

Title Time Series Prediction Using Supervised

Learning and Tools from Chaos Theory

Name Andrew Nicola Edmonds

This is a digitised version of a dissertation submitted to the University of

Bedfordshire.

It is available to view only.

This item is subject to copyright.

z

TIME SERIES PREDICTION USING SUPERVISED LEARNING AND

TOOLS FROM CHAOS THEORY

ANDREW NICOLA EDMONDS

A thesis submitted to the Faculty of Science and Computing,

University of Luton, in partial fulfilment of the requirements for the

degree of Doctor of Philosophy

December, 1996

-

i. Abstract

In this work methods for performing time series prediction on complex real

world time series are examined. In particular series exhibiting non-linear

or chaotic behaviour are selected for analysis. A range of methodologies

based on Takens' embedding theorem are considered and compared with

more conventional methods. A novel combination of methods for

determining the optimal embedding parameters are employed and tried

out with multivariate financial time series data and with a complex series

derived from an experiment in biotechnology. The results show that this

combination of techniques provide accurate results while improving

dramatically the time required to produce predictions and analyses, and

eliminating a range of parameters that had hitherto been fixed empirically.

The architecture and methodology of the prediction software developed is

described along with design decisions and their justification. Sensitivity

analyses are employed to justify the use of this combination of methods,

and comparisons are made with more conventional predictive techniques

and trivial predictors showing the superiority of the results generated by

the work detailed in this thesis.

2

ii. Dedication

This work is dedicated to my family: Anneke, Alexander, Anna and our

unborn child, my parents George and Patricia, and Rex Quondam

Rexque Futurus.

3

iii. List of contents:

i. ABSTRACT .. 2

ii. DEDICATION.. 3

iii. LIST OF CONTENTS: .. 4

iv. TABLE OF FIGURES ... 6

v. PREFACE ... 8

vi. ACKNOWLEDGEMENTS ... 9

vii AUTHOR'S DECLARATION .. 10

1. INTRODUCTION... 11

2. BACKGROUND TO WORK .. 15

2.1 REVIEW OF FUNDAMENTAL CONCEPTS .. 16

2. J.1 Chaotic series .. }6

2.1.2 Embedding as a means of unravelling chaotic series ... 21

2.2 CHAOS THEORY BASED MEASUREMENTS ... 22

2.2.1 The Lyapunov exponent .. 22

2.2.2 Hurst Exponent ... 24

2.3 DERIVATION OF EMBEDDING PARAMETERS ... 26

2.3.1 Empirical n1ethods .. 26

2.3.2 Analytical methods .. 34

2.4 SUPERVISED LEARNING AS NON-PARAMETRIC MODELLING ... 39

2.5 NEURAL NETWORKS .. 41

2.5.1 Simulated Neurons ... 42

2.5.2 Simulated Synapses ... 43

2.5.3 Network topologies 43

2.5.4 The Error Sur/ace ... 44

2.5.5 Symmetry and multiple solutions ... 45

2.5.6 Practical Neural Learning Algorithms 46

2.5.7 Neural Network Minimisation ... 47

2.5.8 Cross Validation ... 51

2.6 SURFACE MODELLING TECHNIQUES .. 52

2.7 TRIVIAL PREDICTORS ... 53

2.8 OBJECT ORIENTATION OF DESIGN .. 54

2.9 OVERVIEW .. 56

3. THE EVOLUTION OF THE PREDICTOR - PREVIOUS VERSIONS 58

3.1 DEVELOPMENT AND RUN TIME PLATFORM.. 58

3.2 REASONS FOR THE CHANGES IN DESIGN ... 58

3.3 PREVIOUS VERSIONS IN DETAIL .. 60

4. DESCRIPTION OF THE TIME SERIES PREDICTOR .. 64

4.1 THE TIME SERIES DATABASE ... · .. ·.. ·· 64

4.1.1 Formatting and storing input data .. 65

4.1.2 Re-sampling stored data ... 66

4.1.3 Coping with gaps in the data due to market closure ... 68

4.1.4 Data normalisation ... 68

4.1.5 Quantization of price data ... 69

4

4.1.6 Working with first differences ... 69

4.2 QUALITATIVE MEASUREMENTS PERFORMED ON THE DATA ..•... 70

4.2.1 Lyapunov Exponent Implementation ... 71

4.2.2 Hurst exponent implementation .. 72

4.2.3 The effects of quantization on qualitative measures ... 73

4.3 EMBEDDING ANALYSIS OF THE DATA ... 75

4.3.1 Auto-Mutual Information .. 76

4.3.2 False Nearest Neighbours ... 81

4.4 TRAINING PATTERN GENERATION .. 82

4.5 SUPERVISED LEARNING OF THE TRAINING PATTERNS ... 84

4.5.1 Local approximation algorithm .. 85

4.6 CONVERSION AND FORMATTING OF PREDICTIONS .. 86

4.7 ITERATED PREDiCTIONS ... 86

4.8 EVALUATION OF PREDICTIONS .. 88

4.8.1 Validation data 88

4.8.2 Metrics .. 89

4.8.3 Similar day Information .. 89

4.9 PERFORMANCE OF THE PREDICTOR ON ARTIFICIAL TIME SERIES 90

5. PERFORMANCE OF THE PREDICTOR IN FINANCIAL APPLICATIONS 92

5.1 FOREIGN EXCHANGE DATA ... 92

5.2 FALSE NEAREST NEIGHBOUR AND AUTO-MuTUAL INFORMATION RESPONSES 96

5.3 SENSITIVITY MEASUREMENTS FOR FALSE NEAREST NEIGHBOURS AND MUTUAL

INFORMATION .. 100

5.4 DISCUSSION OF PREDICTABILITY OF FINANCIAL SERIES .. 104

5.5 DISCUSSION OF THE RELEVANCE OF THE RESULTS AND IMPLIED MODELS OF THE MARKETS.1 05

6. PERFORMANCE OF THE PREDICTOR IN A BIOTECHNOLOGY APPLICATION 109

6.1 BACKGROUND TO THE ANALYSIS ... 109

6.1. J Measurement of Biomass .. 109

6. 1.2 Culturing Yeast in afermentor .. 1 J0

6.2 THE DATA SUPPLIED .. 111

6.3 ANALYSIS OF THE DATA .. 115

6.4 PREDICTIONS GENERATED FROM THE DATA... 118

6.5 CONCLUSIONS DRAWN FROM THE RESULTS ... 119

7. CONCLUSIONS AND FURTHER WORK ... 124

8. REFERENCES.. 128

APPENDIX 1. PSEUDOCODE OF LYAPUNOV IMPLEMENTATION 135

APPENDIX 2. BINARY TREE PSEUDOCODE ... 135

APPENDIX 3. PSEUDOCODE OF MUTUAL INFORMATION IMPLEMENTATION ... 137

APPENDIX 4. PSEUDOCODE OF FALSE NEAREST NEIGHBOURS

IMPLEMENTATION .. 138

APPENDIX 5. PSEUDOCODE OF HURST EXPONENT IMPLEMENTATION 139

APPENDIX 6. PSEUDOCODE OF LOCAL APPROXIMATION ALGORITHM

INTERPOLATION... 139

5

iv. Table of Figures

FIGURE 1, THE FIRST 500 POINTS OF THE LOGISTIC EQUATION 17
FIGURE 2, THE FIRST 500 POINTS OF THE TENT MAP 18
FIGURE 3 THE FIRST THOUSAND POINTS OF THE MACKEY-GLASS EQUATION 20
FIGURE 4, THE LORENTZ EQUATIONS, THE FIRST 3000 POINTS 20
FIGURE 5, EMBEDDED LOGISTIC EQUATION AND TENT MAP. 21
FIGURE 6, TWO NEIGHBOURING TRAJECTORIES ON AN ATTRACTOR SHOWING THE

CHARACTERISTIC DIVERGENCE IN TIME ASSOCIATED WITH CHAOS. 23
FIGURE 7, GENES AND CHROMOSOMES 29
FIGURE 8, GENETIC ALGORITHM PROCESSES 30
FIGURE 9, THE CROSSOVER OPERATOR 31
FIGURE 10, GENERATING A NEW GENERATION 32
FIGURE 11, AN EXAMPLE OF A FALSE NEIGHBOUR ON THE LORENZ A TTRACTOR IN

2D 37
FIGURE 12, EXAMPLE NEURAL NETWORK ILLUSTRATING SOURCES OF

IRRELEVANT COMPLEXITY. 49
FIGURE 13, IN AND OUT OF SAMPLE TRAINING PERFORMANCE 52
FIGURE 14 A BLOCK DIAGRAM OF THE TIME SERIES PREDICTOR 64
FIGURE 15 ORGANISATION OF THE DATABASE 66
FIGURE 16: PHASE SPACE IS QUANTIZED INTO HYPERCUBES 73
FIGURE 17, EMBEDDING A TIME SERIES USING A FIFO 84
FIGURE 18, LOCAL APPROXIMATION INTERPOLATION 86
FIGURE 19, ACHIEVING ITERATED PREDICTIONS USING FEEDBACK. 87
FIGURE 20, GRAPHIC REPRESENTATION OF SIMILAR DAY DATA 90
FIGURE 21: THE DMI$ 93
FIGURE 22: THE £1$ 93
FIGURE 23,3 MONTH DEPOSIT RATE, DM 94
FIGURE 24, 3 MONTH DEPOSIT RATE, £ 94
FIGURE 25,3 MONTH DEPOSIT RATE, $ 94
FIGURE 26, DM/$ PREDICTION FOR 2 HOURS IN 5 MINUTE INCREMENTS 95
FIGURE 27, £1$ PREDICTION FOR 2 HOURS IN 5 MINUTE INCREMENTS 95
FIGURE 28, DM/$ AUTO MUTUAL INFORMATION AT DIFFERENT SEPARATIONS 96
FIGURE 29, DM/$ FALSE NEAREST NEIGHBOURS AT DIFFERENT DIMENSIONS 96
FIGURE 30, £1$ AUTO MUTUAL INFORMATION AT DIFFERENT SEPARATIONS 97
FIGURE 31, £1$ FALSE NEAREST NEIGHBOURS 97
FIGURE 32,3 MONTH DM DEPOSIT AUTO MUTUAL INFORMATION 98
FIGURE 33, 3 MONTH £ DEPOSIT AUTO MUTUAL INFORMATION 98
FIGURE 34,3 MONTH $ DEPOSIT AUTO MUTUAL INFORMATION 99
FIGURE 35, 3 MONTH $ DEPOSIT FALSE NEAREST NEIGHBOURS 99
FIGURE 36, EFFECTS OF PERTURBING DM/$ EMBEDDING DIMENSION 101
FIGURE 37, EFFECTS OF PERTURBING DM/$ SEPARATION 102
FIGURE 38, EFFECTS OF PERTURBING £1$ DIMENSION 102
FIGURE 39, EFFECTS OF PERTURBING £1$ D SEPARATION 103
FIGURE 40, ANALYSIS OF PERFORMANCE OF FNN & AMI ON VARIOUS SERIES 104
FIGURE 41 CAPACITANCE OF VARIOUS BIOMASS CONCENTRATIONS AGAINST

FREQUENCY 11 ()
FIGURE 42 MEASURED CAPACITANCE DURING THE EXPERIMENT III
FIGURE 43 NUTRIENT FEED FOR HOURS 600 - 1,000. 113
FIGURE 44 NUTRIENT FEED FOR HOURS 200-600. 113
FIGURE 45, NUTRIENT FEED FOR HOURS 1,000-1,400. 114
FIGURE 46, NUTRIENT FEED FOR A SIMILAR EXPERIMENT WITH LOWER SET POINT 115
FIGURE 47, LOCAL APPROXIMATION PREDICTIONS, HOURS 200 -1400 118

6

FIGURE 48, LOCAL APPROXIMATION PREDICTIONS, 600-1000 118
FIGURE 49, LOCAL APPROXIMATION BASED PREDICTIONS, lOOO-14000 HOURS J 19
FIGURE 50, LOCAL APPROXIMATION BASED PREDICTIONS, HOURS 200-600 119
FIGURE 51, DECREASE IN CORRELATION OF PREDICTIONS WITH INCREASING

OFFSET 122

7

v. Preface

Elements of this work have been published in the proceedings of

conferences and journals.

An overview of the financial time series results and methodology was

published in the proceedings of the IEEE world conference in

Computational Intelligence in Orlando, Florida (Edmonds 94a).

Another paper on the same subject with a more financial emphasis was

published in the proceedings of "Neural networks in the capital markets"

or NNCM94 (Edmonds 94b)

The biological time series work was published in Biosystems in 1996.

(Davey et al. 96). Some of the diagrams are drawn from this paper.

The author performed all the mathematical analyses of the data in this

paper except for the Fast Fourier transform and Auto Regressive Moving

Average analyses.

8

vi. Acknowledgements

I would like to acknowledge the contribution of the following and thank

them for their help:

Science in Finance Ltd. for funding this work and my college fees.

Diana Burkhardt and Osei Adjei of the University of Luton and Professor

Reginald King of Cranfield University for their supervision, support

and advice.

Reuters Limited for the provision of some of the data used.

Professor Douglas Kell of the University of Wales department of

Biotechnology for the provision of some of the data used and the

opportunity to co-operate in some interesting work.

John Deuss of Transworld Oil Research and Development Limited for his

encou ragement.

9

vii. Author's declaration

I declare that this thesis is my own unaided work. It is being submitted for

the degree of Doctor of Philosophy at the University of Luton. It has not

been submitted before for any degree or examination in any other

University.

Andrew Nicola Edmonds

15th day of December 1996.

10

1. Introduction

This thesis describes work undertaken to investigate and develop

methodologies for time series prediction of complex real world time series

using principles from Chaos Theory and Computational Intelligence.

When this work was started various results had been announced using

computational intelligence techniques to perform prediction of financial

and biological series that had hitherto been regarded as intractable, and

much interest had been generated in these techniques as a result. On

closer inspection the methodologies used required that a range of

parameters be found by manual or automated search since no analytical

techniques were available. The results were obtained with considerable

expenditure of computer time and human effort, and the empirical

discovery of good values for parameters tended to undermine the validity

of the results. The choices of parameter values so obtained could not be

justified by any theory or heuristic, nor could the researcher claim without

inordinate care that his results were truly the product of blind trials.

In this work various published techniques that had been used to solve

other problems are bought together, modified and adapted and combined

with new ideas to form a time series prediction methodology that

eliminates the requirement to search for parameters and that requires

11

dramatically reduced computer resources. In the first version of the time

series predictor there were seven parameters which required setting by

experiment, In the final version the were none. The run time of the final

version was 2 orders of magnitude faster than the first taking into account

the improvements in hardware that had taken place over the period (see

chapter 3). The accuracy of the results when tested on benchmark time

series were at least as accurate as other published work (chapter 4). it is

this successful adaptation and combination of techniques that is novel and

represents the contribution to knowledge contained in this work.

The software was tested using financial time series data, specifically

foreign exchange rates, because of the complexity of the data, its

availability in vast quantities, and the interest there is in the predictions

generated.

A further application arose during the course of this work to test the

software on a problem in biotechnology, where chaos, and short term

predictability had never before been identified, and only recently

suspected. As will be seen the presence of both these characteristics

were demonstrated using the techniques described in this work.

In Chapter 2 the types of time series and their characteristics that the

techniques enshrined in this work attempt to predict are discussed along

with a review of predictive and analytical techniques that have been used

12

on them. The function and characteristics of various modelling techniques

drawn from Computational Intelligence are discussed. Finally simple

predictive methods are described that are very useful in weeding out poor

predictive results. Because of the many different fields from which this

work is drawn the author has taken the decision to provide a more basic

description of the technologies and ideas involved than would normally be

found in a chapter which is intended to be a literature survey.

Chapter 3 is a description of the evolution of this work. It describes the

construction of a time series predictor using Neural networks that

represented the current state of knowledge in the field, and the problems

associated with using it to predict financial time series. The large number

of control parameters required are described, along with the paucity of

techniques or heuristics to determine their proper value.

Various interim versions are described that 'first automate the search for

parameters, then in successive stages reduce the requirements until in the

final stage none of the original parameters survive.

Chapter 4 describes the final version of the time series predictor in greater

detail. It explains the various new ideas and adaptations and

improvements to existing algorithms that went into the time series

predictor. The problems associated with handling financial time series

data are described along with the solutions found. Methods for evaluating

13

the performance of the predictor are described along with the performance

of the predictor on various artificial benchmark series.

Chapter 5 describes the performance of the predictor with financial time

series. Sensitivity analyses are used to show that the system described

finds good values for the various parameters that are required. The

possible meaning and relevance of these predictions is discussed.

