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The effect of slip length on vortex rebound
from a rigid boundary

D. Sutherland,1,a) C. Macaskill,1 and D. G. Dritschel2
1School of Mathematics and Statistics, University of Sydney, Sydney 2006, Australia
2School of Mathematics and Statistics, University of St. Andrews, St. Andrews KY16 9SS,
United Kingdom

(Received 22 May 2013; accepted 16 August 2013; published online 23 September 2013)

The problem of a dipole incident normally on a rigid boundary, for moderate to large
Reynolds numbers, has recently been treated numerically using a volume penalisation
method by Nguyen van yen, Farge, and Schneider [Phys. Rev. Lett. 106, 184502
(2011)]. Their results indicate that energy dissipating structures persist in the inviscid
limit. They found that the use of penalisation methods intrinsically introduces some
slip at the boundary wall, where the slip approaches zero as the Reynolds number goes
to infinity, so reducing to the no-slip case in this limit. We study the same problem, for
both no-slip and partial slip cases, using compact differences on a Chebyshev grid in
the direction normal to the wall and Fourier methods in the direction along the wall.
We find that for the no-slip case there is no indication of the persistence of energy
dissipating structures in the limit as viscosity approaches zero and that this also holds
for any fixed slip length. However, when the slip length is taken to vary inversely with
Reynolds number then the results of Nguyen van yen et al. are regained. It therefore
appears that the prediction that energy dissipating structures persist in the inviscid
limit follows from the two limits of wall slip length going to zero, and viscosity
going to zero, not being treated independently in their use of the volume penalisation
method. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821774]

I. INTRODUCTION

It has recently been proposed by Nguyen van yen, Farge, and Schneider1 that energy dissipating
structures may persist in turbulent flows in the limit as viscosity goes to zero. Their evidence is
obtained from numerical treatment of the much-studied problem of a dipole incident normally on
a rigid no-slip wall. This case has the desirable feature that vorticity is continuously produced at
the wall, without any external forcing. Orlandi2 showed that as the dipole approaches the bound-
ary, the vorticity layer rolls up into two (weaker) monopoles of opposite sign, one on each side
of the impinging dipole. Interactions between the new monopoles and the original dipole generate
a temporary pairing of two asymmetric dipoles that are swept away from the surface on curved
trajectories that eventually meet so that two symmetric dipoles are formed and these successively
approach the boundary again. This process repeats, with new coherent structures being formed at
each major impact of the original dipole and its progeny with the boundary wall.

Clercx and van Heijst3 investigated the boundary as an enstrophy source in two-dimensional
bounded, high Reynolds number flow by considering a dipole colliding with a no-slip boundary.
They found that the dissipation of kinetic energy scales like Re−1/2 due to enstrophy production
at the boundary. Clercx and van Heijst3 considered Reynolds numbers from Re = 500 to Re =
10 000 but were limited by the computational power available at the time. Kramer4 later gave a
comprehensive explanation of the mechanisms of dipole rebound at high Reynolds number. Both of
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these studies used Chebyshev tau spectral methods, which allow high accuracy at moderate to large
Reynolds numbers, but require Nlog2(N) operations for solution. Chebyshev tau methods replace
the highest Chebyshev modes by the boundary condition, and a correction is required to ensure
numerical stability. Full details of the method can be found in Kramer.4

An alternative numerical approach is to use volume penalisation methods, which can deal
with very general, including multiply connected, boundary shapes. The influence matrix method
has so far only been applied to regular domains such as a channel, circular domain, and a two-
dimensional box. Using the volume penalisation method the boundary of any given fluid domain
is immersed in a doubly periodic numerical domain, which immediately allows the use of Fourier
methods, so allowing treatment with straightforward and fast numerical techniques. In order to deal
consistently with no-slip boundary conditions at the fluid domain walls the aim is to make all velocity
components identically zero in the region between the fluid boundary and the encompassing doubly
periodic boundaries. This is achieved by modelling the region as a permeable object, by introducing
a penalty function between the fluid domain and the periodic boundaries. In the penalised region, the
convergence of the velocities to zero is sublinear in the penalty function parameter, which typically
means that a high spatial resolution is required to achieve accurate results when approaching this
limit. In practice there is always some weak residual velocity in the exterior domain. This can be
thought of as a non-zero permeability of the fluid domain boundary, with no-slip boundary conditions
recovered as the permeability approaches zero. The forces on the exterior domain may be calculated
by integrating the residual velocity over the volume of the exterior domain. The penalisation method
has a wide range of practical applications, e.g., Kadoch et al.5 applied this method to study the flow
through tube bundles in a chemical reactor, including an analysis of the forces on the individual tubes.
Full details of the method and a rigorous proof of convergence to the no-slip boundary conditions
are given in Angot et al.6

Nguyen van yen, Farge, and Schneider1 studied the dipole wall problem using a volume pe-
nalisation method, and were able to present results for Reynolds numbers up to O(104). They
acknowledge the presence of non-zero permeability at the wall, which they propose to be approxi-
mately equivalent to replacing the no-slip boundary condition on the normal velocity with a Navier
boundary condition. The Navier boundary condition states that the tangential velocity at the bound-
ary is proportional to the rate of strain at the boundary. The constant of proportionality is called the
slip length sL. As sL → 0 no-slip boundaries are recovered, while sL → ∞ corresponds to tangential
stress-free conditions. (There has recently been considerable interest in the use of Navier boundary
conditions as a macroscale model for fluid behaviour at a rigid wall in microfluidics applications.7)
Nguyen van yen, Farge, and Schneider1 find from analysis of their penalisation method results that
the Navier boundary condition that best approximates their boundary conditions corresponds to a
slip length that goes to zero linearly with inverse Reynolds number. The penalty method therefore
provides an approach to no-slip boundary conditions in the inviscid limit, which is clearly desirable.
The downside is that at different finite Reynolds numbers different effective slip lengths are used,
so that the two limits of slip length approaching zero and Reynolds number approaching infinity
cannot be treated independently. We will show that this can lead to difficulties of interpretation, and
that indeed this is the reason for their result that energy dissipation appears to persist in the inviscid
limit.

