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Quantum metrology with molecular ensembles
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The field of quantum metrology promises measurement devices that are fundamentally superior to conventional
technologies. Specifically, when quantum entanglement is harnessed, the precision achieved is supposed to
scale more favorably with the resources employed, such as system size and time required. Here, we consider
measurement of magnetic-field strength using an ensemble of spin-active molecules. We identify a third essential
resource: the change in ensemble polarization (entropy increase) during the metrology experiment. We find that
performance depends crucially on the form of decoherence present; for a plausible dephasing model, we describe
a quantum strategy, which can indeed beat the standard strategy.
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I. INTRODUCTION

Quantum metrology deals with the physical limits to
measurement. Typically, one prepares a probe system of size
K in a suitable initial state; this system acquires information
about the quantity of interest, and then the probe system
is measured. The process may be repeated either with a
series of probes over time or, as in the present analysis, with
multiple probe systems simultaneously. The way in which the
probe is prepared is closely related to the uncertainty of the
parameter estimation: if prepared in a nonentangled state, then
the minimal uncertainty achievable scales with 1/

√
K [1], the

so-called standard quantum limit (SQL). However, this limit
can be beaten if we allow arbitrary states for the preparation
of the probe system (i.e., if we include entangled states), as
demonstrated in recent experiments [2–5]. In idealized cases,
the minimal uncertainty achievable scales with 1/K—the
Heisenberg limit [6]—which can be achieved by making use of
special entangled states such as Greenberger-Horne-Zeilinger
(GHZ) states or maximally path-entangled 1√

2
(|N,0〉 + |0,N〉)

(NOON) states [7].
In optical quantum metrology, the probe system is a

particular state of K photons, for example, a NOON state,
which is a superposition of all K photons in channel A with
all photons in channel B. When an optical element inducing
an unknown phase shift is placed in channel A, then the
probe acquires an internal phase K times as great as that
which would be acquired by a single photon, and information
about this phase is measured through an interference effect.
In the present analysis, we consider an analogous experiment
involving K atomic spins in a large molecule, which probes the
strength of an external magnetic field. An essential difference
is that we consider a large ensemble of probe molecules, which
are necessarily prepared, exposed to the field, and ultimately
measured collectively [8,9]—that is, addressing of individual
probe molecules is impossible.

The dynamics of an ensemble is typically observed by
measuring the free-induction decay (FID) spin signal. Moni-
toring the FID can be seen as a continuous and simultaneous
measurement of two noncommuting observables [10]. Here,
the observed system is barely altered by the measurement, as

the number of spins in a typical sample is usually so large.
This type of measurement has not yet been analyzed in the
context of quantum metrology. Rather, recent studies have
looked at the effect of temperature on the Fisher information
of three types of states [11] and wave-form estimation and its
implications for quantum sensing [12].

II. MAGNETIC FIELD SENSING

In this paper, we compare two strategies for measuring a
small shift δB of a probe magnetic field from a reference field
in a spin ensemble setting [8,9]. This problem is equivalent
to measuring the Larmor frequency δ = δB

γ
of a precessing

spin in the probe field, where γ is the gyromagnetic ratio. In
the quantum strategy, we consider a macroscopic ensemble
of N sensor molecules each consisting of K spins, where
each molecule is prepared in a very sensitive entangled state
(see Fig. 1). This state senses the field for a wait time Tw by
acquiring a phase K δTw. We then map the phase onto one spin
of the molecule from which it can be read out by observing
the FID. As a performance benchmark, we compare this to
the classical or standard strategy, where we determine the
Larmor frequency by observing the FID of the same number
of uncoupled spins. We will focus on the resources consumed
by the two strategies and on the impact of decoherence.

The role of decoherence is very nontrivial. In the absence
of decoherence and for a perfect projective measurement,
the lowest achievable uncertainty in estimating δ scales with
1/K

√
N for the quantum strategy and 1/

√
KN for the

classical strategy [6]. Hence, the discrepancy in the precision
of the two strategies increases with the size of the entangled
state K . However, the spins will be subject to decoherence in
any real-world experiment, and the sensitive entangled states
will decohere faster than separable states when K becomes
larger [13,14]. This increased effective decoherence rate
competes with the enhanced precision, making it difficult to
predict the performance of the quantum strategy.