Chapter 6 describes the analysis of a time series drawn from a

biotechnology experiment, and how both chaos and short term

predictability were identified using these techniques, for the first time in

this particular field.

The results and predictions generated are described, along with a short

discussion of the potential use of this new knowledge.

Chapter 7 reviews the various conclusions reached in the work described

in this thesis, and suggests useful areas for future work.

14

2. Background to work

In this section the key concepts, technologies and algorithms used either

in the final version of the predictor or in interim versions will be described

and their various merits discussed. Because of the many different fields

from which this work is drawn the author has taken the decision to provide

a more basic description of the technologies and ideas involved than

would normally be found in a chapter which is intended to be a literature

survey.

There has been a great deal of interest in recent years in the application

of chaos theory to a variety of real world time dependant systems, and the

ability that this new branch of mathematics promises to untangle and bring

forth order from seeming disorder.

There has also been much attention given to the ability of computational

intelligence tools such as Neural Networks, Genetic Programming, and

genetic algorithms to model fuzzy or ill defined real world problems. There

are many time series, notably in the natural sciences and finance, that had

proved difficult to analyse with conventional linear methods, that are now

beginning to be modelled using non-linear and non-parametric methods.

(Tong, 90)

These "difficult" time series turn up in many, probably all, branches of

science; from the analysis of the time variation in the population of rodents

15

in northern Scandinavia (Turchin, 93) to the analysis of the weather

(Lorenz, 63)

Mathematical methods have been developed to characterise and to some

extent analyse these time series, and these will be discussed in more

detail later. It will be shown that the complexity of these series and the

systems that underlie them, due to the presence of non-linearity, and the

fact that they are represented by finite observations, justifies the use of

empirical and non-parametric methods as described in this thesis.

2.1 Review of fundamental concepts

The ideas underpinning this work are derived from a number of different

disciplines. Few areas of study can avoid reference to mathematics, but

many of the techniques described were derived not by mathematicians but

biologists or physicists trying to gain information from sampled time series

that were both short and noisy. By chance, or perhaps by the nature of

things, the same kinds of problems have been attacked using empirical

methods in the study of Computational Intelligence.

2.1.1 Chaotic series

Many systems in the natural world are now known to exhibit chaos or

non-linear behaviour, the complexity of which is so great that they were

previously considered random. The unravelling of these systems has been

aided by the discovery, mostly in this century, of mathematical

16

expressions that exhibit similar tendencies. By analysing these

expressions techniques have been developed and applied to the real

world The most famous and oldest of these is the logistic equation,

originally conceived as a model of population growth.

The Logistic Equation:

t=O.. 500 b=4.0 ~=o.1 Initial conditions

\+1 :=b.\(l- \)

x 0.5 , , t
I!

0
0 100 200 300 400 500

Figure 1, The first 500 points of the logistic Equation

Another simple example is the Tent Map:

he Tent Map:

n=O.. 500 ~:=O.I b=O.95 Initial conditions

x := if[x <0.5 2·b·x ,2·b· (1- x)]n+ 1 n '11 n _

100 200 300 400 500

n

17

Figure 2, The first 500 points of the Tent Map

Yet another chaotic series is generated byevaluating the Mackey-Glass

equation: (Mackey,77)

18

The Mackey-Glass Equation in its discrete form.

The following choice of variables and initial condition cause chaotic behavior.

a=O.2,b=O.9,c=10,s=18. XOtoX18=O.7

The Equation:

x, = hX t +a
X,_s

c_ 1

1+ x t - s

Time Evolution of the equation:

________~--------_.,-----____,-__--__--.-------~5

An embedded version of the equation:

~____~____.-____.-____~____~__~4

2

()~

lIS

19

Figure 3 The first thousand points of the Mackey-Glass equation

And as the last example there is the system of equations first used by

Lorenz (Lorenz, 63) in his attempts to model simple atmospheric

interactions:

X'+l = x, + a(Yt - x t)8

Y'+l =8(bx t - Y, - x,z,) + Yt

Z'+l = 8(x, Y, - cz,) + Z,

Where b =28, a = 10, c =8/3 and () = 0.01

401----+-----1r----+----=t
40,-------,----..,.------,

2020

xI xI

0

1000 2000 3000 -2
40-~IJ

40

40

20

xI

0
-2

-2 60
-4 60

Zt zl

Figure 4, The Lorentz equations, the first 3000 points

20

~......................................

...

The above series are introduced because they illustrate how complex

behaviour can easily be produced by simple equations with non-linear

elements and feedback, but also because they will later be used as

benchmark series. Note that the path taken by the series, known as the

trajectory, in figures 3 and 4 forms a complex shape beyond which the

series never strays. This shape is known as the attractor of the function.

2.1.2 Embedding as a means of unravelling chaotic series

(Ruelle,81) and (Takens,81) first described a simple method for analysing

chaotic series called time series embedding. It can be illustrated simply by

observing the effects of plotting pairs of points Xt and Xt+1 for both the

Logistic equation and the Tent map as shown in Figure 5 .

.... /
f',jpI·JiIIII. ..

~'II~
.............. .,. I

o~~----~----~
o 0.5

Figure 5, Embedded logistic equation and Tent map.

The above graphs show that in both cases plotting pairs of points from

the time series has produced recognisable patterns. Given Xt we can make

a very good estimate of Xt+1 by interpolation. This principle extends to

multiple dimensions, and in general can be written as:

21

2.1

Where X is the embedded vector, d is the Separation, and n the

embedding dimension

Takens (Takens,81) showed that this principle generalises, and that given

a chaotic series correctly embedded there existed a smooth function that

would model it perfectly. Both the correct embedding dimension and the

smooth function must however be discovered empirically. An extra

complication is that the best predictions are not necessarily achieved

using contiguous samples to form the embedding vector. In fact it is often

better to separate the embedded samples by some gap. The gap is

termed the embedding separation.

2.2 Chaos theory based measurements.

2.2.1 The Lyapunov exponent

An attribute of chaotic systems that has entered into legend as the

butterfly effect is that of high sensitivity to initial conditions. It is considered

proof of the presence of chaos if this attribute of the system under

analysis can be demonstrated (Wolf 85). The standard method of

identifying this attribute is by the calculation of the Lyapunov exponent

(Wolf,85). This exponent measures to the base 2, therefore in bits, the

rate at which neighbouring points on the attractor diverge as they are

moved forward in time.

22

14

Figure 6, Two neighbouring trajectories on an attractor showing the

characteristic divergence in time associated with chaos.

Given sufficient data we can talk about how a volume of space on the

attractor dilates over time.

The trajectories on the attractor are embedded in a multi-dimensional

space, and so the divergence is properly represented as the difference

between 2 n-tuples. The dominant average Lyapunov exponent is defined

as:

Where n indexes the samples, and I is the Euclidean distance between a

trajectory and its nearest neighbour.

23

2.2

With very large amounts of data the density of points in a region of the

attractor will permit the calculation of local Lyapunov exponents. That is to

say that the rate of divergence will not necessarily be constant over the

whole attractor, and so localised measurements can be made. In practice

we are unlikely to be afforded this lUxury when dealing with experimental

data, and so the first exponent is the most that we can hope to measure.

The Lyapunov exponent has the units Bits per sample time step.

Positive Lyapunov exponents are considered evidence of chaos, Negative

exponents of mean reverting behaviour, and the value zero is

characteristic of cyclic behaviour. As an example of the latter, the

attractor of a sinusoidal system such as an excited pendulum is a circle. If

we consider the time evolution of two points one degree apart on the

circle, the distance between them will remain constant, thus the ratio of

two consecutive lengths will be unity, and thus the exponent will be zero.

2.2.2 Hurst Exponent

H.E. Hurst (Hurst,65) is responsible for a measure of predictability of time

series that has interesting characteristics. The exponent is derived using

so called RIS analysis. Given a time series X containing a number of

points, n, and choosing an integer divisor p where for convenience: 10<=

P < n12, the data can be divided into nip blocks.

For each block the average value is calculated, then the maximum range

of each block and the standard deviation of each block.

24

2.3

...

The value (range)/(standard deviation) is calculated for each block and

then averaged over the blocks.

This average value rs is related to the Hurst exponent by the following

formula:

where H is the Hurst exponent. In order to gain a more reliable estimate

the value of rs is calculated for all the possible values of p, and the

resulting tuples are logged and a linear regression is performed on them.

It is the gradient of the regression line that is used as the Hurst exponent.

Hurst exponent values range between 0 and 1. A value of 0.5 indicates a

true random walk, a value 0.5 < H < 1 indicates so called persistent

behaviour, in that one can expect with increasing certainty as the value

moves towards one that whatever direction of change has been current

will continue. A straight line with non zero gradient would have a Hurst

exponent of 1 .

Similarly, values 0 < H < 0.5 indicates anti-persistent behaviour, in that

one can expect that whatever direction of change is current is unlikely to

continue. At the limit of 0 the time series must change direction every

sample. This gives a clue to a relationship between one definition of the

fractal dimension and the Hurst exponent. This is:

D=2-H 2.4

25

So a Hurst exponent of 1 gives a Fractal dimension of 1, as one would

expect with a straight line. A Hurst exponent of 0 must belong to a time

series that is so volatile as to fill the 2 dimensional space and thus have a

dimension of 2.

2.3 Derivation of Embedding Parameters

In order to analyse and predict a chaotic time series we must embed it

using the method in 2.1.2. The appropriate values of d and s are important

to ensure accurate results. See 5.3.

2.3.1 Empirical methods

In the absence of theory to guide us empirical methods seem very

attractive so long as the search space is not too large. One can define

practical bounds for embedding parameters, and thus define a search

space. Reasonable bounds might be:

1) we are looking for integer valued dimension and separation values

2) we are unlikely to be able to predict anything requiring an embedding

dimension greater than 8

3) separation is unlikely to exceed 16 (based on experiment).

A brute force search of this space would require 128 trials to cover all

possibilities. However without independent justification for a choice of

embedding parameters one could only use the value of some derived

metric such as prediction performance to determine the optimum. In order

to perform prediction we must form a model of the attractor and thus

require a supeNised learning algorithm of some kind. In the early part of

this work the only available supeNised learning algorithm with which to

26

generate predictions, back-prop Neural Nets and variants, also had

topological and functional parameters that were not independent of the

embedding dimension.

Thus unfortunately the number of free variables was increased to 7, and

the number of trials increased to 3,276,800. Some methodology to search

this space more efficiently was required.

There are a variety of gradient and stochastic methods for optimising

multi-parameter processes such as that discussed above. The one key

problem in this work that constrains the selection of algorithm is the

presence of a stochastic process, a back propagation neural net, in the

process to be optimised. Neural nets, especially those with greater

topological complexity than required for the problem in hand, will often find

different solutions each time they are trained, or take different numbers of

epochs to reach the same solution. The optimisation surface for a

process containing a neural net is therefore very noisy. Gradient

methods, such as hill climbing will not work well in the presence of noise

since the gradient of the surface is forever changing. Two methods offer

hope however: Simulated Annealing (Ingber,93) and Genetic Algorithms.

The former was rejected because of a lack of specific evidence as to

performance in the presence of noise. One has only to look around to see

that Genetic Algorithms perform very well in a noisy environment.

27

2.3.1.1 Genetic Algorithm based selection of embedding parameters

Genetic Algorithms, (Gas) seek to copy the processes of natural selection

(Darwin, 1859) and the strategies used by nature to modify species to

ensure survival.

They were first invented by (Holland, 75) and his pupils in the mid 70s.

They have found widest practical application in optimising a fixed number

of parameters of some process interacting with an external environment.

The main characteristics are:

• 	 The representation of the parameters to be searched as strings of

binary digits split into fields in imitation of chromosomes.

• 	 The selection of good genetic material for reproduction based on

fitness, an externally applied measure of its worth, and random

chance.

• 	 The use of cutting and splicing (crossover) to generate offspring

from parents.

• 	 The use of mutation to flip bits in the chromosomes during mating

(normally with a low probability) as a way of adding "new bloodll to

the gene pool.

28

When designing a genetic algorithm search, the first thing to be decided is

the format of the chromosomes. The parameters to be searched are

encoded in binary and concatenated one to another to form strings of

digits.

Chromosome~-------....

11011\ 011\1111 0\ 0\ 0\1\

~ Gene ~ ~ Gene)

Figure 7, Genes and Chromosomes

The space allotted to a single parameter is called a Gene and consists of

several binary digits. The order of genes within a chromosome is not

important. Maximum and minimum values for each parameter need to be

determined, and the numbers of bits in the gene determine the resolution

to which this interval can be represented. The definition of these fields is

external to the operation of the GA. This fact is important, the operators of

crossover and mutation require no knowledge of the defined fields, and it

is even possible to change the interpretation of the fields during

processing.

This facility is the basis of Dynamic Parameter Encoding. (Schraudolph

,93). The next important decision is the population size. Typical values are

30-500. The larger the number the slower the optimisation, the smaller the

number the greater the chance that some vital solution in a far corner of

the parameter space will go unexplored.

29

The operation of a GA is fairly simple.(Davis,91. An initial population of

chromosomes with a length decided by the sum of the gene lengths are

initialised with random binary values. They thus represent randomly

selected points in the parameter space.

In turn each chromosome is extracted from the population and its genes

decoded to extract the parameter values. The parameters are tried out on

the external process and a monotonic though not necessarily linear

measure of performance must be generated. This measure called fitness

is the associated with that chromosome.

~,
External Process to be

Optimised
,,

External measure

of performance

Process

I outputs

Parameters

controlling

the process.

Genetic Algorithm Fitness1/
I'

Figure 8, Genetic Algorithm processes

When every chromosome in the population has been tried out a new

generation is created.

Individuals are selected in the most simple form of GA by using "roulette

wheel" selection. The probability of selecting any particular chomosome n

is set to:

30

it 2.5
P, = Lin

n

where ft is the fitness of the chromosome, and n indexes the other

chromosomes in the population.

Two mates are selected by the above process and by use of a biased

random number generator with two states the partners are either selected

for crossover or passed on to the next generation unchanged. The

probability of crossover is generally set to -0.8. If crossover is selected

another biased random number generator is used to select a location on

the chromosome strings with uniform probability. Both chromosomes are

cut at this point and their respective halves swapped.

Figure 9, The Crossover operator

Whether or not crossover takes place, each bit of the two chromosomes is

examined and based on a biased random number generator with two

states arranged for low probability the bit is flipped, i.e. 0-1, 1-0. This

31

process is termed mutation, and the probability associated is the mutation

rate. Typically this is set to -0.01.

Crossover MutationOld --0 New
oulation of Population of
)mosomes chromosomes

Roulette

I--~O selection

Figure 10, Generating a new generation

This selection, crossover and mutation process is repeated until a new

population is formed, and then the old is destroyed. The process of

evaluation is then performed and the whole process is repeated many

times over.

When plotted over the generations, GAs exhibit increasing average

fitness, and the production of a few super-individuals with high fitness.

Commonly GAs are used to find several possible solutions to a problem,

and the generation of super individuals too soon can prevent the

searching of other possible solutions. This state of affairs is called

premature convergence.

There are a few possible additions to the basic GA formulation that are

appropriate to this application.

• 	 Elitism is the process by which the individual chromosome with the

highest fitness from each generation is passed on unmodified to

32

the next generation. The values represented in each gene can be

read as binary coded numbers, or as Gray coded numbers. Gray

code is an alternative to binary in which the representation for any

two contiguous numbers changes by only one bit. Gray coded

Genes are less prone to dramatic changes of value when mangled

by the crossover and mutation operators. (Carmana,88)

• 	 Fitness scaling is designed to handle the situation where the

majority of the population have similar fitness scores. Under these

circumstances the pressure for the reproduction process to select

the best chromosomes is slight. The best has little more chance

than the worst. This implementation of fitness scaling calculates

the mean and the standard deviation of the population fitnesses.

The transformation fitness = fitness - (mean - standard deviation)

is applied to each chromosome's associated fitness value, and

those with negative resultant fitnesses are set to O. The variation

in the set is now much larger and optimisation proceeds more

quickly. (Grefenstette,86)

The parameters selected to optimise the Neural net based time series

predictor were:

33

p

Name Type of parameter Number of Bits

Embedding dimension integer 1-8 3

Embedding Separation integer 1-16 4

Neural net 18t row hidden units integer 1-16 4

Neural Net 2nd Row hidden integer 1-16 4

units

Hidden rows integer 1-2 1

Learning rate float look up table 4

Momentum float look up table 4

The gene values were converted according to the description above.

2.3.2 Analytical methods

Takens (Takens,81) and Mane (Mane,81) determined the upper bounds

for a successful embedding if one knew the fractal dimension of the

attractor da . This is simply:

de;::: 2da + 1

Where de is the embedding dimension, an integer value.

