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i. Abstract 

In this work methods for performing time series prediction on complex real 

world time series are examined. In particular series exhibiting non-linear 

or chaotic behaviour are selected for analysis. A range of methodologies 

based on Takens' embedding theorem are considered and compared with 

more conventional methods. A novel combination of methods for 

determining the optimal embedding parameters are employed and tried 

out with multivariate financial time series data and with a complex series 

derived from an experiment in biotechnology. The results show that this 

combination of techniques provide accurate results while improving 

dramatically the time required to produce predictions and analyses, and 

eliminating a range of parameters that had hitherto been fixed empirically. 

The architecture and methodology of the prediction software developed is 

described along with design decisions and their justification. Sensitivity 

analyses are employed to justify the use of this combination of methods, 

and comparisons are made with more conventional predictive techniques 

and trivial predictors showing the superiority of the results generated by 

the work detailed in this thesis. 
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1. Introduction 

This thesis describes work undertaken to investigate and develop 

methodologies for time series prediction of complex real world time series 

using principles from Chaos Theory and Computational Intelligence. 

When this work was started various results had been announced using 

computational intelligence techniques to perform prediction of financial 

and biological series that had hitherto been regarded as intractable, and 

much interest had been generated in these techniques as a result. On 

closer inspection the methodologies used required that a range of 

parameters be found by manual or automated search since no analytical 

techniques were available. The results were obtained with considerable 

expenditure of computer time and human effort, and the empirical 

discovery of good values for parameters tended to undermine the validity 

of the results. The choices of parameter values so obtained could not be 

justified by any theory or heuristic, nor could the researcher claim without 

inordinate care that his results were truly the product of blind trials. 

In this work various published techniques that had been used to solve 

other problems are bought together, modified and adapted and combined 

with new ideas to form a time series prediction methodology that 

eliminates the requirement to search for parameters and that requires 
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dramatically reduced computer resources. In the first version of the time 

series predictor there were seven parameters which required setting by 

experiment, In the final version the were none. The run time of the final 

version was 2 orders of magnitude faster than the first taking into account 

the improvements in hardware that had taken place over the period (see 

chapter 3). The accuracy of the results when tested on benchmark time 

series were at least as accurate as other published work (chapter 4). it is 

this successful adaptation and combination of techniques that is novel and 

represents the contribution to knowledge contained in this work. 

The software was tested using financial time series data, specifically 

foreign exchange rates, because of the complexity of the data, its 

availability in vast quantities, and the interest there is in the predictions 

generated. 

A further application arose during the course of this work to test the 

software on a problem in biotechnology, where chaos, and short term 

predictability had never before been identified, and only recently 

suspected. As will be seen the presence of both these characteristics 

were demonstrated using the techniques described in this work. 

In Chapter 2 the types of time series and their characteristics that the 

techniques enshrined in this work attempt to predict are discussed along 

with a review of predictive and analytical techniques that have been used 
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on them. The function and characteristics of various modelling techniques 

drawn from Computational Intelligence are discussed. Finally simple 

predictive methods are described that are very useful in weeding out poor 

predictive results. Because of the many different fields from which this 

work is drawn the author has taken the decision to provide a more basic 

description of the technologies and ideas involved than would normally be 

found in a chapter which is intended to be a literature survey. 

Chapter 3 is a description of the evolution of this work. It describes the 

construction of a time series predictor using Neural networks that 

represented the current state of knowledge in the field, and the problems 

associated with using it to predict financial time series. The large number 

of control parameters required are described, along with the paucity of 

techniques or heuristics to determine their proper value. 

Various interim versions are described that 'first automate the search for 

parameters, then in successive stages reduce the requirements until in the 

final stage none of the original parameters survive. 

Chapter 4 describes the final version of the time series predictor in greater 

detail. It explains the various new ideas and adaptations and 

improvements to existing algorithms that went into the time series 

predictor. The problems associated with handling financial time series 

data are described along with the solutions found. Methods for evaluating 
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the performance of the predictor are described along with the performance 

of the predictor on various artificial benchmark series. 

Chapter 5 describes the performance of the predictor with financial time 

series. Sensitivity analyses are used to show that the system described 

finds good values for the various parameters that are required. The 

possible meaning and relevance of these predictions is discussed. 

Chapter 6 describes the analysis of a time series drawn from a 

biotechnology experiment, and how both chaos and short term 

predictability were identified using these techniques, for the first time in 

this particular field. 

The results and predictions generated are described, along with a short 

discussion of the potential use of this new knowledge. 

Chapter 7 reviews the various conclusions reached in the work described 

in this thesis, and suggests useful areas for future work. 
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2. Background to work 

In this section the key concepts, technologies and algorithms used either 

in the final version of the predictor or in interim versions will be described 

and their various merits discussed. Because of the many different fields 

from which this work is drawn the author has taken the decision to provide 

a more basic description of the technologies and ideas involved than 

would normally be found in a chapter which is intended to be a literature 

survey. 

There has been a great deal of interest in recent years in the application 

of chaos theory to a variety of real world time dependant systems, and the 

ability that this new branch of mathematics promises to untangle and bring 

forth order from seeming disorder. 

There has also been much attention given to the ability of computational 

intelligence tools such as Neural Networks, Genetic Programming, and 

genetic algorithms to model fuzzy or ill defined real world problems. There 

are many time series, notably in the natural sciences and finance, that had 

proved difficult to analyse with conventional linear methods, that are now 

beginning to be modelled using non-linear and non-parametric methods. 

(Tong, 90) 

These "difficult" time series turn up in many, probably all, branches of 

science; from the analysis of the time variation in the population of rodents 
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in northern Scandinavia (Turchin, 93) to the analysis of the weather 

(Lorenz, 63) 

Mathematical methods have been developed to characterise and to some 

extent analyse these time series, and these will be discussed in more 

detail later. It will be shown that the complexity of these series and the 

systems that underlie them, due to the presence of non-linearity, and the 

fact that they are represented by finite observations, justifies the use of 

empirical and non-parametric methods as described in this thesis. 

2.1 Review of fundamental concepts 

The ideas underpinning this work are derived from a number of different 

disciplines. Few areas of study can avoid reference to mathematics, but 

many of the techniques described were derived not by mathematicians but 

biologists or physicists trying to gain information from sampled time series 

that were both short and noisy. By chance, or perhaps by the nature of 

things, the same kinds of problems have been attacked using empirical 

methods in the study of Computational Intelligence. 

2.1.1 Chaotic series 

Many systems in the natural world are now known to exhibit chaos or 

non-linear behaviour, the complexity of which is so great that they were 

previously considered random. The unravelling of these systems has been 

aided by the discovery, mostly in this century, of mathematical 
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expressions that exhibit similar tendencies. By analysing these 

expressions techniques have been developed and applied to the real 

world The most famous and oldest of these is the logistic equation, 

originally conceived as a model of population growth. 

The Logistic Equation: 

t=O.. 500 b=4.0 ~=o.1 Initial conditions 

\+1 :=b.\(l- \) 

x 0.5 , , t 
I! 

0 
0 100 200 300 400 500 

Figure 1, The first 500 points of the logistic Equation 

Another simple example is the Tent Map: 

he Tent Map: 

n=O.. 500 ~:=O.I b=O.95 Initial conditions 

x := if[x <0.5 2·b·x ,2·b· (1- x)]n+ 1 n '11 n _ 

100 200 300 400 500 

n 
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Figure 2, The first 500 points of the Tent Map 

Yet another chaotic series is generated byevaluating the Mackey-Glass 

equation: (Mackey,77) 
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The Mackey-Glass Equation in its discrete form. 

The following choice of variables and initial condition cause chaotic behavior. 


a=O.2,b=O.9,c=10,s=18. XOtoX18=O.7 


The Equation: 


x, = hX t +a 
X,_s 

c_ 1 

1+ x t - s 

Time Evolution of the equation: 

________~--------_.,-----____,-__--__--.-------~5 

An embedded version of the equation: 

~____~____.-____.-____~____~__~4 

2 

()~ 

lIS 
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Figure 3 The first thousand points of the Mackey-Glass equation 

And as the last example there is the system of equations first used by 

Lorenz (Lorenz, 63) in his attempts to model simple atmospheric 

interactions: 

X'+l = x, + a(Yt - x t )8 

Y'+l =8(bx t - Y, - x,z,) + Yt 

Z'+l = 8(x, Y, - cz,) + Z, 

Where b =28, a = 10, c =8/3 and () = 0.01 

401----+-----1r----+----=t
40,-------,----..,.------, 

2020 

xI xI 

0 

1000 2000 3000 -2 
40-~IJ 

40 

40 

20 

xI 

0 
-2 

-2 60 
-4 60 

Zt zl 

Figure 4, The Lorentz equations, the first 3000 points 
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The above series are introduced because they illustrate how complex 

behaviour can easily be produced by simple equations with non-linear 

elements and feedback, but also because they will later be used as 

benchmark series. Note that the path taken by the series, known as the 

trajectory, in figures 3 and 4 forms a complex shape beyond which the 

series never strays. This shape is known as the attractor of the function. 

2.1.2 Embedding as a means of unravelling chaotic series 

(Ruelle,81) and (Takens,81) first described a simple method for analysing 

chaotic series called time series embedding. It can be illustrated simply by 

observing the effects of plotting pairs of points Xt and Xt+1 for both the 

Logistic equation and the Tent map as shown in Figure 5 . 

.... / 
f',jpI·JiIIII. .. 

~'II~ 
.............. .,. I 


o~~----~----~ 
o 0.5 

Figure 5, Embedded logistic equation and Tent map. 

The above graphs show that in both cases plotting pairs of points from 

the time series has produced recognisable patterns. Given Xt we can make 

a very good estimate of Xt+1 by interpolation. This principle extends to 

multiple dimensions, and in general can be written as: 
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2.1 

Where X is the embedded vector, d is the Separation, and n the 

embedding dimension 

Takens (Takens,81 ) showed that this principle generalises, and that given 

a chaotic series correctly embedded there existed a smooth function that 

would model it perfectly. Both the correct embedding dimension and the 

smooth function must however be discovered empirically. An extra 

complication is that the best predictions are not necessarily achieved 

using contiguous samples to form the embedding vector. In fact it is often 

better to separate the embedded samples by some gap. The gap is 

termed the embedding separation. 

2.2 Chaos theory based measurements. 

2.2.1 The Lyapunov exponent 

An attribute of chaotic systems that has entered into legend as the 

butterfly effect is that of high sensitivity to initial conditions. It is considered 

proof of the presence of chaos if this attribute of the system under 

analysis can be demonstrated (Wolf 85). The standard method of 

identifying this attribute is by the calculation of the Lyapunov exponent 

(Wolf,85). This exponent measures to the base 2, therefore in bits, the 

rate at which neighbouring points on the attractor diverge as they are 


moved forward in time. 
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Figure 6, Two neighbouring trajectories on an attractor showing the 

characteristic divergence in time associated with chaos. 

Given sufficient data we can talk about how a volume of space on the 

attractor dilates over time. 

The trajectories on the attractor are embedded in a multi-dimensional 

space, and so the divergence is properly represented as the difference 

between 2 n-tuples. The dominant average Lyapunov exponent is defined 

as: 

Where n indexes the samples, and I is the Euclidean distance between a 

trajectory and its nearest neighbour. 
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With very large amounts of data the density of points in a region of the 

attractor will permit the calculation of local Lyapunov exponents. That is to 

say that the rate of divergence will not necessarily be constant over the 

whole attractor, and so localised measurements can be made. In practice 

we are unlikely to be afforded this lUxury when dealing with experimental 

data, and so the first exponent is the most that we can hope to measure. 

The Lyapunov exponent has the units Bits per sample time step. 

Positive Lyapunov exponents are considered evidence of chaos, Negative 

exponents of mean reverting behaviour, and the value zero is 

characteristic of cyclic behaviour. As an example of the latter, the 

attractor of a sinusoidal system such as an excited pendulum is a circle. If 

we consider the time evolution of two points one degree apart on the 

circle, the distance between them will remain constant, thus the ratio of 

two consecutive lengths will be unity, and thus the exponent will be zero. 

2.2.2 Hurst Exponent 

H.E. Hurst (Hurst,65) is responsible for a measure of predictability of time 

series that has interesting characteristics. The exponent is derived using 

so called RIS analysis. Given a time series X containing a number of 

points, n, and choosing an integer divisor p where for convenience: 10<= 

P < n12, the data can be divided into nip blocks. 

For each block the average value is calculated, then the maximum range 

of each block and the standard deviation of each block. 
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2.3 

... 


The value (range)/(standard deviation) is calculated for each block and 


then averaged over the blocks. 


This average value rs is related to the Hurst exponent by the following 


formula: 


where H is the Hurst exponent. In order to gain a more reliable estimate 

the value of rs is calculated for all the possible values of p, and the 

resulting tuples are logged and a linear regression is performed on them. 

It is the gradient of the regression line that is used as the Hurst exponent. 

Hurst exponent values range between 0 and 1. A value of 0.5 indicates a 

true random walk, a value 0.5 < H < 1 indicates so called persistent 

behaviour, in that one can expect with increasing certainty as the value 

moves towards one that whatever direction of change has been current 

will continue. A straight line with non zero gradient would have a Hurst 

exponent of 1 . 

Similarly, values 0 < H < 0.5 indicates anti-persistent behaviour, in that 

one can expect that whatever direction of change is current is unlikely to 

continue. At the limit of 0 the time series must change direction every 

sample. This gives a clue to a relationship between one definition of the 

fractal dimension and the Hurst exponent. This is: 

D=2-H 2.4 
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So a Hurst exponent of 1 gives a Fractal dimension of 1, as one would 

expect with a straight line. A Hurst exponent of 0 must belong to a time 

series that is so volatile as to fill the 2 dimensional space and thus have a 

dimension of 2. 