In the following, we will determine lower bounds for the
uncertainty of the parameter estimation from a measured FID
for both strategies. First, we must generate a suitable entangled
state to obtain enhanced sensitivity with the quantum strategy,
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FIG. 1. (a) Schematic of a sensor molecule with five satellites.
(b) Quantum circuit employed in the quantum strategy.

meaning we require some amount of quantum control over
the molecules. The details of how this is accomplished are
unimportant, and we will, in the following, consider the ex-
ample shown in Fig. 1; molecules with this star topology have
been employed in recent experiments [8,9]. Each molecule
consists of one central spin A and K − 1 noninteracting
satellites of type B. The satellites interact with the central
spin through an Ising-type interaction, leading to the following
Hamiltonian in an external magnetic field [in natural units (i.e.,
h̄ = 1)]:

HK = γ δσA
z + δ

K−1∑
j=1

σ
Bj

z + J

K−1∑
j=1

σA
z ⊗ σ

Bj

z , (1)

where σz denotes the usual Pauli matrix with eigenvalues ± 1
2 .

δ denotes the Zeeman splitting of the B spins, and γ =
γA

γB
denotes the ratio of the gyromagnetic numbers of A and

B, and we assume γ ≈ 1. J describes the Ising interaction
strength and is only necessary for implementing the multiqubit
gates in the quantum strategy, not for the sensing process. δ is
the parameter to be estimated.

We focus on the fundamental comparison between classical
and quantum strategies given a fully polarized initial state of
the sample:

ρ0 = |0〉A〈0|A ⊗ |0 · · · 0〉B〈0 · · · 0|B = |00〉〈00|, (2)

where the underscore denotes the state of the K − 1 satellite
spin register. For the example molecule shown, the entangled
state can be constructed from this initial state by applying
the pulse sequence shown in Fig. 1 [i.e., first a Hadamard
gate on the central spin and then a controlled-NOT (CNOT)
gate (control qubit = central spin, target qubits = satellites)].
The resulting GHZ state 1√

2
(|00〉 + |11〉) freely evolves for a

time Tw, acquiring phase K times faster than a single spin.1

However, at the same time, it is also more vulnerable to
decoherence. In practice, the dephasing rate of an individual
spin α = − 1

T ∗
2

< 0 is limited by inhomogeneous broadening
[15], thus, we can neglect spin-flip processes. Of course, the
dephasing rate of the GHZ state β < 0 is related to α, and
we will discuss this dependence later. The state of the system,
after the wait time Tw, is then

ρ3 = 1
2 (|00〉〈00| + |11〉〈11| + e−K δTw i+βTw |00〉〈11|
+ eK δTw i+βTw |11〉〈00|). (3)

1Strictly, this is only a GHZ state for K > 2 and a Bell state for
K = 2. In Ref. [8], this state is referred to as a NOON state because
it describes a superposition of N spins up and N spins down.

To measure the acquired phase K δTw, we map the GHZ state
onto the central spins by applying a CNOT gate. These spins
are then measured by observing the decay of the transverse
magnetization at M ∈ N discrete points in time, separated by
the sampling time ts . The observed signal xm at time mts (m =
0, . . . ,M − 1) can be modeled as a sum of Gaussian distributed
noise bm and the ideal signal x̂m = 〈X + iY 〉(mts) [16],

xm = x̂m + bm = ceK δTw i+βTweδm ts+αmts + bm, (4)

where c is a proportionality factor that depends on the number
of molecules in the sample. A simulation of the FID is shown
in Fig. 2.

A suitable metric for the precision of the measurement is
the Cramér-Rao bound (CRB) bCR [16], which essentially
offers a lower bound on the uncertainty (standard deviation)
σp�

of an estimated parameter p� (� = 1, . . . ,P ):

σp�
� bCR

p�
=

√
(F−1)��. (5)

Here, F denotes the Fisher information [17] given by the real
part of a complex-valued matrix product,

F = 1

σ 2
Re (D†D), (6)

where Dij = ∂x̂i

∂pj
, and the partial derivatives are evaluated at

the parameters that we are going to estimate. In our case, the
parameters are c, α, and δ. σ = σr = σi denotes the standard
deviation of the real (imaginary) part of the noise. Inverting
the 3 × 3 Fisher information matrix, we obtain

bCR
δ,GHZ = e−βTw√∑M−1

m=0 (KTw + mts)2 exp (2αmts)

σ

c
. (7)
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FIG. 2. (Color online) Simulation of the FID of the classical
(upper) and quantum strategy (lower); see Eqs. (4) and (9). The
simulated measurement points (crosses) were chosen randomly from
a Gaussian distribution with a standard deviation of 0.05. In the
classical strategy, we observe uncoupled precessing spins, and the
strength of the probe field is given by the oscillation frequency. In
the quantum strategy, a GHZ state senses the field for a time Tw

without producing a signal but acquiring phase K times faster than a
single spin and dephasing at a rate β. The acquired phase is mapped
onto the central spin, and the FID is measured. The strength of the
magnetic field can now be estimated from the phase and the oscillation
frequency.
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Next, we determine the CRB for the classical strategy. Here,
we are given NK identical and uncoupled spins. We obtain
the relevant signal by rotating the initial state ρ0 into the
xy plane with a global Hadamard gate followed by measuring
the transverse magnetization. The resulting density matrix
evolves as