Here we generalise the no-slip dipole wall interaction to consider the effects of finite slip length.
This exactly enforces the Navier boundary condition which the penalty method approximates. This
allows us to study the dynamics of a vortex dipole colliding with a Navier boundary, the enstrophy
generated at the boundary, and the energy dissipation throughout the collision. In particular, it allows
us to reconstruct the simulations of Nguyen van yen, Farge, and Schneider1 and explore whether a
finite slip length Navier boundary condition can account for finite energy dissipation in the vanishing
viscosity limit.

Our approach is to extend the influence matrix method of Daube8 to the case of Navier boundary
conditions, which reduces to the treatment of Clercx and van Heijst3 and Kramer, Clercx, and van
Heijst9 in the no-slip case, although we have chosen to use a compact finite difference scheme for
the treatment of spatial derivatives in the direction normal to the wall rather than a spectral approach.
This scheme approximates the first and second derivative together as a single scheme, rather than
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treating each derivative separately. Benchmarking against a full Chebyshev spectral method shows
almost equivalent accuracy, along with significantly improved speed.

The stress-free and no-slip limits of Navier boundary conditions are verified for the dipole-wall
collision at normal incidence. Moreover, we show that as slip length decreases the trajectory of
the rebounding dipole coils up from moving along the wall in the stress-free limit, into the circular
rebounds of the no-slip limit. The enstrophy generated at the boundary reaches a maximum in the no-
slip limit, while the energy decays fastest in the no-slip limit. For the no-slip boundary condition, and
for the case of Navier boundary conditions with fixed slip length (independent of Reynolds number),
we find no evidence for energy dissipating structures in the vanishing viscosity limit. However, we
do find unusual behaviour if the slip length is allowed to be inversely proportional to Reynolds
number, with our results closely paralleling those of Nguyen van yen, Farge, and Schneider.1

II. NUMERICAL METHOD

The 2D streamfunction-vorticity equations in Cartesian coordinates (x, y) are

∂ω

∂t
= J (ω,ψ) + ν∇2ω, (1)

where

J (ω,ψ) = ∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
= −u

∂ω

∂x
− v

∂ω

∂y
, (2)

∇2ψ = ω, (3)

and

−∂ψ

∂y
= u,

∂ψ

∂x
= v. (4)

We consider a channel domain [0, Ly] × [0, Lx), periodic in the x-direction. Here, ω is the vorticity,
ψ is the streamfunction, u is the streamwise x-component of velocity, v is the channel y-component
of velocity, and ν is the kinematic viscosity. The problem is completed with boundary conditions
for the u- and v-velocities and initial conditions for vorticity, streamfunction, and velocity. We can
then define the energy E and enstrophy Z as

E = 1

2

∫ L y

0

∫ Lx

0
(u2 + v2) dxdy, (5)

Z = 1

2

∫ L y

0

∫ Lx

0
ω2 dxdy. (6)

A. Influence matrix method for no-slip boundaries

Typically for viscous flows, no-slip conditions are enforced at the wall. For a periodic channel
at the horizontal boundaries y = 0, Ly we have u = v = 0 so that

u = −∂ψ

∂y
= 0 and v = ∂ψ

∂x
= 0 . (7)

Thus, ψ = constant on the two boundaries: we choose ψ = 0 on y = 0.
A difficulty with the streamfunction-vorticity formulation for viscous flows is that there are no

boundary conditions specified for the vorticity, while the streamfunction boundary conditions are
over-specified. This can be overcome using a linear correction technique known as the influence
matrix method, which converts the u-velocity boundary condition into a boundary condition for
vorticity.

The influence matrix method uses explicit time discretisation for the nonlinear terms, and
implicit time discretisation for the linear terms. A linear equation for the new time level is obtained.
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Since the equations are linear, the solution to the equation can be expressed as a linear combination
of a time-dependent solution with arbitrary boundary conditions, and linearly independent solutions
which depend on arbitrarily chosen boundary conditions. The coefficients of the superposition are
determined by requiring that the boundary conditions on streamfunction are satisfied.

Here we use the Adams-Bashforth method for the nonlinear terms and the Crank-Nicholson
method for the linear terms. This yields

ω[n+1] − ω[n] = δt

2

(
3J (ω,ψ)[n] − J (ω,ψ)[n−1]

) +
νδt

2

(∇2ω[n+1] + ∇2ω[n]
)
, (8)

where n indicates the time level and δt is the time step. Following Kramer,4 the multistep method is
initialised with a second order Runge-Kutta scheme.

For the spatial integration in the periodic direction a standard Fourier pseudospectral method
is used. To calculate the nonlinear term, the derivatives are evaluated in transform space, while the
product is evaluated in physical space. At each timestep n the spectral components of the cross
channel solutions of (8) are written as the following superposition of a time dependent solution and
time independent elementary solutions:

ωk = ω0 + α1ω1 + α2ω2, (9)

ψk = ψ0 + α1ψ1 + α2ψ2, (10)

uk = u0 + α1u1 + α2u2, (11)

where the time independent elementary solutions ω1 and ω2 satisfy

∂2ω1,2

∂y2
−

(
k2 + 2

νδt

)
ω1,2 = 0, (12)

ω1(0) = 1, ω1(L y) = 0, (13)

and

ω2(0) = 0, ω2(L y) = 1, (14)

and the time dependent solution ω0 satisfies

∂2ω0

∂y2
−

(
k2 + 2

νδt

)
ω0 = Sk, (15)

ω0(0) = 0, ω0(L y) = 0, (16)

where Sk is the Fourier transform of

S = − 2

νδt
ω[n] − 1

ν

(
3J (ω,ψ)[n] − J (ω,ψ)[n−1]) − ∇2ω[n]. (17)

The time independent solutions carry the boundary condition information and are computed once and
for all, using the exact solutions, during initialisation. α1 and α2 are chosen at every timestep such
that boundary conditions on u are satisfied. The choice of homogeneous boundary conditions upon
ω0 is arbitrary. In fact, following Kramer4 it is better to choose ω0

[n+1](0) = ω0
[n](0), ω0

[n+1](L y) =
ω0

[n](L y), without loss of generality. This avoids drastic changes in ω0 at the boundary and is more
stable. This choice does not affect any subsequent analysis of the problem; the boundary conditions
of the final vorticity are controlled by the coefficients of the linear superposition.