2.3 Derivation of Embedding Parameters 

In order to analyse and predict a chaotic time series we must embed it 

using the method in 2.1.2. The appropriate values of d and s are important 

to ensure accurate results. See 5.3. 

2.3.1 Empirical methods 

In the absence of theory to guide us empirical methods seem very 

attractive so long as the search space is not too large. One can define 

practical bounds for embedding parameters, and thus define a search 

space. Reasonable bounds might be: 

1) we are looking for integer valued dimension and separation values 

2) we are unlikely to be able to predict anything requiring an embedding 

dimension greater than 8 

3) separation is unlikely to exceed 16 (based on experiment). 

A brute force search of this space would require 128 trials to cover all 

possibilities. However without independent justification for a choice of 

embedding parameters one could only use the value of some derived 

metric such as prediction performance to determine the optimum. In order 

to perform prediction we must form a model of the attractor and thus 

require a supeNised learning algorithm of some kind. In the early part of 

this work the only available supeNised learning algorithm with which to 
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generate predictions, back-prop Neural Nets and variants, also had 

topological and functional parameters that were not independent of the 

embedding dimension. 

Thus unfortunately the number of free variables was increased to 7, and 

the number of trials increased to 3,276,800. Some methodology to search 

this space more efficiently was required. 

There are a variety of gradient and stochastic methods for optimising 

multi-parameter processes such as that discussed above. The one key 

problem in this work that constrains the selection of algorithm is the 

presence of a stochastic process, a back propagation neural net, in the 

process to be optimised. Neural nets, especially those with greater 

topological complexity than required for the problem in hand, will often find 

different solutions each time they are trained, or take different numbers of 

epochs to reach the same solution. The optimisation surface for a 

process containing a neural net is therefore very noisy. Gradient 

methods, such as hill climbing will not work well in the presence of noise 

since the gradient of the surface is forever changing. Two methods offer 

hope however: Simulated Annealing (Ingber,93) and Genetic Algorithms. 

The former was rejected because of a lack of specific evidence as to 

performance in the presence of noise. One has only to look around to see 

that Genetic Algorithms perform very well in a noisy environment. 
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2.3.1.1 Genetic Algorithm based selection of embedding parameters 

Genetic Algorithms, (Gas) seek to copy the processes of natural selection 


(Darwin, 1859) and the strategies used by nature to modify species to 


ensure survival. 


They were first invented by (Holland, 75) and his pupils in the mid 70s. 


They have found widest practical application in optimising a fixed number 


of parameters of some process interacting with an external environment. 


The main characteristics are: 


• 	 The representation of the parameters to be searched as strings of 

binary digits split into fields in imitation of chromosomes. 

• 	 The selection of good genetic material for reproduction based on 

fitness, an externally applied measure of its worth, and random 

chance. 

• 	 The use of cutting and splicing (crossover) to generate offspring 

from parents. 

• 	 The use of mutation to flip bits in the chromosomes during mating 

(normally with a low probability) as a way of adding "new bloodll to 

the gene pool. 
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When designing a genetic algorithm search, the first thing to be decided is 

the format of the chromosomes. The parameters to be searched are 

encoded in binary and concatenated one to another to form strings of 

digits. 

Chromosome~-------.... 

11011\ 011\1111 0\ 0\ 0\1\ 

~ Gene ~ ~ Gene) 

Figure 7, Genes and Chromosomes 

The space allotted to a single parameter is called a Gene and consists of 

several binary digits. The order of genes within a chromosome is not 

important. Maximum and minimum values for each parameter need to be 

determined, and the numbers of bits in the gene determine the resolution 

to which this interval can be represented. The definition of these fields is 

external to the operation of the GA. This fact is important, the operators of 

crossover and mutation require no knowledge of the defined fields, and it 

is even possible to change the interpretation of the fields during 

processing. 

This facility is the basis of Dynamic Parameter Encoding. (Schraudolph 

,93). The next important decision is the population size. Typical values are 

30-500. The larger the number the slower the optimisation, the smaller the 

number the greater the chance that some vital solution in a far corner of 

the parameter space will go unexplored. 
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The operation of a GA is fairly simple.(Davis,91. An initial population of 

chromosomes with a length decided by the sum of the gene lengths are 

initialised with random binary values. They thus represent randomly 

selected points in the parameter space. 

In turn each chromosome is extracted from the population and its genes 

decoded to extract the parameter values. The parameters are tried out on 

the external process and a monotonic though not necessarily linear 

measure of performance must be generated. This measure called fitness 

is the associated with that chromosome. 

~, 
External Process to be 

Optimised 
,, 

External measure 

of performance 

Process 

I outputs 

Parameters 

controlling 

the process. 

Genetic Algorithm Fitness1/ 
I' 

Figure 8, Genetic Algorithm processes 

When every chromosome in the population has been tried out a new 

generation is created. 

Individuals are selected in the most simple form of GA by using "roulette 

wheel" selection. The probability of selecting any particular chomosome n 

is set to: 
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it 2.5 
P, = Lin 

n 

where ft is the fitness of the chromosome, and n indexes the other 

chromosomes in the population. 

Two mates are selected by the above process and by use of a biased 

random number generator with two states the partners are either selected 

for crossover or passed on to the next generation unchanged. The 

probability of crossover is generally set to -0.8. If crossover is selected 

another biased random number generator is used to select a location on 

the chromosome strings with uniform probability. Both chromosomes are 

cut at this point and their respective halves swapped. 

Figure 9, The Crossover operator 

Whether or not crossover takes place, each bit of the two chromosomes is 

examined and based on a biased random number generator with two 

states arranged for low probability the bit is flipped, i.e. 0-1, 1-0. This 
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process is termed mutation, and the probability associated is the mutation 

rate. Typically this is set to -0.01. 

Crossover MutationOld --0 New 
oulation of Population of 
)mosomes chromosomes 

Roulette 

I--~O selection 


Figure 10, Generating a new generation 

This selection, crossover and mutation process is repeated until a new 

population is formed, and then the old is destroyed. The process of 

evaluation is then performed and the whole process is repeated many 

times over. 

When plotted over the generations, GAs exhibit increasing average 

fitness, and the production of a few super-individuals with high fitness. 

Commonly GAs are used to find several possible solutions to a problem, 

and the generation of super individuals too soon can prevent the 

searching of other possible solutions. This state of affairs is called 

premature convergence. 


There are a few possible additions to the basic GA formulation that are 


appropriate to this application. 


• 	 Elitism is the process by which the individual chromosome with the 

highest fitness from each generation is passed on unmodified to 
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the next generation. The values represented in each gene can be 

read as binary coded numbers, or as Gray coded numbers. Gray 

code is an alternative to binary in which the representation for any 

two contiguous numbers changes by only one bit. Gray coded 

Genes are less prone to dramatic changes of value when mangled 

by the crossover and mutation operators. (Carmana,88) 

• 	 Fitness scaling is designed to handle the situation where the 

majority of the population have similar fitness scores. Under these 

circumstances the pressure for the reproduction process to select 

the best chromosomes is slight. The best has little more chance 

than the worst. This implementation of fitness scaling calculates 

the mean and the standard deviation of the population fitnesses. 

The transformation fitness = fitness - (mean - standard deviation) 

is applied to each chromosome's associated fitness value, and 

those with negative resultant fitnesses are set to O. The variation 

in the set is now much larger and optimisation proceeds more 

quickly. (Grefenstette,86) 

The parameters selected to optimise the Neural net based time series 

predictor were: 
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Name Type of parameter Number of Bits 

Embedding dimension integer 1-8 3 

Embedding Separation integer 1-16 4 

Neural net 18t row hidden units integer 1-16 4 

Neural Net 2nd Row hidden integer 1-16 4 

units 

Hidden rows integer 1-2 1 

Learning rate float look up table 4 

Momentum float look up table 4 

The gene values were converted according to the description above. 

2.3.2 Analytical methods 

Takens (Takens,81) and Mane (Mane,81) determined the upper bounds 

for a successful embedding if one knew the fractal dimension of the 

attractor da . This is simply: 

de;::: 2da + 1 

Where de is the embedding dimension, an integer value. 

However, as Medio points out, (Medio,92) The fractal dimension of the 

Lorenz attractor (Lorenz, 63) is 2.06, thus Takens leads to an embedding 

dimension of 5, whereas it is known that the practical embedding 

dimension of this series is 3. When dealing with large amounts of 
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noiseless data, as can easily be obtained with the various series 

described in 2.1.1 an over-large choice of the dimension may not matter 

when calculating say Lyapunov exponents, but an over-large choice can 

be fatal where modelling is concerned. There is empirical evidence for 

this presented later in this thesis. See 5.3. Martin Casdagli (Casdagli,89) 

also showed this effect using a brute force search through a range 

embedding dimensions and constructing models of various types for each 

dimension value which he then tested on fresh data. The reasons for this 

effect are most likely to be parsimony, or the lack of it. Any model 

generated with more than the required number of inputs, and thus more 

than the required parameters or model complexity is less likely to perform 

well on out of sample data. See for justification of this concept 2.5.7. 

The Takens upper bound still requires the calculation of the dimension of 

the attractor, and for experimental data where the equations underpinning 

the dynamics are not known this requires trial embeddings; so the whole 

process is somewhat circular. Some other method is therefore required to 

find the embedding dimension. There are several possible analytical 

methods for deriving a choice of embedding dimension. The one with the 

oldest lineage (Farmer, 89) is to look for the saturation of some system 

invariant, such as Iyapunov exponent with increasing embedding 

dimension. Another is the false nearest neighbours algorithm and yet 

another is the analysis of the Kaplan-Glass statistic (Kaplan,91) with 

increasing embedding dimension. Of these the simplest to implement and 
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the seemingly most robust is the false nearest neighbours statistic. It has 

a geometrical formulation that sets it apart from the other two, which are 

concerned with local derivatives of the attractor, and thus gives a more 

independent view of the attractor dimension. The choice of a methodology 

for determining the separation is more complex. Conflicting advice is to 

be found on this subject in the literature. Medio claims the separation is 

irrelevant so long as it is small, Casdagli that it should be related to the 

mean orbital period, Abarbanel (Abarbanel,92) that the first minimum in 

the auto- correlation should be used, and Fraser &Swinney (Fraser,86) 

that the first minimum in the Auto mutual information should be used. The 

separation is clearly not irrelevant as evinced by 5.3. The mean orbital 

period is both hard to calculate for experimental data, and unfeasibly 

large. The concept of the first minimum of the auto-correlation is useful, 

but correlation as a measure is dependant on a Gaussian distribution, 

which we know not to hold for the data that we want to analyse. See 5.5. 

Mutual information makes no assumption about the distribution of the 

measured series, and is therefore the most attractive measure to hand. 

2.3.2.1 False nearest neighbours 

False nearest neighbours (Kennel 92) is a methodology for deriving a 


workable embedding dimension for a given time series. 


A trial embedding is formed with separation given by whichever 

technique is chosen and embedding dimension n. The nearest neighbour 

vector for each embedded vector is found and the Euclidean distance 

between the two vectors measured. Then the embedding dimension is 
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increased by one for both the current vector and its neighbour by 

appending the appropriate data value. If the distance between these two 

new vectors is dramatically different after this change the neighbour is 

considered a "False Neighbour". The number of these is counted and 

expressed as a fraction of the number of rows. A curve of these values 

against n is plotted and an embedding dimension with a suitably low 

number of false neighbours selected. 

Two views of a three dimensional attractor. 
4 

20 40 60 o 
Points that appear to!lether In two dimensions, are far apart In the 

\ \ 
Figure 11, An example of a false neighbour on the Lorenz attractor in 20 

2.3.2.2 Mutual information 

Mutual Information is a concept conceived by Claude Shannon (Shannon 

49). Mutual Information attempts to measure in bits the amount of 

information that can be inferred about one series of symbols by another. 

Lafrance (Lafrance, 90) gives a derivation of this concept. In general 

given two series x and y with indexes I and j respectively, the average 

mutual information can be calculated as: 

37 

~................................... 




2.7 


Note that Mutual information is positive and symmetrical, that is f(x,Y) > 0 

and l(x,Y) = J(y,x). 

Auto mutual information is measured by using two copies of the same 

series, one delayed by some lag t. As t increases it is hoped that several 

minima will be observed in the resulting curve, and the value of t at the 

first minimum is selected (see Figure 33). The argument for this is 

somewhat intuitive. We want to choose an embedding separation so that 

each column in the embedding supplies the maximum amount of new 

information. This must imply the minimum of old information, and thus a 

minimum of mutual information. 

With some series the mutual information values will just gradually decline 

without any clearly detectable minima. The advice of Abarbanel et al. is to 

take t=1 if this occurs. 
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2.4 Supervised Learning as non-parametric modelling 

Regression analysis is an example of parametric modelling in that the 

form of the data series to be modelled has already been inferred or 

guessed at before the analysis begins. The purpose of the regression is to 

find parameters for the model that minimise the error between the 

modelled series and the series itself. The statistician must try increasingly 

complex models, and then use regression analysis on them to determine 

their parameters until the results are deemed acceptable. 

In recent years, techniques have been developed that simplify the 

modelling process. Non-parametric techniques are those where both the 

form of the modelling function and the parameters to it can be modified 

during the analysis. 

Normally these techniques are iterative, and since the modelled series 

must be accessed repeatedly such a technique can also be considered a 

form of learning. Typically the algorithm iteratively forms a better and 

better model as the data is presented, and so behaves as an analogue of 

human learning. Indeed practical algorithms have been trained, for 

instance, to learn the past tenses of common English verbs. Interestingly 

in the early stages of training, the same kinds of mistakes are made by the 

algorithm as a small child just learning his or her own language 

(McCleliand,86). 

