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Exchange coupling between silicon donors: The crucial role of the central cell and mass anisotropy
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Donors in silicon are now demonstrated as one of the leading candidates for implementing qubits and quantum
information processing. Single qubit operations, measurements, and long coherence times are firmly established,
but progress on controlling two qubit interactions has been slower. One reason for this is that the interdonor
exchange coupling has been predicted to oscillate with separation, making it hard to estimate in device designs.
We present a multivalley effective mass theory of a donor pair in silicon, including both a central cell potential
and the effective mass anisotropy intrinsic in the Si conduction band. We are able to accurately describe the
single donor properties of valley-orbit coupling and the spatial extent of donor wave functions, highlighting the
importance of fitting measured values of hyperfine coupling and the orbital energy of the 1s levels. Ours is a
simple framework that can be applied flexibly to a range of experimental scenarios, but it is nonetheless able to
provide fast and reliable predictions. We use it to estimate the exchange coupling between two donor electrons
and we find a smoothing of its expected oscillations, and predict a monotonic dependence on separation if two
donors are spaced precisely along the [100] direction.
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I. INTRODUCTION

It is now 15 years since Kane proposed his blueprint for
building a quantum computer using phosphorus donors in
silicon (Si:P) [1]. After years of steady progress towards
realizing this dream, recent remarkable experiments on un-
coupled donors have brought it much closer to reality. The
longest nuclear spin coherence time for (Si:P) now exceeds
an astonishing 39 min at room temperature [2], and electron
spin coherence survives for more than 1 s [3]. It has also
been possible to measure [4] and manipulate [5] an individual
P-donor nuclear spin. However, still lacking is a way of
controllably coupling multiple donors together to generate
the kinds of correlated quantum states required for universal
quantum information processing.

Perhaps the most conceptually straightforward way of
coupling two donors together is exactly as Kane proposed:
to place two donors closely enough that their electronic
wave functions overlap (Fig. 1). This results in an interaction
between donors that is Coulombic in nature, and depends
strongly on the electronic density of both donors involved.
The spatial region which gives the largest contribution to the
interaction is concentrated around the interdonor separation
axis, midway between the nuclei; varying the potential of a
surface electrostatic gate may then modulate this overlap [6],
enabling a controllable switching of the donors’ coupling. A
critical question then is how large the coupling can be, and how
accurately the donors must be placed for gates to be robust to
variations in the coupling strength.

Previous work employing an effective mass theory of Si:P
[7–9] predicts strong oscillations in the dependence of the
coupling on distance, and is based on earlier work [10]
which investigated the effect of valley mixing in multivalley
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semiconductors like silicon. This may cause larger changes
in coupling strength in silicon, as a donor is moved from
one lattice site to the next, than would be expected for
semiconductors with nondegenerate conduction band minima.

Such a situation represents a tough experimental challenge
since it suggests that donors need to be placed very accurately.
A more recent numerical calculation [12] going beyond
effective mass theory finds that the oscillations are suppressed
relative to the Kohn-Luttinger effective mass approximation
(KL). In this work, we consider the donor problem within a
multivalley effective mass theory (MV EMT) including effects
of both the central cell and mass anisotropy present for Si:P.
Our approach not only allows the entire 1s manifold of the
binding energies of the isolated donor electron to be accurately
described, but crucially it also allows a correct description of
the hyperfine coupling to the donor nucleus, as measured in
experiments. The most important consequence is our finding
that the spread of the electronic wave function was significantly
overestimated by previous treatments, which only relied on
fitting of orbital energies. Building on this result, we will show
how the anisotropy of the donor wave function leads to a sup-
pression in the oscillatory nature of the exchange coupling, es-
pecially for certain geometries. Similar effects have been previ-
ously predicted [12], but we are able to clarify their origin and
to improve their evaluation through correct fitting of the short-
range behavior of the donor wave function. This improvement
in turn modifies intermediate and long-range wave function
shape and extent, and so strongly influences our exchange
coupling estimates. In addition, our theory is much less nu-
merically intensive and easily adaptable to more complicated
electromagnetic environments and different donor species.

