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Abstract 

This thesis is concerned with the structure, analysis and numerical solution of the 

mathematical models used to estimate the transmission dynamics of the Human 

Immunodeficiency Virus (HIV)) the causative agent of Acquired Immune Defi­

ciency Syndrome (AIDS). 

Investigations show that the devised deterministic mathematical models in 

term of system of first-order non-linear ordinary differential equations (ODEs) 

follow the stochastic nature of the problem at any time. In this thesis a generic 

form of the deterministic mathematical models is introduced which mirrors the 

transmission dynamics of HIV;AIDS in populations with different states of affairs, 

which leads to the division of large-scale and complex mathematical models. 

When analysing and;or solving a large-scale system of ODEs numerically, the 

key element in speeding up the process is selecting the maximum possible time 

step. This work introduces some new techniques used to estimate the maximum 

possible time step, avoiding the appearance of chaos and divergence in the solution 

when they are not features of the system. 

The solution to these mathematical models are presented graphically and nu­

merically, aiming to identify the effect of the anti-HIV therapies and sex education 

in controlling the disease. The numerical results presented in this thesis indicate 

that lowering the average number of sexual partners per year is more effective in 

controlling the disease than the current anti-HIV treatments. 

For the purpose of this study the mathematical software 'Mathematica 3.0' was 

used to solve the system of differential equations, modelling HIV;AIDS propaga­

tion. This package also provided the graphical detail incorporated in the thesis. 
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Chapter 1 

Introduction and background 

The desire for sex and a fulfilling relationship are powerful driving forces 

for most young people, who at the same time are under pressure to engage 

in sexual relationships too early. Yet many young people are denied even 

basic knowledge about their own bodies or the means to protect themselves 

from unwanted pregnancy and sexually transmitted diseases (STD~s). These 

diseases are most frequent in younger sexually acti ve people~ and appear to 

be increasing rapidly world-wide (World Health Organization's report 1999). 

Acquired Immune Deficiency Syndrome (AIDS) caused by Human Im­

munodeficiency Virus (HIV) emerged in the early 1980's in several widely 

separated locations, from the United States of America to Zaire, and Zam­

bia. The first medical reports, relating to a cluster among homosexual men 

in the United States, appeared in 1981. Since then a world-wide attempt has 

been made to tackle this life-threatening virus. 

After two decades of extensive research and development there are still 

many uncovered areas concerning HIV and AIDS. The biggest obstacles fa­

cing collaborations is the inability of clinicians to understand advanced math­
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ematics and on the mathematician's part, the lack of knowledge of the un­

derlying medical problem. It can take years to come to tenus with all the 

medical jargon, especially in a continually evolving area. This can be over­

come through serious cross-training of interdisciplinary scientists whose goal 

will be doing good science, which in turn would advance knowledge in both 

disciplines. 

The next section is concerned with the immunology of the hunlan body. 

1.1 The human immune system 

When a foreign substance (antigen) is introduced into the body, the body 

elicits an immune response in an attempt to clear the object from the body 

as quickly as possible. This response is characterised in two ways: a cellu­

lar immune response and a humoral immune response. The antigen is first 

encountered by the macrophages, cells that scavenge, engulf, and exanline 

foreign particles, then presenting their findings to the CD4 positive T lymph­

ocytes (CD4+ T cells). The 'CD4' denotes a protein marker in the surface of 

T cells and the T refers to thymus, the organ responsible for maturing these 

cells after they migrate the bone marrow (where they are manufactured). 

These cells, more commonly referred to as helper T cells (which normally 

average 1000 per cubic mnl of blood), serve as the command centre for the 

immune system. If they deem an immune response is necessary, a primary 

immune response is issued. First, the helper T cells reproduce to build up 

command forces, which can then elicit both cellular and humoral response. 

In addition to this build up, the cellular immune response also activates a 

second type of T cell, the CD8 positive T lymphocytes (CD8+ T cells). Re­

ferred to as the killer T cell, once given a target, they seek out and destroy 
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cells infected with those pathogens. 

the humoral immune response (more commonly known as the anti ­

body response) the helper T cell signal a third set of cells which produce 

the chemical weapons called antibodies. Antibodies are specifically engin­

eered to destroy the pathogen at hand and therefore act as direct antigen 

killing devices. Figure 1.1.1 shows a schematic diagram of the entire immune 

response process. 

Once the imnlune response is successful, certain cells of each type retain 

know ledge of the attack. These cells are referred to as nlemory cells. If 

the same pathogen (or a close cOllsin) is introduced into the body again, a 

much quicker and nlore aggressive calnpaign can be launched. and antigen 

is eradicated nl0re accurately at a much faster rate. This is the idea behind 

vaccines. A small, weaker version of the pathogen is introduced, eliciting 

a primary immune response; then, if the indi vid nal become infected with 

the more aggressive relative, the response is immediate and powerful, and 

the pathogen does not take hold. (See [83] and [100] for full discussion of 

immunology) . 
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Figure) .1.1: Schematic diagram ofthe working human immune system. Pathogen stimulated 
immune activation by increasing the numbers ofCD4 and CD8 T-cel/s and B cells that leads 
to pathogen clearance. 11 



1.1.1 HIV infection 

Like most viruses, HIV is a very simple creature. Viruses do not have the 

ability to reproduce independently. Therefore, they most rely on a host to 

aid reproduction. Most viruses carry copies of their DNA (the blueprint of 

itself) and insert this into the host cell's DNA. Then, when the host cell is 

stimulated to reproduce (often thrpugh the presence of the same pathogen), 

it produces copies of the virus. 

When HIV infects the body, its target is CD4+ T cel1s. Since CD4+ T 

cells play the key role in the imnlune response, this is the cause for alarm 

and a key reason for HIV's devastating impact. A protein (GP120) on the 

surface of the virus has a high affinity for the CD4 protein on the surface 

of the T cell. Binding takes place, and the content of HIV is injected into 

the host T cell. HIV differs from most viruses in that it is a retrovirus.: it 

carries a copy of its RNA (a precursor to the blueprint DNA) which must 

first be transcribed into DNA (using an enzyme it also carries called reverse 

transcripts). One of the mysteries to the medical community is why this class 

of virus has evolved to include this extra step. 

After the DNA of the virus has been duplicated by the host cell, it is 

reassembled and new virus particles bud from the surface of the host cell. 

This budding can take place slowly, sparing the host celli or rapidly, bursting 

and killing the host cell. 

The course of the infection with HIV is not clear-cut. Clinicians are still 

arguing about what causes the eventual collapse of the immune system, res­

ulting in death. What is widely agreed upon, however, is that there are four 

main stages of disease progression. First is the initial innoculum, when the 

virus is introduced into the body. Second is the initial transient, a relatively 
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short period of time when both the T cell population and virus population 

are in great flux. This is followed by the third stage, clinical latency, a period 

of time when there are extremely large numbers of virus and T cells under­

going incredible dynaluics, the overall result of which is an appearance of 

latency (disease steady state). Finally, there is AIDS this is characterised by 

the T cell dropping to very low numbers (or even zero )and the virus grow­

ing without bound, resulting in death. The transitions between these four 

stages are not well understood, and presently there is controversy concerning 

whether the virus directly kills all of the T cells in this final stage or if there 

is SOIue other mechanism( s) at work (see [74J and [67J for complete overview 

of HIV jnfection). 

1.1.2 Treatnlent of HIV infection 

Clearly, there is a necessity for treatment of HlV infection. To this end, 

there are several drugs now used: AZT (Zidovudine) was approved for treat­

ment of HIV infection in 1987, three other drugs, DDC, DDl, and D4T have 

since been approved. Also different combinations of theses drugs have been 

administered. These drugs all work as inhibitors transcriptase. The role 

of these transcriptase inhibitors is to interfere with the transcription of the 

RNA to DNA, thus halting cellular infection and hence viral spread. Un­

fortunately, these drugs are not cures for the infection, but serve only as a 

maintenance program to temporarily prevent further progress of the virus. 

Despite this drawback, there is much clinical evidence to support the use of 

these chemotherapies in HlV infected individuals. Aside from the possibility 

of prolonging the life in an HIV positive individual, it may make them less 

infectious to their sexual partners as well as reduce rates of mother-to-foetus 

transmission, (see [4]). Controversy exists among clinicians, however, as to 
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who should be treated, when they should be treated and what treatment 

scheme should be used. 

There is much more data available on AZT treatment (see [78]). In ad­

dition many laboratories and clinics keep close accounts of patient treat­

ment courses. These provide conflicting evidence as to which is better: early 

treatment (defined as CD4+ T cell counts between 200-500mm-3 
) Other 

questions regarding chemotherapy.are whether the dosage should be small or 

large, what should be the duration of treatment, and what periodicity of dose 

should be used should the drug be administered every 4 hours, 8 hours, 

etc.. All these questions could be addressed through the use of mathematical 

models. 

1.2 The Origin of the AIDS virus 

The AIDS virus has relatives in nlan as well as other primates. Studies of 

related viruses (C. A. Struthers et al., [103]) indicate that some have evolved 

disease-free in coexistence with their animal hosts. 

The sudden appearance and rapid spread of a previously unknown infec­

tious disease such as AIDS raises a series of compelling questions. 

i) What is the causative agent? 

Ii) What is its structure and how does it function? 

iii) How and from where did it start? 

vi) What is the future of the disease? 

My work has addressed the fourth problem, that of the mathematical 

modelling of the transmission dynamics of HIV / AIDS. Understanding the 
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spread of the virus may reveal ways to control the AIDS virus and its disease. 

For the modelling purpose knowledge of the AIDS virus is also important. 

The aim of this section is to learn more about HIV and viruses related to it, 

and also understand how HIV has evolved the unique and deadly properties 

that lead to AIDS. 

One way to begin searching out the origin of HIV is to look for sin1ilar 

viruses in non human primates. Monkeys and apes are often the only aninlal 

species other than the human that are infected with important human viruses 

such as Yellow fever and M arbuTgh. 

In certain cases it is even thought that wild nl0nkeys harbour the patho­

gens and can be the source of human infections. In February 2000, a sum of 

225 Macaques monkeys were killed in Woburn Safari park in Bedfordshire, 

England, in fear of carrying the virus causing AIDS. The search for prim­

ate viruses related to HIV had a precedent in the discovery of a primate 

counterpart of another human retrovirus. 

The first retroviruses to infect human were discovered in 1980 by Robert 

C. Gallo [49] of the National Cancer Institute. They were two Human T­

Lymphographic Viruses: HTLV-1 (the cause of a rare form of T-cell Leuk­

aemia in people) and a very closely related HTLV-IL 

Two years later Isao Miyoshi [82], of Kochi University described a related 

virus in a monkey, the Macaque. The virus was remarkably similar to HTLV's 

and was designated the Simian T-Lymphographic Virus, STLV. In 1988 M. 

Essex and P. J. Kanki [45], in the New England Regional primate Research 

Centre showed that monkeys with malignant lymphoma (a cancer of lymph­

oid cells) had much higher rates of STLV infection than healthy Macaque. It 

appeared that STLV was capable of inducing a lymphoid cancer in monkeys 
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similar to how HT LY induced lymphoid cancer in people. 

The biological and biophysical properties of the SlY proteins are very 

similar to those of the HlY proteins (see M. Essex, P. J. Kanki [45]). Like 

human infected with HlY, Asian lVIacaques with SlY suffered a decrease 

T-4lymphocytes with ensuring immunosuppression; the animal died of 

opportunistic infections very sinlilar to those seen in human AIDS. 

The lnonkey virus co~ld have' been transmitted to the Macaques from 

another monkey species housed in the same facility or even by experimental 

manipulation. However, seroepidemiological studies of wild captive Asian 

monkeys including Macaques failed to find evidence of SlY or HlY like agent 

(see M. Essex, P. J. Kanki [4.5]). Studies by many investigators confirmed 

that SlY infection in the Asian Macaques was linlited to small number of 

monkeys in captivity, where it was highly associated with SAIDS. The data 

suggested that SlY did not naturally infect Asian monkeys in the wild. It 

seemed quite possible that the primate-centre Macaques had been exposed 

to SlY in capti vi ty. If the Asian Macaque monkey was not the natural host 

for SlY, then, what was? And how (if at all) were the primate viruses related 

to the observed emergence of HlY in people? 

In 1985, the highest rates of HIY were reported in the US and Europe, 

but disturbing reports from central Africa indicated the highest rates of HIY 

infection and AIDS prevailed there, at least in some urban centres. The 

reported rates of infection were so high that many workers thought the AIDS 

epidemic in central Africa might have predated the emergence of the disease 

elsewhere in the world. 

On the assumption that the distribution of HIY in human population 

might be correlated with the distribution of the related viruses in monkeys, 
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it seems to be important to determine whether HlY related viruses were 

present in primate species in Africa. 

In 1998, M. Essex and P. J. Kanki [45], obtained blood samples from 

representative African prinlates, including wild-caught chimpanzees, African 

green monkeys, baboons and monkeys. They found no evidence of SlY in­

fection in chimpanzees, baboons and monkeys but more than 50 percent of 

the wild African green monkeys did show evidence of an SlY infection. 