The processes of learning can be split into three different categories for 

convenience: Unsupervised learning, Supervised learning and 

Reinforcement learning. 
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Unsupervised learning is where data is presented to a learning algorithm 

in the form of multiple consecutive n-tuples, and the algorithm is required 

to classify these n-tuples into meaningful groups without any external 

guidance. This is akin to learning a new language by immersion in the 

country where that language is spoken. Initially it is very hard to recognise 

the sounds of the language, or to separate the individual words. The 

ability can however be gained without the help of a teacher. 

Supervised Learning is where both input data and a set of expected 

responses are presented to a learning algorithm. Typically both the input 

and response data are paired n-tuples. The algorithm should learn to 

associate the pairs of n-tuples, and correctly return the response n-tuple 

once training is completed when a data n-tuple is presented. The human 

analogue of such a process would be rote learning. 

The usefulness of such an algorithm would be enhanced if, when an input 

n-tuple similar but not identical to one of the training input n-tuples were 

presented a response the same as or close to the expected response 

were generated. 

This ability to respond rationally in the presence of noisy data is termed 

the "generalisation ability" of the algorithm. 

As of yet there is no generally agreed measure of this quality. The quality 

depends on the ability of the algorithm to glean the general idea or 

function underlying the n-tuples to be learned, and to reject noise or false 

data points in the training set. Usually, as we shall see, algorithms learn 
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the gross features of a training set first and the finer detail last. Since we 

hope that the signal outweighs the noise in our data set, the noise is 

normally learned last, and various techniques, which will be discussed 

later, can be used to terminate training before this point. 

Reinforcement learning, also known as learning with a critic, requires 

some external arbiter to permit learning. In this paradigm the algorithm is 

required to suggest a set of parameters for some external process, and is 

given a "correctness" score for that set of parameters. Rather like a game 

of twenty questions the algorithm is required to produce better and better 

parameter guesses as training continues. Some forms of Neural Network 

and genetic algorithms are examples of this form of learning. 

Both Supervised and Reinforcement learning have been used in the work 

described in this thesis, though Reinforcement learning was dropped in 

the final version for reasons that will become clear. Supervised learning is 

used to model the smooth function generated by a suitable embedding of 

a system demonstrating non-linear behaviour, and thus to permit the 

generation of predictions. 

2.5 Neural Networks 

These are perhaps the most commonly used supervised learning 

algorithms. There are few subjects in computer science that have seen a 

greater growth than Neural Networks in the past ten years. A very large 
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volume of papers have been generated and several journals and 

numerous conferences are devoted to the subject. For all that the basic 

ideas underpinning this technology are fairly simple. In many cases Neural 

nets are the breach through which the world of computational intelligence 

is entered, and much of the work published under that banner is of more 

general application. 

2.5.1 Simulated Neurons 

Common to all implementations of neural nets, and there are many, is the 

concept that simple processing units can be used together in a way 

vaguely similar to the human brain to achieve some kind of group 

intelligence. The electro-chemical interactions of a living neuron with its 

neighbours are fairly well understood. Few implementations however give 

much regard to these models; they represent algorithms along the same 

theme that are more easily Implemented in software or silicon. One still 

hears the term biological plausibility used in the literature, mostly to 

remind experimenters of the attributes of a neural network that permit it to 

be called neural. These are that learning should be spread over a number 

of simple processing units, that learning should modify some attribute of 

the connections between the units or the units themselves, and that 

processing should be local. Local processing means that, ignoring 

synchronising signals, it should be possible for each neuron to process 

individually using the stimuli available to it, and to learn by modifying only 

itself or the attributes of connections directly attached to it. There are 

several successful algorithms that modify all the parameters of a net at 
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once in order to effect learning, and can only be formulated to act in this 

fashion. As useful as these algorithms may be they are not neural. 

In back propagation neural nets a neuron has a simple structure. 

Synapses bring signal values to the input of the neuron. These values are 

real numbers and are summed at this node. The output is formed by 

applying a sigmoidal activation function to the sum. If we denote the sum 

of the input values as x, a typical choice of transfer function is: 

y = 1+e·-( 

2.5.2 Simulated Synapses 

Synapses are the interconnections in a network, they carry signals from 

inputs to neurons and neuron to neuron in a single direction. The signals 

they carry are real numbers representing input values to the network or 

excitation values of neurons. A synapse has a weight associated with it 

that scales the signal passing through it. These weights are the only part 

of the model that is typically modified while training the network. A special 

type of synapse is commonly provided, termed a bias synapse. This has 

the value 1.0 permanently connected to the input. 

2.5.3 Network topologies 

In order to simplify the study and design of neural networks researchers 

tend to use simple topologies. Network designs fall into two types: feed 

forward and recurrent. A Feed forward net typically has a row of input 

terminals, 1 or more rows of hidden units, and one row of output units. 

43 


2.8 



II' 

Interrogating a trained network involves signal propagating across the 

network in only one direction. There are no feedback paths. Typically to 

further simplify the topology each input terminal is connected to each 

hidden unit in the first row by a synapse. If more than one hidden row 

exists then each unit in that row is connected to each of the units in the 

next row and so on until the output row. 

There are no connections that cross rows. Typically every hidden and 

output unit is also supplied with a bias unit. 

Recurrent networks permit feedback across rows, and are capable of 

detecting and responding to sequences of input values. In this work 

reliance will be placed on the embedding process to disentangle time 

dependencies, and the promise from Takens that once we have 

embedded the signal we need only to model a smooth function. 

2.5.4 The Error Surface 

The most illuminating concept in understanding the various learning 

algorithms that can be applied to train neural nets is the error surface. 

Having in advance decided on a supervised learning training set 

consisting of input vectors and expected output vectors, and having 

decided on a topology for the neural net one has fixed the number of free 

variables, weights and bias weights in the network. Training the network 

will require selecting a particular set of values for these free variables. We 

can imagine therefore a high dimensional space where we devote one 
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dimension to each variable, and one extra dimension to the sum of the 

squares of the errors over the training vectors of the network. 

Now for any choice of values for the variables, we can evaluate the 

network through the training set and arrive at a single value for the sum 

squared error. Thus there is a surface, the error surface, representing the 

performance of the network for different sets of weights and biases. Given 

enough time we could evaluate grids of points and build up a picture of 

this surface. This would indeed be one kind of learning algorithm. 

If the network is capable of modelling the input data there will be one or 

more points on the surface where the error is, or is close to zero. The 

process of training a supervised learning algorithm is to incrementally 

move towards and find one of these minima. 

2.5.5 Symmetry and multiple solutions 

A trained fully connected network has many symmetries inherent in its 

design. In the example given below with four inputs, three hidden units, 

and one output, one could easily swap hidden units, say 1 for 3, and arrive 

at an identically performing but different net. We can thus be sure in this 

case that if there is one zero on the error surface there will be 2 more by 

symmetry. 

We cannot be sure how many solutions exist for any given error surface, 

especially since the surface is unbounded. The presence of multiple 

solutions eases considerably the process of training. The weights of 
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Neural nets are norma.lly seeded with small random numbers, thus placing 

the nets starting point somewhere close to the origin. Whichever learning 

algorithm is employed, the chances of finding a minima nearby are much 

enhanced by symmetry. 

2.5.6 Practical Neural Learning Algorithms 

Two will be considered, Back propagation (McClelland,86) and a guided 

random search algorithm by (Baba,89) based on work by Solis & Wets 

(Solis,81 ) 

Back propagation is the most popular supervised learning algorithm and 

uses a gradient descent method to find the fastest downhill path on the 

error surface towards the solution. 

The Baba algorithm is best explained as a series of steps: 

1) The network is initialised with small random numbers for the weights 

and biases 

2) The sum squared error is evaluated for the particular set of weights and 

biases. 

3) If the error is below a predetermined level processing is terminated and 

the network deemed trained. 

4) otherwise small random numbers with a Gaussian distribution are 

generated for each variable. These numbers are temporarily added 

each to their respective weight or bias, and the sum squared error is 
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evaluated over the training set. If this has improved the error the 

changes are incorporated. Go to 3. 

Both algorithms have the effect of stepping across the error surface and 

following downward slopes. 

BackProp can be caught in local minima, if bounded on every side, The 

Baba algorithm, though slower will not. Since the search is performed with 

Gaussian random numbers sooner or later a change of sufficient size to 

leave the minima will be generated. 

2.5.7 Neural Network Minimisation 

Even non parametric modelling techniques must have some parameters! 

As soon as Neural networks began to be used for practical applications 

where a net was trained on some subset of all the possible training 

vectors, and then required to predict others not in that subset, the problem 

of finding the appropriate network topology became apparent. Neural 

networks are considered universal approximators of all functions of 

practical interest (Hornik,89). This is based on the assumption that a 

neural network of unbounded size could be generated. 

However the practical problem is finding the minimum network that will 

learn a given training set with a particular error rate. One can of course 

always generate a net that is too large. 

The motivation for this is inspired both by practical necessity and theory; in 

this case computational Learning theory. 
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The philosopher William of Occam (1285-1349) is credited with the idea 

expressed as "Non sunt multiplicanda entia praeter necessitatem". 

Literally "Entities should not be multiplied unnecessarily". This is known 

as Occam's razor and was used as a method for discarding elaborate and 

overblown philosophical theories. It can also be recast as the principle 

that the simplest model is most likely to be correct. 

Cheeseman (Cheeseman 90) cast this problem of model minimisation in 

a Bayesian framework and showed that the most likely model in a 

Bayesian sense would be generated by minimising the sum of two terms: 

The complexity of the model, and the complexity of the residuals given the 

model. Complexity is measured here using the information theoretic 

concept of message length, and is the minimum number of bits required to 

encode the model or information. The principle is of great interest, but the 

practical implementation of such a minimisation system is difficult to 

achieve with non parametric modelling with the requirement to generate 

prior probabilities for each parameter. 

The general principle is clear however. If the purpose of training a model 

on a subset of its possible input and output vectors (in sample data) is to 

produce the best possible response with data vectors not present in the 

training set ( out of sample data), then one must trade off model 

complexity against training set error, and there must be an optimum 

combination. 

The above discussion assumes a parsimonious model representation. In 

practice there are two elements to any excess of model definition, that 
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which is explained by the above and excess caused by lack of information 

about the required model complexity before the training process begins. 

An example- might be useful here. 

Let us assume that we generated a training set by taking some simple 

function, such as x= lover the range 0,1 and sampling it at 0,0.01, 0.02 

etc. to build our training set. Let's assume also that small random 

numbers chosen to have Gaussian distribution were added to each 

training sample. 

We could construct a net with perhaps three layers of Neurons and say 

five hidden units in each layer to learn the training set. 

Figure 12, Example neural network illustrating sources of irrelevant 

complexity. 

Using a non parametric modelling technique like Neural Networks there is 

nothing to guide our choice of topology before training begins. The above 

may well contain too many processing elements. 
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During training of the net we can expect the larger features of the training 

set to be learnt first, and for the net to continually refine its model. This is 

in the nature of gradient descent. At some point during training the finer 

features that are modelled are caused by the added noise. The network is 

oblivious to this and continues to construct and refine the model so as to 

explain the noise as well as the underlying function. 

Now during the training process some of the hidden units may prove to be 

totally redundant, some of the weights may be set close to zero, or two or 

more units may share some modelling burden that could have been 

performed by one. We thus have a structural burden of dead wood. We 

also have inappropriate model refinement in that the model has learnt the 

perturbations of the input data due to the noise. 

Removing the structural dead wood is the purpose of network 

minimisation. There are two ways to achieve this: growing a net from 

some small initial starting point by adding model complexity only as it is 

required, and pruning or skeletonising a baggy trained net. 

Examples of the former are the Upstart Algorithm (Frean,90) and Cascade 

Correlation (Fahlman, 90). Examples of the latter are Optimal Brain 

Damage (OBO) ( Le Cun,90) and Optimal Brain Surgeon (Hassibi,93) after 

training, and weight decay during training (Hinton, 86) 

Since after training minimisation methods can be grafted on to existing 

back propagation algorithms they are the most attractive. The two 

examples above look at the second derivatives of the error surface of the 
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trained net and decide which weights can be deleted. In aBO the weights 

are ranked in order of magnitude of second derivative, and the lower n% 

are deleted. An iterative process is required to find the optimum deletion 

rate. A maximum acceptable error rate is chosen and small percentages 

of the weights are deleted. The net is briefly retrained and the process 

repeated until the chosen error rate is achieved. 

2.5.8 Cross Validation 

A non-parametric modelling technique such as Neural nets or Genetic 

Programming (Koza, 92) tends to learn gross features first and finer 

features as learning progresses. If the training set is both large and 

noiseless this will cause no problem, and we can permit the process of 

refinement to continue until some arbitrary level of accuracy on the 

training set is achieved. This is not the case with noisy and shorter data 

sets. Here the finer features are often noise rather than the underlying 

process to be modelled and one must stop training before these are learnt 

to get the best performance on out of sample data. 

The following diagram is derived from Hecht-Nielsen (Hecht-Nielsen,90). 
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Figure 13, in and out of sample training performance 

Cross validation is a method to prevent this over-training. A separate 

validation data set drawn from the same source is required and the 

performance is monitored on this set. Training is terminated on the 

minimum of this error. This requires hindsight, so the normal technique is 

to store copies of the model only when out of sample performance 

improves compared to the last training cycle, and to continue training for 

some suitably large period after the last model storage. 

2.6 Surface modelling techniques 

When a neural network is trained it represents a model of the function that 

generated the training set to a certain degree of error. The Neural 

network can be thought of as representing the data set, which can be 

reconstituted through it. Indeed one form of data compression relies on 

this principle (McClelland,86). 
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If this data compression is not considered a virtue for a given application 

there are other supervised learning algorithms that use the training data 

set as part of the model. These effectively require no training, instead 

what processing is required is transferred to the interrogation phase. 