However, as Medio points out, (Medio,92) The fractal dimension of the

Lorenz attractor (Lorenz, 63) is 2.06, thus Takens leads to an embedding

dimension of 5, whereas it is known that the practical embedding

dimension of this series is 3. When dealing with large amounts of

34

2.6

noiseless data, as can easily be obtained with the various series

described in 2.1.1 an over-large choice of the dimension may not matter

when calculating say Lyapunov exponents, but an over-large choice can

be fatal where modelling is concerned. There is empirical evidence for

this presented later in this thesis. See 5.3. Martin Casdagli (Casdagli,89)

also showed this effect using a brute force search through a range

embedding dimensions and constructing models of various types for each

dimension value which he then tested on fresh data. The reasons for this

effect are most likely to be parsimony, or the lack of it. Any model

generated with more than the required number of inputs, and thus more

than the required parameters or model complexity is less likely to perform

well on out of sample data. See for justification of this concept 2.5.7.

The Takens upper bound still requires the calculation of the dimension of

the attractor, and for experimental data where the equations underpinning

the dynamics are not known this requires trial embeddings; so the whole

process is somewhat circular. Some other method is therefore required to

find the embedding dimension. There are several possible analytical

methods for deriving a choice of embedding dimension. The one with the

oldest lineage (Farmer, 89) is to look for the saturation of some system

invariant, such as Iyapunov exponent with increasing embedding

dimension. Another is the false nearest neighbours algorithm and yet

another is the analysis of the Kaplan-Glass statistic (Kaplan,91) with

increasing embedding dimension. Of these the simplest to implement and

35

the seemingly most robust is the false nearest neighbours statistic. It has

a geometrical formulation that sets it apart from the other two, which are

concerned with local derivatives of the attractor, and thus gives a more

independent view of the attractor dimension. The choice of a methodology

for determining the separation is more complex. Conflicting advice is to

be found on this subject in the literature. Medio claims the separation is

irrelevant so long as it is small, Casdagli that it should be related to the

mean orbital period, Abarbanel (Abarbanel,92) that the first minimum in

the auto- correlation should be used, and Fraser &Swinney (Fraser,86)

that the first minimum in the Auto mutual information should be used. The

separation is clearly not irrelevant as evinced by 5.3. The mean orbital

period is both hard to calculate for experimental data, and unfeasibly

large. The concept of the first minimum of the auto-correlation is useful,

but correlation as a measure is dependant on a Gaussian distribution,

which we know not to hold for the data that we want to analyse. See 5.5.

Mutual information makes no assumption about the distribution of the

measured series, and is therefore the most attractive measure to hand.

2.3.2.1 False nearest neighbours

False nearest neighbours (Kennel 92) is a methodology for deriving a

workable embedding dimension for a given time series.

A trial embedding is formed with separation given by whichever

technique is chosen and embedding dimension n. The nearest neighbour

vector for each embedded vector is found and the Euclidean distance

between the two vectors measured. Then the embedding dimension is

36

increased by one for both the current vector and its neighbour by

appending the appropriate data value. If the distance between these two

new vectors is dramatically different after this change the neighbour is

considered a "False Neighbour". The number of these is counted and

expressed as a fraction of the number of rows. A curve of these values

against n is plotted and an embedding dimension with a suitably low

number of false neighbours selected.

Two views of a three dimensional attractor.
4

20 40 60 o
Points that appear to!lether In two dimensions, are far apart In the

\ \
Figure 11, An example of a false neighbour on the Lorenz attractor in 20

2.3.2.2 Mutual information

Mutual Information is a concept conceived by Claude Shannon (Shannon

49). Mutual Information attempts to measure in bits the amount of

information that can be inferred about one series of symbols by another.

Lafrance (Lafrance, 90) gives a derivation of this concept. In general

given two series x and y with indexes I and j respectively, the average

mutual information can be calculated as:

37

~...................................

2.7

Note that Mutual information is positive and symmetrical, that is f(x,Y) > 0

and l(x,Y) = J(y,x).

Auto mutual information is measured by using two copies of the same

series, one delayed by some lag t. As t increases it is hoped that several

minima will be observed in the resulting curve, and the value of t at the

first minimum is selected (see Figure 33). The argument for this is

somewhat intuitive. We want to choose an embedding separation so that

each column in the embedding supplies the maximum amount of new

information. This must imply the minimum of old information, and thus a

minimum of mutual information.

With some series the mutual information values will just gradually decline

without any clearly detectable minima. The advice of Abarbanel et al. is to

take t=1 if this occurs.

38

2.4 Supervised Learning as non-parametric modelling

Regression analysis is an example of parametric modelling in that the

form of the data series to be modelled has already been inferred or

guessed at before the analysis begins. The purpose of the regression is to

find parameters for the model that minimise the error between the

modelled series and the series itself. The statistician must try increasingly

complex models, and then use regression analysis on them to determine

their parameters until the results are deemed acceptable.

In recent years, techniques have been developed that simplify the

modelling process. Non-parametric techniques are those where both the

form of the modelling function and the parameters to it can be modified

during the analysis.

Normally these techniques are iterative, and since the modelled series

must be accessed repeatedly such a technique can also be considered a

form of learning. Typically the algorithm iteratively forms a better and

better model as the data is presented, and so behaves as an analogue of

human learning. Indeed practical algorithms have been trained, for

instance, to learn the past tenses of common English verbs. Interestingly

in the early stages of training, the same kinds of mistakes are made by the

algorithm as a small child just learning his or her own language

(McCleliand,86).

The processes of learning can be split into three different categories for

convenience: Unsupervised learning, Supervised learning and

Reinforcement learning.

39

Unsupervised learning is where data is presented to a learning algorithm

in the form of multiple consecutive n-tuples, and the algorithm is required

to classify these n-tuples into meaningful groups without any external

guidance. This is akin to learning a new language by immersion in the

country where that language is spoken. Initially it is very hard to recognise

the sounds of the language, or to separate the individual words. The

ability can however be gained without the help of a teacher.

Supervised Learning is where both input data and a set of expected

responses are presented to a learning algorithm. Typically both the input

and response data are paired n-tuples. The algorithm should learn to

associate the pairs of n-tuples, and correctly return the response n-tuple

once training is completed when a data n-tuple is presented. The human

analogue of such a process would be rote learning.

The usefulness of such an algorithm would be enhanced if, when an input

n-tuple similar but not identical to one of the training input n-tuples were

presented a response the same as or close to the expected response

were generated.

This ability to respond rationally in the presence of noisy data is termed

the "generalisation ability" of the algorithm.

As of yet there is no generally agreed measure of this quality. The quality

depends on the ability of the algorithm to glean the general idea or

function underlying the n-tuples to be learned, and to reject noise or false

data points in the training set. Usually, as we shall see, algorithms learn

40

the gross features of a training set first and the finer detail last. Since we

hope that the signal outweighs the noise in our data set, the noise is

normally learned last, and various techniques, which will be discussed

later, can be used to terminate training before this point.

Reinforcement learning, also known as learning with a critic, requires

some external arbiter to permit learning. In this paradigm the algorithm is

required to suggest a set of parameters for some external process, and is

given a "correctness" score for that set of parameters. Rather like a game

of twenty questions the algorithm is required to produce better and better

parameter guesses as training continues. Some forms of Neural Network

and genetic algorithms are examples of this form of learning.

Both Supervised and Reinforcement learning have been used in the work

described in this thesis, though Reinforcement learning was dropped in

the final version for reasons that will become clear. Supervised learning is

used to model the smooth function generated by a suitable embedding of

a system demonstrating non-linear behaviour, and thus to permit the

generation of predictions.

2.5 Neural Networks

These are perhaps the most commonly used supervised learning

algorithms. There are few subjects in computer science that have seen a

greater growth than Neural Networks in the past ten years. A very large

41

volume of papers have been generated and several journals and

numerous conferences are devoted to the subject. For all that the basic

ideas underpinning this technology are fairly simple. In many cases Neural

nets are the breach through which the world of computational intelligence

is entered, and much of the work published under that banner is of more

general application.

2.5.1 Simulated Neurons

Common to all implementations of neural nets, and there are many, is the

concept that simple processing units can be used together in a way

vaguely similar to the human brain to achieve some kind of group

intelligence. The electro-chemical interactions of a living neuron with its

neighbours are fairly well understood. Few implementations however give

much regard to these models; they represent algorithms along the same

theme that are more easily Implemented in software or silicon. One still

hears the term biological plausibility used in the literature, mostly to

remind experimenters of the attributes of a neural network that permit it to

be called neural. These are that learning should be spread over a number

of simple processing units, that learning should modify some attribute of

the connections between the units or the units themselves, and that

processing should be local. Local processing means that, ignoring

synchronising signals, it should be possible for each neuron to process

individually using the stimuli available to it, and to learn by modifying only

itself or the attributes of connections directly attached to it. There are

several successful algorithms that modify all the parameters of a net at

42

once in order to effect learning, and can only be formulated to act in this

fashion. As useful as these algorithms may be they are not neural.

In back propagation neural nets a neuron has a simple structure.

Synapses bring signal values to the input of the neuron. These values are

real numbers and are summed at this node. The output is formed by

applying a sigmoidal activation function to the sum. If we denote the sum

of the input values as x, a typical choice of transfer function is:

y = 1+e·-(

2.5.2 Simulated Synapses

Synapses are the interconnections in a network, they carry signals from

inputs to neurons and neuron to neuron in a single direction. The signals

they carry are real numbers representing input values to the network or

excitation values of neurons. A synapse has a weight associated with it

that scales the signal passing through it. These weights are the only part

of the model that is typically modified while training the network. A special

type of synapse is commonly provided, termed a bias synapse. This has

the value 1.0 permanently connected to the input.

2.5.3 Network topologies

In order to simplify the study and design of neural networks researchers

tend to use simple topologies. Network designs fall into two types: feed

forward and recurrent. A Feed forward net typically has a row of input

terminals, 1 or more rows of hidden units, and one row of output units.

43

2.8

II'

Interrogating a trained network involves signal propagating across the

network in only one direction. There are no feedback paths. Typically to

further simplify the topology each input terminal is connected to each

hidden unit in the first row by a synapse. If more than one hidden row

exists then each unit in that row is connected to each of the units in the

next row and so on until the output row.

There are no connections that cross rows. Typically every hidden and

output unit is also supplied with a bias unit.

Recurrent networks permit feedback across rows, and are capable of

detecting and responding to sequences of input values. In this work

reliance will be placed on the embedding process to disentangle time

dependencies, and the promise from Takens that once we have

embedded the signal we need only to model a smooth function.

2.5.4 The Error Surface

The most illuminating concept in understanding the various learning

algorithms that can be applied to train neural nets is the error surface.

Having in advance decided on a supervised learning training set

consisting of input vectors and expected output vectors, and having

decided on a topology for the neural net one has fixed the number of free

variables, weights and bias weights in the network. Training the network

will require selecting a particular set of values for these free variables. We

can imagine therefore a high dimensional space where we devote one

44

dimension to each variable, and one extra dimension to the sum of the

squares of the errors over the training vectors of the network.

Now for any choice of values for the variables, we can evaluate the

network through the training set and arrive at a single value for the sum

squared error. Thus there is a surface, the error surface, representing the

performance of the network for different sets of weights and biases. Given

enough time we could evaluate grids of points and build up a picture of

this surface. This would indeed be one kind of learning algorithm.

If the network is capable of modelling the input data there will be one or

more points on the surface where the error is, or is close to zero. The

process of training a supervised learning algorithm is to incrementally

move towards and find one of these minima.

2.5.5 Symmetry and multiple solutions

A trained fully connected network has many symmetries inherent in its

design. In the example given below with four inputs, three hidden units,

and one output, one could easily swap hidden units, say 1 for 3, and arrive

at an identically performing but different net. We can thus be sure in this

case that if there is one zero on the error surface there will be 2 more by

symmetry.

We cannot be sure how many solutions exist for any given error surface,

especially since the surface is unbounded. The presence of multiple

solutions eases considerably the process of training. The weights of

45

Neural nets are norma.lly seeded with small random numbers, thus placing

the nets starting point somewhere close to the origin. Whichever learning

algorithm is employed, the chances of finding a minima nearby are much

enhanced by symmetry.

2.5.6 Practical Neural Learning Algorithms

Two will be considered, Back propagation (McClelland,86) and a guided

random search algorithm by (Baba,89) based on work by Solis & Wets

(Solis,81)

Back propagation is the most popular supervised learning algorithm and

uses a gradient descent method to find the fastest downhill path on the

error surface towards the solution.

The Baba algorithm is best explained as a series of steps:

1) The network is initialised with small random numbers for the weights

and biases

2) The sum squared error is evaluated for the particular set of weights and

biases.

3) If the error is below a predetermined level processing is terminated and

the network deemed trained.

4) otherwise small random numbers with a Gaussian distribution are

generated for each variable. These numbers are temporarily added

each to their respective weight or bias, and the sum squared error is

46

evaluated over the training set. If this has improved the error the

changes are incorporated. Go to 3.

Both algorithms have the effect of stepping across the error surface and

following downward slopes.

BackProp can be caught in local minima, if bounded on every side, The

Baba algorithm, though slower will not. Since the search is performed with

Gaussian random numbers sooner or later a change of sufficient size to

leave the minima will be generated.

2.5.7 Neural Network Minimisation

Even non parametric modelling techniques must have some parameters!

As soon as Neural networks began to be used for practical applications

where a net was trained on some subset of all the possible training

vectors, and then required to predict others not in that subset, the problem

of finding the appropriate network topology became apparent. Neural

networks are considered universal approximators of all functions of

practical interest (Hornik,89). This is based on the assumption that a

neural network of unbounded size could be generated.

However the practical problem is finding the minimum network that will

learn a given training set with a particular error rate. One can of course

always generate a net that is too large.

The motivation for this is inspired both by practical necessity and theory; in

this case computational Learning theory.

47

The philosopher William of Occam (1285-1349) is credited with the idea

expressed as "Non sunt multiplicanda entia praeter necessitatem".

Literally "Entities should not be multiplied unnecessarily". This is known

as Occam's razor and was used as a method for discarding elaborate and

overblown philosophical theories. It can also be recast as the principle

that the simplest model is most likely to be correct.

Cheeseman (Cheeseman 90) cast this problem of model minimisation in

a Bayesian framework and showed that the most likely model in a

Bayesian sense would be generated by minimising the sum of two terms:

The complexity of the model, and the complexity of the residuals given the

model. Complexity is measured here using the information theoretic

concept of message length, and is the minimum number of bits required to

encode the model or information. The principle is of great interest, but the

practical implementation of such a minimisation system is difficult to

achieve with non parametric modelling with the requirement to generate

prior probabilities for each parameter.

The general principle is clear however. If the purpose of training a model

on a subset of its possible input and output vectors (in sample data) is to

produce the best possible response with data vectors not present in the

training set (out of sample data), then one must trade off model

complexity against training set error, and there must be an optimum

combination.

The above discussion assumes a parsimonious model representation. In

practice there are two elements to any excess of model definition, that

48

which is explained by the above and excess caused by lack of information

about the required model complexity before the training process begins.

An example- might be useful here.

Let us assume that we generated a training set by taking some simple

function, such as x= lover the range 0,1 and sampling it at 0,0.01, 0.02

etc. to build our training set. Let's assume also that small random

numbers chosen to have Gaussian distribution were added to each

training sample.

We could construct a net with perhaps three layers of Neurons and say

five hidden units in each layer to learn the training set.

Figure 12, Example neural network illustrating sources of irrelevant

complexity.

Using a non parametric modelling technique like Neural Networks there is

nothing to guide our choice of topology before training begins. The above

may well contain too many processing elements.

49

During training of the net we can expect the larger features of the training

set to be learnt first, and for the net to continually refine its model. This is

in the nature of gradient descent. At some point during training the finer

features that are modelled are caused by the added noise. The network is

oblivious to this and continues to construct and refine the model so as to

explain the noise as well as the underlying function.

Now during the training process some of the hidden units may prove to be

totally redundant, some of the weights may be set close to zero, or two or

more units may share some modelling burden that could have been

performed by one. We thus have a structural burden of dead wood. We

also have inappropriate model refinement in that the model has learnt the

perturbations of the input data due to the noise.

Removing the structural dead wood is the purpose of network

minimisation. There are two ways to achieve this: growing a net from

some small initial starting point by adding model complexity only as it is

required, and pruning or skeletonising a baggy trained net.