In the next section, we survey previous theoretical ap-
proaches of the same problem, and derive the multivalley EMT
equation we are going to use. We discuss known limitations of
our theory and explain why it is still useful for our purposes,
and then we fit experimental quantities of interest with only
two free parameters. In Sec. III, we discuss the method used
for direct evaluation of donor-donor exchange coupling as a
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FIG. 1. (Color online) Plots of the spatial electronic densities
around two adjacent implanted donor nuclei, in a plane containing the
vector separation d. The two panels above refer to d along [100], those
below to [110]. Left panels are calculated with the wave functions
used in the MV EMT theory, and show stronger concentration of
the density around nuclei (hence larger hyperfine coupling) than the
right panels which use KL wave functions [11]. Red dots highlight
the positions of the Si nuclei of the underlying lattice. The mismatch
between their locations and the local critical points of the density is
a result of the nontrivial structure of the Si conduction band.

function of donor separation, and present our results. We are
able to provide a clear physical explanation for our predictions,
based on the analytic nature of our treatment, and point out
interesting consequences for experimental implementations.
We conclude in Sec. IV.

II. THEORY

We start with the Hamiltonian:

H�(r) =
[
− �

2

2m0
∇2 + V 0(r) + U (r)

]
�(r) = E�(r), (1)

where �(r) is the wave function of the donor electron, m0 is
its rest mass, V 0(r) is the periodic potential of the undoped
silicon crystal, and U (r) accounts for the interaction with the
impurity ion. E stands for the resulting energy eigenvalues.

The exact solution to the undoped Si case, with U (r) = 0,
is provided by the Bloch functions φn(k,r) = un(k,r)eik·r [13]
[where n is the band index, k lies within the first Brillouin zone,
and un(k,r) has the periodicity of the lattice]. Then, bound
donor electrons can be described with U (r) = − e2

εSi |r| , i.e., a
screened attractive Coulomb interaction with the extra positive
charge of the substitutional impurity. Since the effective Bohr
radius of shallow donor bound states is expected to be consid-
erably larger than the lattice spacing, Kohn and Luttinger [14]
showed that it is reasonable to write �(r) as an expansion in the
Bloch states above, restricted to the deepest conduction band

(n = 0). Included in their wave function were only the Bloch
states around one of the six degenerate minima in silicon;
these “valleys” are placed at k0μ = 2π

aSi
0.85(±x̂,±ŷ,±ẑ) (aSi =

5.43 Å is the silicon lattice constant). The coefficients of such
an expansion are called EMT envelopes, and satisfy a simpler
equation than the full Eq. (1). Even though the new equation
is not analytically solvable, an excellent approximation to the
exact solution can be achieved via variational minimization
of the expectation value of the energy. Such approximations,
though, fail to describe the s-donor levels, and especially
the ground electronic state, because the short-range impurity
potential unique to each chemical donor species—the so-
called “central cell” correction [15]—is not properly captured.
Moreover, this potential shows strong variations within the unit
cell surrounding the impurity nucleus, so that all the six valleys
are coupled (valley-orbit interactions). For this reason we use
a multivalley EMT and expand �(r) in terms of the Bloch
functions close (in k space) to each of those six minima [16]:

�(r) =
6∑

μ=1

αμ

1

(2π )3

∫
F̃μ(kμ + k0μ)φ0(kμ + k0μ,r)dkμ,

(2)

where F̃μ(kμ + k0μ) is the expansion coefficient for the Bloch
function φ0(kμ + k0μ,r) centered around the μth valley.

Even without precise knowledge of U (r), the residual Td

symmetry of the system dictates the shape of the eigenstates
into which the previously degenerate 1s ground state is split:
a singlet A1, a triplet T2, and a doublet E. The singlet is an
equal symmetric superposition of all six valleys ({αi(A1)} =

1√
6
(1,1,1,1,1,1)), with the other states forming orthogonal

combinations of the {αi}.
We now take the expectation value of Eq. (1) with respect

to Eq. (2) [17] and go through the usual EMT approximations
[12,16] to obtain

0 =
∫

dr
6∑

μ=1

α∗
μF ∗

μ(r)

[
αμ(p · Aμ · p − E)Fμ(r)

+
6∑

ν=1

ανe
−i(k0μ−k0ν )·ru∗

0(k0μ,r)u0(k0ν,r)U (r)Fν(r)

]
,

(3)

where Aμ is the anisotropic inverse effective mass tensor for
silicon, which describes the curvature of bands parallel and
perpendicular to the wave vector locating each of the band
minima within the Brillouin zone: m∗

⊥ = 0.191m0 and m∗
‖ =

0.916m0. Using u∗
0(k,r)u0(k′,r) = ∑

G CG(k,k′)eiG·r (where
G runs over the vectors of the silicon reciprocal lattice) [14],
and neglecting the G �= 0 terms [29] leads to∫

dr
6∑

μ=1

α∗
μF ∗

μ(r) ×
[
αμ(p · Aμ · p − E)Fμ(r)

+
6∑

ν=1

ανe
−i(k0μ−k0ν )·rC0(k0μ,k0ν)U (r)Fν(r)

]
= 0, (4)

where C0(k0q,k0q) = 1,C0(k0q, − k0q) = −0.1728, and
C0(k0q,k0±p) = 0.4081 (p �= q), values taken from a
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calculation with the pseudopotential form factors of the
periodic undoped silicon crystal [18], performed by Shindo
and Nara [17] to describe its band structure.