These algorithms are basically interpolative. They rely on some 

interpolating function using existing points in the data set to give results. 

See 4.5.1 for a description of the local approximation algorithm used in 

this work. 

2.7 Trivial Predictors 

It is too easy, given the complexity of the tools at hand in time series 

analysis, and the many limitations on their use that may not be 

remembered, to see in the results of a predictive algorithm more than is 

really there. One of the most powerful methods for returning to sanity is 

the use of Trivial Predictors. 

These are simple models that can be easily applied to the predicted data, 

and against which performance can be meaningfully and simply 

measured. 


The first order trivial predictor simply predicts that a series sample will 


have the same value as the preceding sample, i.e. 


2.9
Xt = Xt-1 

The second order Trivial Predictor assumes the same change in the data 

as the previous sample, i.e. 

2.10 
Xt = 2Xt-1 - Xt-2 
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The second order Trivial Predictor is a surprisingly powerful competitor, 

especially if the Hurst exponent of the time series in question is greater 

than 0.5 and tending towards 1. In the Biotechnology series analysed in 

6.1 a 2nd order Trivial Predictor outperformed an Auto-Regressive Moving 

Average model (Box,76), considered a few years ago to be the state of 

the art in time series prediction .. 

2.8 Object Orientation of Design 

Few who are aware of trends in the world of computers can have failed to 

notice Object Oriented Programming (OOP). The fundamental ideas 

behind OOP are concerned with increasing the "engineering virtue" of Icomputer code. An entity possessing engineering virtue is some or all of: 

robust, cheap, easy to understand, easy to maintain and of general 

application. A 10mm bolt would be a good example of such an object. A 

1more subtle form of engineering virtue might be called extensibility, both in 

practice, and of design. A Portacabin might be an example of such an 

object. If you require more space than your single Portacabin permits, you 

just park another one alongside, bolt them together and cut a door 

between the two. 

Computer software written in high level languages such as Pascal or 'C' 

has traditionally had few of these virtues. 

In recognition of these software shortcomings, the high cost of writing 

software, the high cost of maintenance and the high human cost of 

software faults, various methodologies have been developed. Out of the 
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vast possible space of working practices they represent methodologies 

that can be seen to have improved engineering virtue. Object Oriented 

Programming is the most successful of these methodologies. A 

programmer who adopts the methodology limits the range of responses ! 
I 

he has to any problem, but automatically increases the virtue of the code 

he produces. 

Virtue and Quality in this context are two different things, though the 

differences are subtle. Quality is about metrics, about faults and defects, 

about complexity and interrelatedness, about analyses that are made after 

the event, a fundamentally reductive process. There is no metric that 

measures how easily a design might be modified to encompass some new 

requirement in the future, a key element in engineering virtue. 

OOP introduces the idea of class as a definition of an object that has 

interface functions known as methods. One designs a class to implement 

a particular software object, and decides on and implements the methods 

for the class. These methods act on and give access to the data members 

of the class that can usually be only accessed through the methods. Using 

this system the engineering virtue of 'data hiding' or 'need to know' can be 

achieved avoiding a whole class of bugs involving the spurious or 

unintended modification of a variable. Subsequently the methods may be 

found to be in error, in which case they can be changed, or inappropriate 

for some new purpose. If the latter a new class can be generated 

inheriting all or some of the methods and data members of the parent 

class. We now have two classes that have different behaviour but share 
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common code. This achieves another element of virtue, the re-use of 

software. Finally OOP offers a method for standardising interfaces that 

can make objects interchangeable at run time. This is called 

Polymorphism, and as its name suggests allows objects of disparate type 

to be treated similarly. If applied strictly by limiting methods and 

parameters to some pre-determined set we may have interchangeable 

objects that all pertorm the same function but by radically different 

methods. 

Polymorphism is achieved through inheritance. Objects that inherit from 

other objects can be treated as if they are those parent objects for the 

purposes of reference. 

The language of choice for OOP is e++, an extension of 'e' with object 

oriented additions. There is nothing about e++ that forces one to use 

object oriented design, one can still continue in the same bad ways of 

unstructured design, (and many do) but all the opportunities for virtue are 

there. 

2.9 Overview 

In this chapter an attempt has been made to review the literature 

associated with the work and to explain the underlying techniques and 

concepts used. Because the work covers several fields of knowledge the 

decision has been made to describe the techniques in more detail and at 

a more basic level than is customary for a thesis. 

While the function of Neural networks and Genetic Algorithms may be 

known to many, the sections on derivation of embedding parameters, local 
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approximation and model parsimony contain information that is less widely 

known. 
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3. The evolution of the predictor - previous versions 

This section describes the evolution of the time series predictor and the 

various algorithms and methodologies that were tried out. All the versions 
Ii 
i!described here were designed and coded by the author. , 
I 

3.1 Development and run time platform j 
Throughout the software generated was designed to run on IBM PCs and 

clones thereof using initially C and later C++ all under Microsoft Windows. 

Versions 1,2 & 3 were 16 bit implementations. Subsequent versions used 

32 bit code. 

The most recent version is configured as an OLE control and can be 

embedded easily into other applications. 

The first version was tested on a 386 based computer, the most recent on 

a 120Mhz Pentium processor, since several years elapsed in the process 

of development. Some of the performance improvement seen is therefore 

due to improving hardware technology. Due to changes in operating 

systems and their processor support it would not be possible to test the 

most recent version on the same system on which the first version was 

developed, even if such a system could be found. 

3.2 Reasons for the changes in design 

The constituent parts of the predictor have changed dramatically since 

first conceived. The initial version represents the state of the art at the 

time the work began when viewed from the perspective of computational 

58 



intelligence. This is an important point since the intention was to make 

use of experience that the author had in various computational intelligence 

algorithms to produce a workable time series predictor. The fact that very 

little computational intelligence technology is left in the final version, and 

that this was the result purely of a desire to improve the predictor, rather 

than to use a particular technology whether it worked or not, is in itself of 

interest. 

It became obvious in making use of the first version that processing was 

exceedingly slow, and that there were a variety of parameters that needed 

to be set. Rather like being presented with a television set with seven 

unmarked controls that interacted in subtle changing ways, occasional 

flashes of light were seen. The literature offered little, no or contradictory 

guidance on the proper values of these parameters, for example see. 

Experimentation showed that they were all mostly dependant on the time 

1..11

I 

series under investigation, but the form of the dependency was unclear. 

The intention was formed to investigate methods for determining or 

eliminating these parameters with the hope of deriving a time series 

prediction and analysis system that required little or no user interaction 

and that performed its processing in as small a time as possible. All this 

was to be achieved without compromising the predictive performance that 

the first version occasionally showed when by chance the choice of 

parameters happened to be correct. 
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In the process of developing the predictor, driven both by practicality and , 
inquisitiveness, a novel combination of technologies has been used to 


achieve the results shown at the end of this thesis. 


The following table describes the various versions that were built. 


3.3 Previous versions in detail 

Version Supervised Embedding Typical run time Ilearning parameter 

algorithm selection 

1 Neural nets manual 20 min. per parameter choice 

2 Neural nets GA 48 hours 

3 Neural nets & GA 24 hours 

minimisation I 
4 Neural nets & Analytical 30 minutes 

minimisation 

5 Local Analytical 30 seconds 

approximation 

The reasons for the changes in each version are mostly concerned with 

performance and simplicity. 

Version 1 required selection of Neural net topology and learning 

parameters, and manual selection of embedding parameters. The user 

thus had 7 parameters to set with no guidance as to the correct values. 
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Version 2 tried to optimise all of the parameters simultaneously, using 

genetic algorithms but required 48 hours typical run time on a PC on the 

kinds of data sets described in section 5.1. Each neural net evaluation 

would typically require 10 minutes, thus in this time 288 parameter 

evaluations would be performed. In reality this is far too few considering 

the search space of around 3 million possible parameter sets, but it was 

the maximum amount of time that could be allocated to training. 

Occasional good results were obtained, generating sufficient interest to 

justify continued research. 

In version 3 Neural network minimisation was used to avoid having to 

choose the net topology parameters, thus reducing the search space 

dramatically. The search space was now very much smaller but runtimes 

were still in the order of 24 hours, albeit with a much better chance of 

finding optimal parameter sets. 

Version 4 derived embedding parameters analytically, using False Nearest 

Neighbours and Auto Mutual Information and the run time of the predictor 

was dramatically shortened. Even so the neural net could take 10-30 

minutes to train, and occasionally no solution, or a poor solution was 

found. The user was still required to run the predictor potentially multiple 

times until suitable validation performance was seen. In practice this 

meant that given two different training runs with similar performance the 

prediction for a given time period was not always the same in magnitude, 
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and sometimes in direction. This tended to undermine the users 

confidence in the tool in a financial application. For it to be wrong was 

acceptable, as long as it wasn't wrong too often, but for it to be seen to 

disagree with itself on the same data set on subsequent runs was 

considered unacceptable. 

Finally in version 5 with the use of the Local approximation algorithm 

consistency of predictions were achieved. All the stochastic elements had 

been removed, and given a particular data set one would get the same 

results every time the program was run. As can be seen from the later 

sections the quality of the predictions is high. Run times for this version 

are in the order of thirty seconds, depending on the data, and the majority 

of this is taken up by the auto-mutual information calculations. 

There was another important factor driving the evolution of the time series 

predictor, which was that of debugging and testing the application. For the 

purposes of academic research the run time is of secondary importance to 

the quality of predictions or insight into new techniques that might be 

gained, however debugging and testing any system requires that it be run 

repeatedly with slight changes of parameters or code. If the run time of 

that application is 48 hours then progress in fixing any problems is 

exceedingly slow. A reductionist approach can be taken, and the individual 

elements can be tested separately, but there are always some errors that 

will only be apparent when the completed system is run. Also since this 
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software was wholly speculative, and none of its elements had been run in 

that particular form before it was not possible to determine in advance the 

likely performance or capabilities of the individual elements. A certain 

amount of trial and error was therefore required in improving the predictor 

performance. Again this is difficult when each run requires 48 hours. 

These considerations were a powerful incentive to reduce the run time of 

the software. 

I 


I 
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4. Description of the time series predictor 

In this section the time series predictor in its final version will be exa.mined 

in detail. Each component part will be explained and finally some results 

on artificial chaotic series widely used as bench marks will be presented. 

Figure 14 shows the major components of the system and how they are 

connected. 

Time Series 

Database "- Embedding & 


/ Normalisation 
~ 

¢ =>Input Data 7 
Predictions/ i' 

"-1/ ,1/ 

"Chaos Tools" Supervised 
Data Analysis Learning Algorithms 

Figure 14 A block diagram of the Time Series Predictor 

4.1 The time series database 

The time series database was specifically designed to handle the 

demands of financial trading data. There are various characteristics of 

such data that make the database design unusual. This decision does not 

however prevent the database being used for simpler sampled data. 

Fina.ncial trading data represents different things in different markets, and 

is in fact a series of events loosely connected to a common theme. In 
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some markets such as commodities the prices provided by the exchanges 

are the actual values of deals struck. In Foreign Exchange (FOREX) the 

data supplied is not the price at which a deal was struck but the price at 

which a foreign exchange dealer is prepared to trade. The dealers 

constantly monitor the markets and post new prices electronically 

whenever their existing prices are out of date. In both cases the data 

represents discrete events that can occur at up to 30 times a second at 

peak times. 

Some markets such as foreign exchange are traded round the clock, 

whereas commodity exchanges and stock exchanges have definite 

opening and closing times. 

I
I 

Different kinds of traders have different requirements as to the time scale 

of the data and predictions they require. Some "scalp" which is buying and 

selling over very short term intervals, perhaps seconds, and others look 

after pension funds that require investment horizons of years. 

4.1.1 Formatting and storing input data 

It is possible to perform chaos theory based time series prediction of 

financial data using data updates as the fundamental time-base of the 

predictions and analysis. The frequency of these updates varies 

enormously over a trading day. Alternatively, and more frequently one 

can sample the series at discrete intervals in time. I 
There are as yet no papers known to the author comparing the relative ' Imerits of the approach of using what might be called update time over 

" 

elapsed time in financial series prediction. Because it was always 
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intended that this work should be of use outside the world of finance, see 

for instance section 6.1, the system described here was arranged to use 

elapsed time. 

4.1.2 Re-sampling stored data 

In the system described, input data are not considered to be samples 

equally spaced in time. They are however considered to be ordered in 

time. Each data pOint is time stamped and placed in a linked list in 

increasing time stamp order. Because the system described was 

designed to be able to handle multivariate data the entire database 

contains multiple linked lists indexed according to name. 

Collection ordered by 
name (CEventMap) 

I 
r----­

Collection ordered by r--­

time (CEventList) 

Time tagged Time tagged 

event. event. 


(CEvent) (CEvent) 


Figure 15 Organisation of the database 

Figure 15 shows the organisation of the database. The fundamental 

organisation of the database is object oriented rather than relational. 
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The top level object is a collection indexing time series by name. When 

performing multivariate prediction each time series will have a different 

entry in this collection. 

The next level down is another collection object, this time a linked list 

containing individual data objects ordered in increasing time stamp order. 

Finally the lowest level contains the sample objects, each sample contains 

a value and a time stamp corresponding to the time of collection or the 

end of the period summarised. 

Training sets, validation sets, data for the chaos tools and for graphical 

display are all required from the database in a sampled format with regular 

time intervals between samples. In general we would expect the stored 

data to be present in the database at a higher frequency than the sample 

interval, but this will not always be the case. The sampled data values are 

generated by first determining start and end points for which data is 

available and which are an integer number of time periods apart, and then 

for each time sample scanning through the data for the last valid time 

stamped value before that sampling time. To save processing time when 

multiple sequential values are required the scanning process is resumed 

not from the beginning of the linked list, but from the last value used. 

