C62	2.0 (3)	C92—N91—C91—O91	1.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N9—H9…N1 ⁱ	0.86	2.07	2.924 (3)	176
N41—H41A····N3 ⁱⁱ	0.99	2.09	3.024 (3)	156
N41—H41 <i>B</i> ···N5	0.98	2.26	2.689 (3)	105
C2—H2···O91	0.95	2.41	3.265 (3)	149
C7—H7 <i>B</i> ···O91 ⁱⁱⁱ	0.99	2.57	3.497 (3)	156
C8—H8····Cl84 ^{iv}	1.00	2.81	3.756 (3)	158
C62—H62…N5	0.95	2.44	2.763 (3)	100
С92—Н92А…О91	0.98	2.39	2.809 (4)	105

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) -x+1, -y+2, -z+2.