ρ(t) = 1

2

(
1 ei δt+αt

e−i δt+αt 1

)
(8)

giving rise to a measured signal of the following form:

x ′
m = c′eδm ts i+αmts + b′

m. (9)

Analogously, to Eq. (7) we obtain the CRB for this signal:

bCR
δ,STD = 1√∑M ′−1

m=0 (mts)2 exp (2αmts)

σ ′

c′ . (10)

This expression is a lower bound on the uncertainty for
independent spins against which we will benchmark the
quantum strategy. As the signal-to-noise ratio (SNR) c′

σ ′ scales
with the square root of the number of spins in the sample,
we get the same scaling behavior as for the SQL. For a high
SNR achieved by a sufficiently large number of molecules N ,
there exists an efficient estimator, which matches the accuracy
predicted by the CRB [18]. Hence, we can directly use Eqs. (7)
and (10) to compare the two strategies.

III. OBSERVATION OF THE FULL FID

First, we need to specify a fair comparison with the same
resource allocation for both strategies. For conventional quan-
tum metrology with projective measurements, the challenging
question of a fair resource comparison has recently been
addressed in Ref. [19]. In the present case of ensemble
quantum metrology, we will, at first, allow both strategies
to observe the full FID while consuming the von Neumann
entropy of 1N spins. As we have defined it, the quantum
strategy consumes one spin per molecule (the central spin A)
in the measurement, and all other spins remain pure. This
implies that we must also only measure N spins instead of
KN spins for the classical strategy, meaning that the SNR of
both measurements is equal c′

σ ′ = c
σ

.
At first sight, this way of counting resources may look

biased toward the quantum case, as we do not seem to take
the satellite spins into account. Nonetheless, our comparison
is fair: The K − 1 satellite spins act as an antenna to pick up
phase more rapidly, yet they are not consumed (this is a direct
consequence of the dephasing model of decoherence). After
the quantum strategy is complete, the central spin is measured
(its polarization is lost), but all satellite spins are back in
the pure state |0〉 and could be recycled to obtain a further
parameter estimate. The accuracy of such an estimate, made
using any sensible protocol on these remaining (K − 1)N
spins, can be no worse than that obtained using the standard
strategy. This observation validates the classical resource count
stated in the previous paragraph.

The ratio of Eqs. (7) and (10) can be approximated by an
integral expression [assuming the sampling rate resolves the

decay (i.e., ts 	 T ∗
2 )]:

R∞ : = bCR
δ,STD

bCR
δ,GHZ

≈
√∫ ∞

0 (KTw + t)2 exp (2αt) dt

e−2βTw

∫ ∞
0 t2 exp (2αt) dt

(11)

= eβTw

√
1 − 2KαTw(1 − KαTw). (12)

Whenever R∞ > 1, the quantum strategy outperforms the
classical strategy with respect to the precision of the parameter
estimation.

We have not yet specified how the dephasing rate β of the
GHZ state relates to the dephasing rate α of a single spin,
and now, we will discuss a number of different decoherence
models for the GHZ state.

First, we consider β = α, implying that the GHZ state does
not decohere faster than a single spin; this is expected for a
given macroscopic magnetic-field inhomogeneity. In this case,
there is, for any K > 1, a wait time Tw, for which the quantum
strategy surpasses the classical one. Conversely, completely
correlated or collective noise over each molecule has the most
aggressive effect on the GHZ state [20]. Here, the noise
can be described with a single Lindblad operator

∑K
j=1 σz

and β = K2α, while, for uncorrelated noise, β = Kα [21].
In general, we consider a power-law dependence of β on α

(i.e., β = Kpα, where 0 � p � 2). In recent experiments, the
decoherence rates for highly correlated solid-state spin states
were obtained experimentally [22], revealing p ≈ 1/2. The
authors attributed this to non-Markovian correlated noise. A
significantly smaller value for p was found in Ref. [9], where
the T ∗

2 time of a single spin was determined to be 0.37 s and
that of a 13-particle GHZ state was determined to be 0.28 s,
which can be interpreted as a factor of p ≈ 0.11.