This method handles properly the case where data values are sparser 

than sampled points by outputting repeated values where necessary. 

Where multivariate data is available each of the linked lists is sampled in 

the same manner, and at the same sampling times to produce 

synchronous series from probably asynchronous and irregular data. The 
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start and end times are chosen to be within the intersection of all of the 

linked lists. 

4.1.3 Coping with gaps in the data due to market closure 

Some markets close at the end of each working day, some run 24 hours. 

None run on Saturdays or Sundays. Even in 24 hour markets there are 

periods when trading is very light. The time series therefore always 

contains discontinuities. However trading after a break does not start from 

some brand new position, but always from around the last closing price. 

The simplest solution to generate a series with which one can make 

predictions is to concatenate the discontinuous data so as to make one 

continuous series. 

4.1.4 Data normalisation 

Many of the supervised learning algorithms generate output values only 

over some fixed interval. For instance back propagation neural networks 

with sigmoidal output layers typically produce values in the interval [0,1] or 

[-1 ,1] depending on the activation function. So in order to generate 

predictions in the actual range of the data, the results must be de­

normalised. It is also common practice to normalise data into a supervised 

learning system. If for instance, one input were a share price of say 

53.125, and another were a volume of 1,567,458 shares traded, any 

internal process that took into account both of these values inside a 

supervised learning algorithm would have to work hard to scale them 

accordingly. Most algorithms are adaptive and will achieve suitable scaling 
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in time, but learning will be severely slowed down. It is simpler, and 

learning proceeds more rapidly if input data is normalised. Normalisation 

consists of finding the highest and lowest levels in the data supplied, and 

calculating a scaling value and an offset value: 

4.1Scale = 1+2¢ 
(max- min) 

Offset = min(l- ¢) 

where <p is a safety margin, typically 0.1. 

The safety margin is added to ensure that we can safely represent a 

prediction outside of the prices historical range. 

4.1.5 Quantization of price data 

Financial data, for the sake of simplicity, is quoted in fixed inteNals. 

Sometimes these inteNals have been chosen historically and do not fit 

well with digital technology. For instance share prices in America are often 

quoted in eighths, sixteenths or thirty-seconds. Forex prices are quoted to 

five figure accuracy. Clearly a predictive product must only generate 

predictions consisting of the appropriate inteNals. 

4.1.6 Working with first differences 

In many ways the rate of change of a financial time series is more 

important to financial traders than the series itself. Taking the first 

difference or generating a series consisting of the difference between 
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successive time samples in the price series is one way to accentuate the 

rate of change information. 

In spot trading, where some quantity of a commodity is traded, the trader 

is less interested in the absolute value of the traded commodity than the 

difference in price from the time he or she bought it. This represents his or 

her profit or loss, assuming the trade was made purely for speculation, as 

the vast majority of trades are. 

In futures markets this is even more true, where a contract to deliver a 

commodity is traded without any purchase other than a deposit of "margin 

money" to cover potential losses. In this case the value of the underlying 

commodity is of secondary importance. 

It is distinctly possible that in modern markets driven by speculation the 

derivative series, measured as the discrete difference between successive 

time samples, contains more information than the absolute price series. 

To be able to take advantage of this possibility the database is configured 

to be able to return sample to sample differences rather than absolute 

values. Since we require that data be normalised before input to the 

supervised learning algorithm, we must save normalisation data as 

described in 4.1 .4 for the differenced series as well. 

4.2 Qualitative measurements performed on the data 

Before attempting to predict a time series it is useful to have some idea of 

the predictability of the series, and the likely bounds in time on any 

predictions made. The following are members of the block "chaos tools" in 

Figure 14. 
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4.2.1 Lyapunov Exponent Implementation 

This measure as described previously in section 2.2.1 describes how 

adjacent trajectories on the attractor under study diverge as they are 

evaluated in time. As a chaotic system evolves no trajectory will ever be 

the same as a preceding one, this is fundamental to the definition of a 

chaotic system, the most we can hope for is that a new trajectory behaves 

something like an adjacent one in a similar part of the phase space. By 

looking at pairs of trajectories and how they diverge we can estimate how 

rapidly we will cease to know the exact location of a projected trajectory, 

and thus the maximum achievable prediction accuracy. The measure 

calculated in practice is the average of these accuracies over the whole of 

the attractor, or at least our knowledge of it. 

Calculation of the Lyapunov spectrum can be derived analytically where 

the equations of the process are known, Shimada & Nagashima 

(Shimada,79), Benettin, Galgani & Strelycin (Benettin,80) are examples. 

There are several published algorithms for performing this measurement 

on experimental data. The oldest and most tested algorithm is that by 

Wolf (Wolf,85), then there are estimates based on the generation of local 

Jacobian matrices from Eckmann et al. (Eckmann,86), Ellner et al. 

(Ellner,91) and Conte & Dubois (Conte,88), which have the benefit of 

calculating more than the first exponent, and finally there are attempts to 

go from the predictions themselves to calculation of the Lyapunov 

exponents as in D. J. Wales (Wales,91). 

71 




...~ 

The algorithm of Wolf was selected for implementation because (1) only 

the first exponent was required, (2) Wolf makes available his FORTRAN 

code, (3) there is some debate as to the best method for implementing the 

Jacobian algorithm. 

The approach of D. J. Wales was not taken because independent 

analysis of the major exponent was thought desirable, thus offering the 

chance of a cross check between the predictive algorithm and this value. 

As with all the other code used to support this work the language used for 

coding the Wolf algorithm was C++. The availability of another 

implementation, even in FORTRAN is invaluable however as a means of 

cross checking the method and results. 

The run time of this algorithm was dramatically reduced by using a binary 

tree representation for the embedded data thus simplifying the search for 

neighbouring trajectories. 

4.2.2 Hurst exponent implementation 

A pseudocode explanation of this algorithm is contained in the 

appendices. 

To form this measurement the data is divided up into equal sections, and 

the size of the section is decreased until some minimum number of 

samples per section is hit. In this implementation this is chosen as 10. For 

each choice of the number of sections starting with two the range and the 

standard deviation of each section data in each section is measured, and 

the ratio of range to standard deviation is averaged over the sections. 
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This value is stored along with the number of sections, the number of 

sections is incremented and the process repeated. The end result is a set 

of coordinate pairs. These are logged and linear regression is performed 

on them. The resulting gradient of the best fit line is the Hurst exponent, 

4.2.3 The effects of quantization on qualitative measures 


Financial time series are by their nature quantized. There must be some 


minimum unit in all financial transactions. In every day transactions this 


unit is the Penny in the UK or the Cent in USA. Similarly share prices are 


quoted in minimum units, sometimes eighths or thirty-seconds. 


Confusingly the term "tick" is used in the financial world both to describe 


the quantum size and to describe an update in the time series. A tick in 


this context is the smallest trade-able unit. Quantization is important since 


in a typical trading day a price may move only hundreds of ticks. During 


shorter intervals such as 5 minutes price movement may be counted in 5s 


or 10s. 


This quantization is a source of uncertainty and noise to the predictive 


Figure 16: Phase space is quantized into hypercubes 



process. When financial data is embedded the effect is to divide the 

phase space up into hypercubes of permitted states. 

The analysis of Iyapunov exponents is similarly quantized and leads to 

nearby trajectories being indistinguishable. Since differenced data is used 

in the analysis the information we have about the price series can be 

approximated as: 

n==p-s 4.2 
maX(Xn+s - Xn) 

11-0Q = log2 ---~'-------
inc 


where x are the time series samples, s the chosen separation, p the 

number of samples and inc the granularity. 

The result is in bits. 

An upper bound of the accuracy of the predictions obtainable can be 

estimated as: 

4.31 
Ace 2 Q-lll 

where L is the measured Iyapunov exponent and n indexes prediction 


steps. 
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We cannot directly infer from the above the effect of quantization on the 

Lyapunov exponent measurement itself, but the algorithm has been 

modified to keep track of these errors during calculation. 

4.3 Embedding Analysis of the data 

There are, at the highest level, two tasks involved in generating a time 

series prediction: finding a suitable model for the data, and finding a 

suitable method for presenting the data to the modelling algorithm. With 

the growth of non-parametric modelling techniques the latter problem has 

been much simplified, the former presents the greater difficulty. 

Using the form of time series analysis presented in this thesis there are 

effectively 3 unknowns, The correct embedding dimension to use for a 

series, the correct sample separation to use for a series, and the number 

and type of "helper series" to use. 

It is common to find in relevant published work, such as Refenes 

(Refenes,93) that the method used for finding these three unknowns is 

pure experiment. Very often the derivation of these parameters is not 

explained at all, the reader is presented with wonderful predictions but no 

means of estimating how many months of search were required to find the 

appropriate parameters. It is possible to automate the process using 

either a brute force search or a more efficient method such as Genetic 

Algorithms (Holland, 1975). These methods are of necessity time 

consuming, though undoubtedly effective. Because they rely on no 

measurable quantity other than the goodness of fit of the final model it is 
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hard to have much confidence in their robustness. As an example if we 

were to perform linear regression on a series of data points where we 

knew the underlying function to be linear we would have high confidence 

in the results. Indeed confidence figures could be derived from the results. 

However in attempting time series prediction no real assumptions can be 

made about the underlying function driving the time series, and if we find a 

choice of parameters that give good predictions we may have only found 

some chance alignment of data values, one might call them Ley Lines in 

the data, that represent features that are not likely to occur again. 

Since the model and parameters are effectively trained together it is not 

certain that the best solution found was not a combination of say a good 

model and mediocre embedding parameters or vice versa. An analytical 

method for determining the correct parameters without reference to a 

model would give the most confidence in the results. 

4.3.1 Auto-Mutual Information 

The implementation of the above requires the calculation of probabilities, 

and since we are dealing with real numbers as the symbols, rather than 

discrete patterns we cannot infer probabilities without some form of 

modelling and interpolation. If calculations were confined to financial time 

series with their quantised nature, see 4.1.5, this would perhaps not be 

necessary, especially if first differences were used. It was deemed 

desirable however to enable the time series predictor to be used with any 

time series. 
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The method used is due to Kennel, [Kennel 93] and rather than using a 

histogram based approach, which he shows to have drawbacks due to the 

problems associated with finding an adequate bin size, uses Kernel 

Density Estimators to calculate the probabilities. The kernel function used 

is the Epanechnikov rather than the Gaussian since the latter has infinite 

support and would obviate the efficiency gains from using binary trees. 

Each kernel function is scaled by a factor termed the bandwidth that 

scales the receptive area of the function. The algorithm performs an initial 

pass through the data to scale these bandwidths and thus ensure that the 

effective bin sizes are large where data is sparse and small where data is 

plenti"ful. Unlike the histogram approach, where a pre-defined number of 

bins chosen to be some factor smaller than the number of points are 

used, here there is one bin, or receptive field per data point, and the 

density and thus the probability is calculated by determining the distances 

to the nearest neighbours. 

The implementation of this algorithm was performed by the author based 

on Kennel's published work. A more complete description in pseudocode 

form is given in the appendices. 

4.3.1.1 Binary Trees 

This algorithm and several others in this work use tree structures to 

represent the data points in a time series so that a search for the 

neighbours to a point can be performed efficiently. Without such a 

representation one could expect processing time to be proportional to N 2 

where N is the number of data points in a series. With a binary tree 
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representation processing approximates to 10g(N). The purpose is to sort 

data into binary trees so that finding paints and neighbours to points 

requires only a binary search. The algorithm is extended to cope with 

vectors as well as scalars so that multivariate data can be used. The 

implementation of these trees is derived from standard binary tree 

algorithms much modified by the author. The purpose is to sort 

multidimensional vectors into groups based on their distance from each 

other. Distance is measured using the Euclidean metric. Rather than 

moving data during the sort process an array of indices is generated. It is 

these that are sorted. The algorithm sets out to find cut points that 

approximately balance the number of points either side of the cut. This is 

done by calculating the mean and variance for each column of data. The 

column with the largest variance is selected as the discriminator and the 

mean of that column as the discrimination value. 

A binary tree node is generated and the contents of the index array are 

rearranged so that those with values in the discriminator column greater 

than the discriminator value go to one side of a point in the array, and the 

rest the other. We have now two sections of the array and a new binary 

tree node is generated for each sub section selecting a new discriminator 

column and value. By this process the array is sub divided again and 

again till the members of a sub division of the array are fewer than some 

arbitrary number, say 20. The above can be formulated as a recursive 

procedure. When used with financial data which are traded in fixed 

quanta, identical points frequently occur, and the variance in a sub set can 
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be zero leading to numerical instability. The solution found by the author 

was to split the sub sets equally in this case. 

This tree structure can be used easily to find a number of near neighbour 

points for a given vector. 

Again using a recursive procedure the tree is followed, and at each node 

the discriminator column and value are used to determine on which 

branch the neighbour values lie. When finally a leaf node is found the 

Euclidean distance between each member to the given vector is 

calculated, and the indexes of the n closest placed in an array, where n is 

the number of neighbours required. If this exceeds the number of 

members of this leaf node then neighbouring leaves are searched also. 

A pseudocode version of the above giving more detail may be found in the 

appendices. 

4.3.1.2 Separation from AMI 

Auto-Mutual information is performed by preparing two copies of a time 

series and rotating the data in one of them along by n samples. This 

introduces a discontinuity in the shifted data but should not be problematic 

if n is small compared to the number of data points. 

The two vectors are applied to the Mutual information algorithm described 

above and the values of MI recorded for a range of trial values of n. 
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The separation is derived from the first minimum in the resulting CUNe of 

MI against n. 

As can be seen from the results in 5.2 The curve of MI against n 

"bounces" with increasing n with a comb like structure. The first minimum 

is to be preferred to any other since it must result in the most succinct 

model formulation. 