From 30 to 70 percent of African green monkeys caught in various re­

gions of sub-Sahara Africa and from many other in house research facilities 

throughout the world found to be SlY infected. Yet they show no sign of 

immunosuppression or of SAIDS. 

Moreover, in spite of their having the highest rates of SlY infection, the 

various green monkeys subspecies are among the most ecologically successful 

African primates, suggesting that the high infection rate in these monkeys 

has not been exerting long-term adverse selection pressure on the species. 

Why SlY is endenlic in these wild African monkeys but seems to do no 

harm, but also found in captive Asian Macaques where it causes disease, was 

and still is an enigma. It seems quite possible that captive Asian monkeys 

might have been infected when they where accidentally exposed to African 

monkeys in holding facilities. 
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1.3 	 WHO's report on AIDS in the 21st cen­

tury 

As the 20th century drew to a close, some 33.6 million men, women and chil­

dren face a future dOlninated by a fatal disease unknown just a few decades 

ago. The Joint United Nations Programme on HIV IAIDS (UN AIDS) and 

the World Health Organisation (WHO), reported 32.4 million adults and 1.2 

million children living with HIV at the end of 1999. 

Over the course of 1999, some 5.6 million people became infected with 

the human immunodeficiency virus (HIV), which causes AIDS. 

1999 also saw 2.6 million deaths fronl HIV IAIDS (a higher global total 

than in any year since the beginning of the epidemic), despite antiretroviral 

therapy which staved off AIDS and AIDS deaths in the richer countries. 

Deaths among those already infected will continue mounting for some years 

even if prevention programmes managed to cut the number of new infections 

to zero. However, with the HIV-positive population still expanding (there 

were 5.6 million new infections in the year 1999 alone) the annual number of 

AIDS deaths can be expected to increase for many years before peaking. 

Around half of all people who acquire HIV become infected before they 

turn 25 and typically die of the life-threatening AIDS related illnesses before 

their 35th birthday. This age factor makes AIDS uniquely threatening to 

children. By the end of 1999, the epidemic had left behind a cumulative 

total of 11.2 million AIDS orphans, defined as those having lost their mother 

before reaching the age of 15. Many of these maternal orphans have also lost 

their father. 

The overwhelming majority of people with HIV (some 95% of the global 
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total) live in the developing world. That proportion is set to grow even 

further as infection rates continue to rise in countries where poverty, poor 

health systems and limited resources for prevention and care fuel the spread 

of the virus. 

HIV is still a challenge in industrialised countries. There is evidence 

that safe sexual behaviour is being eroded among gay men in some Western 

countries, perhaps because of complacency now that life-prolonging therapy 

is available. If this is the case, the complacency is nlisplaced. The disease 

remains fatal, and information from North America and Europe suggests that 

the decline in number of deaths due to antiretroviral therapy is tapering off. 

HIV infections in the former Soviet Union have doubled in just two years. 

Injecting drugs use gave the Eastern European and Central Asian region the 

world's steepest HIV curve in 1999. Drug-injecting is also a major concern 

in the industrialised countries, as it is in the Middle East, where total AIDS 

cases are still relatively low but drug-injecting accounted for two-thirds of 

cases In Bahrain, half in the Islamic Republic of Iran and over a third in 

Tunisia. 

Some Latin American countries are managing to expand efforts to provide 

treatment to those infected. However, there is evidence that infections are 

on the rise in Central America and in the Caribbean basin, which has some 

of the worst HIV epidemics outside Africa. 

Strong prevention programmes seem to have red uced HIV risk and lowered 

or stabilised HIV rates in some countries of Asia, such as Thailand and the 

Philippines. Other Asian countries have raised warning flags after collecting 

new information showing that injecting drug use is spreading and that con­

dom use is uncommon, including among clients of prostitutes and men who 
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have sex with men. In many places prevention efforts are hampered by the 

shame and stigma attached to AIDS. 

Sub-Sahara Africa continues to bear the brunt of HIV and AIDS, with 

close to 70% of the global total of HIV-positive people. Most will die in 

the next 10 years, joining the 13.7 million Africans already claimed by the 

epidemic and leaving behind shattered families and crippled prospects for 

developmen t. 

Because of AIDS, companies doing business in Africa are hurting and are 

bracing themselves for far worse as their workers sicken and die. According 

to a survey of conlnlercial farms in Kenya, illness and death have already 

replaced old-age retirement as the leading reason why employees leave service. 

Retirement accounted for just 2% of employee drop-out by 1997. 

Life expectancy at birth in southern Africa, which rose from 44 years in 

the early 1950s to 59 in the early 1990s, is set to drop to just 45 between 

2005 and 2010 because of AIDS. In contrast, South Asians, who could barely 

reach their 40th birthday in 1950, can expect by 2005 to be living 22 years 

longer than their counterparts in AIDS-ravaged southern Africa. 

New information suggests that between 12 and 13 African women are 

currently infected for every 10 African men. There are a number of reasons 

why female prevalence is higher than male in this region, including the greater 

efficiency of male-to-female HIV transmissiori through sex and the younger 

age at initial infection for women. 

In 1999, an estimated 570,000 children aged 14 or younger became in­

fected with HIV. Over 90% were babies born to HIV-positive women, who 

acquired the virus at birth or through their mother's breast milk. Of these, 

almost nine-tenths were in sub-Sahara Africa. Africa's lead in mother-to­
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child transmission of HIV was firmer than ever despite new evidence that 

HIV ultimately impairs women's fertility: once infected, a woman can be 

expected to bear 20% fewer children than she otherwise would. 

In short, the huge gap in HIV infection rates and AIDS deaths between 

rich and poor countries, and more particularly between Africa and the rest 

of the world, is likely to grow even larger in the next century. Likely, but not 

certain. Massive national and intc::rnational efforts may yet help to end the 

stifling silence that continues to surround HIV in nlany countries, to explode 

myths and misconceptions that translate into dangerous sexual practices, 

to expand prevention initiatives such as condom promotion that can reduce 

sexual transmission, to create conditions in which young children have the 

knowledge and the emotional and financial support to grow up free of HIV 

and to devote real money to providing care for those infected with HIV and 

support to their families. A trail of successful responses has already been 

blazed by a small number of dedicated communities and governments. The 

challenge for the leaders of Africa and their partners in development is to 

adapt and massively expand successful approaches that make it harder for 

the virus to spread, and that make it easier for those affected to live full and 

rewarding lives. 

Contrary to expectations when AIDS was first identified, the epidemic has 

taken different forms in different parts of the world. In some areas HIV rap­

idly became common among men and women throughout the population. In 

others it became entrenched in certain sub-populations whose sexual or drug­

injecting behaviour carries an especially high risk of contracting or passing 

on the virus, particularly sex workers and their customers, men who have sex 

with men, and drug injectors. 

The extent to which HIV spreads between groups with high-risk beha­
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viour and any larger population depends on whether lllembers of those groups 

have sex with people who do not share their high-risk behaviour, and whether 

condoms are used in those sexual encounters. For an HIV epidemic to take off 

in a country's general population, there also has to be a substantial amount 

of sexual mixing among adults. To sustain a heterosexual epidemic, on av­

erage each person must have unprotected sex with a lllinimulll of two part ­

ners, becoming infected by one an.d pas~ing on the infection to at least one 

other. Indeed, since not every encounter between an HIV-positive and an 

HlV-negative partner will result in a new infection, a sustained heterosexual 

epidemic suggests that a substantial proportion of the population, both Dlale 

and female, have a number of sex partners over their lifetimes. Tables 1.1 

and 1.2 represent the global and regional statistics of the HIV IAIDS epidemic 

(WHO's report 1999). 
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Table 1.1: Global statistics of the HIV/ AIDS epidemic 1999. 

Number of people contracted HIV in 1999 Total 5.6 million 

Women 2.3 million 

Men 2.6 million 

Children < 15 570,000 

Number of people living with HIVIAIDS Total 33.6 million 

Women 14.8 million 

Men 17.6 million 

Children < 15 1.2 million 

AIDS death in 1999 Total 2.6 million 

Women 1.1 million 

Men 1 million 

Children < 15 547,000 

Total number of AIDS death since Total 16.3 n1illion 

the beginning of the epidemic Women 12.7 million 

Men 6.2 million 

Children < 15 3.6 million 
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Table 1.2: Regional HIV/ AIDS statistics 1999. 

Region Epidemic Adults and Adult;; and Adult Percent of Main mode(,,) of lstarted children child ren newly prevalence HIV-positive transmission 

living with infected rate a.dults who for ad ults 

HIV/AIDS with HIV are women I 

Sub-Sahara late '70s­ 23.3 million 3.8 million 8.0% 55% Hetero 

Africa early '80s 

North Africa & late '80s 220,000 19,000 0.13% 20% IDU, Hetero 

Middle East 

South & late '80" 6 million 1.3 million 0.69% 30% Hetero 

Southea.st Asia 

East Asia & late '80s 530,000 120,000 0.068% 15% IDU, Hetero, 

Pacific Homo 

Latin America. late '70:1­ 1.3 million 150,000 0.57% 20% Homo, IDU, 

early '80s Hetero 

Caribbean late '70" - 360,000 57,000 1.96% 35% Hetero, Homo 

early '80:3 

Eastern Europe & early '90s 360,000 95,000 0.14% 20% IDU, Homo 

Central Asia 

Western Europe late' 70s - 520,000 30,000 0.25% 20% Homo,IDU 

early '80s 

North America. late '70s - 920,000 44,000 0.56% 20% Homo, IOU, Hetero 

early 'SOs 

AUiltra.lia. & late '70s - 12,000 500 0.1% 10% Homo, IDU 

New Zea.la.nd early '80. 

TOTAL 88.6 million 5.6 million 1.1% 46% 

I 

1.4 AIDS epidemic and mathematical sciences 

The AIDS epidemic, which reached the public awareness in the early 1980's, 

has generated a vast literature of mathematical modelling and statistical ana­

lysis. The reasons for this are threefold. Firstly, AIDS itself has a very high 

public profile, for a variety of sociological, political and economical reasons. 

Government money has been made available for research, and undoubtedly 

the desire for academic kudos and publicity has played a part: the story of 

the discovery of the causative virus HIV and the litigation involved is testi­

mony to this! (see Connor and Kingman, [32]). Secondly, the statistical and 

mathematical problems peculiar to HIV infection and AIDS have stimulated 
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the development of new techniques to overcome these difficulties. Some of 

these difficulties are described in Section 1.4.2. 

However it can be argued that the main justification for this tremend­

ous world-wide modelling effort is the outcome of the epidemic in terms of 

human lives and suffering. This is especially the case in the developing coun­

tries, where the economic implications are disastrous. Although in the West 

the disease is still mainly confined .to certain subpopulations, the developing 

countries are currently seeing an explosion in the numbers of cases among 

young heterosexuals, and at the 15th International Conference on AIDS held 

in Florence in .June 1999, the World Health Organisation predicted that by 

the end of the century 40 million people world-wide would be carrying the 

virus. Despite a comparable effort in the fields of medical, microbiological 

and pharmacological research, there is still no cure for AIDS or even an 

effective treatment. 

1.4.1 Terminology 

This section is not intended to provide a detailed description of the devel­

opment of the AIDS epidemic or the natural history of the disease itself. 

(Strictly speaking, AIDS is not a disease but a syndrome, a set of diseases). 

For further information about the clinical and historical aspects of the epi­

demic, see Adler [1] and Connor and Kingman [32]. 

In the terminology of disease modelling, a susceptible (healthy) person ac­

quires HIV (the causative agent of AIDS) from an infected individual through 

the transfer of body fluids: that is, mainly via sexual intercourse, sharing 

drug-injecting equipment, via blood or blood product transfusion or from 

mother to child. Many models have been developed to study the transmis­
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sion dynamics of HIV, the way the virus spreads in a community (see 2). 

The transmission dynan1ics of HIV are rather more complex than those of 

airborne infections like measles or solely sexually transmitted diseases like 

gonorrhoea. 

After a latent period of 4-6 weeks antibodies to HIV begin to be produced 

(a process known as se1'oconversion) and can be detected in the blood. How­

ever, physical sYlnptollls may not ~ppear for many years. The tin1e between 

infection with HIV and diagnosis with AIDS is known as the incubation 

period. Estimation of this period is the object of much lllodelling work (see 

1.5.1). 

Although diagnosis with AIDS is officially the end-point of the incubation 

period, many people have a variety of illnesses before then. These include 

gene1~alised LY1nphadenopathy (swollen lymph glands, a sign that the body 

is fighting an infection), diarrhoea, severe weight loss, oral thrush and other 

infections, and night sweats. Thus, the use of the term incubation period 

may be misleading, suggesting as it does an asymptomatic period like that 

associated with measles, for example. Another area of Illodelling work has 

been the study of the natural history of HIV infection in more detail, and 

the progression of the disease through various states (see 1.5.2). 

I t is currently thought that a person's ability to transmit the virus may 

fluctuate through time (Anderson and May, [11]: Blythe and Anderson, [17]). 

The commonly accepted view is that there are two peaks of infectivity, the 

first during seroconversion and the second on the appearance of clinical symp­

toms. It is obviously important from a health education and disease pre­

vention standpoint to know when a person is most likely to transmit the 

infection, and this has been the subject of much modelling effort (see 1.5.3). 