Since uk = 0 on the boundary we have

u0 + α1u1 + α2u2 = 0, (18)
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substituting the boundary values gives(
u1(0) u2(0)

u1(L y) u2(L y)

) (
α1

α2

)
= −

(
u0(0)

u0(L y)

)
. (19)

The matrix on the left-hand side of (19) is called the influence matrix.

B. Influence matrix method for Navier boundary conditions

The Navier boundary condition models an impenetrable wall with some fluid slip along the
wall. The general form of the Navier boundary condition for a domain � with a slip length sL is

u · n = 0 on ∂�, (20)

T (
∂u
∂n

+ s−1
L u) = 0 on ∂�, (21)

where u = (u, v), n is a unit outward normal to the boundary, and T is the projection onto the tangent
space of ∂�. For a periodic channel domain, Eq. (20) gives

v = 0 along y = 0, L y, (22)

and Eq. (21) then simplifies to give

∂u

∂y
+ s−1

L u = 0 along y = 0, (23)

∂u

∂y
− s−1

L u = 0 along y = L y . (24)

Since in ω = ∂v/∂x − ∂u/∂y, the term ∂v/∂x = 0 on the boundary, the boundary condition for u
implies for the spectral components in Fourier space (transformed in x):

ωk = ±s−1
L uk along y = 0, L y, (25)

where the sign changes between the top and bottom boundaries. When the influence matrix is
modified to enforce the condition in (25), Eq. (18) becomes

ω0 + α1ω1 + α2ω2 = ±s−1
L (u0 + α1u1 + α2u2). (26)

Substituting the boundary values yields the influence matrix system:(
1 + s−1

L u1(0) s−1
L u2(0)

−s−1
L u1(L y) 1 − s−1

L u2(L y)

)(
α1

α2

)
= −

(
s−1

L u0(0)

−s−1
L u0(L y)

)
. (27)

The two limiting cases for sL are easily verified. The stress-free limit sL → ∞ gives α1, 2 = 0 and
hence ω = ω0 = 0 at both boundaries as expected. Multiplying both sides of the equation by sL and
taking the limit sL → 0 recovers the influence matrix for the no-slip boundary conditions.

The determinant of the influence matrix can be simplified using u1(0) = −u2(L y) and u1(L y) =
−u2(0). The determinant is (sL + u1(0))2 + u1(L y)2 which is never zero and hence the matrix is
invertible.

C. Tangential stress free boundary conditions

The limit as sL → ∞ corresponds to zero tangential stress at the horizontal channel boundaries.
The boundary conditions are therefore v = 0 at y = 0, Ly which implies ψ = constant so that ∂u/∂y =
0, and hence ω = 0 on the boundary. Since both the vorticity and the streamfunction have boundary
conditions the solution may be found directly without an influence matrix method.
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D. Compact finite difference method

To obtain sufficient resolution of the boundary layer, more grid points are taken close to the walls
at y = 0, Ly. The grid points chosen are the Chebyshev-Gauss-Lobatto points. Since the compact
differencing relations rely on an evenly spaced grid the following coordinate transform is used:

y = L y

2
(sin η + 1) . (28)

The equations for streamfunction and vorticity are written in terms of the new uniformly spaced
variable η:

∂2ω0

∂η2
+ tan η

∂ω0

∂η
− L2

y

4
cos2 η

(
k2 + 2

νδt

)
ω0 = L2

y

4
cos2 η Sk (29)

and

∂2ψ0

∂η2
+ tan η

∂ψ0

∂η
− L2

y

4
cos2 η k2ψ0 = L2

y

4
cos2 η ω0, (30)

where both the equations have the form

∂2 f

∂η2
+ F1(η)

∂ f

∂η
− F2(η) f = F3, (31)

the solution f represents either ω0 or ψ0, and

F1(η) = tan η, (32)

Fψ

2 (η) = L2
yk2 cos2 η/4 and Fω

2 (η) = L2
y(k2 + 2/(νδt)) cos2 η/4, (33)

Fω
3 = L2

y cos2 η Sk/4 and Fψ

3 = L2
y cos2 η ω0/4. (34)

We use an approximation of the following form at the interior points:


u∑
j=−
l

ai, j

(
∂2 fi,i+ j

∂η2
+ F1(η)

∂ fi,i+ j

∂η

)
=

�u∑
j=−�l

bi, j fi,i+ j , i = 1, · · · , Ny − 2. (35)

This is a compact finite difference approximation following Stephan.10 It differs from commonly
used compact difference methods by approximating the first and second derivative operators by one
combined scheme, rather than approximating each derivative individually resulting in a coupled
scheme. The order of the scheme is determined by the choice of the bandwidths 
l, 
u, �l, and �u.
Taking the Taylor series expansion of Eq. (35) and matching terms of equal order yields Ny, (
l +

u + �l + �u + 2) × (
l + 
u + �l + �u + 2) matrix problems for the coefficients aij and bij.
For i = 3, · · · , Ny − 4 we choose the pentadiagonal scheme 
l = 
u = �l = �u = 2, which gives
an O(δη7) approximation.