The algorithm derived to find this first minimum is as follows: 

The auto mutual information for the given series at increasing offsets is 

calculated. At each stage the minimum and maximum values so far are 

calculated. If the current offset is the new low the maximum value is reset 

to that of the new low. When the processing is finished, that is that all 

offsets up to 17 have been tried, the point at which the low occurred is 

examined. If this is the last offset then the AMI graph was continually 

decreasing, and we can not find a minimum. If not the subsequent 

maximum is inspected. If this exceeds 1.1 times the minimum, then a 

winner is declared, and the offset at which that minimum occurred is 

selected as the separation distance, otherwise it is assumed that a 

minimum can not be found. Figure 28 is an example of a successful 

discovery of a valid separation value, Figure 32 is an example where this 

method failed to find such a value. Under these circumstances an exact 

choice of separation is not deemed to be critical and a separation of 1 is 

used. 
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4.3.2 False Nearest Neighbours 


The implementation is fully described in pseudocode in the appendices, 


an overview of the algorithm will be given here. The idea is due to Kennel, 


but the implementation and development of the algorithm is due to the 


author. 


The algorithm proceeds as follows: 


A trial embedding with dimension 2, and separation as found in section 


4.3.1.2 is performed on the data giving rise to a number of embedded 

vectors. These are applied to a binary tree as described in 4.3.1.1 . For 

each vector the nearest neighbour is found and the distance between 

them noted. Then the embedding of both points is increased by one by 

finding the appropriate extra values from the database. The distance 

between the two extended embedding vectors is calculated and the ratio 

between the standard and extended vectors distances is calculated. 

If the distance has increased by more than 5 a false neighbour is 

declared. The percentage of false neighbours for trial embeddings with 

increasing dimension is calculated, and the gradient between successive 

embedding dimension choices is calculated. As soon as this goes above ­

0.1 the preceding embedding dimension is selected. 

The above method was developed by the author rather than using a 

simple threshold because the presence of noise in the time series, 

looking to all the world like higher dimensional chaos, results in a 

background level of false neighbours, thus pushing the curve up and 
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making the derivative a more sure indication of saturation. The constants 

given above are empirically derived, but looking at the graphs in Figure 

29, Figure 31 and Figure 35 will show that the method is insensitive to an 

exact choice of these constants. 

4.4 Training pattern generation 

Takens' theorem (Takens 81) states that a chaotic process can be 

predicted by a smooth function if properly embedded. Supervised 

Learning algorithms are used in this work to generate these smooth 

functions from the time series. These learnt functions are mappings from 

input data provided as tuples to one or more predictions of the future 

value of the time series. 

The process of embedding a single time series is as follows: The scalar 

series is converted to a series of vectors. 

I 
! 

Where d is the Separation, and n the embedding dimension. 


In practice, in order to perform predictions for a given time series, first the 


separation is calculated, then the embedding dimension (this is so that the 


separation calculated can be used in the optimal dimension calculations). 


Finally the embedded vectors are used as a training set to some example 


of a supervised learning algorithm, along with some future value of the 


time series representing the point to be predicted. (in the above 


nomenclature I use Xnd+t+1') 
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The training set thus contains pairs of embedded vectors drawn from the 

past history of the series on the stimulus or input side, and subsequent 

values of the series on the target or output side. 

A multivariate version of the above can be obtained by concatenating the 

input side, and separately the output side, of several suitably embedded 

time series. In this work a sample time was selected in order to give 

predictions of the required granularity and the database was required to 

supply samples with date stamps between two user selected times with 

the appropriate sampling interval. These were then converted into 

embedded vectors by inserting them into a First In First Out data structure 

tapped at the appropriate points. 

The FIFO passes each scalar value input into the leftmost cell and the 

values contained in the cells are all moved along to the right. In the above 

example new sample scalar data must be presented 14 times before the 

fifo is full. Each subsequent insertion generates a new training vector and 

target scalar value. In general given p scalar values in the data base 

p - d * n training vectors can be generated. 
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Sampled time 

... 

series 

Embedded vector, in this case with dimension 7 and separation 2 

Target value 

Figure 17, Embedding a time series using a FIFO 

Multivariate prediction was obtained by maintaining separate databases 

for each input series, selecting embedding parameters for that series, 

embedding them appropriately and concatenating the input vectors and 

output scalars. Great care was taken to ensure that the sampling 

intervals were the same for each series and that the vectors were 

com pletely synch ron ised. 

4.5 Supervised learning of the training patterns 

In the supervised learning stage the learning algorithms were presented 

with the training set generated by the embedding process. The 

embedded data is normalised as described in 4.1.4 before being applied 

to the algorithm. 
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4.5.1 local approximation algorithm 

The algorithm used is inspired by an article by Sugihara and May 

(Sugihara,90), which did not define the precise algorithm they used to 

make predictions. The algorithm and implementation are therefore the 

work of the author. 

The algorithm is relatively simple. The time series is embedded using the 

methods discussed in 4.3.1 and 4.3.2. The a target column vector of the 

next sample is also supplied. A binary tree is formed from the embedded 

data, and the tree is stored. This completes the learning phase of the 

algorithm. To make a prediction from a similarly embedded predictee 

vector the n+ 1 nearest neighbours are sought in the binary tree, where n 

is the selected embedding dimension. The idea behind this is that the 

simplest figure that can be created in n dimensions, a simplex, must have 

n + 1 vertices. The selected points will hopefully enclose the predictee, 

although there is no guarantee of this. An exponential interpolation 

scheme is used to weight the nearest neighbours according to Euclidean 

distance from the predictee. Finally these weights are used to interpolate 

between the various outcomes or target values corresponding to each of 

the nearest neighbour vectors. 

The interpolation method is described by pseudocode in the appendices. 

This prediction method is fundamentally interpolative. It does not cope 

well with predictee points outside of the attractor. However if a good 

picture of the attractor has been built up these should be relatively rare. 
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Embedded patterns 
Outcomes 

Figure 18, Local approximation interpolation 

4.6 Conversion and formatting of predictions 

Predictions are output by the supervised learning algorithm with the same 

scaling as that used for the target vector, and potentially in a differenced 

format. The predictions must be reconstructed by inverting the 

normalisation process, and if differencing was used the denormalised 

change must be added to the last in-sample value to achieve a prediction. 

If the prediction were of a quantized financial time series then the 

prediction would be rounded to the nearest quantum. 

4.7 Iterated Predictions 

If more than one prediction step is required, i.e. if a sequence of prediction 

steps are needed, there are two potential ways to achieve this. Either one 

could train several supervised learning algorithms with their target vectors 

suitably offset, or one can train a single supervised learning algorithm and 

use it repeatedly with some form of feedback. 
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Sampled time 
series 

.1 
I I III 

Embedded vector, in this case with dimension 7 and separation 2 

SupeNised Learning Algorithm 

Prediction 

Figure 19, Achieving Iterated predictions using feedback. 

Farmer (Farmer 88) showed that the latter method produced superior 

results. It is also easier to implement. As the iterated predictions are 

generated more and more of the contents of the FIFO are filled with 

predicted data till finally predictions are being generated solely on the 

basis of previous predictions. Impractical as this may sound in Figure 26 

good predictions are still generated after 10 iterations given a FIFO length 

of 8. 
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4.8 Evaluation of predictions 

Clearly a mechanism for determining the quality of the predictions is 

important. Largely the choice of metrics is dependant on the use to which 

the prediction is to be put. The following metrics were calculated by the 

program for each prediction run. 

4.8.1 Validation data 

The choice of validation data is fraught with problems. If the purpose of 

the use of the validation data is to prove general predictability, then a large 

validation period situated anywhere in the time series is adequate. If 

however one wants to make both useful predictions and prove the 

concept, as would be useful in a financial application, then the validation 

period must be chosen carefully. Validation data can not be training data, 

and thus if data is scarce a large validation set eats into a precious 

resource. If, as is believed with financial data, there is non~stationarity 

and mode changes occurring in the data, the best place for the validation 

set is using the most recent data. However using a large validation set at 

the end of the data implies that the model is trained on old rather than 

fresh data, and one may see the models best performance in the 

validation set, and poor performance in practical use thereafter. Using a 

small validation set risks using a model that has been evaluated on 

potentially atypical data. The general solution chosen by default in this 

time series predictor is to use a validation set that consists of 10% of the 

data situated between 80% and 90% of the training data. This was 

considered a good compromise. 
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4.8.2 Metrics 

The most obvious measure of accuracy of predictions is sum squared 

error, evaluated as: 

Sum over i of (Predictioni - Actuali)2 

over the validation set. 

The correlation coefficient between the predicted and actual series is 

measured for each block of predictions, as is the hit rate, defined as the 

percentage of directional changes that were correctly predicted. 

4.8.3 Similar day Information 

As an interesting side effect of the local approximation algorithm one can 

graphically display the nearest neighbours used to form the simplex on a 

plot of the time series. This information is qualitative and anecdotal in the 

extreme, but it is interesting to see in the example below that four out of 5 

of the neighbours illustrated occur just before a large drop in the market. 
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Figure 20, Graphic representation of similar day data 

4.9 Performance of the predictor on artificial time series. 

It is important to compare the performance of the time series predictor 

with other published work, yet this is surprisingly difficult to do. Such is 

the abundance of financial data that no two researchers seem to use the 

same series. Then there is the complication of sampling rate and start and 

end times to make it very hard to compare the performance of two 

predictors. The Biotechnological data that is analysed in chapter 6 has 

not yet been made available to other researchers, leaving only artificial 

time series as a method of performance comparison. 

Of all the time series described in chapter 2 the most popular is the 

Mackey glass series. This has been extensively used as a bench mark by 
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Farmer & Sidorowich (Farmer, 87), Cadagli (Casdagli,S9), Moody 

(Moody,89), Watkins et al (Watkins,94), and Junhong Nie (Nie,94) 

amongst others. While this is a commonly used bench mark the length of 

data used, and the offset to the predicted value, vary as do the 

parameters used in the series generation. The error measure used also 

varies, the two most popular being r.m.s. error and normalised r.m.s. 

Moody and Farmer achieved a normalised r.m.s of 0.012 using neural 

networks of different kinds. None of the other results seem to improve on 

this. As can be seen the result due to the techniques described in this 

work is 0.00109. Due to the concerns expressed above it is hard to be 

sure that like is being compared to like, but it can be fairly said that the 

performance of this predictor is comparable to if not better than the 

predictors described in the above papers. 

In each case 2000 training and 1000 test points were generated. The 

predictor was set to predict the next value in the series. Hit Rate 

represents the percentage of correct predictions purely in terms of 

direction, and the normalised r.m.s. error being the r.m.s error divided by 

the standard deviation of the time series. 

Series Separation Dimension Hit-Rate norm R.M.S. 

Logistic 1 2 99.3 0.0053 

Tent 1 2 99.4 0.0031 

Mackey-Glass 11 3 93.S 0.0011 
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5. Performance of the Predictor In financial applications 


In this chapter the experimental results are presented showing the 


performance of the predictor on financial data. In order to show that the 


embedding and separation values found analytically are near optimal 


sensitivity analysis is employed and results are presented of this analysis. 


5.1 Foreign exchange data 


Five time series were used to test the predictor, sampled at one minute 


intervals. They were the spot rates of the OM against the $, the £ against 


the $, and the 3 month deposit rate for the £,$ and OM. 


The samples were taken over a single days trading. The third possibility, 


the OM against the £, is not included, since we can expect this to keep in 


line with the other two. These series are widely considered to have strong 


chaotic components (Medio 92). The graphs of each of these follow: 
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Figure 25, 3 Month Deposit Rate, $ 
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The program used to make the evaluations was configured to predict both 

the £ and the OM in 5 minute intervals for a period of two hours. The 

predictions were iterated, that is the later predictions were based on the 

previous ones, not on the actual data. The graphs below show the 

predictions and the actual behaviour on the same graph. The predicted 

line is the more "steppy" of the two. 
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Figure 27, £/S Prediction for 2 Hours in 5 Minute increments 

95 



5.2 False nearest neighbour and auto-Mutual Information responses 

The following show the plots of FNN (false nearest neighbour percentage) 

and AMI (in bits) for different embedding or separation values for each 

time series: 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

0 2 3 


Figure 28, DM/$ Auto Mutual Information at different separations . 
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Figure 29, DM/$ False Nearest Neighbours at different dimensions 
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Figure 30, £/$ Auto Mutual Information at different separations 
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Figure 31, £/$ False nearest neighbours 
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Figure 32, 3 month OM deposit Auto mutual information 
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Figure 33, 3 month £ deposit Auto Mutual Information 
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Figure 34,3 month $ deposit Auto Mutual Information 
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Figure 35, 3 month $ deposit False Nearest Neighbours 

The difference between the frequently traded OM and £ and the deposit 

rates should be clear; the deposit rates have very little variation. The 

program used to generate AMI and FNN does not go on to perform FNN 

calculations unless the AMI value is resolved. In two out of the three 

99 




deposit series the AMI value did not dip sufficiently to be resolved. 

Looking at the series and the information in them, this is not surprising. 

Although predictable behaviour may be visible when viewed over days and 

weeks, at this resolution there is little variation in the data. This is not to 

say there are no dependencies between the spot rates and the deposit 

rates, merely that there is no need for embedding to represent these 

dependencies. The embedding dimension and separation for these series 

were set to 1 as recommended by Abarbanel. 

5.3 Sensitivity Measurements for False Nearest Neighbours and 

Mutual Information 

The software used to make these analyses, is limited to a maximum 

dimension and separation of 16. To exhaustively search for optimum 

embedding dimensions and separations in combination would require up 

to 256 trials. The somewhat simpler process of perturbing the optima 

obtained by our existing methods and observing the effects was used. 

The sequence was as follows: 

1) The Auto Mutual Information and False Nearest Neighbour 


algorithms were used for each time series. 