We use the impurity potential first proposed by Ning and
Sah [15]:

U (r) = − e2

εSi |r| (1 − e−b|r| + B|r|e−b|r|). (5)

b and B are parameters that are fit to experimental data.
The potential resembles the screened hydrogenic Coulomb
interaction at large distances, while at extremely short range
it mimics the extra nuclear charges embedded in the substitu-
tional donor impurity. In essence, the potential is an average
of the oscillations over the central-cell length scale with a
phenomenological model potential U (r) that still satisfies
the EMT assumptions above—most importantly, smoothness
[17]—but gives a good description of the experimentally
determined valley-orbit energies. Our method proceeds as
follows: For each trial calculation, we first fix b and B and
then we use the following ansatz for the envelopes [11], e.g.,

F±z =
√

1

πa2
DbD

exp

(
−

√
x2 + y2

a2
D

+ z2

b2
D

)
,

(6)

F±x =
√

1

πa2
DbD

exp

(
−

√
z2 + y2

a2
D

+ x2

b2
D

)
.

We now minimize the expectation values of the energies of
the three split 1s levels according to Eq. (4) by varying aD

and bD separately for each. We then find the best values of
b and B by finding a good match between our predictions
and measured ground-state donor energy [19] and hyperfine
coupling [20,21] for Si:P. We emphasize that, unlike some
previous multivalley EMT treatments, the envelopes we have
used have the crucial property of anisotropy. This is vital for
calculations of properties of a donor-donor system, which
clearly has a broken symmetry along the vector connecting
the two donors. Isotropic envelopes provide predictions of
exchange coupling that can be qualitatively different from
those we present here.

With b = 19.96 nm−1 and B = 246.12 nm−1 we obtain
EA1 = −45.5 meV, ET2 = −36.0 meV, EE = −33.0 meV,
which must be compared with the experimental [19] EA1 =
−45.57 meV, ET2 = −33.74 meV, and EE = −32.37 meV:
Other than the fitted singlet, the agreement is very good for
the doublet, and somewhat less accurate for the triplet, but not
unacceptably so. In addition, we can fit the value of the squared
electron wave function at the donor nucleus |ψ(0)|2, which is
proportional to the hyperfine coupling between the impurity
nucleus and the donor electron, by expressing it as |ψ(0)|2 ≈
6η|F (0)|2. Here η = |u0(k0,0)|2/〈|u0(k0,r)|2〉unit cell = 186 ±
18. We set this to match the |�A1 (0)|2 = 4.4 × 1029m−3 [21]
extracted from experimental measurements of the hyperfine
constant [30].

III. DONOR-DONOR EXCHANGE

We used the Heitler-London (HL) approach [23] to evaluate
the exchange splitting between two adjacent P-donor electrons
in a Si layer. HL uses a smart guess of the ground and

first excited molecular orbital states of the two-particle
system, based on single-particle ground-state orbitals. The two
resulting states have a difference in energy of J = ET − ES ,
where the spin singlet |S〉 = 1√

2
|↑↓ −↓↑〉 and the spin triplet

T0,+,− = 1√
2
|↑↓ +↓↑〉,|↑↑〉,|↓↓〉 have spatial wave functions

made up of a symmetric and an antisymmetric combination
of the single-particle orbitals, respectively. The convention we
have chosen for the sign of the H ensures that J is positive;
this must indeed be the case at zero magnetic field, by the
Lieb-Mattis theorem [24]. This Coulomb interaction can then
be effectively described as a spin Hamiltonian term coupling
the two donor electrons:

H = JS1 · S2. (7)

The evaluation of exchange coupling has been attempted by
several different theoretical approaches. Andres et al. [10]
first emphasized that, unlike the monotonic decay of J (d)
characteristic of the H2 molecule in vacuum, the exchange
coupling was expected to show oscillations as a function of
the donor separation, because the conduction-band minima
in Si are away from the Brillouin zone center, and the
corresponding Bloch functions interfere with one another.
As further pointed out in [7] and [8], this can lead to serious
difficulties when trying to harness exchange coupling for
quantum computation. The resolution of the donor positioning
during the implantation process is not refined enough to
ensure that all donors within a Si layer would experience even
the same order of magnitude of J .