Clearly the nature of infectivity will also affect the spread of the epidemic, 
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since a person who is equally infectious throughout the long incubation period 

is likely to cause more new infections than someone whose infectivity drops 

after seroconversion. 

A major area of research, especially research commissioned by or on behalf 

of health care planners and Government departments, has been the prediction 

of the size of the epidemic. Making provision for caring for future AIDS 

cases requires sorne estimate of the likely nun1bers of patients. The drugs 

and resources required by AIDS sufferers are expensive and the epidemic 

will make heavy demands on national resources. In the developing countries, 

these demands may be crippling to the national economy. Section 1.4.4 

describes some such modelling work. 

Since the developlnent in 1985 of an accurate blood test for antibodies to 

HIV, the issue of screening for AIDS has been contentious. While there is 

no cure or arguably no effective treatment, the benefit to an individual of a 

screening test is dubious. Indeed Inany AIDS charities (notably the Terence 

Higgins Trust) strongly advocate against screening. However without ad­

equate information about the prevalence of HIV, many researchers feel their 

work is severely harnpered. 

Associated with the problems of estin1ating the future size of the epidemic 

are the problen1s of estimating the costs of caring for these AIDS patients. In 

both the developed and the developing countries the sums of money involved 

are considerable and represent a significant proportion of the national health 

budget. Not the least of these problems is the fact that new drugs and 

treatments are continually being developed, and planning care for the future 

is extremely difficult. 

A number of large-scale studies have been dedicated to the collection of 
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data on HIV and AIDS, and many of the models mentioned in this thesis use 

data from these. Fusaro et at. list six of the most well-known studies: 

• 	 The San Francisco City Clinic Cohort or Hepatitis B Cohort: A sample 

of homosexual men recruited from patients at the City Clinic to par­

ticipate in Hepatitis B vaccine trials, some subsets of which have been 

followed over time. See Jaffe et at. [66). 

• 	 The San Francisco General Hospital Cohort: A mixture of samples of 

homosexual men, some from sexually transmitted disease clinics, some 

randomly selected, and some partners of AIDS cases, all followed over 

time. See Moss, Osmond, Bacchetti, Chernlan, Barre-Sinoussi and 

Carlson (89]. 

• 	 The Multicenter AIDS Cohort Studies (MACS): A set of volunteer 

samples of homosexual men from selected urban areas throughout the 

United States, followed over time. See Chniiel et ai. [31]. 

• 	 The San Francisco Men's Health Study: A probability sanlple of ho­

mosexual men from San Francisco, followed over time. See Winkelstein 

et at. [115J. 

• 	 CDC Transfusion-Associated AIDS Cases: A retrospective follow-up of 

AIDS cases associated with blood transfusions. See Lui et at. [77] and 

Medley, Anderson, Cox and Billard [81]. 

• 	 The National Cancer Institute Multicenter Haemophiliac Cohort: A 

follow-up study of haemophiliacs from several haemophilia treatment 

centres in the United States. See Brookmeyer and Goedert [25]. 

Several academic journals have devoted special issues to AIDS. Many of 

the papers referred to below are to be found in such special issues. For 
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example, the Journal of the Royal Statistical Society, Series A, 341 (1997), 

the Philosophical Transactions of the Royal Society of London (Biology), 325 

(1989), Statistics in Medicine, 8, No.1 (1995), Simulation, 56, No.1 (1996), 

and Interfaces, 21, No. 3 (1996). Another excellent collection of papers is 

Mathematical and Statistical Approaches to AIDS Epidemiology, edited by 

C. Castillo-Chavez, Lecture Notes in Biomathematics, 83, Springer-Verlag 

(1994). 

A glossary of medical and epidemiological terms can be found in Section 

1.6. 

1.4.2 Difficulties encountered in modelling 

Some of the problems in modelling are not specific to AIDS: there are gen­

eral criticisms that have been levelled at the mathematical nlodelling of any 

disease. For example, it has been argued that the siInplifying assumptions 

necessary to make models tractable to solution render them useless in prac­

tice, as the real-life processes they are trying to model are so complex. In the 

case of HIV and AIDS this criticism may be even more justified: not only 

is the underlying disease process extremely complicated, but our knowledge 

of this process is incomplete. There are also problems with data, the raw 

material for all models. Lack of data and poor quality data are hazards en­

countered in all modelling work, but these hazards are magnified in the case 

of AIDS by an exceptionally high degree of uncertainty and the long time 

periods involved. 

A partial reply to the first criticism might be that although real-life phe­

nomena may appear complex, they may be governed by a simple process, 

and that it is important to try the simple approach first, if only to eliminate 
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it (Anderson [7]). Moreover, the process of modelling requires these assump­

tions to be made explicit and this can lead to improved understanding. This 

is particularly relevant to AIDS, where our knowledge of the underlying pro­

cess, although currently inadequate, is increasing rapidly. It can be argued 

that in an area where everything is new and unknown, even a simple model 

can be helpful. Decisions still have to be taken which will not wait for the 

"perfect" model or the" exact" da~a, an,d even a rough guide is useful. 

The problems with data are considerable. To begin with there are prob­

lems of censoring. NI uch life data is inconlplete, since failure times or origin 

times are unknown. AIDS data is particularly badly affected because of the 

very long time periods involved. There are a number of different types of cen­

soring. In the terminology of life data analysis, right-censored units are those 

who have not yet failed by the present time. Left-censored units are those 

whose failure times are only known to have been before a certain specified 

time. Singly-censored data occur if all the units are started on test together 

and the data are analysed before all units fail. Multiply-censored data arise 

when the units all have different running times, i.e. started on test at differ­

ent times. Interval censoring occurs when the units are inspected more than 

once, and the only information we have is that a unit failed within a certain 

interval. AIDS data is subject to all these forms of censoring. 

, For example, suppose we are studying a set of people known to be infec­

ted with HIV. To begin with, there is uncertainty about the time of infec­

tion. Apart from exceptional circumstances, as for example people infected 

by blood transfusions, the date of infection is unknown. Even in the case of 

transfusion-associated AIDS, many patients die from the cause for which they 

were transfused before they would have had time to seroconvert. Moreover, 

because of the long time periods involved, data is missing because a per­
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son has been lost to follow-up before they have developed symptoms. These 

problems give rise to biased data: the data is biased in favour of individu­

als with short incubation periods, since those who would have had longer 

incubation times have not been included in the data set. 

Secondly, there are problems with the notification of cases of AIDS. The 

Centers for Disease Control (CDC) in Atlanta, Georgia is the body respons­

ible for collecting AIDS data in the USA and they have laid down strict case 

definitions for clinical AIDS [1996, 1997], which are used all over the world. 

However these surveillance definitions have changed several times since re­

cords began, reflecting increasing medical knowledge. Therefore SOIne AIDS 

deaths were not notified as such, because they did not meet the official case 

definitions at the time. In addition, some AIDS deaths may not have been 

identified because the doctor wished to spare the feelings of relatives, so the 

death certificate gave a non-AIDS-specific cause of death, such as "heart fail­

ure". The same problem occurred in the UK and elsewhere. Furthermore, 

there is often a time-lag between sonleone dying of AIDS and that death 

being reported to the data collecting agency. 

Problems specific to detailed progression models include a paucity of data 

on the pre-AIDS clinical states. As we have seen, even data on the basic 

incubation period is problen1atic. Cost and resource data is a little less 

difficult, since such information is often now available to health planners, 

but many AIDS treatments are still at an experimental stage and it is almost 

impossible to estimate the future costs of new drugs. 

Finally, another problem common to all modelling work is that of com­

munication: between mathematician and clinician, statistician and epidemi­

ologist. It is not surprising that mathematical models are regarded with 

suspicion, and thus not accepted, if they cannot be understood. Even if the 
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internal mathematics is extremely complex, it is important that the model­

ler should be able to interpret and explain the results given by the model in 

meaningful terms. 

1.4.3 Transmission dynamics models 

Most of the models for the.transmission dynamics of AIDS have been determ­

inistic, and have tended to concentrate on the epidelnic in male homosexual 

communities. An excellent review of n10delling work in this area is to be 

found in the paper by Isham [63]. Isham is one of the first researchers who 

has cited several basic deterministic models. However, she argues that al­

though deterministic models only give an approximate solution, and that 

problems are likely to arise at the early stages of the epidemic when numbers 

are small, stochastic models are so difficult to solve that the current emphasis 

on deterministic models is justified. However she does draw attention to areas 

where the use of deterministic models could give rise to misleading answers. 

One way in which many deterministic models incorporate variability is by 

grouping individuals into classes with different behaviour. 

The models developed by Anderson, Medley, May and Johnson [13] typify 

this approach. They discuss previous models of sexually transmitted diseases 

and review the epidemiological parameters necessary for such models: for 

example the duration of the incubation period and the infectious period, and 

the proportion of HIV-positives who will develop AIDS. They formulate a 

series of models of increasing complexity, and consider what processes affect 

the course of the epidemic. They show that highly heterogeneous levels of 

sexual behaviour diminish the size of the epidemic: in other words, the very 

active individuals die before they have time to spread the disease. 
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Anderson [6] develops these ideas in a model with variable incubation 

times and infectivity, as well as heterogeneous sexual behaviour. He shows 

that knowledge of these parameters is essential in order to use the model to 

predict future trends. Bailey [15] introduces a simple compartmental model 

for the incubation period, which assumes that all scroconverters will go on 

to develop AIDS. The model paranlcters are estimated using data from the 

San Francisco City Clinic cohort. ~lythe and Anderson [16] consider a com­

partmental model with variable incubation and infectious periods but with 

homogeneous n1ixing. They model the incubation and infectious periods with 

exponential, vVeibull, Gamma and rectangular distributions. In another pa­

per [17] they consider two other methods for modelling variable infectivity: 

in the first method infected people pass through a series of subclasses with 

different constant levels of infectivity, where the lengths of stay are exponen­

tially distributed with different constant means. The second approach uses a 

description of the relationship between the infectious and incubation periods 

based on changes in viraemia (levels of virus in the blood). They compare 

these models with those in which infectivity is taken to be constant, and 

in particular they study models with two peaks in infectivity. They found 

that the initial peak in infectivity determines the early doubling time of the 

epidemic (the time taken for the number of cases to double), although both 

phases affect the size of the epidemic and the endemic equilibrium state. 

In a third paper [18] they study the effects of heterogeneous sexual activ­

ity by using a compartmental model with proportionate mixing: that is, 

where the proportion of sexual contacts between people in class i made with 

people in class j is proportional to the total number of contacts made by 

the population due to people in class j. Initially they treat sexual activity 

as a continuous variable: this model is a set of integro-partial-differential 
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equations, but they approximate this discretely to obtain a set of ordinary 

differential equations. 

The work of Anderson has undoubtedly been fundamental in developing 

the theory of transmission models. His name appears on papers too numerous 

to list in full. His work with May and McLean [12] has concentrated on 

modelling the demographic consequences of AIDS, with special reference to 

the developing countries: these models are for heterosexual communities. 

Dietz and Radeler [41] develop a transmission model which accounts for 

pair formation and separation. They introduce non-linear pair formation 

and separation rates, assume a constant rate of sexual contact and an expo­

nentially distributed infectious period, with constant infectivity throughout. 

They conclude that endemic equilibrium is attained only if the separation rate 

is sufficiently large to ensure enough new partners. Dietz [40] extends this 

to a heterosexual transmission ll10del, which accounts for partnership dura­

tion and the number of contacts per partnership: most n10dels assume that 

partner contacts all occur instantaneously. He outlines model refinements 

such as heterogeneous contact rates~ and concludes that the heterosexual 

epidemic will spread more slowly than the homosexual epidemic, under the 

same assumptions about the incubation period, infectivity and contact rates. 

Another type of mixing is preferential mixing, where each group reserves 

a fraction of its sexual contacts for members of that group, and otherwise 

uses proportional mixing. A model which uses preferential mixing is that 

of Jacquez, Simon, Koopman, Sattenspiel and Perry [65J, which considers a 

male homosexual community characterised by rate of sexual contact. They 

model the incubation period as a series of stages, each with exponential 

dwelling times, which gives a Gamma distribution for the overall incubation 

period. They find that a small increase in the contact rate between high and 
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low activity classes causes a large increase in the size of the epidemic in the 

low-activity groups. 

A model developed specifically for IV drug users is that of Kaplan [68J. 

He modeled the sharing of injecting equipment in "shooting galleries", which 

are places where drug users go to inject themselves, often using communal 

equipment. A user selects a gallery according to a Poisson process at a con­

stant rate. Equipment beconles inJected when used by an infective person, 

but is cleansed (with constant probability) when it is used by a suscept­

ible. Using infected equipment transmits HIV with constant probability. 

The model assumed that the size of the addict population remained stable 

and that individual infectivity is constant. The model is formulated as a set 

of differential equations. It is then extended to incorporate heterogeneous 

equipment sharing rates: the conclusions are the same as May, Anderson 

and Johnson's [80] for heterogeneous sexual behaviour, i.e. increased het­

erogeneity ultimately diminishes the size of the epidemic since the smaller 

high-activity group becomes saturated earlier. 