1. Boundary difficulties

Special care must be taken at the boundaries and points immediately inside the domain. For
the pentadiagonal scheme this affects the approximation at i = 1, 2 and i = Ny − 3, Ny − 2. This
restricts the choice of 
l, 
u, �l, and �u and so results in loss of order since the bandwidth of the
matrix is kept constant. It is in fact possible to keep the bandwidth constant and maintain order. The
additional entries can be eliminated by elementary row operations to recover a pentadiagonal system.
The number of additional row operations required is negligible. For the pentadiagonal scheme, the
scheme at the points adjacent to the boundary i = 1, Ny − 2, reduces to an O(δη4) approximation,
and the scheme at the intermediate points i = 2, Ny − 3 reduces to an O(δη6) approximation.
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2. First derivative

We use the standard O(δη4) Padé scheme11 to calculate ∂ψ0/∂η:

1

6

∂ψ0,i−1

∂η
+ 2

3

∂ψ0,i

∂η
+ 1

6

∂ψ0,i+1

∂η
= ψ0,i+1 − ψ0,i−1

2δη
. (36)

The coordinate transform (28) is inverted to obtain ∂ψ0/∂y = −u0(y). At the boundary, the inverse
transform is singular.

We can use the Padé scheme written for u0, and the streamfunction-vorticity relation to derive
an expression for ∂u0/∂y at the boundary points i = 0, Ny − 1. The Padé scheme for u0 is

1

6

∂u0,i−1

∂η
+ 2

3

∂u0,i

∂η
+ 1

6

∂u0,i+1

∂η
= u0,i+1 − u0,i−1

2δη
. (37)

Setting the derivative dy/dη = ξ (η) and writing (30) in terms of velocity gives for the ith collocation
point

∂u0,i

∂η
= −ξi (ω0,i + k2ψ0,i ). (38)

On the boundary, we know that ω0,0 = ψ0,0 = 0 and ∂v0,0/∂x = 0, thus ∂u0,0/∂y = 0. Hence
∂u0,0/∂η = 0. Substituting (38) into the Padé Scheme (37) with i = 1 then implies that

u0,2 − u0,0

2δy
= −2ξ1

3
(ω0,1 + k2ψ0,1) − ξ2

6
(ω0,2 + k2ψ0,2) (39)

so that

u0,0 = u0,2 + 4δyξ1

3
(ω0,1 + k2ψ0,1) + δyξ2

3
(ω0,2 + k2ψ0,2). (40)

The boundary at i = Ny − 1 follows in the same way.

3. k = 0 Fourier mode difficulties

Recall that the periodic channel is a multiply connected domain and we have to be careful
to choose the value of the streamfunction on both boundaries such that they are consistent. One
streamfunction value is arbitrary, the other can be determined from the u-velocity. For the problems
considered, it can be shown using a symmetry argument that the k = 0 u-velocity is identically zero,
and at both upper and lower boundaries the streamfunction may be set to zero.

4. Remark on initial conditions

An arbitrary initial condition for vorticity does not necessarily satisfy the boundary conditions
for velocity. It is possible to start with an arbitrary initial condition on vorticity and derive consistent
streamfunction and velocities by using the influence matrix. To meaningfully compare Navier, stress-
free, and no-slip boundaries the same initial condition must be used. We start with a given analytical
form for initial vorticity ω̃

[0]
k and compute S = (∇2 − 2/νδt) ω̃

[0]
k . Then we solve

(∇2 − 2

νδt
) ω[0] = S,

with ω(0) = ω(L y) = 0,

which approximates our original analytical form. We then solve for ψ , u-, and v-velocities.
The boundary condition on v is satisfied because of the boundary conditions on ψ and provided

the initial distribution of vorticity is localised away from the walls, the u-velocity will be approx-
imately zero at the boundaries. The initial conditions then approximately satisfy the three types of
boundary conditions.
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III. RESULTS

Simulations of a normal incidence dipole-wall collision were performed with varying slip length
at fixed Reynolds number. The analytic form of the initial condition was chosen to be similar to
previous work:1, 12

ω̃[0] = A
[
(1 − q+)e−q+ − (1 − q−)e−q−

]
; q± = |x − x±|2

r2
0

, (41)

where A = 300, x± = (Lx/2 ± 0.05, 1.0), and r0 = 0.1.
We compare the trajectory of the dipole cores, energy and enstrophy over the collision time, and

the maximum wall u-velocity over the collision as the slip length varies. We normalise the energy
and enstrophy by their initial values. The parameters of all Navier boundary condition calculations
were Nx = 512, Ny = 768, δt = 2 × 10−5, Lx = Ly = 2, and ν = 5 × 10−4, with the slip length
sL varied. This choice gave the initial urms = 0.443 and hence Re = urmsLy/2ν = 1252. Repeating
the calculations at higher resolution showed that the vorticity and velocities were converged at this
resolution. The Reynolds number governs the enstrophy production at the wall. We numerically
identify the range of slip lengths where the transition from no-slip to stress-free dipole collision
behaviour occurs at Re = 1252.