2) The embedding dimensions and separations suggested were 


used. 


3) Training patterns were generated. 


4) The Local approximation algorithm was used to perform 

predictions. 
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5) A separate validation period was selected to test the predictive 

power. 

6) Using iterated predictions the performance on predicting the 

validation set was calculated by comparison to the actual values 

over the validation period. 

7) The R.M.S. error was calculated and subtracted from 1.0, to 

render a measure of fit. 

8) For each helper time series the separation and dimension were 

perturbed by +/- 1 and +/- 2. Then (2),(3),(4), & (6) where used to 

evaluate the performance of the whole system. 

The results are shown: 
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Figure 36, Effects of perturbing DM/$ embedding Dimension 
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Figure 37, Effects of perturbing DM/$ Separation 
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Figure 38, Effects of perturbing £/$ Dimension 
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Figure 39, effects of perturbing £/$ D Separation 

In order to further test the efficacy of these methods various other 

currency pairs were tried. In each case the rate against the American 

Dollar was used. The Currencies were Canadian Dollar and Swiss Frank, 

Hong Kong Dollar and Japanese Yen, Dutch Guilder and Deutschmark, 

Irish Punt and Japanese Yen, Swiss Frank and Japa.nese Yen, Cypriot 

pound and Greek Drachma, Belgian Frank and Deutschmark, Italian Lire 

and Deutschmark. The results for perturbation of the dimension gave the 

peak observed performance 75% of the trials, within 1, 12.5%, and within 

2, 12.5%. For separation they gave the peak observed performance 75% 

of the trials, and were within 1 for the remaining 25%. 
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Figure 40, Analysis of performance of FNN & AMI on various series 
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5.4 Discussion of predictability of financial series 

The reasons for attempting to predict financial time series are the rewards 

to be gained, and the interest that generates, and the challenge of 

attempting to predict the most difficult of series. 

Unlike the simpler, though still difficult, processes of blind matter, as 

described in the next chapter, financial market prices are generated by the 

interaction of hundreds of thousands of intelligent and highly motivated 

people, each with many months or years of experience spent observing 

the markets trying his or her best to guess the next movement, the next 

trend, the next wave. 

That there is any predictability in the markets at all is a marvel. The 

Efficient Market Hypothesis (Fama, 65), which held sway until the early 

90s suggested that the time progression of the markets would appear as a 

random walk. The explanation for this that is often given is that a trading 

opportunity, like a ten pound note lying on a pavement, would be instantly 

snapped up. The argument runs that there would therefore be no sense of 

history in the behaviour of the markets. All the information that would be of 
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any use to a trader was present in the instantaneous state of the market 

and common knowledge. A further justification for this point of view is 

found in measuring the serial correlation of major financial time series. It 

has been shown by LeBaron, (LeBaron 96) that the correlation of The 

Dow Jones index returns from 1901- 1995 with a copy of itself lagged by 

one day is 0.04. Implying, if correlation can be used as a measure of a 

process without a normal distribution, that the markets are memory less. 

Interestingly LeBaron also shows that if you square the returns, thus 

emphasising the effect of larger changes, the correlation of the above 

shoots up to 0.22. Taking the simple magnitude of the returns produces 

0.29. Similar evidence is found in the S&P. 

The evidence of low dimensional chaos in many markets, and thus limited 

predictability (Medio,92), has undermined the efficient market hypothesis 

in some eyes, and a new theory, the Coherent Market Hypothesis (Vaga 

,90), has been proposed that takes these discoveries of chaos and non­

linearity in financial series into account. There is an ongoing battle 

between these rival theories and variations of them, and no clear winner 

has emerged. 

5.5 Discussion of the relevance of the results and implied models of 

the markets. 

Various results, some with academic verification and many without, have 

been generated in recent years that suggest predictability of the markets 

(Peters,91), and sometimes offer metrics that support their case. Financial 

software vendors claim that they can predict some carefully chosen 
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financial instrument, and that the predictions are accurate to within say 

90% over a period such as six months. This choice of metric is 

meaningless; except at times of financial crisis most international 

instruments such as exchange rates or market indices do not fluctuate 

outside of 10% bands for very long periods. One could easily do as well 

with a 'first order trivial predictor. More honest workers in this field use "hit 

rate" as a measure. This is the percentage of correct predictions that the 

predictive system makes of the change in price over some period, using 

presumably out of sample data. Now one would expect the proportion of 

these changes to tend towards 50% each way. 

For instance for the last two years of Dax data, sampled every half hour 

(5524 data points) the ratio of up to down changes is 0.528 

Now if we look at the distribution of these daily changes for the Dax 
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Histogram of daily changes in the DAX index, 10 Years data 
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we can see an approximately Gaussian distribution with pronounced 

leptokurtosis. 

If a user of the output of a predictive algorithm uses the information to 

trade in the chosen market, by buying the instrument when a positive 

change is predicted and "shorting" or borrowing the instrument when a 

negative change is predicted he or she will incur trading charges. These 

are dependant on the instrument, volume traded, and the status of the 

trader, in some markets these charges are symmetrical, in others 

"shorting" is more expensive. In either case one can draw vertical lines on 

the distribution graph corresponding to these charges, and shade the area 

between them that represents unprofitable trades. Depending on all the 

variables the shaded area can easily exceed 10% of the total, and of 

course the smaller and less well connected the trader is the greater this 
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area is likely to be. Thus if the measure of utility of a predictive tool is that 


it makes money for its user, a large percentage of the predictions it gives 


must lie outside this shaded area. Typically hit rates of 65% are 


considered good, since we would expect a 2nd order trivial predictor to 


return 50%. 


It is clear from the above that a predictive system could score 65% hit rate 


and still lose money, and conversely a 40% successful predictor could be 


very profitable. 


In work separate from this thesis, described in outline in (Edmonds,95b), 


both these circumstances have been observed. 


It is not the intention of this thesis to imply that the interesting 


characteristics of limited predictability discerned in the financial time series 


used by these methods can be used to make money. 
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6. Performance of the predictor in a biotechnology application 

In early 1994 the opportunity arose to test these methodologies on an 

application outside of the world of financial forecasting. Hazel & 

Christopher Davey of the University of Wales at Aberystwyth had 

generated a time series in the process of running a biological reactor over 

many hundreds of hours that seemed to show evidence of chaotic 

behaviour. Their superior, Professor Douglas Kell, asked me to use the 

techniques detailed in this thesis to analyse the series. 

6.1 Background to the analysis. 


The following is my understanding of the processes involved in the 


generation of the time series drawn from the paper that documented the 


work (Davey.96). 


6.1.1 Measurement of Biomass 


Prof. Kell had designed several years previously a device called a 


biomass monitor, that uses radio-'frequency radiation to measure the 


capacitance of living cells in a suspension. It has been shown by 


(Harris,87),(Kell,87),and (Davey,93) that there is a characteristic 


capacitance curve as shown in figure 6 for a given concentration of living 


cells. 
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Figure 41 capacitance of various biomass suspension is the non-conducting 

concentrations against frequency 
outer membrane of the cell wall. 

. Dead cells do not have complete membranes, and therefore do not have 

measurable capacitance. The biomass monitor is an accurate measuring 

tool for determining the amount of living material in a vessel, and is 

unaffected by pollutants. 

6.1.2 Culturing Yeast in a fermentor 

Baker's Yeast was grown in a 1 Litre vessel that had a biomass monitor 

probe inserted. The contents of the vessel were aerated with pumped air 

and stirred at 450 r.p.m .. The biomass was continually monitored and a 

PC, data collection hardware and some specially written software were 

used to control a pump that added nutrient to the vessel. The software 

was configured to regulate the size of the biomass by running the pump at 

a variable rate and therefore adding more nutrient whenever the size 

appeared to drop, or less whenever it threatened to exceed the required 

size. Using this set up the biomass in the vessel could be held constant 

over several months. 
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Figure 42 Measured capacitance during the experiment 

Figure 42 Measured capacitance during the experimentFigure 42 shows the 


capacitance, and hence the biomass, measured by the bug meter over 


1,400 hours. 


The arrow marks the point at which the control system was switched on. 


6.2 The data supplied 

Clearly there is not very much of great interest in the data in Figure 42. 

However the real surprise was the behaviour of the pump stimulus over 

the same period. For a set-point of 5pF, large and seemingly random 

changes were detected in the pump output as shown in figures 8,9,10 
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which represent the data from hours 200 to 1400, split into equal thirds. 

These should be compared to Figure 46 which shows the pump demand 

for a lower 4pF set point at which this non-linear behaviour did not occur. 

The very large fluctuations in the data detected were a novel phenomena. 

Hitherto it had been assumed that the yeast cells would be equally 

distributed through the various stages of a cells life at anyone time, and 

thus demand should be constant or gently rising as in Figure 46. Figure 43 

to Figure 45 imply that dramatic changes occurred to the population over 

time when the concentration was increased over some critical threshold. 

My task was to analyse this data and to try to extract whatever information 

my techniques could find, and to attempt to predict the data so as to 

hopefully show a simple deterministic cause for the strange behaviour 

seen. 
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Figure 43 Nutrient feed for hours 600 - 1,000. 
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Figure 44 Nutrient feed for hours 200-600. 
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Figure 45, Nutrient feed for hours 1,000-1,400. 
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Figure 46, Nutrient feed for a similar experiment with lower set point 

6.3 Analysis of the data 

Since the work had to be compared and documented alongside other 

analyses, the same subdivisions of data were used as shown in Figure 

43, Figure 44 and Figure 45. The forms of analysis available to me were: 

Hurst Exponent, Lyapunov exponent, Embedding dimension and 

separation, with their implied estimate of attractor dimension, and local 

approximation based prediction. The following are the results of the 

analyses. 

l 
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Table 1 Non - linear analyses of yeast growth rate 

Time Series Data (Hours) 200­ 200­ 600­ 1000­ Units 

1400 600 1000 1400 

Lyapunov exponent 0.510 0.316 0.147 0.510 Bits/hour 

Calculated Embedding 5 10 8 5 

Dimension 

Calculated minimum embedding 2 2 1 2 Hours 

separation 

Hurst Expon ent 0.755 0.680 0.747 0.773 

Correlation Coefficient for 0.974 0.959 0.827 0.679 

Predicted vs. Actual, Local 

Approximation 

Correlation Coefficient for 0.436 0.800 -0.050 0.214 

Predicted vs. Actual, 1 st Order 

Trivial Predictor 

Correlation Coefficient for 0.865 0.894 0.901 0.872 

Predicted vs. Actual, 2 nd order 

trivial predictor 

Correlation Coefficient for 0.219 

Predicted vs. Actual, 6th order 

autoregressive model 

RMS error of predictions vs. 6.749 8.380 17.65 13.44 ml/hour 
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Actual, 

Local Approximation 

RMS error of predictions vs. 26.11 17.63 45.67 22.74 ml/hour 

Actual, 

1st and 2nd order trivial predictors 

RMS error of predictions vs. 26.53 ml/hour 

Actual, 

6th order autoregressive model 

Average pump rate 31.14 21.43 47.77 24.22 mllhour 

Table 1 shows various different analyses of the time series data. 

Predictions were generated using the Local approximation algorithm, 

trivial predictors and auto-regressive moving averages. In each case the 

10% of the data between the 80% and 90% points were used as the 

validation or out of sample test set, and the correlation and RMS error 

figures are for the performance of the method as a predictor of those data 

sets. 

In sample performance is not shown. 

The first data column in Table 1 shows results for the entire test data; the 

rest for successive thirds. The auto-regressive predictions were 

calculated by the Economics department at the University of Wales. The 

software used was called T.S.P., and the order of 6 was chosen by 

experiment to give the best predictions. 
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6.4 Predictions generated from the data 

Validation perfonnance for 200-1400 Hrs. 
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Figure 47, Local approximation predictions, Hours 200 -1400 
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Figure 48, Local approximation predictions, 600-1000 
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Validation predictions for 1000-1400Hrs. 
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Figure 49, Local approximation based predictions, 1000-14000 hours 


Validation prediction for 200-600 HI'S. 
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Figure 50, Local approximation based predictions, Hours 200-600 

6.5 Conclusions drawn from the results 

Figure 47 to Figure 50 show single step predictions of the time series 

using the version of the local approximation algorithm. It can be seen 

from Table 1 that the correlation coefficient of the overall prediction in 
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Figure 47 is very much better than any of the other predictions of sub 
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sections. This implies that the prediction methodology has insufficient 

data points, and thus information about the attractor for the sub sections. 

Interestingly the data was originally split into three sections because it 

was thought that there were three distinctly different modes of behaviour 

judging from visual clues alone. The fact that the presence of all three 

data sets improves prediction performance implies that the same process 

is active in all the data sets. The difference in visual appearance is due, it 

appears, to the chaotic nature of the process. 

The first row in Table 1 adds credence to this assumption because the 

Lyapunov exponents measured are all positive. It should be pointed out 

that the algorithm by Wolf (Wolf,85) used to generate the Lyapunov 

exponents was developed specifically for mathematically derived series 

where, unlike experimental data, large numbers of points are generally 

available. It is liable to be more reliable in its estimation of the whole 

series. The values for the sub sets should be considered merely 

indicative. 

The Hurst exponent adds weight to the diagnosis of chaos, and more 

importantly the performance of the predictor adds indirect support. We 

can see by the poor showing of the autoregressive model, which used the 

ARMA (Box, 76) technique, that linear models do not predict this series 

well. We can therefore with some safety infer non-linear processes, a 

necessary pre-condition for chaos. 
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The calculated embedding dimension derived using false nearest 

neighbours is anomalous in that two of the sections show much higher 

embedding dimensions than that for the whole series. I believe the result 

is due to the greater importance given to noise in the data in the sub 

sections, and that these results are artefacts of the method itself. I refer 

the reader to section 2.3.2.1 & 4.3.2 for a discussion of the technique in 

detail. Since the false nearest neighbours technique settles on an 

embedding dimension when the number of false neighbours fa" below 

some threshold, and the definition of a false neighbours itself depends on 

another threshold, a noisy section of data may well push up the calculated 

embedding dimension by artificially generating false neighbours. Sources 

of noise are to be found in the measurement process itself, and also in the 

physical organisation of the system. The system can add nutrient but not 

take it away. It is clear that during some periods of high growth the pump 

demand drops to zero, a.nd if the system could have extracted nutrient no 

doubt the control system would have tried it. 