Kaplan [69] also considered the homosexual epidemic in a model where 

men are classified according to the rate of risky sexual practice (i.e. un­

protected anal intercourse). This model assumes random partner selection 

and constant infectivity, and an exponential incubation period (although the 

author claims the model is fairly robust to the choice of distribution). The 

model used data from the San Francisco Men's Health Study (Winkeistein et 

al. [115]) and the author concludes that the gay population may have mod­

ified their behaviour to reduce risky practices. Kaplan and Abramson [70] 

used a similar model to study the effects of an education program which tem­

porarily reduces high-risk behaviour, and concluded that even a temporary 

reduction can significantly retard HIV transmission. 
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These deterministic models generally consist of sets of differential or 

integro-differential equations. Other techniques have been applied to mod­

elling the transmission dynamics of AIDS) notably simulation. The systems 

dynamics approach is used by Ahlgren and Stein [2], who developed a series 

of deterministic models using STELLA, a systems dynamics language for the 

Apple Macintosh. Their basic n10del simulates HIV transmission within a 

single risk group. They extended this template model to models for hetero­

sexual transmission and needle-sharing. They introduced a program which 

uses the template model to optin1ise key epidemiological parameters such as 

infectivity in the early stages of the epidemic, using data from San Francisco. 

They showed that infectivity in the very early stages of infection (before sero­

conversion) may be significantly higher than later on in the antibody-positive 

stage, and therefore screening for viral antigens in the very high risk-groups 

would be justified by the subsequent reduction in transmission. 

Another systems dynamics model is that of Roberts and Dangerfield [99], 

[98]. The program was written using DYSMAP2 and runs on a PC. It sim­

ulates a male homosexual community and can incorporate heterogeneous 

sexual activity, variable infectivity and changes in sexual behaviour over time. 

The model can also be used to evaluate the effects of prolonging the symptom­

free period by the use of drugs such as AZT. This model also uses parameter 

optimisation techniques, implemented using the program DYSMOD, based 

on data on UK male homosexuals. 

A model using simulation is that of Kiessling, Stannat, Schedel and 

Deicher (72]. This simulates the morbidity and mortality rates of AIDS in 

the Federal Republic of Germany, where the population is divided into six 

compartments according to sexual behaviour. 

Simulation has also been used by Gonzalez, Koch et al. [53], in a model 
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which classed individuals according to age and sexual preference, with vari­

able incubation period. They developed a program called ASSP (AIDS­

Spread Simulations and Projections) which is an extension of an earlier pro­

gram by Dorner [39]. In the ASSP model the population is divided up into 

many (up to 100 or more) compartments which differ according to sexual 

behaviour. Infection-transmitting contacts between people in different com­

partments, and flows of individuals from one compartment to another are 

considered. The underlying model is a large system of difference equations 

with a constant tilne interval (one month). Although probability distribu­

tions are used for the incubation period and the duration of illness, the model 

itself is not stochastic because random sampling is not done. 

Another sin1ulation study is that of Stigum et al. [102]. This modeled 

the heterosexual population of Norway, grouped according to age, sex and 

whether paired or single. The model parameters were estimated using data 

from a population-based survey. The model is sensitive to changes in sexual 

behaviour and to the shape of the transmission probability distribution, al­

though not to the initial conditions. The simulation results indicated that 

without inflow from other risk groups, the Norwegian heterosexual epidemic 

is unlikely to sustain itself unless the average transmission probability per 

intercourse is greater than 1%: current estimates of this probability are in 

the region of 0.1 %. 

Leslie and Brunham [73] describe a discrete-event simulation model de­

veloped using SIMSCRIPT 11.5. Individuals (known as Victims in the ter­

minology of the program!) may be either active, immunised or susceptible. 

Active Victims pass through a series of disease stages which are controlled 

stochastically by a matrix of transition probabilities. Susceptible victims 

acquire the virus by means of contact events, which depend on the type of 
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activity in which a Victim participates. The underlying assumption is that 

the model satisfies the conditions for a Markov chain. The model is used 

to verify the May-Anderson prediction relating contact rate heterogeneity to 

the rate of HIV spread, and can be used to study a wide range of risk-group 

dynamics. 

A similar approach was employed by Bongaarts [20], using a compart­

mental model simulated a~ a Markov chain. The program allows the epidemi­

ological and behavioural parameters to vary with the age of an individual, 

and the incubation process is modelled as a series of infection stages with ex­

ponentially distributed waiting times, giving rise to a Gamma distribution for 

the overall incubation period. The infection stages are Uninfected (Immune 

or Susceptible), Infectious (AIDS risk or No AIDS risk), AIDS and Death. 

The model is primarily aimed at estimating the demographic consequences of 

the epidemic, and is in1plenlented as sets of linear differential equations. The 

simulated population is stratified according to age, gender, sexual behaviour, 

marital status and infection! disease status. Simulation results are reported 

for a run of 25 years in an African-pattern heterosexual population with no 

gay or IV drug-using transmission. 

The wider use of transmission dynamics models as predictive tools has 

been hampered by their dependence on key parameters and processes which 

are, as yet, little understood. However they certainly help to focus attention 

on the areas 'where further information is required, and have been used to 

interpret observed trends: for example, changes in sexual behaviour as re­

flected in lower levels of other sexually transmitted diseases. Moreover much 

recent work has been in the area of stochastic modelling, and this may turn 

out to have more practical relevance. 

An early stochastic model is that of Mode, Goliwitzer and Herrmann [85]. 
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This model is extended by Mode, Gollwitzer, Salsburg and Sleeman [86] to 

a non-linear stochastic model with recruitment of infectives. The model is 

formulated by probability generating functions for the monthly probability 

that a susceptible individual becomes infected with HIV, assuming that the 

probability of transmission varies with the duration of infection. The model 

can incorporate condom use. The stochastic process is a series of iterations 

of non-linear difference equations, starting with an initial conditional expect­

ation. The model is tested by Monte Carlo experimentation. 

1.4.4 Sllort term predictions 

Much of the work in this area has concentrated on the need to provide reas­

onable estimates of the numbers of AIDS cases over one to five years. Such 

estimates are required for resource planning and allocation, and this research 

has often been at the behest of Government departments. Indeed one of the 

best-known collaborative efforts was the Working Party set up in 1988 by 

the Department of Health, under the chairmanship of Sir David Cox. Cox 

Report [36] contained the results of this collaboration and has been the basis 

for providing predictions for n1any other models. The Working Party recom­

mended that in view of the rapidly changing nature of the epidemic, and the 

paucity of knowledge about the factors determining its spread, the Report 

should be updated at least annually. The result of this was the Day Report 

[37], which contained a reduction in some of the forecasts. 

The methods commonly employed are empirical curve-fitting techniques, 

extrapolating future incidence from past data, based on the choice of a suit­

able distribution function. Parameter estimates for a given function are ob­

tained using maximum likelihood methods or weighted least-squares meth­
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ods. Some of the problems encountered with the data (for example, reporting 

delays and censored data) can be dealt with, and new techniques have been 

developed directly as a result ,of the specific difficulties of the AIDS data (for 

example, the method of back calculation). 

The choice of a suitable distribution function is a difficult one, since more 

than one function may be consistent with historical data. This is where the 

simple mathematical models described in Section 2 can help, by providing an 

insight into the rationale for choosing one function in preference to another. 

The mathen1atical models suggest that an exponential rate of growth in the 

very early stages of the epidemic will be superseded by a slower rate, for 

instance logistic or log-linear. 

Apart from the data problems already mentioned, difficulties arise as a 

result of different patterns of growth in different risk groups. Anderson [7] 

argues that the reliability of short-term predictions for the developed coun­

tries will decrease as the epidemic slows in particular risk groups. Effectively, 

we are seeing the net results of several separately identifiable but interlinked 

epidemics within the different risk-groups, and this makes general trends 

difficult to discern and interpret. Model-based estimates will probably be 

more reliable for the developed countries. Purely statistical short-term pre­

dictions are now likely to be most useful in the developing countries, where 

the pattern of infection is more homogeneous. 

The method of back calculation was introduced by Brookmeyer and Gail 

[24], [22] and developed by Bacchetti and Moss [14]. This method forecasts 

future numbers of AIDS cases from estimates of those already infected with 

I-IIV. It calculates the number of infections from the (known) nuruber of AIDS 

cases diagnosed up to a certain point in time, using a parametric model for 

the (unknown) infection times. 
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Brookmeyer and Gail [23] used a Wei bull distribution for incubation 

period distribution and assumed that all transmission ceased at the end of 

1985 in order to obtain a minimum estimate for the size of the epidemic in 

the USA. They used data for the numbers of AIDS cases reported to the 

CDC, and estimated A(t) from cases of transfusion-associated AIDS. The 

Cox Report [36] also used a Weibull distribution, with a mean of 7.4 years. 

As time goes by and information on the incubation period distribution im­

proves, these back calculation methods will provide more accurate forecasts. 

The incubation distribution is not stationary, due to the rapid mutation of 

HIV, and neither is HIV incidence, because of changes in sexual behaviour. 

Downs, Ancelle, Jager and Brunet [42] analyse European AIDS data re­

ported to the WHO, and fit simple exponential models by regression for the 

period of the epidemic and for successive overlapping 3-year time windows. 

They estimate doubling times for ten individual countries and the whole 

European Community. They predict and construct confidence intervals for 

one-and-a-half year periods by extrapolating from the curves for the most 

recent time windows. 

Gonzalez and Koch [53] study the effects of "transients" on short-term 

forecasts. They argue that these biasing transitional effects can be very 

misleading, and suggest that the apparent initial decline in the growth rate 

of AIDS cases may be spurious, and, in fact, due to a positive onset transient. 

They assume that the initial stages of the epidemic are approximated by 

exponential growth. They study the effects of the onset transient on the 

incubation distribution. 

Harris [59] provides maximum likelihood estimates, using an EM al­

gorithm, of the empirical distribution of the delay in reporting AIDS cases. 

He projects cumulative US AIDS incidence until 1999 by extrapolating CDC 
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data adjusted for reporting delays. 

Healy and Tillett [60] fit a variety of curves to UK cases until 1995, 

adjusted for reporting delays. These include an unweighted linear model 

using a log scale and a log-linear model with Poisson errors, which give 

similar results. They also fit a quadratic term in the above models, which 

fits the data quite well but yields different results. 

Morgan and Curran [87] fit a quadratic polynomial to adjusted CDC 

data and project the results to 2001, assuming the trends ren1ain unchanged 

over time. Rees [96] fits a normal distribution to the incubation period of US 

transfusion-associated AIDS cases, and predicts the number of HIV infections 

in the UK and US over the next 30 years that will arise as a result of current 

HIV infections. A long series of comments and rejoinders, mainly criticising 

Rees' choice of the normal distribution. 

Taylor [105] uses a variant of the back-calculation technique. He mod­

els the numbers of cases of AIDS developing in different time periods by 

multinomial random variables whose cell probabilities are the convolution of 

the incidence distribution and the incubation period distribution. He uses 

5 different models for the incidence distribution: double exponential, root 

exponential, logistic, logistic prevalence and quadratic. Taylor considers 21 

non-parametric distributions for the incubation period. He fits these 105 

models, using maximum likelihood methods, to adjusted CDC data from 

1982 to 1993. The double exponential incidence distribution generally seems 

to provide the best fit, but no obvious pattern is observed for the incubation 

period distributions. 

Tennison and Hagard [106] predict short-term UK AIDS incidence through 

trend extrapolation. They use Box-Cox analysis to determine the appropriate 

42 




...... 


power transformations for weighted logarithmic linear and quadratic regres­

sion models. They give emphasis to recent data by using a series of weights 

which decrease exponentially into the past, with a con1mon ratio. 

1.5 Natural history models 

The majority of research ,studying the actual disease process have concen­

trated on the incubation period, that is the time between infection with 

HIV and the official diagnosis of AIDS. Knowledge about the incubation 

period distribution is necessary for many of the transruission and prediction 

models described above. One of the difficulties with modelling AIDS is the 

bewildering variety of conditions \vhich all come under the umbrella of "HIV 

infection", This has led to changes over time in the official surveillance defin­

itions of AIDS, and also gives rise to ambiguities when modelling the natural 

history in detail. 

In view of the long incubation period of the disease, research has also 

concentrated on identifying which clinical, immunological and virological 

parameters best predict the rate of progression of disease in individual pa­

tients. Four such markers have been identified: a decline in CD4 lymphocyte 

counts over time, presence of the p24 antigen to HIV, high levels of serum 

,6-microglobulin, and high levels of serum neopterin (Moss [88]). However, 

there is a high degree of variability between patients and so models which 

attempt to predict the rate of progression of disease from these parameters 

should be stochastic in nature. Bacchetti and Moss [14] give an excellent 

review of the statistical modelling of disease progression. 

Another reason for modelling the disease process in detail is to study the 

effects of treatments. The drugs given for AIDS are powerful (and expens­
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ive) and often have unpleasant side-effects. There are ethical and practical 

difficulties in designing clinical trials for new drugs. These detailed luodels 

can also investigate resource use. 

A third area of modelling work has been research into infectivity. Know­

ledge about how infectivity varies over the different stages of disease is re­

quired for some of the transmission models above. Moreover 1 if we know 

when a person is particu~arly infectiou's we can decide whether or not to 

screen certain sections of the population, or how to target education CaIl1­

palgns. 