In [12] a numerical solution of the full Hamiltonian
describing the donor electron is proposed, obtained through
exact diagonalization in the basis of the undoped crystal
Bloch functions—the band minima basis method (BMB).
Predictions made using this method are not limited by any
of the EMT approximations, but only by the convergence
and numerical accuracy of the computation, and by the
validity of the pseudopotential used [25]. Such detailed and
numerically intensive microscopic calculations predict that
the strength of the coupling is reduced, and its oscillations
have their amplitude decreased as compared to the calculations
performed with the multivalley wave function involving Kohn
and Luttinger envelopes [14]. This happens since the KL
approach includes the correct valley structure without taking
into account its consequences on the donor Hamiltonian, i.e.,
central cell corrections. However, all calculations so far still
fail to get a reliable description of the electronic density in the
region close to the donor nucleus.

We now explore two donor coupling with our new MV
EMT which, unlike the KL method, does account for the effect
of central cell corrections on the donor, and does accurately
predict single-particle properties. The two-particle integrals
entering J were computed with a fast Monte Carlo algorithm
for adaptive multidimensional integration (cubature) [26], and
each data point takes only a few minutes to compute. Figure 2
shows our evaluation of J for donor separation d in the
[110] and [100] spectroscopic directions, compared with cor-
responding values we determined using KL [11]. The biggest
difference between the two theories lies in the magnitude of
the exchange splittings: The extra localization in real space
provided by the strong short-range potential of the impurity
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FIG. 2. (Color online) The exchange splitting between electrons
pertaining to adjacent Si:P donors is shown as a function of their
separation d along (a) the [110] axis and (b) the [100] axis b. The
range of d displayed refers to the realistic uncertainty in the resolution
of the placement of donors in the Si layer during the implantation
process. The solid lines are only a guide to the eye, providing a rough
interpolation between the calculated data points. We display both the
KL solution of the donor Hamiltonian (blue crosses) and our MV
EMT (red stars). The large difference in the scale of the two y axes
makes apparent the discrepancy between the two calculations. The
inset in (a) shows the juxtaposition of our results with those obtained
from BMB (green squares), extracted from [12]. The most striking
property of the d dependence we have calculated for the [100] axis
is the absence of the oscillations expected from other theories [7,8],
a finding explained in detail in the text.

for MV EMT leads to a shrinking of the effective Bohr radii
of the ground-state envelopes (aD = 1.15 nm, bD = 0.61 nm),
when compared to KL (aD = 2.509 nm, bD = 1.443 nm [8]).
This is illustrated by the electron density plots shown in Fig. 1.

For the [110] direction, the same qualitative behavior
predicted in [12] is apparent, but we find shallower oscillations.
To explain this, consider the following approximation of the
whole exchange splitting calculated here, the so-called indirect
exchange integral [10]. It has the advantage of clear analytical
structure, and has the same qualitative behavior as J (d):

j (d) =
∑
μ,ν

|αμ|2|αν |2jμν(d) cos(k0μ − k0ν) · d, (8)

where jμν(d) is the indirect exchange integral between the
envelopes Fμ(r1) and Fν(r2):∫

dr1dr2F
∗
μ(r1)F ∗

ν (r2 − d)
e2

ε|r1 − r2|Fμ(r1 − d)Fν(r2). (9)

The sinusoidal terms arise from the periodic parts of the
Bloch states. The longitudinal j l

μν , where either k0μ or k0ν

has some component along d, give oscillating contributions to
j (d) and are responsible for the large oscillations apparent in

the KL (and BMB) cases. The transverse j t
μν where k0μ · d =

k0ν · d = 0 decrease monotonically with d.
Owing to the large difference between longitudinal and

transverse effective masses in Si used in MV EMT, our
envelopes are very anisotropic: We get aD/bD ≈ 1.90, com-
pared to KL’s 1.74. To explain why anisotropy gives a great
suppression of the oscillating terms in MV EMT, we introduce
the two-envelope overlap integral S(d) = ∫

dr�(r)�(r − d).
Both the envelope overlap parts of the r1 and r2 integrands
in Eq. (9) are peaked in the region between the two donors,
i.e., for the same values of r1 and r2. The denominator of the
integrand has its largest value when r1 − r2 is small; it can
therefore be shown that the d dependence of the exchange
integral, Eq. (8), is dominated by that of S2(d) [7]. This is true
so long as {aD,bD}/d are small enough, which they are for all
results presented here.