Examples of the former are the Upstart Algorithm (Frean,90) and Cascade

Correlation (Fahlman, 90). Examples of the latter are Optimal Brain

Damage (OBO) (Le Cun,90) and Optimal Brain Surgeon (Hassibi,93) after

training, and weight decay during training (Hinton, 86)

Since after training minimisation methods can be grafted on to existing

back propagation algorithms they are the most attractive. The two

examples above look at the second derivatives of the error surface of the

50

trained net and decide which weights can be deleted. In aBO the weights

are ranked in order of magnitude of second derivative, and the lower n%

are deleted. An iterative process is required to find the optimum deletion

rate. A maximum acceptable error rate is chosen and small percentages

of the weights are deleted. The net is briefly retrained and the process

repeated until the chosen error rate is achieved.

2.5.8 Cross Validation

A non-parametric modelling technique such as Neural nets or Genetic

Programming (Koza, 92) tends to learn gross features first and finer

features as learning progresses. If the training set is both large and

noiseless this will cause no problem, and we can permit the process of

refinement to continue until some arbitrary level of accuracy on the

training set is achieved. This is not the case with noisy and shorter data

sets. Here the finer features are often noise rather than the underlying

process to be modelled and one must stop training before these are learnt

to get the best performance on out of sample data.

The following diagram is derived from Hecht-Nielsen (Hecht-Nielsen,90).

51

Error

Out of sample
performance

In sample
performance

oint

Training cycles

Figure 13, in and out of sample training performance

Cross validation is a method to prevent this over-training. A separate

validation data set drawn from the same source is required and the

performance is monitored on this set. Training is terminated on the

minimum of this error. This requires hindsight, so the normal technique is

to store copies of the model only when out of sample performance

improves compared to the last training cycle, and to continue training for

some suitably large period after the last model storage.

2.6 Surface modelling techniques

When a neural network is trained it represents a model of the function that

generated the training set to a certain degree of error. The Neural

network can be thought of as representing the data set, which can be

reconstituted through it. Indeed one form of data compression relies on

this principle (McClelland,86).

52

If this data compression is not considered a virtue for a given application

there are other supervised learning algorithms that use the training data

set as part of the model. These effectively require no training, instead

what processing is required is transferred to the interrogation phase.

These algorithms are basically interpolative. They rely on some

interpolating function using existing points in the data set to give results.

See 4.5.1 for a description of the local approximation algorithm used in

this work.

2.7 Trivial Predictors

It is too easy, given the complexity of the tools at hand in time series

analysis, and the many limitations on their use that may not be

remembered, to see in the results of a predictive algorithm more than is

really there. One of the most powerful methods for returning to sanity is

the use of Trivial Predictors.

These are simple models that can be easily applied to the predicted data,

and against which performance can be meaningfully and simply

measured.

The first order trivial predictor simply predicts that a series sample will

have the same value as the preceding sample, i.e.

2.9
Xt = Xt-1

The second order Trivial Predictor assumes the same change in the data

as the previous sample, i.e.

2.10
Xt = 2Xt-1 - Xt-2

53

I
The second order Trivial Predictor is a surprisingly powerful competitor,

especially if the Hurst exponent of the time series in question is greater

than 0.5 and tending towards 1. In the Biotechnology series analysed in

6.1 a 2nd order Trivial Predictor outperformed an Auto-Regressive Moving

Average model (Box,76), considered a few years ago to be the state of

the art in time series prediction ..

2.8 Object Orientation of Design

Few who are aware of trends in the world of computers can have failed to

notice Object Oriented Programming (OOP). The fundamental ideas

behind OOP are concerned with increasing the "engineering virtue" of Icomputer code. An entity possessing engineering virtue is some or all of:

robust, cheap, easy to understand, easy to maintain and of general

application. A 10mm bolt would be a good example of such an object. A

1more subtle form of engineering virtue might be called extensibility, both in

practice, and of design. A Portacabin might be an example of such an

object. If you require more space than your single Portacabin permits, you

just park another one alongside, bolt them together and cut a door

between the two.

Computer software written in high level languages such as Pascal or 'C'

has traditionally had few of these virtues.

In recognition of these software shortcomings, the high cost of writing

software, the high cost of maintenance and the high human cost of

software faults, various methodologies have been developed. Out of the

54

m

!

I

vast possible space of working practices they represent methodologies

that can be seen to have improved engineering virtue. Object Oriented

Programming is the most successful of these methodologies. A

programmer who adopts the methodology limits the range of responses !
I

he has to any problem, but automatically increases the virtue of the code

he produces.

Virtue and Quality in this context are two different things, though the

differences are subtle. Quality is about metrics, about faults and defects,

about complexity and interrelatedness, about analyses that are made after

the event, a fundamentally reductive process. There is no metric that

measures how easily a design might be modified to encompass some new

requirement in the future, a key element in engineering virtue.

OOP introduces the idea of class as a definition of an object that has

interface functions known as methods. One designs a class to implement

a particular software object, and decides on and implements the methods

for the class. These methods act on and give access to the data members

of the class that can usually be only accessed through the methods. Using

this system the engineering virtue of 'data hiding' or 'need to know' can be

achieved avoiding a whole class of bugs involving the spurious or

unintended modification of a variable. Subsequently the methods may be

found to be in error, in which case they can be changed, or inappropriate

for some new purpose. If the latter a new class can be generated

inheriting all or some of the methods and data members of the parent

class. We now have two classes that have different behaviour but share

55

common code. This achieves another element of virtue, the re-use of

software. Finally OOP offers a method for standardising interfaces that

can make objects interchangeable at run time. This is called

Polymorphism, and as its name suggests allows objects of disparate type

to be treated similarly. If applied strictly by limiting methods and

parameters to some pre-determined set we may have interchangeable

objects that all pertorm the same function but by radically different

methods.

Polymorphism is achieved through inheritance. Objects that inherit from

other objects can be treated as if they are those parent objects for the

purposes of reference.

The language of choice for OOP is e++, an extension of 'e' with object

oriented additions. There is nothing about e++ that forces one to use

object oriented design, one can still continue in the same bad ways of

unstructured design, (and many do) but all the opportunities for virtue are

there.

2.9 Overview

In this chapter an attempt has been made to review the literature

associated with the work and to explain the underlying techniques and

concepts used. Because the work covers several fields of knowledge the

decision has been made to describe the techniques in more detail and at

a more basic level than is customary for a thesis.

While the function of Neural networks and Genetic Algorithms may be

known to many, the sections on derivation of embedding parameters, local

56

approximation and model parsimony contain information that is less widely

known.

57

3. The evolution of the predictor - previous versions

This section describes the evolution of the time series predictor and the

various algorithms and methodologies that were tried out. All the versions
Ii
i!described here were designed and coded by the author. ,
I

3.1 Development and run time platform j
Throughout the software generated was designed to run on IBM PCs and

clones thereof using initially C and later C++ all under Microsoft Windows.

Versions 1,2 & 3 were 16 bit implementations. Subsequent versions used

32 bit code.

The most recent version is configured as an OLE control and can be

embedded easily into other applications.

The first version was tested on a 386 based computer, the most recent on

a 120Mhz Pentium processor, since several years elapsed in the process

of development. Some of the performance improvement seen is therefore

due to improving hardware technology. Due to changes in operating

systems and their processor support it would not be possible to test the

most recent version on the same system on which the first version was

developed, even if such a system could be found.

3.2 Reasons for the changes in design

The constituent parts of the predictor have changed dramatically since

first conceived. The initial version represents the state of the art at the

time the work began when viewed from the perspective of computational

58

intelligence. This is an important point since the intention was to make

use of experience that the author had in various computational intelligence

algorithms to produce a workable time series predictor. The fact that very

little computational intelligence technology is left in the final version, and

that this was the result purely of a desire to improve the predictor, rather

than to use a particular technology whether it worked or not, is in itself of

interest.

It became obvious in making use of the first version that processing was

exceedingly slow, and that there were a variety of parameters that needed

to be set. Rather like being presented with a television set with seven

unmarked controls that interacted in subtle changing ways, occasional

flashes of light were seen. The literature offered little, no or contradictory

guidance on the proper values of these parameters, for example see.

Experimentation showed that they were all mostly dependant on the time

1..11

I

series under investigation, but the form of the dependency was unclear.

The intention was formed to investigate methods for determining or

eliminating these parameters with the hope of deriving a time series

prediction and analysis system that required little or no user interaction

and that performed its processing in as small a time as possible. All this

was to be achieved without compromising the predictive performance that

the first version occasionally showed when by chance the choice of

parameters happened to be correct.

59

I
In the process of developing the predictor, driven both by practicality and ,
inquisitiveness, a novel combination of technologies has been used to

achieve the results shown at the end of this thesis.

The following table describes the various versions that were built.

3.3 Previous versions in detail

Version Supervised Embedding Typical run time Ilearning parameter

algorithm selection

1 Neural nets manual 20 min. per parameter choice

2 Neural nets GA 48 hours

3 Neural nets & GA 24 hours

minimisation I
4 Neural nets & Analytical 30 minutes

minimisation

5 Local Analytical 30 seconds

approximation

The reasons for the changes in each version are mostly concerned with

performance and simplicity.

Version 1 required selection of Neural net topology and learning

parameters, and manual selection of embedding parameters. The user

thus had 7 parameters to set with no guidance as to the correct values.

60

~-,----------................--------­

Version 2 tried to optimise all of the parameters simultaneously, using

genetic algorithms but required 48 hours typical run time on a PC on the

kinds of data sets described in section 5.1. Each neural net evaluation

would typically require 10 minutes, thus in this time 288 parameter

evaluations would be performed. In reality this is far too few considering

the search space of around 3 million possible parameter sets, but it was

the maximum amount of time that could be allocated to training.

Occasional good results were obtained, generating sufficient interest to

justify continued research.

In version 3 Neural network minimisation was used to avoid having to

choose the net topology parameters, thus reducing the search space

dramatically. The search space was now very much smaller but runtimes

were still in the order of 24 hours, albeit with a much better chance of

finding optimal parameter sets.

Version 4 derived embedding parameters analytically, using False Nearest

Neighbours and Auto Mutual Information and the run time of the predictor

was dramatically shortened. Even so the neural net could take 10-30

minutes to train, and occasionally no solution, or a poor solution was

found. The user was still required to run the predictor potentially multiple

times until suitable validation performance was seen. In practice this

meant that given two different training runs with similar performance the

prediction for a given time period was not always the same in magnitude,

61

and sometimes in direction. This tended to undermine the users

confidence in the tool in a financial application. For it to be wrong was

acceptable, as long as it wasn't wrong too often, but for it to be seen to

disagree with itself on the same data set on subsequent runs was

considered unacceptable.

Finally in version 5 with the use of the Local approximation algorithm

consistency of predictions were achieved. All the stochastic elements had

been removed, and given a particular data set one would get the same

results every time the program was run. As can be seen from the later

sections the quality of the predictions is high. Run times for this version

are in the order of thirty seconds, depending on the data, and the majority

of this is taken up by the auto-mutual information calculations.

There was another important factor driving the evolution of the time series

predictor, which was that of debugging and testing the application. For the

purposes of academic research the run time is of secondary importance to

the quality of predictions or insight into new techniques that might be

gained, however debugging and testing any system requires that it be run

repeatedly with slight changes of parameters or code. If the run time of

that application is 48 hours then progress in fixing any problems is

exceedingly slow. A reductionist approach can be taken, and the individual

elements can be tested separately, but there are always some errors that

will only be apparent when the completed system is run. Also since this

62

I

I: ,

software was wholly speculative, and none of its elements had been run in

that particular form before it was not possible to determine in advance the

likely performance or capabilities of the individual elements. A certain

amount of trial and error was therefore required in improving the predictor

performance. Again this is difficult when each run requires 48 hours.

These considerations were a powerful incentive to reduce the run time of

the software.

I

I

63

4. Description of the time series predictor

In this section the time series predictor in its final version will be exa.mined

in detail. Each component part will be explained and finally some results

on artificial chaotic series widely used as bench marks will be presented.

Figure 14 shows the major components of the system and how they are

connected.

Time Series

Database "- Embedding &

/ Normalisation
~

¢ =>Input Data 7
Predictions/ i'

"-1/ ,1/

"Chaos Tools" Supervised
Data Analysis Learning Algorithms

Figure 14 A block diagram of the Time Series Predictor

4.1 The time series database

The time series database was specifically designed to handle the

demands of financial trading data. There are various characteristics of

such data that make the database design unusual. This decision does not

however prevent the database being used for simpler sampled data.

Fina.ncial trading data represents different things in different markets, and

is in fact a series of events loosely connected to a common theme. In

64

...

some markets such as commodities the prices provided by the exchanges

are the actual values of deals struck. In Foreign Exchange (FOREX) the

data supplied is not the price at which a deal was struck but the price at

which a foreign exchange dealer is prepared to trade. The dealers

constantly monitor the markets and post new prices electronically

whenever their existing prices are out of date. In both cases the data

represents discrete events that can occur at up to 30 times a second at

peak times.

Some markets such as foreign exchange are traded round the clock,

whereas commodity exchanges and stock exchanges have definite

opening and closing times.

I
I

Different kinds of traders have different requirements as to the time scale

of the data and predictions they require. Some "scalp" which is buying and

selling over very short term intervals, perhaps seconds, and others look

after pension funds that require investment horizons of years.

4.1.1 Formatting and storing input data

It is possible to perform chaos theory based time series prediction of

financial data using data updates as the fundamental time-base of the

predictions and analysis. The frequency of these updates varies

enormously over a trading day. Alternatively, and more frequently one

can sample the series at discrete intervals in time. I
There are as yet no papers known to the author comparing the relative ' Imerits of the approach of using what might be called update time over

"

elapsed time in financial series prediction. Because it was always

65

intended that this work should be of use outside the world of finance, see

for instance section 6.1, the system described here was arranged to use

elapsed time.

4.1.2 Re-sampling stored data

In the system described, input data are not considered to be samples

equally spaced in time. They are however considered to be ordered in

time. Each data pOint is time stamped and placed in a linked list in

increasing time stamp order. Because the system described was

designed to be able to handle multivariate data the entire database

contains multiple linked lists indexed according to name.

Collection ordered by
name (CEventMap)

I
r----­

Collection ordered by r--­

time (CEventList)

Time tagged Time tagged

event. event.

(CEvent) (CEvent)

Figure 15 Organisation of the database

Figure 15 shows the organisation of the database. The fundamental

organisation of the database is object oriented rather than relational.

66

The top level object is a collection indexing time series by name. When

performing multivariate prediction each time series will have a different

entry in this collection.

The next level down is another collection object, this time a linked list

containing individual data objects ordered in increasing time stamp order.

Finally the lowest level contains the sample objects, each sample contains

a value and a time stamp corresponding to the time of collection or the

end of the period summarised.

Training sets, validation sets, data for the chaos tools and for graphical

display are all required from the database in a sampled format with regular

time intervals between samples. In general we would expect the stored

data to be present in the database at a higher frequency than the sample

interval, but this will not always be the case. The sampled data values are

generated by first determining start and end points for which data is

available and which are an integer number of time periods apart, and then

for each time sample scanning through the data for the last valid time

stamped value before that sampling time. To save processing time when

multiple sequential values are required the scanning process is resumed

not from the beginning of the linked list, but from the last value used.

This method handles properly the case where data values are sparser

than sampled points by outputting repeated values where necessary.

Where multivariate data is available each of the linked lists is sampled in

the same manner, and at the same sampling times to produce

synchronous series from probably asynchronous and irregular data. The

67

start and end times are chosen to be within the intersection of all of the

linked lists.

4.1.3 Coping with gaps in the data due to market closure

Some markets close at the end of each working day, some run 24 hours.

None run on Saturdays or Sundays. Even in 24 hour markets there are

periods when trading is very light. The time series therefore always

contains discontinuities. However trading after a break does not start from

some brand new position, but always from around the last closing price.

The simplest solution to generate a series with which one can make

predictions is to concatenate the discontinuous data so as to make one

continuous series.

4.1.4 Data normalisation

Many of the supervised learning algorithms generate output values only

over some fixed interval. For instance back propagation neural networks

with sigmoidal output layers typically produce values in the interval [0,1] or

[-1 ,1] depending on the activation function. So in order to generate

predictions in the actual range of the data, the results must be de­

normalised. It is also common practice to normalise data into a supervised

learning system. If for instance, one input were a share price of say

53.125, and another were a volume of 1,567,458 shares traded, any

internal process that took into account both of these values inside a

supervised learning algorithm would have to work hard to scale them

accordingly. Most algorithms are adaptive and will achieve suitable scaling

68

~-,-

in time, but learning will be severely slowed down. It is simpler, and

learning proceeds more rapidly if input data is normalised. Normalisation

consists of finding the highest and lowest levels in the data supplied, and

calculating a scaling value and an offset value:

4.1Scale = 1+2¢
(max- min)

Offset = min(l- ¢)

where <p is a safety margin, typically 0.1.