A. Dipoles colliding with boundaries for varying slip lengths

1. Slip length sL → 0

First, we consider a viscous dipole colliding with a rigid, no-slip wall. The collision generates
a layer of vorticity near the boundary. This layer rolls up into two monopoles, one either side of the
original dipole, which then detach and rebound from the wall along with the original dipole. This
collision sequence at Re = 1252 is shown in Figure 1. This rebound reproduces the well-known
results of Kramer, Clercx, and van Heijst.9

As the slip length approaches zero the Navier boundary condition influence matrix reduces to
that of the no-slip case. Choosing a sufficiently small slip length in the Navier boundary condition
recovers the no-slip dynamics. Numerical experimentation shows that sL = 0.0001 recovers the no-
slip dynamics at Re = 1252. The comparison between the final time vorticity for a Navier boundary

(a) t = 0.30 (b) t = 0.45

(c) t = 0.75 (d) t = 0.95

FIG. 1. Sequence of plots showing the simulation of vorticity over the collision with a no-slip boundary, Re = 1252.
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FIG. 2. Differences for simulated energy and enstrophy of a dipole colliding with a no-slip wall, and a Navier wall with sL

= 1 × 10−4 as a function of time.

with sL = 0.0001 and a no-slip boundary reveals good agreement with small errors in vorticity of
order 10−4. The global energy agrees well for the two cases, but the peak enstrophy generation at
the wall is greater in the no-slip case. The total energy and enstrophy differences are plotted as a
function of time in Figure 2.

The most significant difference between the no-slip and Navier boundary cases occurs in the
u-velocity at the boundary, as shown in Figure 3. The maximum value of the boundary u-velocity
with sL = 0.0001 occurs when the boundary vorticity reaches its maximum, during the collision. The
maximum value of the boundary u-velocity is 0.338, which is comparable to the initial urms value.
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FIG. 3. Maximum absolute velocity at the collisional wall for a Navier boundary, sL = 1 × 10−4 showing distinct peaks
over the collision at Re = 1252. Note the maximum is comparable to the initial urms velocity. The corresponding maximum
absolute velocity for a no-slip boundary is O(10−15).
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(a) t = 0.30 (b) t = 0.45

(c) t = 0.75 (d) t = 0.95

FIG. 4. Sequence of plots showing the simulation of vorticity over the collision with a Navier boundary, sL = 0.002,
Re = 1252.

2. Intermediate slip length

As the slip length increases, the enstrophy production at the boundary decreases and the gen-
erated monopoles weaken. As the impinging dipole approaches the wall the cores separate. The
dipole cores separate further and rebound less as slip length decreases. The magnitude of generated
vorticity at the wall becomes relatively small compared to that of the impinging dipole, and hence the
monopoles formed by roll-up have significantly less effect on the trajectory of the impinging dipole
cores. A sequence showing a dipole colliding with a Navier boundary of moderate slip length is
shown in Figure 4. Notice that the dipole separates more and rebounds less than the dipole colliding
with the no-slip wall shown in Figure 1.

For longer slip lengths, say greater than sL = 0.02, the boundary layer vorticity does not roll
up into a distinct monopole, rather filaments of the boundary layer are pulled around the impinging
dipole and into the domain. The impinging dipole does not undergo rebound, but the distance from the
wall fluctuates. The fluctuation is caused by the filaments of boundary layer vorticity detaching from
the wall, and forming small monopoles which wrap around the impinging dipole core, eventually
forcing the impinging core away from the wall. The behaviour of the roll-up at the wall for very
long slip length, sL = 20, and shorter slip length, sL = 0.01, is compared in Figure 5. Trajectories
for a range of slip lengths are shown in Figure 6, demonstrating the transition from strong rebounds
at short slip lengths to weak, skipping behaviour at longer slip lengths.

The vorticity generated at the wall increases with slip length sL → 0, the global enstrophy
production obviously decreases with increasing slip length. The global energy decay increases as
sL → 0 as the effect of the boundary becomes stronger. The energy and enstrophy over the period of
collision is shown in Figures 7 and 8. For slip lengths shorter than 0.001 the enstrophy difference over
the first rebound, from t = 0.2 to t = 0.5, is similar, despite the large difference in peak enstrophy.
As slip length increases the u-velocity at the wall increases, showing distinct peaks each time the
impinging dipole approaches the wall, as seen in Figure 9.

3. Slip length sL → ∞
In the limit sL → ∞ the wall is approximately a stress-free boundary, where ω = 0. The stress-

free case will behave similar to a point dipole in an inviscid fluid. The dipole approaches the wall,
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FIG. 5. Comparison of the boundary vorticity roll-up for sL = 20 (left) and sL = 0.01 (right) for Re = 1252. Only the top
left half of the domain is shown. The roll-up is negligible when the slip length is sufficiently large.

and the individual monopoles separate and travel in opposite directions along the wall. This problem
can be solved directly without an influence matrix. Choosing sL = 100 recovers the stress-free
dynamics at Re = 1252. The trajectories are compared in Figure 10 for a dipole colliding with a
Navier boundary with slip length sL = 100 and a stress-free wall at Re = 1252. Good agreement
is observed. The global energy and enstrophy over time is also in good agreement, as shown in
Figure 11. Negligible amounts of vorticity are generated at the Navier boundary and at this slip
length the stress-free results are recovered.
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FIG. 6. Simulated trajectory of maximum vorticity in the left half of the domain over the collision time at Re = 1252. The
plot was generated by finding the location of the maximum value of vorticity and then smoothing the resulting spatial data
with a moving average with a window of width 10/Nx, 10/Ny. Only the left half of the domain is shown.
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FIG. 7. Energy as a function of varying slip length sL.