It can be shown [7] that

S(d) ≈
∑

μ

Sμμ(d) ≡
∑

μ

|αμ|2e−ikμ·de−dμ
(
1 + dμ + d2

μ/3
)
,

(10)

where dμ is the separation vector d appropriately rescaled
with the anisotropic Bohr radii: bD along μ̂ direction, aD for
the others, e.g., dz = (dx/aD,dy/aD,dz/bD). For the range of
separations explored, the decaying exponential term dominates
the functional dependence of the S. For example, with d
parallel to [110]

∣∣∣∣ ∂

∂d
log

(
S l

μμ

)∣∣∣∣
/∣∣∣∣ ∂

∂d
log

(
S t

νν

)∣∣∣∣ ∝
√

a2
D + b2

D

bD

√
2

> 1. (11)

Hence the oscillating longitudinal terms decay more quickly
with d than the transverse ones; as d increases, oscillations
are smoothed out. Anisotropy plays a key role in this effect,
and this is far more evident within MV EMT, where our fitting
of hyperfine coupling results in a spread of the donor wave
functions that is much smaller than those in KL or BMB. With
d directed along the [110] direction, even though 32 of the 36
terms in Eq. (8) are transverse, these are heavily suppressed
and the oscillations then appear shallower in MV EMT than in
the other theories.

Even more striking is the form of J (d) when the separation
lies precisely along the [100] direction [see Fig. 2(b)]. Thanks
to the higher symmetry in this case, only four of the 36 jμν(d)
are associated with oscillations, and these are suppressed
to such an extent that the exchange is now monotonically
decreasing.

IV. CONCLUSIONS

We have presented a theoretical analysis of the P-donor
electron wave function in Si. Our consistency with the mea-
sured hyperfine interaction strength improves the description
of the electronic density in the region between neighboring
donor nuclei, which determines their exchange coupling. Ours
is a relatively simple and numerically light framework, which
nonetheless is able to reliably predict properties of shallow
electronic states in silicon. The limitations and approximations
of our theory are clearly understood, and possible improve-
ments may come from an exact knowledge of the Si Bloch
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eigenfunctions and the short-range potential characteristic of
each donor: Both still are inaccessible even with ab initio
approaches. We have shown why the anisotropy intrinsic to
the Si conduction band is particularly important for estimating
the exchange splitting within the cylindrically symmetric
two-donor system: The most immediate consequence is the
large difference in the distance dependence of J for donors
separated along different spectroscopic axes. We find the same
qualitative effect of “washing out” of the oscillations in J (d)
as in the ab initio calculations in [12], but the size of the
exchange and the amplitude of oscillations are significantly
reduced. Precisely along the [100] direction, we predict that
there will be no oscillations at all in the dependence of
J on separation. The reasoning outlined at the end of the
previous section allows us to anticipate that oscillations will
be smoothed efficiently at smaller distances the more localized
the impurity electron. Thus at fixed donor separation, the
predicted effect will be more pronounced for As-, Sb-, and
Bi-implanted silicon. Even though oscillatory variations of J

are still expected as a function of misplacements orthogonal

to a nominal [100] separation (those trends would resemble
qualitatively the J dependence on interdonor separations along
[110] and [111] directions), the range of interaction strengths
induced by uncertainty in donor implantation position will
be less than previously thought. Future work will explore
extensions of MV EMT to include the effects of external
electric or magnetic fields, and other dopants.
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in an underestimation of some inter-valley matrix elements, i.e.
k �= k′, which are considerably smaller than the intra-valley
ones (k = k′); (ii) the statistical weight of those wave vectors
over which the envelopes Fμ are significant is small, and the
relative matrix element comes from an integration over the
whole of kμ space; (iii) the neglected contributions are further
depressed by CG(k0q ,k0p) with G �= 0 which, although not
exactly known, should be smaller than the respective quantities
with G = 0 as derived in using some theoretical treatments (see
for example [28]).

[30] Different η values, proposed by other experiments and theory
[22], would lead to slightly different Bohr radii (about 5%),
which would not change any of the conclusions presented later.
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