The performance of the quantum sensor depends critically
on the value of p. One can easily check that, for 1 � p � 2,
R∞ < 1 for any Tw > 0, and R∞ = 1 only for Tw = 0.
Therefore, we conclude that the precision of the quantum
method never outperforms the precision of the standard
method, if 1 � p � 2. In contrast, for p < 1, there is an
optimal nonzero, K-dependent, wait time Tw for which R∞ >

1. Specifically, calculating the optimal waiting time Tw that

1
10

20
30

40
50

0
0.2

0.4
0.6

0.8
1

1
5

10

15

20

25

FIG. 3. (Color online) The maximal R∞ for a given K as a
function of K and p. R∞ > 1 implies that the quantum strategy
outperforms the standard strategy.
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FIG. 4. (Color online) (a) Minimal (optimized over T and Tw) uncertainty of the parameter estimation for the quantum strategy per
√

Hz
[i.e., S∗

GHZ/(
√

ts |α|3/2 σ

c
) in dependence of K and p]. (b) The corresponding optimal times T ∗ (upper surface) and T ∗

w (lower surface) as units
of T ∗

2 for which the minimum in (a) is attained in dependence of K and p.

gives rise to a maximum of R∞ (for a given K and p < 1)
yields

R∞ = max
Tw

R∞ = K1/2−p
√

K + √
K2 − K2p

exp
[

1
2 (1 − Kp−1 + √

1 − K2p−2)
] ,

(13)

which scales like
√

2
e

K1−p to leading order (see Fig. 3).
Therefore, the standard strategy can indeed be beaten with
a quantum strategy if the decoherence of the GHZ state is
not too aggressive (i.e., for p < 1). Moreover, we see that,
under this condition, the precision of the estimation improves
monotonically as K increases. As a special case, we consider
p = 0, here, R∞ increases linearly in K; this means that the
uncertainty of the parameter estimation with the optimized
quantum strategy scales as 1/K , analogous to the Heisenberg
limit.

IV. RESTRICTED PROCESS TIME

So far, we have neglected time as a resource, focusing
instead on system size and the consumption of initial polar-
ization (maximizing the von Neumann entropy of one spin per
molecule). It is interesting to extend our analysis to a restricted
process time, meaning only a part of the FID can be observed.
Since the first part of the FID contains most information, this
would enable a better sensor by a series of repeated runs in a
given time window Ttot if one had the ability to reset the spins
to their initial state after time T , for example, with an optical
switch. We assume that this can be done instantly, and then,
the uncertainty of the parameter estimation of this series is
given by

1√
Ttot/T

bCR
δ,STD =:

1√
Ttot

SSTD (14)

and analogously for bCR
δ,GHZ and SGHZ. Obviously, one would

choose the length of a time slice T optimally [i.e., in such
a way that the uncertainty per

√
Hz (i.e., SSTD and SGHZ

are minimal)]. For the classical strategy, we find by using

the integral approximation for the CRB from before and the
numerical optimization that

S∗
STD := min

T
SSTD = κ

√
ts |α|3/2 σ ′

c′ , (15)

with κ ≈ 3.21
√

s, which is attained for the optimal time T ∗ ≈
1.69T ∗

2 . In the quantum strategy, SGHZ also depends on Tw, the
amount of time for which the spins are in the GHZ state. In con-
trast to the classical strategy, here, the minimum depends on the
system parameters K and p. We have not been able to find an
analytic expression for S∗

GHZ := minT ,Tw
SGHZ; and, we there-

fore performed a numerical optimization with the results dis-
played in Fig. 4. As in our first comparison, we assume that the
SNR for both strategies is equal. If aggressive noise is affecting
the GHZ state, the optimal quantum strategy is basically the
optimal standard strategy, as T ∗ → 1.69T ∗

2 and T ∗
w → 0, when

p → 2. For small p and large K , however, the quantum
strategy significantly outperforms the standard strategy. In-
terestingly, the quantum strategy can now beat the optimized
standard strategy for values p that are slightly larger than 1.

V. CONCLUSION

In conclusion, we have presented a framework for analyzing
the performance of quantum metrology using spin ensembles.
This framework incorporates the special nature of the nonpro-
jective measurement process, and leads one to consider the
polarization change during the protocol as a kind of resource
consumption. We find that the decoherence model plays a
defining role in this framework, and we have identified the
parameter regime where a certain quantum strategy can beat
the standard classical strategy.
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edited by D. Estève, J.-M. Raimond, and J. Dalibard (Elsevier
Science & Technology, 2004).

[11] K. Modi, M. Williamson, H. Cable, and V. Vedral, e-print
arXiv:1003.1174 [quant-ph].

[12] M. Tsang and C. M. Caves, e-print arXiv:1006.5407 [quant-ph].
[13] A. Shaji and C. M. Caves, Phys. Rev. A 76, 032111 (2007).
[14] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B.

Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997).
[15] M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic

Resonance (Wiley, West Sussex, 2002).
[16] S. Cavassila et al., J. Magn. Reson. 143, 311 (2000).
[17] A. van den Bos, Handbook of Measurement Science (Wiley,

New York, 1982).
[18] Y. Bresler and A. Macovski, IEEE Trans. Acoust., Speech,

Signal Process. 34, 1081 (1986).
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