The safety margin is added to ensure that we can safely represent a

prediction outside of the prices historical range.

4.1.5 Quantization of price data

Financial data, for the sake of simplicity, is quoted in fixed inteNals.

Sometimes these inteNals have been chosen historically and do not fit

well with digital technology. For instance share prices in America are often

quoted in eighths, sixteenths or thirty-seconds. Forex prices are quoted to

five figure accuracy. Clearly a predictive product must only generate

predictions consisting of the appropriate inteNals.

4.1.6 Working with first differences

In many ways the rate of change of a financial time series is more

important to financial traders than the series itself. Taking the first

difference or generating a series consisting of the difference between

69

successive time samples in the price series is one way to accentuate the

rate of change information.

In spot trading, where some quantity of a commodity is traded, the trader

is less interested in the absolute value of the traded commodity than the

difference in price from the time he or she bought it. This represents his or

her profit or loss, assuming the trade was made purely for speculation, as

the vast majority of trades are.

In futures markets this is even more true, where a contract to deliver a

commodity is traded without any purchase other than a deposit of "margin

money" to cover potential losses. In this case the value of the underlying

commodity is of secondary importance.

It is distinctly possible that in modern markets driven by speculation the

derivative series, measured as the discrete difference between successive

time samples, contains more information than the absolute price series.

To be able to take advantage of this possibility the database is configured

to be able to return sample to sample differences rather than absolute

values. Since we require that data be normalised before input to the

supervised learning algorithm, we must save normalisation data as

described in 4.1 .4 for the differenced series as well.

4.2 Qualitative measurements performed on the data

Before attempting to predict a time series it is useful to have some idea of

the predictability of the series, and the likely bounds in time on any

predictions made. The following are members of the block "chaos tools" in

Figure 14.

70

4.2.1 Lyapunov Exponent Implementation

This measure as described previously in section 2.2.1 describes how

adjacent trajectories on the attractor under study diverge as they are

evaluated in time. As a chaotic system evolves no trajectory will ever be

the same as a preceding one, this is fundamental to the definition of a

chaotic system, the most we can hope for is that a new trajectory behaves

something like an adjacent one in a similar part of the phase space. By

looking at pairs of trajectories and how they diverge we can estimate how

rapidly we will cease to know the exact location of a projected trajectory,

and thus the maximum achievable prediction accuracy. The measure

calculated in practice is the average of these accuracies over the whole of

the attractor, or at least our knowledge of it.

Calculation of the Lyapunov spectrum can be derived analytically where

the equations of the process are known, Shimada & Nagashima

(Shimada,79), Benettin, Galgani & Strelycin (Benettin,80) are examples.

There are several published algorithms for performing this measurement

on experimental data. The oldest and most tested algorithm is that by

Wolf (Wolf,85), then there are estimates based on the generation of local

Jacobian matrices from Eckmann et al. (Eckmann,86), Ellner et al.

(Ellner,91) and Conte & Dubois (Conte,88), which have the benefit of

calculating more than the first exponent, and finally there are attempts to

go from the predictions themselves to calculation of the Lyapunov

exponents as in D. J. Wales (Wales,91).

71

...~

The algorithm of Wolf was selected for implementation because (1) only

the first exponent was required, (2) Wolf makes available his FORTRAN

code, (3) there is some debate as to the best method for implementing the

Jacobian algorithm.

The approach of D. J. Wales was not taken because independent

analysis of the major exponent was thought desirable, thus offering the

chance of a cross check between the predictive algorithm and this value.

As with all the other code used to support this work the language used for

coding the Wolf algorithm was C++. The availability of another

implementation, even in FORTRAN is invaluable however as a means of

cross checking the method and results.

The run time of this algorithm was dramatically reduced by using a binary

tree representation for the embedded data thus simplifying the search for

neighbouring trajectories.

4.2.2 Hurst exponent implementation

A pseudocode explanation of this algorithm is contained in the

appendices.

To form this measurement the data is divided up into equal sections, and

the size of the section is decreased until some minimum number of

samples per section is hit. In this implementation this is chosen as 10. For

each choice of the number of sections starting with two the range and the

standard deviation of each section data in each section is measured, and

the ratio of range to standard deviation is averaged over the sections.

72

This value is stored along with the number of sections, the number of

sections is incremented and the process repeated. The end result is a set

of coordinate pairs. These are logged and linear regression is performed

on them. The resulting gradient of the best fit line is the Hurst exponent,

4.2.3 The effects of quantization on qualitative measures

Financial time series are by their nature quantized. There must be some

minimum unit in all financial transactions. In every day transactions this

unit is the Penny in the UK or the Cent in USA. Similarly share prices are

quoted in minimum units, sometimes eighths or thirty-seconds.

Confusingly the term "tick" is used in the financial world both to describe

the quantum size and to describe an update in the time series. A tick in

this context is the smallest trade-able unit. Quantization is important since

in a typical trading day a price may move only hundreds of ticks. During

shorter intervals such as 5 minutes price movement may be counted in 5s

or 10s.

This quantization is a source of uncertainty and noise to the predictive

Figure 16: Phase space is quantized into hypercubes

process. When financial data is embedded the effect is to divide the

phase space up into hypercubes of permitted states.

The analysis of Iyapunov exponents is similarly quantized and leads to

nearby trajectories being indistinguishable. Since differenced data is used

in the analysis the information we have about the price series can be

approximated as:

n==p-s 4.2
maX(Xn+s - Xn)

11-0Q = log2 ---~'-------
inc

where x are the time series samples, s the chosen separation, p the

number of samples and inc the granularity.

The result is in bits.

An upper bound of the accuracy of the predictions obtainable can be

estimated as:

4.31
Ace 2 Q-lll

where L is the measured Iyapunov exponent and n indexes prediction

steps.

74

We cannot directly infer from the above the effect of quantization on the

Lyapunov exponent measurement itself, but the algorithm has been

modified to keep track of these errors during calculation.

4.3 Embedding Analysis of the data

There are, at the highest level, two tasks involved in generating a time

series prediction: finding a suitable model for the data, and finding a

suitable method for presenting the data to the modelling algorithm. With

the growth of non-parametric modelling techniques the latter problem has

been much simplified, the former presents the greater difficulty.

Using the form of time series analysis presented in this thesis there are

effectively 3 unknowns, The correct embedding dimension to use for a

series, the correct sample separation to use for a series, and the number

and type of "helper series" to use.

It is common to find in relevant published work, such as Refenes

(Refenes,93) that the method used for finding these three unknowns is

pure experiment. Very often the derivation of these parameters is not

explained at all, the reader is presented with wonderful predictions but no

means of estimating how many months of search were required to find the

appropriate parameters. It is possible to automate the process using

either a brute force search or a more efficient method such as Genetic

Algorithms (Holland, 1975). These methods are of necessity time

consuming, though undoubtedly effective. Because they rely on no

measurable quantity other than the goodness of fit of the final model it is

75

hard to have much confidence in their robustness. As an example if we

were to perform linear regression on a series of data points where we

knew the underlying function to be linear we would have high confidence

in the results. Indeed confidence figures could be derived from the results.

However in attempting time series prediction no real assumptions can be

made about the underlying function driving the time series, and if we find a

choice of parameters that give good predictions we may have only found

some chance alignment of data values, one might call them Ley Lines in

the data, that represent features that are not likely to occur again.

Since the model and parameters are effectively trained together it is not

certain that the best solution found was not a combination of say a good

model and mediocre embedding parameters or vice versa. An analytical

method for determining the correct parameters without reference to a

model would give the most confidence in the results.

4.3.1 Auto-Mutual Information

The implementation of the above requires the calculation of probabilities,

and since we are dealing with real numbers as the symbols, rather than

discrete patterns we cannot infer probabilities without some form of

modelling and interpolation. If calculations were confined to financial time

series with their quantised nature, see 4.1.5, this would perhaps not be

necessary, especially if first differences were used. It was deemed

desirable however to enable the time series predictor to be used with any

time series.

76

The method used is due to Kennel, [Kennel 93] and rather than using a

histogram based approach, which he shows to have drawbacks due to the

problems associated with finding an adequate bin size, uses Kernel

Density Estimators to calculate the probabilities. The kernel function used

is the Epanechnikov rather than the Gaussian since the latter has infinite

support and would obviate the efficiency gains from using binary trees.

Each kernel function is scaled by a factor termed the bandwidth that

scales the receptive area of the function. The algorithm performs an initial

pass through the data to scale these bandwidths and thus ensure that the

effective bin sizes are large where data is sparse and small where data is

plenti"ful. Unlike the histogram approach, where a pre-defined number of

bins chosen to be some factor smaller than the number of points are

used, here there is one bin, or receptive field per data point, and the

density and thus the probability is calculated by determining the distances

to the nearest neighbours.

The implementation of this algorithm was performed by the author based

on Kennel's published work. A more complete description in pseudocode

form is given in the appendices.

4.3.1.1 Binary Trees

This algorithm and several others in this work use tree structures to

represent the data points in a time series so that a search for the

neighbours to a point can be performed efficiently. Without such a

representation one could expect processing time to be proportional to N 2

where N is the number of data points in a series. With a binary tree

77

representation processing approximates to 10g(N). The purpose is to sort

data into binary trees so that finding paints and neighbours to points

requires only a binary search. The algorithm is extended to cope with

vectors as well as scalars so that multivariate data can be used. The

implementation of these trees is derived from standard binary tree

algorithms much modified by the author. The purpose is to sort

multidimensional vectors into groups based on their distance from each

other. Distance is measured using the Euclidean metric. Rather than

moving data during the sort process an array of indices is generated. It is

these that are sorted. The algorithm sets out to find cut points that

approximately balance the number of points either side of the cut. This is

done by calculating the mean and variance for each column of data. The

column with the largest variance is selected as the discriminator and the

mean of that column as the discrimination value.

A binary tree node is generated and the contents of the index array are

rearranged so that those with values in the discriminator column greater

than the discriminator value go to one side of a point in the array, and the

rest the other. We have now two sections of the array and a new binary

tree node is generated for each sub section selecting a new discriminator

column and value. By this process the array is sub divided again and

again till the members of a sub division of the array are fewer than some

arbitrary number, say 20. The above can be formulated as a recursive

procedure. When used with financial data which are traded in fixed

quanta, identical points frequently occur, and the variance in a sub set can

78

be zero leading to numerical instability. The solution found by the author

was to split the sub sets equally in this case.

This tree structure can be used easily to find a number of near neighbour

points for a given vector.

Again using a recursive procedure the tree is followed, and at each node

the discriminator column and value are used to determine on which

branch the neighbour values lie. When finally a leaf node is found the

Euclidean distance between each member to the given vector is

calculated, and the indexes of the n closest placed in an array, where n is

the number of neighbours required. If this exceeds the number of

members of this leaf node then neighbouring leaves are searched also.

A pseudocode version of the above giving more detail may be found in the

appendices.

4.3.1.2 Separation from AMI

Auto-Mutual information is performed by preparing two copies of a time

series and rotating the data in one of them along by n samples. This

introduces a discontinuity in the shifted data but should not be problematic

if n is small compared to the number of data points.

The two vectors are applied to the Mutual information algorithm described

above and the values of MI recorded for a range of trial values of n.

79

-

The separation is derived from the first minimum in the resulting CUNe of

MI against n.

As can be seen from the results in 5.2 The curve of MI against n

"bounces" with increasing n with a comb like structure. The first minimum

is to be preferred to any other since it must result in the most succinct

model formulation.

The algorithm derived to find this first minimum is as follows:

The auto mutual information for the given series at increasing offsets is

calculated. At each stage the minimum and maximum values so far are

calculated. If the current offset is the new low the maximum value is reset

to that of the new low. When the processing is finished, that is that all

offsets up to 17 have been tried, the point at which the low occurred is

examined. If this is the last offset then the AMI graph was continually

decreasing, and we can not find a minimum. If not the subsequent

maximum is inspected. If this exceeds 1.1 times the minimum, then a

winner is declared, and the offset at which that minimum occurred is

selected as the separation distance, otherwise it is assumed that a

minimum can not be found. Figure 28 is an example of a successful

discovery of a valid separation value, Figure 32 is an example where this

method failed to find such a value. Under these circumstances an exact

choice of separation is not deemed to be critical and a separation of 1 is

used.

80

4.3.2 False Nearest Neighbours

The implementation is fully described in pseudocode in the appendices,

an overview of the algorithm will be given here. The idea is due to Kennel,

but the implementation and development of the algorithm is due to the

author.

The algorithm proceeds as follows:

A trial embedding with dimension 2, and separation as found in section

4.3.1.2 is performed on the data giving rise to a number of embedded

vectors. These are applied to a binary tree as described in 4.3.1.1 . For

each vector the nearest neighbour is found and the distance between

them noted. Then the embedding of both points is increased by one by

finding the appropriate extra values from the database. The distance

between the two extended embedding vectors is calculated and the ratio

between the standard and extended vectors distances is calculated.

If the distance has increased by more than 5 a false neighbour is

declared. The percentage of false neighbours for trial embeddings with

increasing dimension is calculated, and the gradient between successive

embedding dimension choices is calculated. As soon as this goes above ­

0.1 the preceding embedding dimension is selected.

The above method was developed by the author rather than using a

simple threshold because the presence of noise in the time series,

looking to all the world like higher dimensional chaos, results in a

background level of false neighbours, thus pushing the curve up and

81

.....

making the derivative a more sure indication of saturation. The constants

given above are empirically derived, but looking at the graphs in Figure

29, Figure 31 and Figure 35 will show that the method is insensitive to an

exact choice of these constants.

4.4 Training pattern generation

Takens' theorem (Takens 81) states that a chaotic process can be

predicted by a smooth function if properly embedded. Supervised

Learning algorithms are used in this work to generate these smooth

functions from the time series. These learnt functions are mappings from

input data provided as tuples to one or more predictions of the future

value of the time series.

The process of embedding a single time series is as follows: The scalar

series is converted to a series of vectors.

I
!

Where d is the Separation, and n the embedding dimension.

In practice, in order to perform predictions for a given time series, first the

separation is calculated, then the embedding dimension (this is so that the

separation calculated can be used in the optimal dimension calculations).

Finally the embedded vectors are used as a training set to some example

of a supervised learning algorithm, along with some future value of the

time series representing the point to be predicted. (in the above

nomenclature I use Xnd+t+1')

82

The training set thus contains pairs of embedded vectors drawn from the

past history of the series on the stimulus or input side, and subsequent

values of the series on the target or output side.

A multivariate version of the above can be obtained by concatenating the

input side, and separately the output side, of several suitably embedded

time series. In this work a sample time was selected in order to give

predictions of the required granularity and the database was required to

supply samples with date stamps between two user selected times with

the appropriate sampling interval. These were then converted into

embedded vectors by inserting them into a First In First Out data structure

tapped at the appropriate points.

The FIFO passes each scalar value input into the leftmost cell and the

values contained in the cells are all moved along to the right. In the above

example new sample scalar data must be presented 14 times before the

fifo is full. Each subsequent insertion generates a new training vector and

target scalar value. In general given p scalar values in the data base

p - d * n training vectors can be generated.

83

II

Sampled time

...

series

Embedded vector, in this case with dimension 7 and separation 2

Target value

Figure 17, Embedding a time series using a FIFO

Multivariate prediction was obtained by maintaining separate databases

for each input series, selecting embedding parameters for that series,

embedding them appropriately and concatenating the input vectors and

output scalars. Great care was taken to ensure that the sampling

intervals were the same for each series and that the vectors were

com pletely synch ron ised.

4.5 Supervised learning of the training patterns

In the supervised learning stage the learning algorithms were presented

with the training set generated by the embedding process. The

embedded data is normalised as described in 4.1.4 before being applied

to the algorithm.

84

4.5.1 local approximation algorithm

The algorithm used is inspired by an article by Sugihara and May

(Sugihara,90), which did not define the precise algorithm they used to

make predictions. The algorithm and implementation are therefore the

work of the author.

The algorithm is relatively simple. The time series is embedded using the

methods discussed in 4.3.1 and 4.3.2. The a target column vector of the

next sample is also supplied. A binary tree is formed from the embedded

data, and the tree is stored. This completes the learning phase of the

algorithm. To make a prediction from a similarly embedded predictee

vector the n+ 1 nearest neighbours are sought in the binary tree, where n

is the selected embedding dimension. The idea behind this is that the

simplest figure that can be created in n dimensions, a simplex, must have

n + 1 vertices. The selected points will hopefully enclose the predictee,

although there is no guarantee of this. An exponential interpolation

scheme is used to weight the nearest neighbours according to Euclidean

distance from the predictee. Finally these weights are used to interpolate

between the various outcomes or target values corresponding to each of

the nearest neighbour vectors.