B. Comparison of the penalisation method with the influence matrix method

Volume penalisation avoids the use of body-fitted unconstructed meshes by penalising the
velocity on the surface of an object surrounded by fluid. This allows the use of fast spectral methods
on Cartesian grids to solve the incompressible Navier-Stokes equations in bounded domains. The
penalisation method aims to solve the Navier-Stokes equation in a channel domain by solving a
similar problem on a doubly-periodic domain and forcing the velocity to be small between the
channel wall and the y-periodic boundaries. We do this by solving

∂uη

∂t
+ uη · ∇uη = −∇ p + ν∇2uη − 1

η
χ (x, y)uη,

(42)

∇ · uη = 0,
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FIG. 8. Enstrophy as a function of varying slip length sL.
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FIG. 9. Simulated u-velocity at the wall for varying slip length over the collision time at Re = 1252.

where uη is the penalised velocity, χ is the penalisation function, which is zero in the fluid domain and
takes the value one between the channel wall and the periodic y-boundaries, and η is the penalisation
parameter. It can be shown that the solution of problem (42) converges slowly to the solution of the
full Navier-Stokes problem in the channel domain as η → 0.6

By plotting the tangential velocity as a function of strain rate at the channel wall location, Nguyen
van yen, Farge, and Schneider1 show that the penalisation method can be used to approximate no-
slip boundary conditions. More specifically, they demonstrate that their results are close to those
for a Navier boundary condition with slip length sL approximately equal to 4/Re. At Re = 1252, for
example, this gives sL ≈ 0.003. From our previous discussion, we expect this to give good agreement
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FIG. 10. Trajectories of a dipole colliding with a Navier boundary sL = 1 (solid black line) and a dipole core colliding with
a stress free boundary (black circles), over a time range of t = 0 to t = 0.5 at Re = 1252. Only the left half of the domain is
shown.
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FIG. 11. Difference between energy, enstrophy, and u-velocity at the collisional wall vs. time, for a dipole colliding with a
Navier boundary, sL = 100 and a stress-free boundary at Re = 1252. The oscillations in boundary u-velocity are due to the
generation of weak velocity filaments in the case with the Navier boundary condition.

with no-slip trajectories over the initial rebound, but to diverge at later times. As the Reynolds
number decreases, the sL = 4/Re approximation becomes less accurate, but the penalisation method
still approximates a Navier boundary, with a slip length which may be determined in the usual way.

In their paper, Nguyen van yen, Farge, and Schneider1 use a smooth χ penalisation function.
We choose instead to use a Heaviside penalisation function. This gives a precise boundary location,
avoiding difficulties in choosing the boundary location. The use of a Heaviside function, however,
introduces Gibbs oscillations in the solution near to the step. Keetels et al.13 showed that these
oscillations do not affect the stability of the calculation, nor the overall result. Any ringing in the
solution can therefore be removed by using a post-processing filter. There exist many techniques to
remove ringing from data. Keetels et al.13 used a spectral mollification procedure due to Tadmor
and Tanner.14 We chose to use a simple weighted averaging filter. Any minor errors introduced by
the choice of filter are insignificant compared to the underestimation of vorticity introduced by the
penalisation method for this problem.
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FIG. 12. The difference between the vorticity calculated by the penalisation method and the vorticity calculated by the
influence matrix method Nx = 512, Ny = 768 with no-slip boundary conditions as the dipole rebounds from the wall.

Subsequently, Nguyen van yen15 proved that the penalisation method using a Fourier pseu-
dospectral method is effectively first order in N−1, due to the jump at the boundary. We compare
relative differences in vorticity for representative cross-sections from the penalty method as discussed
above and the influence matrix method with no-slip boundary conditions. The O(N−1) convergence
of the penalisation method to the solution calculated by the influence matrix method is shown in
Figure 12. Results are shown for Re = 626, time t = 0.4, during the dipole collision with the wall,
for increasing numbers of mesh points. Convergence with the penalisation parameter η → 0 is
very slow as expected. At low resolution the magnitude of the boundary vorticity is significantly
underestimated. This leads to a weaker rebound, and hence a phase error in vorticity far from the
wall. As the resolution increases, the boundary vorticity estimate improves and consequently the
vorticity inside the domain is more accurately estimated.

C. Energy dissipation rate comparison

Nguyen van yen, Farge, and Schneider1 investigated the phenomenon of anomalous dissipation.
They found energy dissipating structures which persisted in the vanishing viscosity limit.

There are two regimes occurring in the collision simulation. In the first regime, the dipole is far
from the wall and the effects of the boundary are negligible and the energy dissipation scales like

E(t2) − E(t1) ∝ Re−1. (43)

In the second regime, the dipole is close to the wall. Prandtl16 resolved d’Alambert’s paradox
for flows where the effects of viscosity occur only in a boundary layer of thickness of order Re−1/2.
Prandtl16 showed that in the boundary layer the energy dissipation scales like

E(t2) − E(t1) ∝ Re−1/2. (44)

The total energy E(t) satisfies

d E

dt
+ 2νZ = 0, (45)

where Z is the global enstrophy. Thus, the energy dissipation rate is directly proportional to the
enstrophy growth. Nguyen van yen, Farge, and Schneider1 found that Z ∝ Re and hence an energy
dissipation rate independent of viscosity, and energy dissipation therefore approaches a constant in
the vanishing viscosity limit.
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TABLE I. Table of parameters used in the calculations.

Re Nx Ny ν × 10−4 δt × 10−6 4/Re

870 512 768 7.2 4.8 0.005
1160 512 768 5.4 4.8 0.003
1740 512 768 3.6 4.8 0.002
2610 1024 2048 2.7 4.8 0.0015
3480 1024 2048 1.8 4.8 0.001
5580 2048 4096 1.15 2.0 0.0007
6962 2048 4096 0.9 2.0 0.0006

Keetels et al.17 used an oscillating plate model to predict the vorticity, enstrophy, and palinstro-
phy production from a dipole colliding with a no-slip boundary. In particular, they find a scaling of
Z ∝ Re0.75 for Reynolds number less than some critical value, and Z ∝ Re0.5 for Reynolds number
greater than the critical value. The critical Reynolds number was found to be around Re = 20 000,
higher than considered here and higher than considered by Nguyen van yen, Farge, and Schneider.1

The predicted scaling agrees well with observed peak enstrophy in their simulations. Importantly
these results suggest that the enstrophy growth, and hence energy dissipation, will slow as the
Reynolds number becomes increasingly large.