1.5.1 Modelling the incubation period 

One approach to modelling the incubation period is to divide it up into a 

series of stages. It is then possible to regard these stages as a Nlarkov process 

and to estimate the dwelling times in each stage from elata. The incubation 

period is then the aggregate of all the individual dwelling tinles. An exarnpk 

of this approach is that of Longini et al. [75], who fit a five-stage tiIlle­

homogeneous Markov n10del by numerical maximun1 likelihood techniques 

to right-, left- and interval-censored data frOITI the San Francisco Hepatitis .B 

cohort, haemophiliacs and transfusion-associated AIDS data. An advantage 

of dividing up the incubation period into a series of sub-intervals is that less 

information is lost from heavily censored data like this because of the shorter 

time periods in each stage. The stages they select are the following: 

i) Antigen-positive but antibody-negative. 

ii) Seropositive, asymptomatic. 

iii) Clinical signs and symptoms, pre-AIDS. 
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iv) Clinical AIDS. 

v) Death due to AIDS. 

Based on this model, they estimate the incubation period distribution 

and the survival times from each stage of infection. The estimated mean 

incubation time is 9.8 years. They also discuss some of the problems of 

censored and biased data., 

They use the same technique with a different staging classification, based 

on CD4 lymphocyte counts. Since an individual's CD4 cell count may fluctu­

ate considerably for a number of physiological reasons, a persistence criterion 

was used to ensure that a genuine decline had occurred. This model has 8 

stages, based on CD4 counts: stage 7 is clinical AIDS, stage 8 is Death from 

AIDS, and the other six states are: 

i) > 899 

ii) 700- 899 

iii) 500- 699 

iv) 350- 499 

v) 200- 349 

vi) 0- 199 

This model uses data from the US Army. The Army uses the Walter 

Reed staging system (Redfield, Wright and Tramont, [95]) to categorise the 

progression of disease: this system is partially based on CD4 counts. Age 

is found to be an important cofactor: the overall mean incubation period is 
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found to be 9.6 years, but for the youngest age group (under 25) it is 11.1 

years whereas for the over-30 age group it is 8.9 years. Ale estimated rate of 

CD4-cell decline was higher for people with initially high CD4 counts, but 

once the cell count dropped below 500 the rate of decline remained relatively 

constant. Bongaarts [20] n10dels the incubation period as a Markov chain and 

points out that exponential waiting times for each stage result in a Garnma 

distribution for the incubation period. 

Another approach to modelling the incubation period is to aSSUIne an un­

derlying parametric distribution and to attempt to estimate the parameters 

from data. A strong candidate for this distribution is the Weibull, which 

has frequently been used for survival analysis because of its statistical prop­

erties: for example, its wide variety of functional forms and its increasing 

hazard function. Lui et al. [77] a Weibull distribution to data frOin cases 

of transfusion-associated AIDS and obtain maximum-likelihood estimates of 

its paran1eters. The Weibull distribution is favoured by the Cox Report [36] 

and its successor the Day Report [37]: the mean incubation period is taken 

to be 10 years. 

1.5.2 Detailed progression models 

The number of clinically detailed models is comparatively small.· Some mod­

els have already been mentioned in previous sections. Although these models 

were only developed in order to estimate the incubation period, they can also 

be used to estimate the survival times from each stage of infection. These 

models have the advantage of being able to make efficient use of heavily 

censored data and a variety of sources. 

Another previously-mentioned model is the simulation of Leslie and Brun­
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ham [73], where the disease states are represented by a Markov process with 

dwelling times sampled from Gamma distributions (although for most trans­

itions the shape parameter is set to unity, giving exponential dwelling times). 

A number of possible state descriptions are allowed: the simplest is 

Infected -+ Dead, 

the next is 

A.syrnptornatic -+ ARC -+ AIDS -+ Dead, 

and the third is 

Asym,ptomatic -+ Ci.V S infection -+ ARC -+ AIDB -+ Dead, 

where eNS stands for Central Nervous System and ARC is AIDS Related 

Complex. The main purpose of this model is to study the transmission 

dynamics of HIV, but the model allows the probability of transmission to 

vary according to the state of health of the individual. 

The model of Mode, Fife and Troy [84] is based on Longini's model but 

makes several modifications, in order to incorporate the effects of treatments 

on the dwelling times in each state. Longini's model was time-homogeneous, 

but in order to allow for changes over time in the probabilities that a person 

passes from one state to the next, due to the availability of new treatments, 

Mode, Fife and Troy's model is time-inhomogeneous. Moreover, the prob­

abilities of the various types of primary disease (the disease at diagnosis of 

AIDS, for example Kaposi's sarcoma or pneumocystis carinii pneumonia) 
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may change over time. They also modify Longini's model so that the risk of 

death following a diagnosis of AIDS depends on the type of primary disease. 

Unlike Longini's continuous time model, this one is formulated in discrete 

time units of one month. Instead of looking at the sojourn time distribu­

tions, they consider the risk or hazard functions. 

An advantage of using stochastic methodology is that Monte Carlo siln­

ulation can be used to calculate confidence bounds for the projections. The 

model is tested using data from the City of Philadelphia, for two types of 

data input: time series estimates for the numbers of HIV -infected people, 

and reported time-series of AIDS cases adj usted for reporting delays. 

Another Markov Inodel for the transition dynamics of HlV infection is 

that of Nagelkerke et al. [91]. Their model is similar to that of Longini et 

al., only it allows transitions between stages to be reversible. They use a 

four-stage model: 

i) Asymptomatic Seropositive 

ii) PGL 

iii) AIDS 

iv) Death 

Their data is obtained from a study of Nairobi prostitutes. The natural 

history of HIV infection in Africa differs from that in the West, in that the 

incubation period is generally shorter, and the spectrum of diseases seen is 

different. The women were staged "blindly" at each visit and it was clear 

from the data that reversions to previous stages do occur, with symptoms 

disappearing and reappearing. 
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Brailsford and Shahani [21] use discrete-event simulation to model the 

natural history of HIV infection. They use three different models of increasing 

levels of complexity, starting with a simple three-state model (HIV-positive, 

AIDS and Death). The intermediate model has seven states and is based 

on a classification system proposed by the World Health Organisation. The 

most complex model has 13 states and uses the internationally-accepted CDC 

staging system [48]. 

These models simulate the life-histories of a set of HIV-positive patients. 

As the patients progress through the various stages of disease, data is col­

lected about the resources they use in each state and the costs incurred in 

providing this resource. The models are intended for two user-groups: clinical 

users interested in the numbers of patients in each state and the time people 

remain in each state, and health planners who are interested in resource 

allocation and costs. Their data is at present based on collaboration with 

clinical consultants at the Royal Victoria Hospital, Bournemouth. Work on 

data from other UK centres and from the San Francisco Men's Health Study 

is currently in hand. 

An area where detailed progression models are also useful is in actuarial 

forecasting. Wilkie [114] describes a Markov stochastic process model where 

transition intensities may vary by age, calendar year and duration in the 

previous state. Living individuals are in one of four states: Clear, At Risk, 

HIV-Positive, and Sick with AIDS. From each state, it is possible to move 

to a corresponding Dead state (Dead from Clear, Dead from At Risk, and so 

on): however there are two possible transitions from Sick with AIDS, Dead 

from Sick and Dead from AIDS. The incubation intensity is modelled by 

a Gompertz formula and the model itself is a set of differential equations, 

which Wilkie proposes to solve numerically. 
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Another example of the actuarial approach is that of Panjer [92]. This 

model describes the progression of HIV -positive individuals through the Wal­

ter Reed stages (Redfield, Wright and Tramont, [95]) as a continuous time 

Markov chain. These stages are: 

i) (At-risk) Healthy person at risk for HIV but testing negative. 

ii) (HIV +) Asymptonlatic persons testing positive. 

iii) (LAS) Persons with HIV infection and Lymphadenopathy syndrome 

(LAS), plus Dloderate cellular inlffiune deficiency. 

iv) (ARC) Patients with HIV' infection and LAS, plus severe cellular im­

mune deficiency (AIDS-Related Complex). 

v) (AIDS) Patients with AIDS. 

It ass umes constant hazard functions for passing from one stage to the 

next. The survival analysis produces numerical maximum likelihood estim­

ates for the overall hazard function (for time to death) and expected time 

to the next stage. The rnodel uses German data from a longitudinal study 

(Cowell and Hoskins [35]). 

In a subsequent work [921 Panjer develops a Poisson process model for 

estimating the number of AIDS cases that have not yet emerged as deaths 

or health benefit claims, enabling actuaries to adjust insurance company 

reserves. This model uses an exponential Poisson rate function to model new 

infectives in the population and a Gamma or Erlang model, based on the 

previous [57] one, for the incubation period distribution. The Erlang model 

is the sum of three exponential variables representing the transitions 

• from seropositivity to Lymphadenopathy syndrome (LAS); 
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• from LAS to AIDS-Related Complex (ARC); 

• from ARC to AIDS. 

The concept of modelling has also been applied at a microbiological level, 

to understand cell processes like viral replication and immune response. An 

example of this type of n10del is that of Allen [3], who models the patho­

physiological effects of AIDS in terms of changing T4:T8 ratios. Munoz, 

Carey et af. [90] use an autoregressive model relating CD4 cell counts to 

fixed and time-dependent predictor variables, while adjusting for previous 

CD4 counts, in order to identify predictors of CD4 cell decline. They use 

longitudinal data from a cohort of homosexual seroconverters in the Multi ­

center AIDS Cohort Studies (Chmiel et at. [31J). 

A simulation model to describe the natural history of CD4 cells in HIV­

positive individuals is described by Taylor, Tan, Detels and Giorgi [104]. 

The model uses data from the Multicenter AIDS Cohort Study (Chmiel et 

at., [31]) and incorporates the following features: 

• 	 variability in within-person and between-person CD4 cell counts; 

• variation in the rates of decline of CD4 cell counts; 

• 	 variation in the level of CD4 at which clinical AIDS is diagnosed; 

• 	 greater absolute variation in CD4 values in men with high CD4 levels, 

compared with men with low CD4 levels. 

A pplications of the model to the design and interpretation of clinical trials 

are discussed, as well as other clinical aspects of the CD4 cell count. 

Another aspect of HIV infection which has received attention has been the 

existence of cofactors which facilitate the spread of HIV. There is growing 

51 




p 

medical evidence that the presence of other sexually transmitted diseases 

(STDs) such as genital ulceration and chancroid, which cause skin lesions and 

mcrease the risk of viral transmission (Piot and Laga, [93] Quinn, Glasser, 

Cannon et al. [94]). Anderson [7] formulates a simple deterministic model 

to describe the interaction between an endemic STD and HIV. He argues 

that in practice, such models are of limited use because of the fact that 

people with high rates of partner change are more likely to acquire both 

HlV and the other STD, regardless of the role of the latter in promoting 

transmission of the former. Anderson believes that stochastic models are far 

more appropriate for modelling the relative risks involved. 

1.5.3 Infectivity 

Several of the models previously mentioned have incorporated the concept 

of variable infectivity over the different stages of disease. For the purposes 

of studying the transmission dynamics of HlV infection, and for predicting 

the future numbers of AIDS cases, it is important to understand the nature 

of infecti vi ty. Current medical thinking is that there are two peaks in in­

fectivity, one around the time of seroconversion and the other at the time 

when symptoms begin to emerge. The first peak is obviously very important 

since at this stage an infectious person has no idea that they are carrying 

the virus, and consequently will not modify their behaviour to reduce the 

chance of infecting someone else. For this reason screening high-risk groups 

has been proposed. Before seroconversion levels of virus in the blood may be 

high, but after antibody production has started blood virus levels fall again. 

(Anderson and May, [11]). 

An example of this sort of Inodel is that of Blythe and Anderson (18], 
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which was described in section 2. Byers et al. [27] estimates the HIV in­

fection rate in the San Francisco City Clinic Hepatitis B cohort by fitting 

survival curves to the interval censored serological data by maximum like­

lihood techniques. They find that log-logistic model fits the data better 

than the Gompertz, Weibull or logistic models. For cOluparison they also 

produce a life-table simulated survival curve, inputing the censored sero­

conversion times by first assuming the infection distribution to be unifornl 

interval, choosing the best-fitting survival curve by life-table methods, and 

then imputing the infection time under the best survival distribution. 

DeGruttola, Seage, rvlayer and Horsburgh [38] estimate the risk of HIV 

transmission by receptive anal intercourse from a study of gay and bisexual 

men. They assurne a constant risk for each exposure and fit a binoruial model 

by maximum likelihood estimation. The (unknown) number of contacts since 

the (unknown) time of infection was estimated by performing several analyses 

truncating the total exposures at various levels, but this model tended to 

underestimate the number of men with few contacts and to overestimate 

the number with rnany contacts. This suggests that there is considerable 

individual variation in infectivity. They then fit a model assuming that the 

risk per exposure is constant within each partnership, but that these risks 

are sampled from a beta distribution. Estimation of the parameters of this 

distribution requires longitudinal data. 