The interpolation method is described by pseudocode in the appendices.

This prediction method is fundamentally interpolative. It does not cope

well with predictee points outside of the attractor. However if a good

picture of the attractor has been built up these should be relatively rare.

85

Embedded patterns
Outcomes

Figure 18, Local approximation interpolation

4.6 Conversion and formatting of predictions

Predictions are output by the supervised learning algorithm with the same

scaling as that used for the target vector, and potentially in a differenced

format. The predictions must be reconstructed by inverting the

normalisation process, and if differencing was used the denormalised

change must be added to the last in-sample value to achieve a prediction.

If the prediction were of a quantized financial time series then the

prediction would be rounded to the nearest quantum.

4.7 Iterated Predictions

If more than one prediction step is required, i.e. if a sequence of prediction

steps are needed, there are two potential ways to achieve this. Either one

could train several supervised learning algorithms with their target vectors

suitably offset, or one can train a single supervised learning algorithm and

use it repeatedly with some form of feedback.

86

Sampled time
series

.1
I I III

Embedded vector, in this case with dimension 7 and separation 2

SupeNised Learning Algorithm

Prediction

Figure 19, Achieving Iterated predictions using feedback.

Farmer (Farmer 88) showed that the latter method produced superior

results. It is also easier to implement. As the iterated predictions are

generated more and more of the contents of the FIFO are filled with

predicted data till finally predictions are being generated solely on the

basis of previous predictions. Impractical as this may sound in Figure 26

good predictions are still generated after 10 iterations given a FIFO length

of 8.

87

...

4.8 Evaluation of predictions

Clearly a mechanism for determining the quality of the predictions is

important. Largely the choice of metrics is dependant on the use to which

the prediction is to be put. The following metrics were calculated by the

program for each prediction run.

4.8.1 Validation data

The choice of validation data is fraught with problems. If the purpose of

the use of the validation data is to prove general predictability, then a large

validation period situated anywhere in the time series is adequate. If

however one wants to make both useful predictions and prove the

concept, as would be useful in a financial application, then the validation

period must be chosen carefully. Validation data can not be training data,

and thus if data is scarce a large validation set eats into a precious

resource. If, as is believed with financial data, there is non~stationarity

and mode changes occurring in the data, the best place for the validation

set is using the most recent data. However using a large validation set at

the end of the data implies that the model is trained on old rather than

fresh data, and one may see the models best performance in the

validation set, and poor performance in practical use thereafter. Using a

small validation set risks using a model that has been evaluated on

potentially atypical data. The general solution chosen by default in this

time series predictor is to use a validation set that consists of 10% of the

data situated between 80% and 90% of the training data. This was

considered a good compromise.

88

4.8.2 Metrics

The most obvious measure of accuracy of predictions is sum squared

error, evaluated as:

Sum over i of (Predictioni - Actuali)2

over the validation set.

The correlation coefficient between the predicted and actual series is

measured for each block of predictions, as is the hit rate, defined as the

percentage of directional changes that were correctly predicted.

4.8.3 Similar day Information

As an interesting side effect of the local approximation algorithm one can

graphically display the nearest neighbours used to form the simplex on a

plot of the time series. This information is qualitative and anecdotal in the

extreme, but it is interesting to see in the example below that four out of 5

of the neighbours illustrated occur just before a large drop in the market.

89

Iinterccpt: 1.3898, O.l/dly. OM 30 Days Per Horizontal Division
, '!! I

r.... ;~~~il,.....j ... j !............! ! ·+++.. .\.L

, II ' ... ·····1· :.... ···T···....·: ,.!~.. ······1··..··· +..." ···:············1··

Figure 20, Graphic representation of similar day data

4.9 Performance of the predictor on artificial time series.

It is important to compare the performance of the time series predictor

with other published work, yet this is surprisingly difficult to do. Such is

the abundance of financial data that no two researchers seem to use the

same series. Then there is the complication of sampling rate and start and

end times to make it very hard to compare the performance of two

predictors. The Biotechnological data that is analysed in chapter 6 has

not yet been made available to other researchers, leaving only artificial

time series as a method of performance comparison.

Of all the time series described in chapter 2 the most popular is the

Mackey glass series. This has been extensively used as a bench mark by

90

Farmer & Sidorowich (Farmer, 87), Cadagli (Casdagli,S9), Moody

(Moody,89), Watkins et al (Watkins,94), and Junhong Nie (Nie,94)

amongst others. While this is a commonly used bench mark the length of

data used, and the offset to the predicted value, vary as do the

parameters used in the series generation. The error measure used also

varies, the two most popular being r.m.s. error and normalised r.m.s.

Moody and Farmer achieved a normalised r.m.s of 0.012 using neural

networks of different kinds. None of the other results seem to improve on

this. As can be seen the result due to the techniques described in this

work is 0.00109. Due to the concerns expressed above it is hard to be

sure that like is being compared to like, but it can be fairly said that the

performance of this predictor is comparable to if not better than the

predictors described in the above papers.

In each case 2000 training and 1000 test points were generated. The

predictor was set to predict the next value in the series. Hit Rate

represents the percentage of correct predictions purely in terms of

direction, and the normalised r.m.s. error being the r.m.s error divided by

the standard deviation of the time series.

Series Separation Dimension Hit-Rate norm R.M.S.

Logistic 1 2 99.3 0.0053

Tent 1 2 99.4 0.0031

Mackey-Glass 11 3 93.S 0.0011

91

•

5. Performance of the Predictor In financial applications

In this chapter the experimental results are presented showing the

performance of the predictor on financial data. In order to show that the

embedding and separation values found analytically are near optimal

sensitivity analysis is employed and results are presented of this analysis.

5.1 Foreign exchange data

Five time series were used to test the predictor, sampled at one minute

intervals. They were the spot rates of the OM against the $, the £ against

the $, and the 3 month deposit rate for the £,$ and OM.

The samples were taken over a single days trading. The third possibility,

the OM against the £, is not included, since we can expect this to keep in

line with the other two. These series are widely considered to have strong

chaotic components (Medio 92). The graphs of each of these follow:

92

Intercept: 1.4885 • O.Olldiv.

~ I I , I I! •.•

. I I : · I I I I I
--'~~--:-:-il' -;----l:-1~----,\-:----!I-;'--'I-l
I :' II' ; ! I ! , I I I . I .

I ! I I i
! i I I

1 I

! I
1

I

.J

!
.-...~.. -.­ -._..........

FrolR: 13llJ11!D-23:41:UIi Te: 14181193-21 :5&:11 1 ..eulHlv.

Figure 21: The OM/S

lAtera! 1.7135 ••.•,1d1v.

I .

~

Figure 22: The £/$

93

Intercept 1.1&, O.l/d1Y.

From: 131111193-23:41:0. TI: U/II1/S3-21:57:12 1 heUf/diY.

Figure 23, 3 Month Deposit Rate, OM

Inten:ept 5.15, '.1~1v.

: ~ 1+i- 1-Hffl l
i ii

I I
: : : : _.._:-_..,L_r"..,..­ J -.. -­

: i i ! I
From: 13117193-23:51:17 To: 14117193-21:5&:111 h...,,~Iv.

Figure 24, 3 month deposit rate, £

·-r·U7
· i I I I

H-i ----,'--'~,--_l-..''''·-,...."_--+-..~__j--i'__i __ ..,;.i_+__+_+___+._~_i+lth I
! ~~ I : 1

I I
!

:
r­

1i

I
: I I

Figure 25, 3 Month Deposit Rate, $

94

The program used to make the evaluations was configured to predict both

the £ and the OM in 5 minute intervals for a period of two hours. The

predictions were iterated, that is the later predictions were based on the

previous ones, not on the actual data. The graphs below show the

predictions and the actual behaviour on the same graph. The predicted

line is the more "steppy" of the two.

Intercept: 1 . 4 ••6. 8.81I11IY.I . .

I
i

I
~
~

i
I
I I

: I
: j

0f1-' 1
I
!
i
I

f: I I~

1

I i ~
111

') I
!

I
: 1I

.~ ,l····;uu'u. .• ui uI 1··!u ·u. uU'uu1u
1

1 f
Frem: 14187193-14:4.:53 T.: 14187193-17:21 :43 1 D mlnllllY.

Figure 26, OM/S Prediction for 2 Hours in 5 Minute increments
Intercept: 1.7135. 8 .•1,"Iv.

i

I
I

I
!
1

F: 14187/93-14:47:4& To: 14/07/93-17:1.:13 ,. mln/"Iv.

Figure 27, £/S Prediction for 2 Hours in 5 Minute increments

95

5.2 False nearest neighbour and auto-Mutual Information responses

The following show the plots of FNN (false nearest neighbour percentage)

and AMI (in bits) for different embedding or separation values for each

time series:

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 2 3

Figure 28, DM/$ Auto Mutual Information at different separations .

2 3 4 5 6 7

Figure 29, DM/$ False Nearest Neighbours at different dimensions

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

96

2.5

2

1.5

0.5

o+----+----~--~~--~----r---~

2 3 4 5 6
o

Figure 30, £/$ Auto Mutual Information at different separations

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1 2 3 4

Figure 31, £/$ False nearest neighbours

97

__________IIIIIIIIII~lb .•{

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 32, 3 month OM deposit Auto mutual information

1.2

0.8

0.6

0.4

0.2

o 2 3 4 5 6 7 8 9 10 11 12 13 14 i5 16 17

Figure 33, 3 month £ deposit Auto Mutual Information

98

"

0.15

0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 2 3 4 5 6 7 8 9 10 11 12 13

Figure 34,3 month $ deposit Auto Mutual Information

0.25

0.2

0.05

0

1 2 3 4

Figure 35, 3 month $ deposit False Nearest Neighbours

The difference between the frequently traded OM and £ and the deposit

rates should be clear; the deposit rates have very little variation. The

program used to generate AMI and FNN does not go on to perform FNN

calculations unless the AMI value is resolved. In two out of the three

99

deposit series the AMI value did not dip sufficiently to be resolved.

Looking at the series and the information in them, this is not surprising.

Although predictable behaviour may be visible when viewed over days and

weeks, at this resolution there is little variation in the data. This is not to

say there are no dependencies between the spot rates and the deposit

rates, merely that there is no need for embedding to represent these

dependencies. The embedding dimension and separation for these series

were set to 1 as recommended by Abarbanel.

5.3 Sensitivity Measurements for False Nearest Neighbours and

Mutual Information

The software used to make these analyses, is limited to a maximum

dimension and separation of 16. To exhaustively search for optimum

embedding dimensions and separations in combination would require up

to 256 trials. The somewhat simpler process of perturbing the optima

obtained by our existing methods and observing the effects was used.

The sequence was as follows:

1) The Auto Mutual Information and False Nearest Neighbour

algorithms were used for each time series.

2) The embedding dimensions and separations suggested were

used.

3) Training patterns were generated.

4) The Local approximation algorithm was used to perform

predictions.

100

•

5) A separate validation period was selected to test the predictive

power.

6) Using iterated predictions the performance on predicting the

validation set was calculated by comparison to the actual values

over the validation period.

7) The R.M.S. error was calculated and subtracted from 1.0, to

render a measure of fit.

8) For each helper time series the separation and dimension were

perturbed by +/- 1 and +/- 2. Then (2),(3),(4), & (6) where used to

evaluate the performance of the whole system.

The results are shown:

4 62 3 5

Figure 36, Effects of perturbing DM/$ embedding Dimension

0.935

0.93

0.925

0.92

0.915

0.91

0.905

0.9

101

&

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

2 3 4 5 6 7

Figure 37, Effects of perturbing DM/$ Separation

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

2 3 4 5 6

Figure 38, Effects of perturbing £/$ Dimension

102

0.93

0.92

0.91

0.9

0.89

0.88

0.87

4 5 6 7 8

Figure 39, effects of perturbing £/$ D Separation

In order to further test the efficacy of these methods various other

currency pairs were tried. In each case the rate against the American

Dollar was used. The Currencies were Canadian Dollar and Swiss Frank,

Hong Kong Dollar and Japanese Yen, Dutch Guilder and Deutschmark,

Irish Punt and Japanese Yen, Swiss Frank and Japa.nese Yen, Cypriot

pound and Greek Drachma, Belgian Frank and Deutschmark, Italian Lire

and Deutschmark. The results for perturbation of the dimension gave the

peak observed performance 75% of the trials, within 1, 12.5%, and within

2, 12.5%. For separation they gave the peak observed performance 75%

of the trials, and were within 1 for the remaining 25%.

103

-------------,........-l1li

Figure 40, Analysis of performance of FNN & AMI on various series

AMI Embedding Separation Accuracy FNN Embedding Dimension Accuracy

Within 2

W~hin 1 13%

25%

Within 1
13%

I

'---______~__J
I

5.4 Discussion of predictability of financial series

The reasons for attempting to predict financial time series are the rewards

to be gained, and the interest that generates, and the challenge of

attempting to predict the most difficult of series.

Unlike the simpler, though still difficult, processes of blind matter, as

described in the next chapter, financial market prices are generated by the

interaction of hundreds of thousands of intelligent and highly motivated

people, each with many months or years of experience spent observing

the markets trying his or her best to guess the next movement, the next

trend, the next wave.

That there is any predictability in the markets at all is a marvel. The

Efficient Market Hypothesis (Fama, 65), which held sway until the early

90s suggested that the time progression of the markets would appear as a

random walk. The explanation for this that is often given is that a trading

opportunity, like a ten pound note lying on a pavement, would be instantly

snapped up. The argument runs that there would therefore be no sense of

history in the behaviour of the markets. All the information that would be of

104

any use to a trader was present in the instantaneous state of the market

and common knowledge. A further justification for this point of view is

found in measuring the serial correlation of major financial time series. It

has been shown by LeBaron, (LeBaron 96) that the correlation of The

Dow Jones index returns from 1901- 1995 with a copy of itself lagged by

one day is 0.04. Implying, if correlation can be used as a measure of a

process without a normal distribution, that the markets are memory less.

Interestingly LeBaron also shows that if you square the returns, thus

emphasising the effect of larger changes, the correlation of the above

shoots up to 0.22. Taking the simple magnitude of the returns produces

0.29. Similar evidence is found in the S&P.

The evidence of low dimensional chaos in many markets, and thus limited

predictability (Medio,92), has undermined the efficient market hypothesis

in some eyes, and a new theory, the Coherent Market Hypothesis (Vaga

,90), has been proposed that takes these discoveries of chaos and non­

linearity in financial series into account. There is an ongoing battle

between these rival theories and variations of them, and no clear winner

has emerged.

5.5 Discussion of the relevance of the results and implied models of

the markets.

Various results, some with academic verification and many without, have

been generated in recent years that suggest predictability of the markets

(Peters,91), and sometimes offer metrics that support their case. Financial

software vendors claim that they can predict some carefully chosen

105

I

financial instrument, and that the predictions are accurate to within say

90% over a period such as six months. This choice of metric is

meaningless; except at times of financial crisis most international

instruments such as exchange rates or market indices do not fluctuate

outside of 10% bands for very long periods. One could easily do as well

with a 'first order trivial predictor. More honest workers in this field use "hit

rate" as a measure. This is the percentage of correct predictions that the

predictive system makes of the change in price over some period, using

presumably out of sample data. Now one would expect the proportion of

these changes to tend towards 50% each way.

For instance for the last two years of Dax data, sampled every half hour

(5524 data points) the ratio of up to down changes is 0.528

Now if we look at the distribution of these daily changes for the Dax

106

Histogram of daily changes in the DAX index, 10 Years data

140

120

100

80
i?

~
:;> I !iI Frequency I

60

40

20

0

Bin

we can see an approximately Gaussian distribution with pronounced

leptokurtosis.

If a user of the output of a predictive algorithm uses the information to

trade in the chosen market, by buying the instrument when a positive

change is predicted and "shorting" or borrowing the instrument when a

negative change is predicted he or she will incur trading charges. These

are dependant on the instrument, volume traded, and the status of the

trader, in some markets these charges are symmetrical, in others

"shorting" is more expensive. In either case one can draw vertical lines on

the distribution graph corresponding to these charges, and shade the area

between them that represents unprofitable trades. Depending on all the

variables the shaded area can easily exceed 10% of the total, and of

course the smaller and less well connected the trader is the greater this

107

area is likely to be. Thus if the measure of utility of a predictive tool is that

it makes money for its user, a large percentage of the predictions it gives

must lie outside this shaded area. Typically hit rates of 65% are

considered good, since we would expect a 2nd order trivial predictor to

return 50%.

It is clear from the above that a predictive system could score 65% hit rate

and still lose money, and conversely a 40% successful predictor could be

very profitable.