We compare the total energy dissipation and enstrophy growth, as a function of Reynolds
number, over one rebound for the no-slip boundary condition, the Navier boundary condition with
fixed slip lengths, sL = 0.003 and sL = 0.0001, and a Navier boundary condition with sL = 4/Re.
The choice of slip length has a non-zero but negligible effect on the Reynolds number. The slip
length relation sL = 4/Re is motivated by the finding of Nguyen van yen, Farge, and Schneider1 for
the boundary condition of the penalisation method and similarly sL = 0.003 is the slip length given
by this approximation for Re ≈ 1300, near the lower Reynolds numbers considered in Nguyen van
yen, Farge, and Schneider.1 As discussed earlier, the slip length sL = 0.0001 should approximate the
no-slip results. The parameters chosen in the calculations are shown in Table I.

D. Energy dissipation far from the wall

It is easy to identify the first regime, where the dipole is far from the wall. The time interval
chosen was t = 0 to t = 0.2, for each boundary condition case the dipole was still intact, and far
from the wall. The energy dissipation scaling (43) was found to hold satisfactorily for all boundary
condition cases considered, as shown in Figure 13.
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FIG. 13. Energy dissipation as a function of Reynolds number, in the wall-free regime for, no-slip, sL = 0.003, sL = 0.0001,
and sL = 4/Re boundaries. The energy dissipation curves are almost indistinguishable on this plot.
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E. Energy dissipation and energy dissipation rate near the wall

From Nguyen van yen, Farge, and Schneider1 we expect any energy dissipating structures to
occur in the boundary layer. It is therefore critical to choose a time interval that captures the behaviour
of these structures. If the time interval is too short it will not show the energy dissipating structures,
if the time interval is too long, the boundary layer will separate and move into the domain, violating
Prandtl’s theory. If the time interval is misplaced, it is possible to observe energy growth. To identify
the collision, we follow Nguyen van yen, Farge, and Schneider1 and choose the time interval where
the energy scaling best satisfies Prandtl’s energy dissipation result, where energy dissipation scales
like Re−0.5. To do this we first estimate the time of the collision by studying the vorticity plots. We
then search for time intervals near our estimate where Prandtl’s result is valid. For each time interval,
the energy dissipation as a function of Reynolds number is calculated, and a least squares regression
line is fitted to the logarithm of the data. The slope of this line should be −1/2. We also obtain a
95% confidence interval on the least squares fit in the standard way. The time interval which gives
the slope closest to −1/2 is declared to be the interval over which the collision occurs. This time
interval varies between the three cases considered.

First we consider the sL = 0.003 case. The energy dissipation as a function of Reynolds number
is shown in Figure 14 for a range of collision time intervals. The best collision time interval is t1 =
0.27 to t2 = 0.49, which gives the energy decay E(t2) − E(t1) ∝ Re−α , where α = −0.53 ± 0.05. The
corresponding enstrophy growth starts to saturate to a constant at higher Reynolds numbers. Since
enstrophy growth is slower than linear with Reynolds number, from (45) the energy dissipation rate
is proportional to some power of viscosity, and this will vanish in the limit ν → 0.

The energy difference results are similar for the no-slip, sL = 0.0001, and sL = 4/Re cases.
This is reasonable, since all cases approximate the true no-slip boundary conditions. It is, however,
difficult to satisfy Prandtl’s result in these cases, while finding enstrophy growth in the same time
interval. The best slope that is achieved is −0.43 over time intervals t1 = 0.2 to t2 = 0.49, as shown in
Figure 15. This is in fact the longest time interval possible, as it starts at the end of the wall-free
regime. The crucial difference between these three cases occurs in the enstrophy growth results, in
particular the rate at which enstrophy growth varies with Reynolds number. The no-slip, sL = 0.0001,
and sL = 4/Re cases, are shown in Figure 16. The no-slip and sL = 0.0001 cases start saturating in a
manner similar to the sL = 0.003 case. The enstrophy growth as a function of Reynolds number, for
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FIG. 14. Energy dissipation (left) and enstrophy growth as a function of Reynolds number, near the wall for sL = 0.003. In
this and subsequent figures, the labels are the time interval, here supplemented by the gradient of the line of best fit. All of the
selected intervals agree with Prandtl’s result, showing energy dissipation is proportional to Re−1/2. The best collision time
interval is t1 = 0.27 to t2 = 0.49. Notice that Re = 780 does not appear on this and subsequent plots, since at that Reynolds
number, Z(t2) − Z(t1) < 0, leading to energy growth over this time interval at Re = 780.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

138.251.162.207 On: Mon, 25 Aug 2014 15:23:48



093104-18 Sutherland, Macaskill, and Dritschel Phys. Fluids 25, 093104 (2013)

600 1000 2000 5000 9000
0.09

0.1

0.15

0.25

Reynolds number

E
(t

2)−
E

(t
1)

E(0.48)−E(0.2)

E(0.49)−E(0.2)

E(0.48)−E(0.21)

E(0.49)−E(0.21)
Re−1/2

(a) No-slip

600 1000 2000 5000 9000
0.09

0.15

0.25

Reynolds number

E
(t

2)−
E

(t
1)

E(0.48)−E(0.2)
E(0.49)−E(0.2)

E(0.49)−E(0.2)
E(0.48)−E(0.21)

Re−1/2

(b) sL = 0.0001

600 1000 2000 5000 9000
0.07

0.1

0.15

0.25

Reynolds number

E
(t

2)−
E

(t
1)

E(0.47)−E(0.2)

E(0.49)−E(0.2)

E(0.47)−E(0.21)

E(0.49)−E(0.21)

Re−1/2

(c) sL = 4/Re

FIG. 15. Energy dissipation as a function of Reynolds number near the wall with boundary conditions as shown. For all the
boundary conditions the best agreement with Prandtl’s scaling is Re−0.43, and the best collision time interval is t1 = 0.20 to
t2 = 0.49.

the best time intervals for the no-slip, sL = 0.0001, sL = 0.003, and sL = 4/Re cases are compared
in Figure 17, clearly showing the difference in slope between the no-slip, sL = 0.0001, and sL =
0.003, compared to the sL = 4/Re case. In the no-slip, sL = 0.0001, and sL = 0.003 cases, enstrophy
grows more slowly than linearly with Reynolds number and there will be no energy dissipation in the
vanishing viscosity limit. For the sL = 4/Re case, the enstrophy difference results are approximately
linear with Reynolds number, consistent with the findings of Nguyen van yen, Farge, and Schneider.1

For lower Reynolds numbers the enstrophy growth is much more rapid, and we have omitted
Re < 1700 from Figure 17 for clarity.