Eisenberg [43] proposes a simple model which relates the probability of 

acquiring HIV infection to the number of partners and the type of sexual 

contact. In a later paper [44] he extends this model to incorporate variable 

infectivity, in terms of the number of sexual contacts and the duration of 

infection in an individual. He concludes that the effects of variability lead 

to a greater risk from multiple partners than previously thought. This is 
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similar to the nl0del of Grant, Wiley and Winkelstein [54] which estimates 

the infectivity of HIV resulting from unprotected receptive anal intercourse, 

i.e. the per partner probability that such contacts with an infected partner 

will result in transmission of the virus. Wiley, Herschkom and Padian [113] 

consider heterogeneous infectivity in male-to-female transmission, and con­

clude that the number of different partnerships, rather than the frequency 

of contacts within a partnership, may have the greatest effect on the risk of 

transmission. 

1.6 Glossary 

AIDS: Acquired Immune Deficiency Syndronle. 

Antibody: A defensive chernical produced by the body in response to the 

action of a foreign substance, like a toxin or virus. 

Antibody-positive: In HIV infection, an individual who has been found to 

have antibody to HIV in their blood. 

Antigen: A substance which stimulates the production of an antibody. 

Antigen-positive: In HIV infection, a person who has been found to have 

the virus HIV in their blood. 

ARC: AIDS-Related Complex, a variety of symptoms including sudden un­

intentional weight loss, severe diarrhoea, night sweats, fever, oral thrush. 

Assortative sexual activity group (like with like): individuals from as­

sortative sexual activity choose sexual partners only from their own group. 

Asympton1atic: Having no signs or symptoms of disease: apparently healthy. 

AZT: Aziothiaprine (also known as Retrovir or Zidovudine): a drug used 
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in the treatment of HIV infection, thought to inhibit viral replication, and 


delay the onset of serious symptoms. 


CD4 cells: Cells in the blood which help fight infection, and are particularly 


affected by HIV. 


CDC: Centers for Disease Control: the organisation in the USA responsible 


for collecting epidemiological data. 


eDSe: Communicable D~sease Surveillance Centre: the equivalent body to 


the CDC in the UK. 


Dis-assortative sexual activity group (like with unlike): individuals frOlTI 


the dis-assortative sexual activity group only choose sexual partners froln 


other groups. 


Endemic: Describing a disease which is always present in a cOIl1munity. 


Epidemiology: The study of disease in the community. 


Epideluic: Describing a disease which breaks out at a particular time in a 


community. 


HIV: Human Immunodeficiency Virus, the causative agent of AIDS. 


HIV-negative: Having no detectable antibody to HIV in the blood. 


HIV-positive: Having antibody to HIV in the blood: having a positive 


result to an HIV-test. 


Immune: In epidemiological terms, an individual who is not capable of 


being infected. 


Immune system: A complex system of the body responsible for defence 


against infections, foreign substances and cancers: formed jointly by white 


blood cells, lymph glands and chemicals produced within the body. 
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Incidence: The rate at which new cases of a disease appear. 

Incubation period: The time between an individual acquiring the causative 

agent of a disease, and being clinically diagnosed with that disease. 

Infection: A disease which is passed from one individual to another. 

IV: Intravenous: as in IV drug user, someone who injects drugs. 

Kaposils sarcoma: A form of skin cancer commonly associated with AIDS: 


formerly rare. 


LAS: Lymphadenopathy Syndrome (the same as PGL). 


Latent period: The time between an individual acquiring the causative 


agent of a disease, and developing signs of illness. 


Lymph glands: Glands in the body which help fight infection by producing 


white blood cells. 


Lymphadenopathy: Abnormally swollen lymph glands: a sign that the 


body is responding to an infection. 


Lymphoeytes: White blood cells: part of the body's defence system. 


Lymphoma: Cancer of the lymph glands: associated with AIDS. 


Pathogenic: Causing disease. 


Partially assortative sexual activity group (random mixing): individu­


als from a randomly mixed sexual activity group choose sexual partners from 


other sexual activity groups. 


PCP: Pneumoeystic Carinii Pneumonia, a formerly rare type of pneumonia 


now characteristic of AIDS. 


PGL: Persistent Generalised Lymphadenopathy: swollen lymph glands through­

out the body which persist more than 4 weeks. 
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Prevalence: The number of cases of a disease at anyone time in a com­


munity. 


Seroprevalence: The number of HIV -positive individuals in a community. 


Sensitivity: The true positive rate of a screening test. 


Speciricity: The true negative rate of a screening test. 


Seroconversion: The initial production of detectable antibody to HIV: the 


time at which antibody becomes detectable in the blood. 


Seronegative: The same as HIV-llegative. 


Seropositive: The same as HIV-positive. 


STD: Sexually transmitted disease. 


Susceptible: In epidemiological tern1S, an individual who is capable of being 


infected. 


Syndrome: A collection of symptoms or illnesses. 


T-helper cells: vVhite blood cells which help fight infection. 


T-4 cells: The same as CD4 cells: a subclass of T-helper cells. 


Viraemia: The presence of detectable virus in the blood. 


Virus: An organism capable of replication, which cannot multiply outside a 


living host: 

WHO: World Health Organisation. 
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Chapter 2 

The mathematics of the 

transmission dynamics of 

HIVjAIDS 

This chapter discusses a mathematical approach to the modelling of the 

transmission dynamics of HIV / AIDS epidemic. 

Section 2.2 is concerned with the mathematical modelling structure of 

the transmission dynamics of HIV / AIDS. This includes a deterministic ap­

proximation in the form of ordinary differential equations (ODEs) used to 

approximate the transmission dynamics of HIV / AIDS. Section 2.2.1 discusses 

the stability analysis of the system of ordinary differential equations. 

Section 2.3 introduces some novel algorithms used in the analysis of the 

transmission dynamic models. These include the computational methods 

and algorithms to reduce the size of the problem and bypass some standard 

algorithms involved in model analysis. Finally Section 2.4 concludes this 

chapter. 
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2.1 Introduction 

Mathematical modelling of the epidemics dates back to 1920 (Kermack and 

McKendrick [71]). Most of the studies in this field are concerned with in­

fectious diseases. Infectious diseases pass from one person to another by 

physical contact or even through the air. 

Since 1980, special atte,ntion has been paid to the mathematical modelling 

and statistical analysis of the AIDS epidemic. Some of the reasons are; 

1. 	 AIDS is as yet a fatal disease endangering the future of the human race. 

2. 	 Existence of AIDS effects all the sociological, political and economical 

profiles of the populations. 

3. 	 Government money has been made available for research. 

4. 	 The complicated nature of the spread of the disease has created a chal­

lenge for mathematical modellers and statistical analysts. These have 

stimulated the development of new techniques to deal with and over­

come the complexity of the problem. 

However, it can be argued that the main justification for this significant 

world-wide modelling effort is the outcome of the epidemic in terms of human 

lives and suffering. 

Developing countries are currently seeing an explosion in the numbers of 

cases among young heterosexuals. World Health Organisation (WHO) es­

timates that currently 50 million people world-wide are carrying the virus. 

Despite the efforts in the fields of medical, microbiological and pharmacolo­

gical research, there is still no cure for AIDS or even an effective treatment. 
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In the terminology of disease modelling, a susceptible (healthy) person 

acquires HIV (Human Immunodeficiency Virus), the causative agent of AIDS 

from an infected individual through the transfer of body fluids. This is mainly 

via sexual intercourse, sharing drug- injecting equip.ment, blood or blood 

product transfusion, consuming infected flesh from some kind of monkey or 

from mother to child. 

In general, mathematical models of biomedical systems are described in 

terms of stochastic behaviour. Therefore, equations considered would usu­

ally be those of a deterministic approximation using systems of ordinary and 

partial differential equations. This is the standard approach to the mathem­

atical modelling of the transmission dynamics of HIV IAIDS (see Anderson 

et at. [5] and [8]). 

Some advantages of using deterministic approximation instead of stochastic 

model include, 

1. 	 whenever a specified stochastic model is approximated by a determin­

istic process then the interpretation of the latter is fairly clear, 

2. 	 a particular deterministic process may reasonably approximate a vari­

ety of stochastic models, 

3. 	 a unique set of stochastic assumptions cannot be deduced fronl a set 

of deterministic equations. 

It is known that the growth of HlVIAIDS in homosexual populations 

is higher than heterosexual populations. Therefore, most of the models de­

scribing the transmission dynamics of AIDS have tended to concentrate on 

the epidemic in male homosexual communities. However, recent data show 

a bigger rise in heterosexual population. 
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An excellent review of the history of AIDS modelling is to be found in 

the paper by Isham [63]. She argues that although deterministic models 

only give an approximate solution, and that problems are likely to arise at 

the early stages of the epidemic when numbers are small, stochastic models 

are so difficult to solve that the current emphasis on deterministic models 

is justified. However, she does draw attention to areas where the use of 

detern1inistic models could give rise to misleading answers. One way in which 

many deterministic models incorporate variability is by grouping individuals 

into sub-populations according to their HIV status or sexual behaviour. 

Deterministic approxin1ations are usually presented by system of ordinary 

differential equations (ODEs). 

2.2 	 Using system of ODEs to model the trans­

mission dynamics 

Suppose a population of size N is stratified into m groups of individuals 

according to their sex, age and HIV status and modelled by a non-linear 

system of ordinary differential equations of the form of 

dXJP) _ h(t;Xl,X2,"',Xm), 

dXJJt)=f2(t;Xl,X2,""Xm), 

Xl(tO) == x~, 

X2(tO) xg, 
(2.2.1) 

dx;/t) fm(t; X!, X2,' .. xm), 

t>O 

xm(tO) 

in which 

Xj == Xj(t) : represents the number of individuals in group j 

j == {1,2,.·· ,m}. 

at time t, for 

61 



dXJ (t) 
dt fj(t; Xl, X2," . Xm) : is the rate of change of the number of individuals 

in group j at time t, for j = {1,2,· .. ,m}. 

Xj( to) = x~ : is the number of the individual in group J at time to, for 

j={1,2,···,rn}. 

A system is autonomous, whenever fl' f2,'" ,fm depend explicitly on 

the independent variable t, otherwise the system is non-autonomous. There­

fore, the system of ordinary differential equations presented by (2.2.1), non-

autonomous. 

The system (2.2.1) reaches to a steady state whenever all the derivatives 

vanish, that is whenever, 

_dl_~2(_t) _ ... _ dxm(t) _ 0 
dt - - dt ­

Suppose the steady state happens at time t* and let, X j(t*) = xj for 

j = {1,2,'" ,m}. The steady state X* = [xi, x~, "', x~]T is obtained by 

solving the non-linear algebraic system, using Newton-Raphson method (see 

[112]) 

F(X) = 0, (2.2.2) 

where, F = [f1, f2' ... , fm]T and 0 = [0, 0, ... , O]T is the zero vector of 

order m. X* = [xi, X21 ... , x~]T is called equilibrium point of the system of 

ordinary differential equations (2.2.1). It is important to note that the equi­

librium point X*, which is sometimes called critical point, is not necessarily 

unIque. 

Generally, in an infected population the epidemic is either developing or 

disappearing. Of course, the epidemic may happen to be in static state, 

which is the border between disappearing and developing states. Therefore, 

there are always two critical points (Xi, X2') representing the epidemic in 
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the disappearing and developing states respectively. 

Condition 


x~ > 0 VJ' E {I 2 ... m}

J - , '" 

is imposed on the elements of the critical points. This follows the nature of 

the problem. In other words, xj's representing the number of individuals in 

group j at steady state may not take any negative value. 

The critical point representing the epidemic in disappearing stage is called 

trivial critical point denoted by X;. At the trivial critical point there are 

no sign of infected individuals. At the developing stage the critical point is 

called non-tr'ivial cri tical point denoted by X;. 

2.2.1 Stability analysis of the critical points 

Stability analysis plays an important role in understanding and solving the 

system of ordinary differential equations. The mathematical model (2.2.1), 

describing the transmission dynamics of HIV IAIDS in a population, will be 

analysed. This is to ensure that it does not predict chaos or divergence in 

the biomedical system under investigation, when chaos and divergence are 

not features of such system. This eliminates the observance of the diverted 

or chaotic behaviour in the solution. 

To examine the stability of such a system at a particular critical point, 

the Jacobian is generated 

§h.. §h.. 
8X1 OX2 

of §h ll:L 
8Xl 8X2 (2.2.3)

J = ax == 

aim aim 81m 
OXt aX2 8Xm 
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followed by an evaluation of the Jacobian at that particular critical point 

X*, therefore 

J* = ;~Ix=x. (2.2.4) 

The stability of the system (2.2.1) at a critical point depends on the 

eigenvalues of the Jacobian of the form (2.2.4) represented by 

(2.2.5) 

These are the roots of the equation 

Det(J>< 	 AI) = 0 (2.2.6) 

where I is the m x m identity matrix. 

The system of ordinary differential equations is stable if all the eigenvalues 

are real and negative or complex \vith a negative real part. It is neutrally 

stable if at least one of the eigenvalues is equal to zero, otherwise the system 

is unstable. 