In work separate from this thesis, described in outline in (Edmonds,95b),

both these circumstances have been observed.

It is not the intention of this thesis to imply that the interesting

characteristics of limited predictability discerned in the financial time series

used by these methods can be used to make money.

108

6. Performance of the predictor in a biotechnology application

In early 1994 the opportunity arose to test these methodologies on an

application outside of the world of financial forecasting. Hazel &

Christopher Davey of the University of Wales at Aberystwyth had

generated a time series in the process of running a biological reactor over

many hundreds of hours that seemed to show evidence of chaotic

behaviour. Their superior, Professor Douglas Kell, asked me to use the

techniques detailed in this thesis to analyse the series.

6.1 Background to the analysis.

The following is my understanding of the processes involved in the

generation of the time series drawn from the paper that documented the

work (Davey.96).

6.1.1 Measurement of Biomass

Prof. Kell had designed several years previously a device called a

biomass monitor, that uses radio-'frequency radiation to measure the

capacitance of living cells in a suspension. It has been shown by

(Harris,87),(Kell,87),and (Davey,93) that there is a characteristic

capacitance curve as shown in figure 6 for a given concentration of living

cells.

109

http:Davey.96

t: 10 'j--2_.5_m_g.ml_-_l__

5 +-~O.O!...!m~.ml:!..:-l:""-__---4~-""::'::::::::~~

10.0 mg.ml-1
25 -r---_

A half way point as shown can be
7.5 mg.ml-1

~ 20 	 calculated by scanning over
5.0 mg.ml-1

t3 15 r---_
various frequencies and this is ~

~ linearly proportional to the

~

• fc Coo concentration of living cells in the
o +--__~~~__T'--·~~~~~

1.00E+05 	 1.00E+06 1.00E+07 sample. The source of the
FREQUENCY (Hz)

capacitance in the cell

Figure 41 capacitance of various biomass suspension is the non-conducting

concentrations against frequency
outer membrane of the cell wall.

. Dead cells do not have complete membranes, and therefore do not have

measurable capacitance. The biomass monitor is an accurate measuring

tool for determining the amount of living material in a vessel, and is

unaffected by pollutants.

6.1.2 Culturing Yeast in a fermentor

Baker's Yeast was grown in a 1 Litre vessel that had a biomass monitor

probe inserted. The contents of the vessel were aerated with pumped air

and stirred at 450 r.p.m .. The biomass was continually monitored and a

PC, data collection hardware and some specially written software were

used to control a pump that added nutrient to the vessel. The software

was configured to regulate the size of the biomass by running the pump at

a variable rate and therefore adding more nutrient whenever the size

appeared to drop, or less whenever it threatened to exceed the required

size. Using this set up the biomass in the vessel could be held constant

over several months.

110

12

~
...e­ 10

!1.)
8us:::

C'd........ ­ 6 ~
~ 4u

<:]

2

0
0 250 500 750 1000 1250 1500 1750

Timelh

Figure 42 Measured capacitance during the experiment

Figure 42 Measured capacitance during the experimentFigure 42 shows the

capacitance, and hence the biomass, measured by the bug meter over

1,400 hours.

The arrow marks the point at which the control system was switched on.

6.2 The data supplied

Clearly there is not very much of great interest in the data in Figure 42.

However the real surprise was the behaviour of the pump stimulus over

the same period. For a set-point of 5pF, large and seemingly random

changes were detected in the pump output as shown in figures 8,9,10

111

which represent the data from hours 200 to 1400, split into equal thirds.

These should be compared to Figure 46 which shows the pump demand

for a lower 4pF set point at which this non-linear behaviour did not occur.

The very large fluctuations in the data detected were a novel phenomena.

Hitherto it had been assumed that the yeast cells would be equally

distributed through the various stages of a cells life at anyone time, and

thus demand should be constant or gently rising as in Figure 46. Figure 43

to Figure 45 imply that dramatic changes occurred to the population over

time when the concentration was increased over some critical threshold.

My task was to analyse this data and to try to extract whatever information

my techniques could find, and to attempt to predict the data so as to

hopefully show a simple deterministic cause for the strange behaviour

seen.

112

200
.....
~

13 150 a
::J
~ 100 a

50

o~~~~~~~~~~~

600 700 800 900 1000

Time/h

Figure 43 Nutrient feed for hours 600 - 1,000.

300

200

100

200 300 400 500 600

Time /h

Figure 44 Nutrient feed for hours 200-600.

113

ffl

-

150

50

O~~~~~~~~~~~~~~~

1000 1100 1200 1300 1400

Time /h

Figure 45, Nutrient feed for hours 1,000-1,400.

114

1000

.- 800

1...c::.
'"d
0 600
~

S =s
~ 400

........

S

200

0

50 100 150 200 250

Time/h
Figure 46, Nutrient feed for a similar experiment with lower set point

6.3 Analysis of the data

Since the work had to be compared and documented alongside other

analyses, the same subdivisions of data were used as shown in Figure

43, Figure 44 and Figure 45. The forms of analysis available to me were:

Hurst Exponent, Lyapunov exponent, Embedding dimension and

separation, with their implied estimate of attractor dimension, and local

approximation based prediction. The following are the results of the

analyses.

l

115

Table 1 Non - linear analyses of yeast growth rate

Time Series Data (Hours) 200­ 200­ 600­ 1000­ Units

1400 600 1000 1400

Lyapunov exponent 0.510 0.316 0.147 0.510 Bits/hour

Calculated Embedding 5 10 8 5

Dimension

Calculated minimum embedding 2 2 1 2 Hours

separation

Hurst Expon ent 0.755 0.680 0.747 0.773

Correlation Coefficient for 0.974 0.959 0.827 0.679

Predicted vs. Actual, Local

Approximation

Correlation Coefficient for 0.436 0.800 -0.050 0.214

Predicted vs. Actual, 1 st Order

Trivial Predictor

Correlation Coefficient for 0.865 0.894 0.901 0.872

Predicted vs. Actual, 2 nd order

trivial predictor

Correlation Coefficient for 0.219

Predicted vs. Actual, 6th order

autoregressive model

RMS error of predictions vs. 6.749 8.380 17.65 13.44 ml/hour

116

Actual,

Local Approximation

RMS error of predictions vs. 26.11 17.63 45.67 22.74 ml/hour

Actual,

1st and 2nd order trivial predictors

RMS error of predictions vs. 26.53 ml/hour

Actual,

6th order autoregressive model

Average pump rate 31.14 21.43 47.77 24.22 mllhour

Table 1 shows various different analyses of the time series data.

Predictions were generated using the Local approximation algorithm,

trivial predictors and auto-regressive moving averages. In each case the

10% of the data between the 80% and 90% points were used as the

validation or out of sample test set, and the correlation and RMS error

figures are for the performance of the method as a predictor of those data

sets.

In sample performance is not shown.

The first data column in Table 1 shows results for the entire test data; the

rest for successive thirds. The auto-regressive predictions were

calculated by the Economics department at the University of Wales. The

software used was called T.S.P., and the order of 6 was chosen by

experiment to give the best predictions.

117

l

6.4 Predictions generated from the data

Validation perfonnance for 200-1400 Hrs.

100
..:
-'= 80
=t;
CD 60
Co
E
:;, 40
Co

20
E

0
0 CD (.0 V
(.0 (.0 " CD

Time(Hours)

--Actual

- Validation

Figure 47, Local approximation predictions, Hours 200 -1400

Validation predictions for 600-1 OOOH rs.

140

120

..: 100-'=
,;, - 80CD

("") (.0 CP N 0 ("") to" N N N ("") 'Oil" Ll'> Ll'> Ll'>
O'l CP0') 0') 0') 0') 0') 0') 0')

--Actual
Co 60
E --Validation:;, 40

Co

20E
0

-20

Figure 48, Local approximation predictions, 600-1000

118

Validation predictions for 1000-1400Hrs.

80
...: 70
E.60
i50
C1. 40
; 30
~ 20
E 10

O ++++++~~H-HH~44~~++++++~~H-HH~~

- Actual

- Validation

T ime(Hours)

Figure 49, Local approximation based predictions, 1000-14000 hours

Validation prediction for 200-600 HI'S.

120

100
...:
.c 80
~
Q) 60
C1.
E 40 = C1. 20
E

-20 LO

- Actual

- Validation

Time(Hours)

Figure 50, Local approximation based predictions, Hours 200-600

6.5 Conclusions drawn from the results

Figure 47 to Figure 50 show single step predictions of the time series

using the version of the local approximation algorithm. It can be seen

from Table 1 that the correlation coefficient of the overall prediction in

119

Figure 47 is very much better than any of the other predictions of sub

I
f

•

sections. This implies that the prediction methodology has insufficient

data points, and thus information about the attractor for the sub sections.

Interestingly the data was originally split into three sections because it

was thought that there were three distinctly different modes of behaviour

judging from visual clues alone. The fact that the presence of all three

data sets improves prediction performance implies that the same process

is active in all the data sets. The difference in visual appearance is due, it

appears, to the chaotic nature of the process.

The first row in Table 1 adds credence to this assumption because the

Lyapunov exponents measured are all positive. It should be pointed out

that the algorithm by Wolf (Wolf,85) used to generate the Lyapunov

exponents was developed specifically for mathematically derived series

where, unlike experimental data, large numbers of points are generally

available. It is liable to be more reliable in its estimation of the whole

series. The values for the sub sets should be considered merely

indicative.

The Hurst exponent adds weight to the diagnosis of chaos, and more

importantly the performance of the predictor adds indirect support. We

can see by the poor showing of the autoregressive model, which used the

ARMA (Box, 76) technique, that linear models do not predict this series

well. We can therefore with some safety infer non-linear processes, a

necessary pre-condition for chaos.

120

! "1,l I

• ­

The calculated embedding dimension derived using false nearest

neighbours is anomalous in that two of the sections show much higher

embedding dimensions than that for the whole series. I believe the result

is due to the greater importance given to noise in the data in the sub

sections, and that these results are artefacts of the method itself. I refer

the reader to section 2.3.2.1 & 4.3.2 for a discussion of the technique in

detail. Since the false nearest neighbours technique settles on an

embedding dimension when the number of false neighbours fa" below

some threshold, and the definition of a false neighbours itself depends on

another threshold, a noisy section of data may well push up the calculated

embedding dimension by artificially generating false neighbours. Sources

of noise are to be found in the measurement process itself, and also in the

physical organisation of the system. The system can add nutrient but not

take it away. It is clear that during some periods of high growth the pump

demand drops to zero, a.nd if the system could have extracted nutrient no

doubt the control system would have tried it.

Taking Takens' (Takens,81) embedding theorem in reverse we can

estimate a fractal dimension of 2-3 from the embedding dimension, which

implies 2-3 variable, which is said to accord well with the fundamental

chemistry of the system,

121

- AMAii- A=MAI., I

Decrease in correlation with

increasi ng offset

t::
0
;.
ctS
Q;
L.
L.

0
U

0.8

0.6

0.4

0.2

0

1 2 3 4 5 6 7 8 9 10

Offset

Figure 51, Decrease in correlation of predictions with increasing offset

Figure 51 shows the performance of the predictor when required to make

predictions further ahead than one single time step. It can be seen that

the predictions remain reasonably good up until an offset of 6 hours. At

this stage the correlation coefficient drops to around OA. Sugihara and

May (Sugihara,90) made much of the exponential drop of correlation for

their experimental data. This is not in evidence here, indeed we have

effectively a step function. The probability is that the truncation of the data

discussed above, by having only positive pump demand, has added

spurious correlations to the data above an offset of 5. It can be cited in

evidence for this that the 1 5t order trivial predictor correlation, effectively

the 15t order auto-correlation, is nearly identical to this level. There mayor

may not have been an exponential drop in correlation given a perfect

control signal, impurities in the data do not permit us to find out.

122

·~--------_I1111;.______,..J:

David J. Wales (Wales,91) attempted to use a similar system to predict

the Tent Map chaotic time series and arrived at a graph very similar to

Figure 51 without any measurement noise, since the series was generated

mathematically. I therefore consider the results to be in keeping with other

published work.

Finally it is clear that the predictions are very effective, and that the

underlying dynamics of the system have been well modelled. It can be

seen from Figure 45 that given a smaller required biomass these chaotic

regimes do not occur. If we scale this process up to that used in the

industrial generation of high value chemicals such as drugs, a larger

biomass will result in a higher yield for the same industrial plant.

Discovering chaos is part of the process of defence against it. Ott & Yorke

(Ott,90) have shown that chaotic processes can be stabilised if they can

be modelled, and we have therefore the prospect of generating an

advanced control system making use of a predictive model that permits

much higher stable concentrations of organisms than hitherto, and thus

higher yields.

123

&

7. Conclusions and further work

At the beginning of the work the need was identified to predict and

analyse real world time series exhibiting chaos and other non-linear

behaviour. While tools existed to perform this task, they suffered from two

drawbacks: the need to empirically choose a set of parameters that were

vital to the prediction performance, and the large amount of computing

resources they required. Where parameters are chosen empirically

without resort to a theory or heuristic there must be doubt as to the quality

of the results. For instance if the selection process took advantage of

some transient characteristics of the training data, the model is not likely

to work well with out of sample data.

This document has described work undertaken in reducing and finally

eliminating the free parameters, and in reducing dramatically the time

required to achieve predictions.

Comparison with other published work showed that no predictive

performance has been lost in this process, indeed the predictions seem to

be more accurate than a range of other methods on a particular bench

mark series.

The techniques detailed in this document give a justification for a choice of

embedding parameters. This justification has been shown to be valid for a

range of financial time series data by the use of sensitivity analysis.

Finally the predictor was used to analyse and predict new experimental

data drawn from a biotechnological experiment. The evidence of chaos

124

and short term predictability detected by the techniques and methodology

detailed in this work has shown the presence of a new form of behaviour

previously unsuspected in simple and common place organisms under

certain environmental conditions.

There are many opportunities for future work that spring from this

document.

In this work no real attention has been given to the problem of non­

stationarity. The elements of the artificial time series were all generated

using the same function and parameters. The biological time series seems

to have had the same generating function throughout judging by the better

prediction performance on the whole data set rather than the sub

divisions. Financial series however are liable to change their properties

over time. This can occur gradually, as a result of parameter drift, or

dramatically.

One potentially fruitful solution might be the addition of forgetting to the

local approximation algorithm used. Any embedded points older than a

certain date could be de-rated or completely ignored in generating

predictions. If it is true that the iterated system underlying the series was

different before that cut off date, then better performance can be expected

as a result of this modification.

Of course this adds back a free parameter, and the assumption has been

made of a linear change in the underlying system that may not hold.

125

Discovering a methodology to determine this drift without resort to

optimisation would be very valuable.

Another modification to the methodology could be investigated. Since the

local approximation algorithm used stores the previous embedded points

rather than a model drawn from them, as soon as a point has been used

in a prediction, and once the next true value is known it can be added to

the database of points. Using this method in and out of sample data

cannot be confused, but the local approximation algorithm is always using

the most recent data. If as discussed above, the underlying generating

function is constantly changing this must have the effect of improving

performance.

The local approximation algorithm employed is interpolative in nature,

rather than extrapolative. That is to say that if a new predictee point is

presented that is outside of the existing set of points in the embedding set,

then the algorithm will not work well.

It is likely that neural nets will perform better in these circumstances. It

would be interesting to know how much of a problem this is.

It is possible to define a reliability heuristic for predictions generated by

this methodology. This might be composed of elements such as the

density of predictor points around a predictee, the variation in the predictor

outcomes and the degree of agreement in sign of the outcomes. It would

126

be interesting to know if this would track the measured reliability of the

system.

127

i'

-

8. References

(Abarbanel,92) Abarbanel, H, Brown R., Sidorowich J., Tsimring L. The

analysis of observed Chaotic data in physical systems. Unpublished.

(Baba,89) Baba N., A new approach for finding the Global Minimum of

Error Functions of Neural Networks, Neural Networks, 2.5, 367-374

(Benettin,80) G Bennetin, L Galgani & J.M. Strelcyn, Lyapunov

Characteristic Exponents for smoth dynamical systems and for

Hamiltonian systems; a method for computing all of them, Mechanica, 15,

pp 9

(Box, 76) G.E.P. Box, Jenkins G.M., Time Series Analysis: Forecasting

and Control, Holden-Day 1976

(Carmana,88) Carmana R.A. & Schaffer.D. (1988) Representation &

Hidden Bias: Gray versus Binary coding for genetic Algorithms. in J.Laird

(Ed.) Proceedings of the fifth international conference on machine

learning. San Mateo Calif. Morgan Kaufmann.