1. Energy dissipation comparison with the penalty method

We repeat the energy dissipation calculations with the penalisation method with fixed Ny for the
range of Reynolds numbers. Both a step penalisation function, as described earlier, and a smooth
penalisation function of the form χ = 2 + tanh (a(y − b)) − tanh (a(y + b)), with a = 1.2Ny are
used. We expect that the smooth penalisation function will result in the boundary vorticity being
smoothed out, giving a longer apparent slip length. As expected, in both cases, we find that the
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FIG. 16. Enstrophy difference results for the no-slip, sL = 0.0001, and sL = 4/Re boundary cases. The best collision time
interval is t1 = 0.20 to t2 = 0.49.

penalisation method converges approximately linearly with Ny, and that furthermore the slip length
is approximately inversely proportional to Ny and hence constant for constant Ny. The slip length for
the step penalisation function was found to be sL = 0.002 for Nx = Ny = 1024, and sL = 0.0004 for
Nx = Ny = 2048, while for the smooth penalisation function sL = 0.008 for Nx = Ny = 1024, and sL

= 0.003, Nx = Ny = 2048. Note that we only expect the penalisation method with sL = 0.0004 for
Nx = Ny = 2048 to approximate the no-slip boundary condition. In Figure 18 the enstrophy growth
rates for the penalisation method with Nx = Ny = 1024 and Nx = Ny = 2048 for both choices of χ

are compared to the results (repeated from Figure 17) for the no-slip boundary condition, using the
influence matrix method.

The enstrophy growth results from the penalisation method with Nx = Ny = 2048 using a step
boundary treatment are in good agreement with the enstrophy growth results from the influence
matrix method with the no-slip boundary condition, despite the poor agreement with boundary
vorticity as shown in Figure 12. Furthermore, the case where sL = 0.002 and Nx = Ny = 1024 (step
treatment) also agrees well with the enstrophy growth in the no-slip case. The choice of penalisation
function is also critical to obtain a good approximation to a no-slip boundary condition. The use of a
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FIG. 17. Enstrophy difference results for the no-slip, sL = 0.003, sL = 0.0001, and sL = 4/Re boundary condition cases,
taking the best collision time interval for all cases. For no-slip, sL = 0.003, sL = 0.0001, and sL = 4/Re the best time interval
is t1 = 0.20 to t2 = 0.49. For the sL = 0.003 the best time interval is t1 = 0.27 to t2 = 0.49.
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FIG. 18. The enstrophy growth computed by the penalisation method for Nx = Ny = 1024 and Nx = Ny = 2048, where the
time interval is t1 = 0.20 to t2 = 0.49 with a smooth and step penalisation function compared to the enstrophy growth for the
no-slip boundary condition.
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smooth penalisation function results in a significantly larger slip length and hence smaller enstrophy
growth than the step function treatment.

IV. CONCLUSIONS

A normal incidence dipole wall collision is a notoriously difficult problem, due to the rapid
generation of vorticity at the boundary, which makes it a suitable benchmarking test for numerical
methods solving the streamfunction-vorticity problem. We have studied the range of behaviours
between the two extreme cases of a dipole colliding with a stress-free boundary and a dipole
colliding with a no-slip boundary. For small slip length the trajectory of the dipole after collision
approximates the trajectory of a dipole which has collided with a no-slip wall, but the enstrophy
generated at the wall is significantly lower, and hence the trajectories of the dipoles will diverge at
later times. The growth in global enstrophy over the collision time decreases with increasing slip
length, and increases with Re, for moderate Reynolds numbers. At the highest Reynolds numbers
considered the enstrophy growth starts decreasing with increasing Re. Therefore, if Reynolds number
is increased and slip length is decreased simultaneously, the overall trend in enstrophy growth will
be steeper than if the slip length is held constant.

The result of Nguyen van yen, Farge, and Schneider1 is that enstrophy growth over the collision
time grows linearly with Reynolds number, so implying that the energy dissipation tends to a constant
as viscosity vanishes. This is a consequence of the slip length sL ∝ Re−1, which follows if linearly
increasing resolution is used (to properly resolve detail) with increasing Reynolds number, because
of the approximate linear dependence of sL on Ny. Repeating the numerical experiments of Nguyen
van yen, Farge, and Schneider1 with the fully resolved influence matrix method showed sublinear
enstrophy growth in the vanishing viscosity limit for any fixed slip length.

For the dipole-wall collision, the penalisation method requires very high resolution to ac-
curately estimate the magnitude of the vorticity generated at the boundary. Both high resolution
and a step function boundary treatment are required to ensure the small slip length that gives a
good approximation to the no-slip case. Furthermore, fixed resolution, with Nx, Ny = constant is
required to keep the slip length fixed as Reynolds number is varied, which is necessary in or-
der to obtain consistent energy dissipation results in the vanishing viscosity limit. This simple
restriction on resolution avoids difficulties of interpretation caused by the approximate boundary
conditions.

Extensions of the present work will consider the true nature of the boundary condition in the
volume penalisation method, non-normal incidence collisions which may be benchmarked against
Clercx and Bruneau,18 and extending the compact finite difference method to circular domains.
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