2.3 	 Novel computational algorithms for ana­

lysing large-scale transmission dynamics 

models 

When dealing with large-scale problems, simplifications and reducing the 

size of the problem are significant. In this section, I have presented some 

novel computational techniques which play important rules in handling large­

scale mathematical models of transmission dynamics of HIV / AIDS. These 

methods bypass some extra calculations involved in model analysis and speed 

up the algorithms, hence it is more economicaL 
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2.3.1 Computing critical points 

To proceed with the analysis of the transmission dynamic models, only the 

trivial critical point (X~) is required. The logical justification for this is 

that the system of ODEs representing the transmission dynamic models only 

have up to 2 valid critical points (see section 2.2). Therefore, when the trivial 

critical point is stable the non- trivial critical point is unstable and vice versa. 

Therefore, there is no need to examine the non-trivial critical point. 

The definition of the trivial critical point (X;), follows the fact that the 

elements representing the number of infectives at steady state are equal to 

zero, therefore 

(2.3.7) 


S represents the number of sexual activity groups. Therefore, the size 

of the non-linear algebraic system (2.2.2) is reduced from m to S. This is 

done by inserting zero instead of xi's to represent infective groups, (j E 

{S+l, .. ·,m}). 

2.3.2 Conlputing reproductive rate 

In the concept of the HIV / AIDS modelling, reproductive rate (R) is the 

number of secondary cases acquiring the virus from one primary infective 

case per unit of time. In general, properties of the reproductive rate include: 

R < 1 : the epidemic is disappearing, 

R == 1 : the epidemic ren1ains static, 

R > 1 : the epidemic is developing. 

To compute the reproductive rate (R), only the trivial critical point (Xi) 
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is required. 

In the modelling of the transmission dynamics of HIV IAIDS, studying 

the effect of sexual behaviour changes in transmission success of the disease 

is of importance. Therefore, the parameter k representing the rate of the 

number of new sexual partners per unit of time is under investigation. 

The determinant of the Jacobian (2.2.3) at the trivial critical point (X;) 

denoted by (IJi I), vanishes for k ~ k*. This unique, real value of k is re­

garded as bifurcation parameter. The properties of the bifurcation parameter 

include, 

k < k* : the trivial critical point is stable, which means that the epidemic is 

disappearing. 

k == k* : the trivial critical point coincides with non-trivial critical point 

which means that, the size of the epidemic is not changing. 

k > k* : the trivial critical point is unstable. In other words, the epidemic is 

developing state. 

Therefore, the algebraic relation between the reproductive rate (R), and 

the bifurcation parameter (k*) is given by 

k 
R (2.3.8) 

k* 

This algorithm bypasses some of the complicated algebraic calculations 

in standard stability analysis and produces some easy to understand results. 

2.4 Conclusion 

This chapter has provided an outline of the methods and novel techniques 

used in the analysis of the system of ordinary differential equations devised 
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to model transmission dynamics of HIV / AIDS throughout this thesis. 

These methods reduce the size of the problem when obtaining the critical 

points, hence it is more economical. In addition, they bypass son1e of the 

complicated algebraic calculations in standard stability analysis and produce 

some easy to understand results. 
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Chapter 3 

Solution techniques of tl'1e 

transmission dynamic models 

This chapter provides the algorithms and techniques used to solve the system 

of ordinary differential equations (2.2.1). Section 3.2 focuses on the principles 

of the numerical analysis, whilst section 3.2.3 presents a novel analytical 

algorithm to find optirnum time step for convergence. 

Section 3.3 discusses two numerical methods employed as the solver en­

gines in the implementations. In Section 3.3.2, I have tried to generalise 

the alternative method (see E. H. Twizell et at. [107]) for the purpose of 

modelling the transmission dynamics of HIV IAIDS. 

3.1 Introduction 

The numerical methods used to solve a mathematical model should not pre­

dict chaos or divergence when chaos and divergence are not features of the 

system. 
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The efficiency of the numerical integration of the systems of non-linear 

differential equations over the largest possible time step, bearing in ITlind 

accuracy and stability, is of importance. The stability properties, which 

restrict the use of a large time step, are also investigated. This is to avoid 

the presence of chaos or divergence in the solution of the model equations. 

3.2 Numerical analysis 

In general, the time variable t 2.:: 0 will be discretized at the point tn nh, 

for (n == 0,1,2, ... ) where h > 0 is regarded as time step. 

Suppose solution of the system of non-linear equations (2.2.1) at time 

tn is X( in) [X1(tn), X2(tn), "', xm(tn)]T, and this is denoted by xn == 

[X~, X~, ''', x~]T. The development of the numerical methods will be based 

on the first-order approximations 

dx~?) == x1(t+hl-xdt) +O(h) as h --t 0, 

dX~t(t) x2(t+hl-x2(t) + O(h) as h --t 0, 
(3.2.1) 

in which t == tn == nh, n 1,2, .. " 

Approximating the derivatives in the system (2.2.1) by (3.2.1), and eval­

uating the variables on the right-hand side, after re-arranging gives 

n == 0,1,2,,'" 

n == 0,1,2" .. , 
(3.2.2) 

X
n+1 - 9 (xn xn ... xn) n == 0,1,2, ... 
m - m l' 2' 'm' 
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The numerical solution is convergent after a certain number of iterations 

converge to one of its fixed points from any initial value, XO = [x~, x~, ... , x~V· 
n +lIn other words, at steady state xn = x = x. Therefore, substituting xn 

and x n +1 with x in (3.2.2) gives 

Xl - gl(XI, X2,"', x m ) = 0 


X2 - g2 ( XI, X 2, ~ .. , X m) = 0 

(3.2.3) 

Solving the above system associated with (3.2.2) produces the nunlerical 

metho'd's fixed point(s) denoted by X* = [xi, x2,' .. ,x:n]T. The fixed point(s) 

of the numerical method should be the same as the critical point(s) of the 

system (2.2.1). 

It renlains to establish the condition( s) under which the numerical solu­

tion will converge to one of the fixed/critical points from any initial values, 

X O = [x~, x~, ... ,x~]. 

3.2.1 Theory of convergence of the numerical methods 

Numerical method of the form (3.2.2) converges to a fixed point if, and only 

if, the spectral radius (p), of the Jacobian 

£9l £ri.L 
OXI EJX2 

~ m8G EJXl 8X2 (3.2.4)
J= ax = 

8g m O9m 

OXl OX2 
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evaluated at the fixed point X*, where p represents the multiplication of the 

eigenvalues (Aj) and hence, 

J * aG,
== ax X=X", (3.2.5) 

do not exceed unity. Which Ineans 

p(J*) < 1. (3.2.6) 

It then follows that; the nurnerical method is convergent if, and only if 

the condition 

IAj[<l, VjE{1,2, .. ·,m} (3.2.7) 

is satisfied. Where A [AI, A2 , ... ,Am]T are the eigenvalues of the Jacobian 

at the critical point given by (3.2.5). 

It can be concluded that, a fixed point is stable or attracting if, and only 

if, equation (3.2.6) is satisfied. In addition, it is unstable or repelling if, 

p(J*) > 1 and is neutrally stable if, p(J"') == 1. 

3.2.2 An extension to the theory of convergence 

In this part, I present a novel theory as an extension to the theory of conver­

gence. The aim is to ensure that in the transient state the numerical solution 

will follow the stochastic nature of the problem and finally reach to a critical 

point at the steady state. 

A numerical method is monotonically convergent whenever neither oscil­

lation nor divergence exists in the transient part of the solution. A numerical 

method is oscillatory convergent whenever the transient part of the solution 

contain oscillations and, at a steady state, converges to a fixed point. 
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The conditions applied on the eigenvalues of the Jacobian at the trivial 

critical point include 

Aj E ~ and 0 < Aj < 1, Vj E {1,2,···,m} (3.2.8) 

whenever the numerical method is monotonically convergent and 

Aj E ~ and -1 < Aj < 0 Vj E {I, 2, ... , rn} (3.2.9) 

whenever the numerical rp.ethod is oscillatory convergent, otherwise diver­

gent. 

3.2.3 Time step estilnations -a new techniqlle 

The aim is to estimate time step boundaries regarded as h-boundaries, with 

which the numerical solution converges monotonically, oscillatory or even 

diverges. This section introduces a novel approach to finding time step 

boundaries. This is to choose the largest possible time step in computa­

tional process. 

So far, no attention has been paid to the estimation of time step (h). 

By default, it is usually taken as a small constant figure at around 0.01-0.2. 

Choosing small time steps will increase the number of iterations require to 

converge to the steady state. However, in some circumstances even 0.01 is 

not small enough and will cause chaos or divergence, which are not features 

of the system. 

Eigenvalue (Aj) is a function of time step (h) for j = {I, 2,' .. ,m}, there­

fore 

gIves 

(3.2.10) 


(3.2.11) 




where 'tV;1 is a reverse function of VI, 


In the equation (3.2.8) substituting Aj by its equivalent 1/;j (h) gives 


o < ~j(h) < l~ Vj E {1~ 2"" ,m}~ (3.2.12) 

therefore 

o< h < rnin{~j1(1)}, j:::: {1,2,··· ,m} (3.2.13) 

represents the h-boundary for monotonic convergence. 

The same principle applies in computing h-boundary for oscillatory con­

vergence. Therefore, in equation (3.2.9) substituting Aj by its equivalent 

1/;j( h) gives 

(3.2.14)< 1/;j(h) < 0, Vj E {I, 2"", m} 

adding (-1) to the above equation gives 

(3.2.15)1/;j(h) E ~ and 0 < VJj(h) + 1 < 1, Vj E {I, 2"," m} 

Let 

therefore 

o<nj(h)<l, VjE{1,2, .. ·,m}, 

therefore 

(3.2.16)o< h < min{nj1(1)}, j:::: {l, 2"", m} 

represents h-boundaries for oscillatory convergent. 

3.3 Numerical methods 

In order to investigate the performance and accuracy of alternative method 

(see E. H. Twizell et at. [107] and F. Fakhr [46]) in solving system of first­
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order non-linear ordinary differential equations (2.2.1), Euler '8 method is 

used as a base line. 

3.3.1 Euler's method 

The well known Euler's method for approximation of first-order ordinary 

differential equations Iuay be extended to include system of first-order differ­

ential equations. Therefore, the initial-value problem 

~ - f (to x x) XI(tO) == X~,dt == 1 , Xl, 2,'" m , 

dX2(t) - f (to )dt == 2 ,x11 X 2, .•. X m , X2( to) == xg, 

aXm(t) - f (t )-d-t- == m ; XI, X2, ... Xm , 

t > to 

is approximated at each step by recursive relationship based on Taylor's 

expansion of X == [Xl, X2, "', Xm]T: 

n == 0,1,2" . 0 

where xn == x(tn ) and tn == to +nh. 

The numerical solution goes from a transient to steady state whenever 

xj == xj+l == Xj for all j E {1,2,··· ,m}. 
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Therefore, at the steady state, 

Xl = Xl +hfl(XI, X2,"', Xm) 


X2 = X2 +hf2(XI, :r2," . ,Xm) 


after sirnplifications 

fl(Xl~ X2,'" ,Xm ) = 0 

f2(Xt, X2,' •• ,Xm ) = 0 

fm(Xll X2,' . " ~~m) = 0 

proves that the fixed points of Euler's method are the same as the critical 

points of the systerTI of ODE's (2.2.1) given by (2.2.2). 

3.3.2 Alternative method 

This section introduces a general fonn of the alternative numerical method 

(see E. H. Twizell et at. [107]), used by F. Fakhr [46] to solve systelns of or­

dinary non-linear differential equations devised for the purpose of population 

modelling of the transmission dynamics of HIV / AIDS. 

The derivatives at the left-hand side of the system (2.2.1) are approxin1­

ated by equation (3.2.1). 

Whenever fj, j E {1, 2, ... ,m} is a first order polynomial function of 

Xl, X2, .•• ,Xm the right-hand side of fj is evaluated as follow 

X~+l - X": 
xn+1J J - f.(x n+1 .•. xn . .. xn) n - 0 1 2 ... (3.3.17)h - J 1 , 'j , i+l' 'm' -", , 

Whenever fj, j E {I, 2, ... ,m} is a quotient of first order polynomials of 
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the form 
(j(Xl,X2"",Xm)

f(j Xt, X2,···,Xm ) = (3.3.18) 
f/j(XI,X2,'" ,xm ) 

the right-hand side of Ii is evaluated as follow 

0,1,2"" . (3.3.19) 

Using equations (3.3.17) and (3.3.19) in setting up the numerical method 

to solve the system of non-linear brdinary differential equations (2.2.1) gives 

X~+l ­ X'?­
J J 

h 

X"l+1_ X "1 f ( n+l ) n=0,1,2,···,-L-__--"'-_ - X I,n ""n xn
h - 1 1 " 2' <(.'3' .•• ~ m' 

n 0,1,2" .. , 

n = 0,1,2,,'" (3.3.20) 

X~+l_X~ = f (x,n+l xn+1 1,n+l .,. xn+l) 0 1 ')h m '1 , 2 , '3 , , m , n = , , --, ... 

vVhich, after re-arranging gives 

n+l _ (.n n n n ) n=O,l,2,···,Xl - 91 1'1' X 2' X3' ... ,Xm ' 

n+l n n .n ) n 0,1,2,,'"92 (Xl' X2 , X3' ... , l m , 

n+l (n+l n+l.n n ) n 0,1,2"", (3.3.21 ) 
X 3 = 93 Xl' X 2 , 1, 3 , .•. , X m , 

n = 0,1,2",' , 

Substituting for x7+1, X~+l, ... ,x~+l from (3.3.21) into the right-hand 

side of 92,93,' .. ,9m gives 

0,1,2"" , 

n+l ( n n n n) n 0,1,2"" ,= 92 91, X2' x 3 ,"', Xm-l' xm ,X 2 

(3.3.22)n = 0,1,2,'" , 
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giving 

n == 0, 1,2, ... , 

n == 0,1,2" .. , 

n==O,1,2,···, (3.3.23) 

n == 0,1,2" ... 