(Casdagli,89) Casdagli M. Non-linear Prediction of Chaotic time series.

Physica D 35: 335-356

(Cheeseman 90) Cheeseman, Peter. On finding the most probable

model. In Computational models of Scientific Discovery and Theory

Formation, Schrager, J. and Langley P. Eds. 1990, Morgan Kaufmann

(Darwin, 1859) Darwin Charles, On the Origin of Species by means of

natural selection, or the preservation of favoured races in the struggle for

128

1986

life. Cassel & Company 1909

•

(Davey,93) Davey, C.L., The theory of the B dielectric dispersion and its

use in the estimation of cellular biomass. Aber Instruments

(Davey et al. 96) Davey H.M., Davey C.L, Woodward A.M., Edmonds

A.N., Lee A.W, Kell D.B., Oscillatory, Stochastic and Deterministically

Chaotic Growth Rate Fluctuations in Permittistatically-Controlled Yeast

Cultures, Biosystems, 39 pp 43-61 1996.

(Davis,91) Davis L., Handbook of Genetic Algorithms, Van Nostrand

Reinhold 1991.

(Eckmann,86) J.P.Eckmann and S.Oliffson Kamphorst,D.Ruelie and

S.Ciliberto, Lyapunov exponents from time series, Physical Review A,

(Edmonds,94a) A. Edmonds, D. Burkhardt & O. Adjei, Simultaneous

Prediction of Multiple Time series using Supervised Learning &Chaos

Theory, Proceedings of IEEE International Conference on Neural

Networks, Vol4 pp3156-3164 1994

(Edmonds,94b) A. Edmonds, D. Burkhardt & O. Adjei, Multivariate

prediction of financial time series using recent developments in chaos

theory. Proceedings of the 1st International Workshop on Neural Networks

in the Capital Markets. London Business School, Nov. 1993.

(Edmonds,95a) A. Edmonds, D. Burkhardt &O. Adjei, Genetic

Programming of Fuzzy Logic Production Rules, Proceedings of the 1995

IEEE international Conference on Evolutionary Computing,

129

.11 :pt'

(Edmonds,95b) A. Edmonds, D. Burkhardt &O. Adjei, Genetic

Programming of Fuzzy Logic Production Rules with Application to

Financial Trading. Neural networks in Financial Engineering, pp. 179-188,

World Scientific, Nov. 1995

(Ellner,91) S. Ellner, A.R. Gallant, D. McCaffrey, D. Nychka, Convergence

Rates and data requirements for Jacobian based estimates of Lyapunov

exponents from data., Physics Letters A Vol. 153, pp. 357-363

(Fahlman, 88) Fahlman S. An empirical study of learning speed in back

propagation networks, CMU-CS 88-162 Carnegie-Mellon Technical Report

(Fahlman, 90) Fahlman, S. Lebiere, C. The Cascade-Correlation Learning

Architecture. Neural Information Processing Systems 2, pp 524-532,

Touretzky D. Ed. Morgan Kaufmann.

(Fama,65) Fama, E.F., "The Behaviour of Stock Market Prices," Journal of

Business, p34-105, (January 1965)

(Farmer 87) J. Doyne Farmer and John J. Sidorowich, Predicting Chaotic

Time Series, Physical Review 1987

(Fraser,86) Fraser A., Swinney H.L., Phys,. Rev. A. 3311341986

(Frean,90) Frean M., The Upstart Algorithm: A method for constructing

and training feed-forward Neural Networks. Neural Computation 2, 198­

(Grefenstette,86) Grefenstette J.J., 1986 Optimization of Control

Parameters for Genetic Algorithms IEEE transactions on systems, Man

130

209

&

and Cybernetics. SMC-16(1) pp. 122-128

(Harris,S7) Harris.C.M, Todd, R.W., Bungard, S.J., Lovitt, R.W., Morris

J.G. Kell, D.B., The dielectric Permittivity of Microbial Suspensions at

Radio-Frequencies: A novel method for the Estimation of Microbial

Biomass., Enzyme Microbial Technology, 9, pp. 181-186

(Hassibi,93) Hassibi, B., Stork, D., Second order derivatives for network

pruning: Optimal Brain Surgeon. Neural Information Processing Systems

5,164-171,1993 Hanson, Cowan, & Giles eds. Morgan Kaufmann.

(Hecht-Nielsen,90) Hecht Nielsen, R., Neurocomputing, Addison Wesley

1990.

(Hinton, 86) Hinton, G.E.,Deterministic Boltzman Learning Performs

Steepest descent in Weight Space. Neural Computation 1,143-150 1986

(Holland,75) John Holland, Adaptation in Natural and Artificial Systems,

University of Michigan Press,1975

(Hornik,89) Hornik, K, Stinchcombe, M., White, H., Multilayer feedforward

networks are universal approximators, Neural Networks 2, 359-366

(Hurst, 65) Hurst, H.E., Black, R.P. and Simaika, Y.M., Long-Term

Storage: An Experimental Study, Constable - London

(Kell,87) Kell, D.B. Samworth, C.M., Todd, R.W. Bungard, S.J., Morris

J.G." Real time estimation of Microbial Biomass during Fermentations

using a dielectric probe., Studia Biophysica, 119 pp. 153-156

(Kennel 92) Kennel, M. Brown, R. Abarbanel H.D.I., Determining

Embedding dimension for phase space reconstruction using a geometrical

131

•

construction. Physical Review A, Vol 45 Number 63403-3411

(Koza, 92) Koza, J.R., Genetic programming: on the programming of

computers by natural selection, MIT Press 1992

(Lafrance 90) Lafrance, P., Fundamental Concepts in Communication.

Prentice Hall International 1990

(Lorenz, 63) Lorenz E., Deterministic non-periodic flow, Journal of

Atmospheric Science, 20, pp. 130-146

(Mackey,77) M.C. Mackey & L. Glass, Oscillation and chaos in

Physiological Control Systems, Science, 197, 287

(McClelland,86) James L. McClelland, D.E. Rumelhart, Parallel

Distributed Processing, 1986 MIT Press.

(Medio, 92) Medio, Alfredo. Chaotic Dynamics: Theory and application to

Economics. Chapter 141992 Cambridge University press, 0-521-39488-0

(Moody,89) Moody, John, Fast Learning in Multi-Resolution Heirarchies,

Advances in Neural Information Processing Systems 1, Morgan Kaufmann

1989 p. 29-39

(Nie,94) Junhong Nie, A fuzzy-Neural approach to time series prediction.

Proceedings of ICNN 1994 IEEE press 1994 Vol. 5, P3164-3169

(Ott,90) Edward Ott, Celso Grebogi, James A. Yorke, Controlling Chaos,

Physics Review Letters, 64, pp. 1196-12000 1990

(Press,88) Press w., Flannery B., Teukolsky S., Vetterling W., Numerical

Recipes in C, Cambridge.

(Refenes,93) Refenes, A.N., Azemi-Barac, M. Treleaven, P.C., Financial

132

Modelling using Neural Networks. In Commercial applications of parallel

computing, Liddell H., ed. UNICOM 1993

(Ruelle,81) Ruelle D., Small random perturbations of dynamical systems

and the definition of attractors., Commun Math. Phys. 137, pp. 82

(Schraudolph ,91) Schraudolph N. N. & Belew R.K. Dynamic Parameter

encoding for genetic Algorithms. Unpublished 1991

(Shimada,79) I Shimada & T. Nagashima, A Numerical approach to

Ergodic problem of dissipative Dynamical Systems, Progress of

Theoretical Physics, pp. 61 1605-1616 1979

(Solis,81) F.J. Solis, J.B. Wets, Minimisation by Random Search

Techniques, Mathematics of Operations Research, 6, 19-30 1981

(Sugihara,90) Sugihara, G., May, R. M., Nonlinear forecasting as a way of

distinguishing chaos from measurement error in time series. Nature Vol

344, 734-741 1990

(Takens,81) Takens F.,. (1980 Detecting Strange attractors in turbulence.

Lecture Notes in Mathematics, Vol 898 (Warwick 1980) eds D.A. Rand,

I.s. Young pp. 368-381 Berlin: Springer Verlag.

(Tong, 90) Tong H., Non-Linear Time Series - A Dynamical System

Approach, Oxford University Press, 1990

(Turchin, 93) Turchin p.,Chaos &Stability in rodent population dynamics:

evidence from non-linear time-series analysis. Oikos 24178-6168 1993

(Vaga,90) Vaga, Tonis, The Coherent Market Hypothesis, Financial

Analysts Journal, Nov/Dec 1990

(Wales,91) Wales, D., Calculating the rate of loss of information by

133

..

chaotic time series by forecasting. Nature, Vol 350 485-488 1991

(Wolf,85) Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., Determining

Lyapunov exponents from a time series. Physica 160 285-317 1985

(Kennel 93) Kennel, M., The Multiple Dimensions Mutual Information

Program. unpublished.

(Lebaron, 96) LeBaron, B., "Question of returns"., email to the

Comp.Finance discussion group on the internet. 29/8/96

(Shannon 49) Shannon C.E. & Weaver W. The Mathematical theory of

communication. Urbana II. University of Illinois press 1949.

(Watkins,94) Watkins, Chau, Tawel, Lambrigstem & Plutowski, Advances

in Neural information processing systems 6, Morgan Kaufmann 1994

p.850-857

134

Appendix 1 Pseudocode of Lyapunov implementation
LyapunovO
{
Determine the range of the data, fSize.

Check for variation in the data, quit if none.

~o:~te data embedded using dimension and separation determined by AMI & FNN (See

Normalise the data

Load the data into a binary Tree (See 4)

Variable Lyapunov = 0

Variable Found =0

For each embedded row

{

Search in the binary tree for the 10 nearest neighbours

If this is the first time round the loop

{
Check if the nearest neighbour is the last sample.
If so use the second nearest
Store the index of this neighbour
Store the distance to the current pattern
Increment the found count, Found.
}

else
{
For each of the nearest neighbours

{
If This neighbour is more than 10 samples from the current
pattern and is not the last

{
Find the neighbour with the smallest angle relative to the last
chosen neighbour in the previous loop
}

}
if a suitable neighbour was found

{
Fetch the distance between the current point and the chosen neighbour,

fDist.

calculate the distance between the next point after it and the next point

after the current vector, flterateDist.

Lyapunov = log2(flterateDist/fDist) + Lyapunov.

Found = Found + 1

Calculate the vector between the chosen point iterates to help select the

next vector

}

}

Lyapunov =Lyapunov I Found

}

Appendix 2 Binary tree pseudocode
Data structures:

pData, an array of floats containing the data.

wVectorCount;, the number of rows in the data

wVectorWidth, the number of columns in the data

pTreeHead, The root node of the tree representation

pBucketArray, an array of integers of size wVectorCount.

The imple.mentation is in. C++ and uses a class CBinaryTree to hold the tree.
Construction of the tree IS automatic on the construction of a CBinaryTree object passed
the data and the row and column counts.

CBinaryTree initialisation
{
For each position in pBucketArray i

pBucketArray[l] = i.

pTreeHead = CreateNode(O, wVectorCount)
}

CBinaryTree CreateNode(lnput Index, Number of paints) II this recursive procedure
generates the tree.
{

if the tumber of points is smaller than a constant, (15)

This. is a leaf node. Creat~ a CBinaryTreeNode object with the index of this objects
section of the data, A pOinter to pBucketArray and the number of points.
}

Else

{
For each column

{

Calculate the mean of all the data values in that column
Calculate the standard deviation of the data values in that column
if the standard deviation is the greatest so far store it, the column index and the
mean. (The selected column)
}

Check to make sure that there was some variation in the sample

if there was no variation

{
Call this function recursively passing the Input Index and half the number of

points.

Call this function recursively passing input index + half the number of points and

half the number of points.

}

else
{
For each of the number of points

look in the data for the selected column at the row offset given by Input Index +

the point index.

If that data value is greater than the mean move it to the upper half of the

sample.

If its less than the mean move it to the lower half.

Call this function recursively passing the Input Index as the first value >= to the

mean, and the number of pOints greater than the mean.

Call this function recursively passing the existing input index and the number of

points less than the mean

}

}
}

pBucketArray contains indices for each row of data. Initially ordered. .
The function above recursively divides the array into smaller and smaller sections by
choosing pivot points, and at each division the indices are sorte.d either side of the pivot
point. Eventually the divisions are smaller than a pre-selected Size, and are denoted as

136

leaf nodes. A tree is created in this process, and each node of the tree contains the pivot
index, number of points below it, the pivot column and the pivot value.

When used on financial data, especially differenced data, large numbers of points had the
same value and thus sooner or later a tree node would be generated controlling points
with zero standard deviation. The above algorithm handles this case by splitting the
indexes at an arbitrary mid point.

There are two kinds of search that can be performed on the newly created tree. The tree
can return all the points within a certain radius, or the n points closest to a given point.
The latter is used exclusively in this work, and the search proceeds as follows:

Search (search vector, count of neighbours, array of indices, array of distances)
{

Initialise Arrays
Call Search node passing a reference to the head node of the tree

SearchNode (Current node)
{

if current node is a leaf node
{
Calculate Euclidian distance for each point controlled by this node to the
search vector, and place in the appropriate part of the distance and index
array, shuffling down, and eventually out of the array any points that are
further away
}

else

~ind the discriminant column for this node, extract the corresponding data
value from the search vector, and calculate the difference between this
and the pivot value, fOiff; A distance, fOist is also calculated as fOiff2

if fOiff is negative
{
Call this function recursively with the left branch of the tree.
If fOist is smaller than the best found so far call this function
recursively with the right branch
}

else

hall this function recursively with the right branch of the tree.
If fOist is smaller than the best found so far call this function
recursively with the left branch
}

Appendix 3 Pseudocode of Mutual information implementation
This proceeds as follows:

Input arrays are Vector1, and Vector2 both of length wLength

Mutua! Information(Vector1, Vector2)
{

Calculate the mean and standard deviatio~ 0: vectors 1 & 2 and re-scale them both

to have zero mean and unity standard deviatIOn.

Check for data with no variation. Quit if found. .

Form a 2 dimensional matrix, matrix3, by concatenatmg Ve.ctor1 and Vector2.

Form a binary tree from each of Vector1, Vector2 and Matnx3.

137

Generate a vector H of length wLength to hold adaptive bandwidths and initialise
each location to a pre-defined constant 0.01.

Perform a density estimation on Matrix3 and use the probabilities to adjust the

bandwidth array H.

Perform Density estimation on Vector1, Vector2 and Matrix3 using the new

bandwidths and calculate the mutual information using Error! Reference source

not found. .?

Appendix 4 Pseudocode of False Nearest Neighbours implementation

False nearest neighbours
{
Find the range of the data, fSize.

For dimension = 2 to dimension = 8

{
Embed the data using the AMI derived separation and the current dimension
Create a binary tree representation of the data
for each row

{
Find the nearest neighbour and the distance between them, fOist
Take data from the time series to extend the embedding of the point in
question and the nearest neighbour.
Calculate the new distance between the two points fNew.
If fNew/fDist > 5 or fNew > 0.2 * fSize

Increase the nearest neighbour count by one
}

if the change in nearest neighbour count I number of rows > -0.1 select the
preceding embedding as the result and quit
}

If the above has not resolved an embedding dimension
Choose the first neighbour count / number of rows below 0.1 as the result

138

, ii

Appendix 5 Pseudocode of Hurst implementation

HurstO
{
Find the number of samples in the time series
Normalise the data
Determine the number of measures, = Sample Count! 10
Allocate a 2 dimensional array to receive the RSI measurements
for each of the measures, p

{

RSAve = 0

Size of block = Sample Count I p

For each block in the data

{
Calculate the average
Calculate the standard deviation using the average
Find the range of the block
RSAve =RSAve + The range I the standard deviation
}

RSAve = RSAve I p
Put the log of the RSAve into the x side of the RSI array in the pth position.
Put the log of (Size of Block * sample time in seconds) into the y side of the RSI
array in the pth position.
}

Perform linear regression on the array of tuples.

The HUrst exponent is the gradient of the best fit line.

}

Appendix 6 Pseudocode of local approximation algorithm interpolation
Local ApproximationO
{

Result = 0.0;

b =0.0;

av = 0.0;
for each of the vertices

av =av plus that vertex's distance;
if the sum of the distances is not zero (this can happen with financial data)

av == 4.0 I av;
else av == 4.0;
for each vertex calculate the average of the outcome and the average distance
for each vertex

{

b = b+ exp(- the vertex's distance from the predictee * av);

Result =Result + exp(-the vertex's distance from the predictee * av) * the vertex's

outcome;
}

if(b != 0.0) II check for potential divide by zero
b == 1.0/b;

Result =Result * b;
}

139

I' II* ••