Taking Takens' (Takens,81) embedding theorem in reverse we can 

estimate a fractal dimension of 2-3 from the embedding dimension, which 

implies 2-3 variable, which is said to accord well with the fundamental 

chemistry of the system, 
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Figure 51, Decrease in correlation of predictions with increasing offset 

Figure 51 shows the performance of the predictor when required to make 

predictions further ahead than one single time step. It can be seen that 

the predictions remain reasonably good up until an offset of 6 hours. At 

this stage the correlation coefficient drops to around OA. Sugihara and 

May (Sugihara,90) made much of the exponential drop of correlation for 

their experimental data. This is not in evidence here, indeed we have 

effectively a step function. The probability is that the truncation of the data 

discussed above, by having only positive pump demand, has added 

spurious correlations to the data above an offset of 5. It can be cited in 

evidence for this that the 1 5t order trivial predictor correlation, effectively 

the 15t order auto-correlation, is nearly identical to this level. There mayor 

may not have been an exponential drop in correlation given a perfect 

control signal, impurities in the data do not permit us to find out. 
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David J. Wales (Wales,91) attempted to use a similar system to predict 

the Tent Map chaotic time series and arrived at a graph very similar to 

Figure 51 without any measurement noise, since the series was generated 

mathematically. I therefore consider the results to be in keeping with other 

published work. 

Finally it is clear that the predictions are very effective, and that the 

underlying dynamics of the system have been well modelled. It can be 

seen from Figure 45 that given a smaller required biomass these chaotic 

regimes do not occur. If we scale this process up to that used in the 

industrial generation of high value chemicals such as drugs, a larger 

biomass will result in a higher yield for the same industrial plant. 

Discovering chaos is part of the process of defence against it. Ott & Yorke 

(Ott,90) have shown that chaotic processes can be stabilised if they can 

be modelled, and we have therefore the prospect of generating an 

advanced control system making use of a predictive model that permits 

much higher stable concentrations of organisms than hitherto, and thus 

higher yields. 
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7. Conclusions and further work 

At the beginning of the work the need was identified to predict and 

analyse real world time series exhibiting chaos and other non-linear 

behaviour. While tools existed to perform this task, they suffered from two 

drawbacks: the need to empirically choose a set of parameters that were 

vital to the prediction performance, and the large amount of computing 

resources they required. Where parameters are chosen empirically 

without resort to a theory or heuristic there must be doubt as to the quality 

of the results. For instance if the selection process took advantage of 

some transient characteristics of the training data, the model is not likely 

to work well with out of sample data. 

This document has described work undertaken in reducing and finally 

eliminating the free parameters, and in reducing dramatically the time 

required to achieve predictions. 

Comparison with other published work showed that no predictive 

performance has been lost in this process, indeed the predictions seem to 

be more accurate than a range of other methods on a particular bench 

mark series. 

The techniques detailed in this document give a justification for a choice of 

embedding parameters. This justification has been shown to be valid for a 

range of financial time series data by the use of sensitivity analysis. 

Finally the predictor was used to analyse and predict new experimental 

data drawn from a biotechnological experiment. The evidence of chaos 
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and short term predictability detected by the techniques and methodology 

detailed in this work has shown the presence of a new form of behaviour 


previously unsuspected in simple and common place organisms under 


certain environmental conditions. 


There are many opportunities for future work that spring from this 


document. 


In this work no real attention has been given to the problem of non­


stationarity. The elements of the artificial time series were all generated 


using the same function and parameters. The biological time series seems 


to have had the same generating function throughout judging by the better 


prediction performance on the whole data set rather than the sub 


divisions. Financial series however are liable to change their properties 


over time. This can occur gradually, as a result of parameter drift, or 


dramatically. 


One potentially fruitful solution might be the addition of forgetting to the 


local approximation algorithm used. Any embedded points older than a 


certain date could be de-rated or completely ignored in generating 


predictions. If it is true that the iterated system underlying the series was 


different before that cut off date, then better performance can be expected 


as a result of this modification. 


Of course this adds back a free parameter, and the assumption has been 


made of a linear change in the underlying system that may not hold. 
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Discovering a methodology to determine this drift without resort to 

optimisation would be very valuable. 


Another modification to the methodology could be investigated. Since the 


local approximation algorithm used stores the previous embedded points 


rather than a model drawn from them, as soon as a point has been used 


in a prediction, and once the next true value is known it can be added to 


the database of points. Using this method in and out of sample data 


cannot be confused, but the local approximation algorithm is always using 


the most recent data. If as discussed above, the underlying generating 


function is constantly changing this must have the effect of improving 


performance. 


The local approximation algorithm employed is interpolative in nature, 


rather than extrapolative. That is to say that if a new predictee point is 


presented that is outside of the existing set of points in the embedding set, 


then the algorithm will not work well. 


It is likely that neural nets will perform better in these circumstances. It 


would be interesting to know how much of a problem this is. 


It is possible to define a reliability heuristic for predictions generated by 


this methodology. This might be composed of elements such as the 


density of predictor points around a predictee, the variation in the predictor 


outcomes and the degree of agreement in sign of the outcomes. It would 
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be interesting to know if this would track the measured reliability of the 

system. 
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Appendix 1 Pseudocode of Lyapunov implementation 
LyapunovO 
{ 
Determine the range of the data, fSize. 

Check for variation in the data, quit if none. 

~o:~te data embedded using dimension and separation determined by AMI & FNN (See 


Normalise the data 

Load the data into a binary Tree (See 4) 

Variable Lyapunov = 0 

Variable Found =0 

For each embedded row 


{ 

Search in the binary tree for the 10 nearest neighbours 

If this is the first time round the loop 


{ 
Check if the nearest neighbour is the last sample. 
If so use the second nearest 
Store the index of this neighbour 
Store the distance to the current pattern 
Increment the found count, Found. 
} 

else 
{ 
For each of the nearest neighbours 

{ 
If This neighbour is more than 10 samples from the current 
pattern and is not the last 

{ 
Find the neighbour with the smallest angle relative to the last 
chosen neighbour in the previous loop 
} 

} 
if a suitable neighbour was found 

{ 
Fetch the distance between the current point and the chosen neighbour, 

fDist. 

calculate the distance between the next point after it and the next point 

after the current vector, flterateDist. 

Lyapunov = log2(flterateDist/fDist) + Lyapunov. 

Found = Found + 1 

Calculate the vector between the chosen point iterates to help select the 

next vector 

} 

} 

Lyapunov =Lyapunov I Found 


} 

Appendix 2 Binary tree pseudocode 
Data structures: 

pData, an array of floats containing the data. 

wVectorCount;, the number of rows in the data 

wVectorWidth, the number of columns in the data 

pTreeHead, The root node of the tree representation 

pBucketArray, an array of integers of size wVectorCount. 




The imple.mentation is in. C++ and uses a class CBinaryTree to hold the tree. 
Construction of the tree IS automatic on the construction of a CBinaryTree object passed 
the data and the row and column counts. 

CBinaryTree initialisation 
{ 
For each position in pBucketArray i 

pBucketArray[l] = i. 

pTreeHead = CreateNode(O, wVectorCount) 
} 

CBinaryTree CreateNode(lnput Index, Number of paints) II this recursive procedure 
generates the tree. 
{ 

if the tumber of points is smaller than a constant, (15) 

This. is a leaf node. Creat~ a CBinaryTreeNode object with the index of this objects 
section of the data, A pOinter to pBucketArray and the number of points. 
} 


Else 

{ 
For each column 

{ 

Calculate the mean of all the data values in that column 
Calculate the standard deviation of the data values in that column 
if the standard deviation is the greatest so far store it, the column index and the 
mean. (The selected column) 
} 

Check to make sure that there was some variation in the sample 

if there was no variation 


{ 
Call this function recursively passing the Input Index and half the number of 

points. 

Call this function recursively passing input index + half the number of points and 

half the number of points. 

} 

else 
{ 
For each of the number of points 

look in the data for the selected column at the row offset given by Input Index + 

the point index. 

If that data value is greater than the mean move it to the upper half of the 

sample. 

If its less than the mean move it to the lower half. 

Call this function recursively passing the Input Index as the first value >= to the 

mean, and the number of pOints greater than the mean. 

Call this function recursively passing the existing input index and the number of 

points less than the mean 

} 

} 
} 

pBucketArray contains indices for each row of data. Initially ordered. . 
The function above recursively divides the array into smaller and smaller sections by 
choosing pivot points, and at each division the indices are sorte.d either side of the pivot 
point. Eventually the divisions are smaller than a pre-selected Size, and are denoted as 
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leaf nodes. A tree is created in this process, and each node of the tree contains the pivot 
index, number of points below it, the pivot column and the pivot value. 

When used on financial data, especially differenced data, large numbers of points had the 
same value and thus sooner or later a tree node would be generated controlling points 
with zero standard deviation. The above algorithm handles this case by splitting the 
indexes at an arbitrary mid point. 

There are two kinds of search that can be performed on the newly created tree. The tree 
can return all the points within a certain radius, or the n points closest to a given point. 
The latter is used exclusively in this work, and the search proceeds as follows: 

Search ( search vector, count of neighbours, array of indices, array of distances) 
{ 

Initialise Arrays 
Call Search node passing a reference to the head node of the tree 

SearchNode (Current node) 
{ 

if current node is a leaf node 
{ 
Calculate Euclidian distance for each point controlled by this node to the 
search vector, and place in the appropriate part of the distance and index 
array, shuffling down, and eventually out of the array any points that are 
further away 
} 

else 

~ind the discriminant column for this node, extract the corresponding data 
value from the search vector, and calculate the difference between this 
and the pivot value, fOiff; A distance, fOist is also calculated as fOiff2 

if fOiff is negative 
{ 
Call this function recursively with the left branch of the tree. 
If fOist is smaller than the best found so far call this function 
recursively with the right branch 
} 

else 

hall this function recursively with the right branch of the tree. 
If fOist is smaller than the best found so far call this function 
recursively with the left branch 
} 

Appendix 3 Pseudocode of Mutual information implementation 
This proceeds as follows: 

Input arrays are Vector1, and Vector2 both of length wLength 


Mutua! Information( Vector1, Vector2) 
{ 

Calculate the mean and standard deviatio~ 0: vectors 1 & 2 and re-scale them both 

to have zero mean and unity standard deviatIOn. 

Check for data with no variation. Quit if found. . 

Form a 2 dimensional matrix, matrix3, by concatenatmg Ve.ctor1 and Vector2. 

Form a binary tree from each of Vector1, Vector2 and Matnx3. 
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Generate a vector H of length wLength to hold adaptive bandwidths and initialise 
each location to a pre-defined constant 0.01. 

Perform a density estimation on Matrix3 and use the probabilities to adjust the 

bandwidth array H. 

Perform Density estimation on Vector1, Vector2 and Matrix3 using the new 

bandwidths and calculate the mutual information using Error! Reference source 

not found. .? 


Appendix 4 Pseudocode of False Nearest Neighbours implementation 

False nearest neighbours 
{ 
Find the range of the data, fSize. 

For dimension = 2 to dimension = 8 


{ 
Embed the data using the AMI derived separation and the current dimension 
Create a binary tree representation of the data 
for each row 

{ 
Find the nearest neighbour and the distance between them, fOist 
Take data from the time series to extend the embedding of the point in 
question and the nearest neighbour. 
Calculate the new distance between the two points fNew. 
If fNew/fDist > 5 or fNew > 0.2 * fSize 

Increase the nearest neighbour count by one 
} 

if the change in nearest neighbour count I number of rows > -0.1 select the 
preceding embedding as the result and quit 
} 

If the above has not resolved an embedding dimension 
Choose the first neighbour count / number of rows below 0.1 as the result 
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, ii 

Appendix 5 Pseudocode of Hurst implementation 

HurstO 
{ 
Find the number of samples in the time series 
Normalise the data 
Determine the number of measures, = Sample Count! 10 
Allocate a 2 dimensional array to receive the RSI measurements 
for each of the measures, p 

{ 

RSAve = 0 

Size of block = Sample Count I p 

For each block in the data 


{ 
Calculate the average 
Calculate the standard deviation using the average 
Find the range of the block 
RSAve =RSAve + The range I the standard deviation 
} 

RSAve = RSAve I p 
Put the log of the RSAve into the x side of the RSI array in the pth position. 
Put the log of (Size of Block * sample time in seconds) into the y side of the RSI 
array in the pth position. 
} 

Perform linear regression on the array of tuples. 

The HUrst exponent is the gradient of the best fit line. 

} 

Appendix 6 Pseudocode of local approximation algorithm interpolation 
Local ApproximationO 
{ 

Result = 0.0; 

b =0.0; 

av = 0.0; 
for each of the vertices 

av =av plus that vertex's distance; 
if the sum of the distances is not zero (this can happen with financial data) 

av == 4.0 I av; 
else av == 4.0; 
for each vertex calculate the average of the outcome and the average distance 
for each vertex 

{ 

b = b+ exp(- the vertex's distance from the predictee * av); 

Result =Result + exp(-the vertex's distance from the predictee * av) * the vertex's 


outcome; 
} 

if(b != 0.0) II check for potential divide by zero 
b == 1.0/b; 

Result =Result * b; 
} 
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