Equations (3.3.21) are used fdr the implementation of the method while 

(3.3.23) 	are used for the analysis. 

Therefore, the system of equations 

Xl == g' 1 ( Xl, X 2, X 3, ... , :C m ) , 

X 2 == g'2 ( Xl, X 2, X 3, •.. , X m ) , 

(3.3.24 ) 

associated with (3.3.23) give the numerical method's fixed points. It is neces­

sary to show that the numerical n1ethod fixed points are the same as critical 

point of the system of ODE's (2.2.1). 

3.4 Conclusion 

In this chapter an attempt has been made to provide an outline of the meth­

ods and computational techniques used for the solution of the system of first 

order non-linear ordinary differential equations devised to model transmis­

sion dynamics of HIV / AIDS throughout this thesis. 

The speed and performance of the computational tools were significantly 

increased by choosing the suitable numerical method using the maximum 
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possible time step (h), bearing in mind the accuracy and stability. In addi­

tion, it eliminates the occurrence of the solution~ which does not match the 

stochastic nature of the problem. This occurs whenever a large-scale model 

is to be analysed and solved. 

Computational experience shows that solving large-scale problems is time 

consuming and expensive. Therefore, a maximum possible time step h is 

desired. Because as h in~rease, the number of iterations to converge to the 

steady state decreases. The theory of convergence and its novel extension 

are the keys to calculate the maximun1 time step h. 

78 




Chapter 4 

Detailed analysis of some 

mathematical models of the 

transmission dynamics of 

HIVjAIDS 

This chapter applies the algorithms and techniques described in Chapters 

2 and 3 upon three existing models. In addition, both Euler's method and 

alternative method are used as solver engines in implementations. The ac­

curacy and performance of the two numerical methods, over large time steps, 

are compared. 

Section 4.2 describes a basic model stratifying the population into two 

groups of susceptibles and infectives. Section 4.3 describes the mathemat­

ical models predicting the transmission dynamics for longer periods of time. 

This model stratifies the population into three groups of susceptible, infect­

ive and full-blown AIDS patients. Section 4.4 stratifies the population into 
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five groups of susceptible, infectives who ultimately develop AIDS, infect­

ives who do not develop AIDS, full-blown AIDS patients and non-infectious 

seropositives. 

4.1 Introduction 

Understanding the concept of the Inathematical models used to estimate the 

transmission dynanlics of HIV / AIDS is of great importance as they help to 

investigate the effect of the paranleters influencing the spread of the disease. 

Changes in the population '8 sexual behaviour influences the spread of the 

disease. lVlathematical models are used to estimate the effect of such changes 

on the transmission dynamics of HIV / AIDS. The transmission dynamics of 

HIV / AIDS is a stochastic problem, usually approximated deterrninistically 

(l\1ay and Anderson (79], Anderson et at. (5] and (8]). 

The numerical methods proposed in this thesis will be solved using the 

Fourth Generation Programming Language (Mathematica Version 3.0). 

4.2 A basic mathematical model 

To avoid algebraic complications, a simple mathematical model is considered, 

which pay attention to the detailed analysis of the mathematical models and 

numerical methods (see Anderson et al. [51). 

Figure 4.2.1 is a flow diagram illustrating the flow of individuals entering 

and leaving different groups. 
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Figure 4.2.1: A flow diagra'm illustrating the basic model. 

This model divides the total population N(t), into two groups of susceptible 


and infected where, 


x(t): represents the number of susceptibles at tin1e t, 


y( t): denotes the number of infected individuals at tinle t, 


N(t): represents the total population at time t, 


;}(l): is the probability of a randomly chosen sexual partner to be infected 


at time t, 


;.: denotes the mean incubation period, therefore 


v : indicates the mean rate of withdrawal froIll the infected group per unit 

of time, 

13 : is the probability that a susceptible acquires the infection froln a partic­

ular infected partner, 

k : represents the average rate of new sexual partners acquired by an indi­

vidual per unit of time. 

Construction of the deterministic model is based on the system of ordinary 

differential equations 

dx(t) - 13k (t)J&l
dt - - x N(t)' 

d~tt) == j3kx(t)iJtt) - vy(t), y(O) == yO, (4.2.1) 

t > 0 
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It is assumed that the incubation period of AIDS is the same as the HIV 

infectious period, and has the expectation of ~. The appropriate form of N( t) 

depends on the assumptions made about the pool of possible sexual partners. 

At one extreme this could be the whole population, so that N(t) N, while 

if withdrawn individual cases play no further part in the spread of infection 

then N(t) ::::: x(t) + y(t). 

4.2.1 Model analysis 

The system of ordinary differential equations (4.2.1), will be analysed to 

ensure that it does not predict chaos or divergence 'when chaos or divergence 

are not features of the system. It has been assumed that N (t) ::::: :1:( t) +y( t), 

represents the total population as a dynamic variable. Substituting N(t) by 

x(t) +y(t) in equations (4.2.1) gives 

d:(t
i 
) !l(X,y)::::: -j3kx(t)x(t)~~(t)' ~r(O) ::::: ~rO 

~ - f ( ) - (.{k· (t) y(t)dt ::::: 2 X, Y - f-' X x(t)+y(t) (t)- vy , y(O) ::::: yO ( 4.2.2) 

t > 0 

The steady state of (4.2.2) occurs whenever the time derivatives vanish 

as follows: 
~~ ::::: 0 

{ dy 0 
dt 

The solution of the above non-linear algebraic equations gives the critical 

points 
(4.2.3)x* E [R - {O}, y*::::: 0 

The number of susceptibles (x*), is not fixed at any value, which means 

there are an infinite number of possible critical points. All the critical points 
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are trivial because at steady state (t --t 00) there are no infected individual 

left in the population. 

A critical point is stable if eigenvalues of the Jacobian (2.2.3), of the forms 

all ah]J :::: ax oy (4.2.4)[ a12 012 
8x8y 

evaluated at the critical point (4,,2.3) and are real and negative or complex 

with negative real part. The Jacobian associated with 11, 12 is the fonn of 

The associated Jacobian at the trivial critical point, x* =I- 0, y* == °gives 

0 -13k J 
J* = [ 0 13k - v ' 

the eigenvalues of which are the roots of the equation 

Det(J* - >.1) = A[A - (f3k - v)] == 0, 

where 1 is the 2 x 2 identity matrix. Therefore, 

Al is fixed at zero. Therefore, the trivial critical point is neutrally stable 

whenever A2 ~ O. Otherwise, the system is unstable. In other words the 

system is neutrally stable whenever k S; ~ and unstable for k > ~. The 

unique value of 

k* == 3:!.. 
f3 

( 4.2.5) 

is regarded as the bifurcation parameter. 
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The bifurcation parameter IS used to calculate the reproductive rate 

(2.3.8), of the form of 

R 
k k{3 

k* v 

The reproductive rate (R) is the average number of secondary HIV cases 

made by one primary infected individual per unit of time. 

Investigations show that whenever R = 1 the epidemic is in steady state 

and whenever R < 1 the epidemic is disappearing. The system above does 

not represent the population for R > 1 as there is no critical point present. 

This comes with the nature of the problem which does not allow imlnigration 

to the susceptible group. This causes susceptible population to shrink to zero 

as all individuals eventually acquire the virus and leave the susceptible group. 

Stability properties of the model (4.2.1) is sUlnmarised in Table 4.1. 

Table 4.1: Stability properties of the trivial critical point 

Reproductive rate Sexual partners Trivial critical point 

R < 1 k < k* stable 

R = 1 k = k* neutrally stable 

R > 1 k > k* non-existence 

4.2.2 Numerical method I 

Replacing the derivatives in (4.2.2) by their first-order, forward-difference 

approximations given by (3.2.1) and considering the right-hand side at the 
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base time level t == tn (Euler's method, see F. Fakhr [46]) gives 

{ (4.2.6) 


with n == 0,1,2,3,' . " 

Rearranging the above equations to explicitly gives 

xn+l == 91(Xn,yn).== xn h[-{:Jkxn xnY;yn], 
(4.2.7) 

{ yn+l == 92(Xn,yn) == yn + h[/3kynXnX;yn - vyn], 

for n == 0,1,2, .. '. 

The numerical lnethod is convergent if the solution finally] converges to 

a fixed point, which means at the steady state stage xn == xn+l == ;r and 

yn == yn+l == y. Considering the associated equations 

~r == 91(X, y) x + h(-{:Jkx*ul (4.2.8) 
{ y == g2(X, y) y + h[{:Jky J..~y - vy], 

gives fixed points 

(4.2.9)x* E ~ - {OJ, y* == O. 

This shows that the fixed points are the same as the critical points (4.2.3). 

Therefore, the Jacobian of the form (3.2.4) evaluated at the trivial fixed point 

1 -hv{3 ] (4.2.10)J* == J\[x*=r=o, y*=o] = ( o 1 - h(v - kf3) 

gives the eigenvalues 

(4.2.11) 

The first eigenvalue is equal to unity. Therefore, A2 is the only eigenvalue 

which rules the stability of the numerical method. 
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The numerical method will converge nlonotonically to the trivial fixed 

point if, and only if, equation (3.2.8) is satisfied, therefore 

gIves 

o< 1 - h(v - k(3) < 1. 

Therefore 
1 

o< h < v _ kf3 

is interpreted as the expected h-boundary for rnonotonic convergence. 

The nUITlerical method will oscillatory converge only if the equation (3.2.9) 

is satisfied. Therefore, 

-1 < A2 < 0 

gIves 
1 2

---<h<--­
v - kf3 v - kj3 

which is regarded as the h-boundary for oscillatory convergence. 

For parameter values (3 == 0.23 and v == 4.~5 and various reproductive rates 

o < R ~ 1, expected h-boundaries for monotonic convergence, oscillatory 

convergence and chaos or divergence are tabulated in Table 4.2. 

For the initial values x(O) =: XO =: 19900 and y(O) ==yO =: 100 the steady 

state values of the numerical solution and real (observed) h-boundaries for 

monotonic convergence, oscillatory convergence and divergence are presented 

in Table 4.3. 

For R == 1, after the time step of length h =: 0.2 in the computation, the 

number of infected has shrunk to zero (to the nearest integer). The number 

of susceptibles (to the nearest integer 101), though further iterations show 
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Table 4.2: Expected h-boundaries for numerical method I 

R 

Monotonic 

convergence 

Oscillatory 

convergence 

chaos or 

Divergence 

0.01 

0.10 

0.30 

0.50 

0.70 

0.90 

o< h ~ 4.8 

o< h ~ 5.2 

o< h ~ 6.7 

o< h :::; 9.5 

o< h :::; 15.8 

o < h :::; 47.5 

4.8 < h :::; 9.6 

5.2 < h :::; 10.4 

6.7 < h :::; 13.5 

9.5 < h ~ 19.0 

15.8 < h :::; 31.6 

47.5 < h :::; 95.0 

I 

h > 9.6 

h > lOA 

h > 13.5 

h > 19.0 

h > 31.6 

h > 9,5.0 

I 

l.00 O<h<oo - ­

that both infected y and susceptibles x continue to approach zero to the 

accuracy of the computer, with y approaching zero faster than x. 

Statistical hypotheses show that there is no significant difference between 

columns of Table 4.2 and Table 4.3. In theory, when R = 1 the numerical 

method should converge to the fixed point regardless of the h value. However, 

in practice, the upper boundary for monotonic convergence is 950 years. 

However it may be considered as an infinity value for time step h because 

using very large time steps may not be required. 

4.2.3 Numerical method II 

The development of the numerical method II will be based on the alternative 

method, (see Section 3.3.2). Approximating the derivatives in (4.2.2) by 
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Table 4.3: Fixed points and observed h-boundaries for numerical rnethod I 

I 

x y MonotonicR Oscillatory chaos or 

convergence convergence Divergence 

0.01 19899 0 o< h ::; 4.80 4.80 < h ::; 9.60 h > 9.60 

0.10 19889 o< h ::; 5.20 5.20 < h :::; 10.400 h > 10.40 

0.30 19857 0 6.75 < h :::; 13.50o< h ::; 6.75 h > 13.50 

19801 00.50 o <' h ::; 9.50 9.50 < h ::; 19.00 h > 19.00 

19670 15.80 < h :::; 31.60 h > 31.600.70 0 o< h ::; 15.80 

47.50 < h ::; 95.00 h > 95.000.90 19027 0 o< h ::; 45.20 

950.00 < h ::; 1900.001.00 101 h > 1900.00 Io I 0 < h :::; 950.00 

(3.2.1) and evaluating the variables on the right hand side as follows 

n == 0, 1,2, ... , 
(4.2.12) 

gives, after re-arranging, 

xn+1 =gl (xn, yn) == xnX;/f~~f;;yn j n == 0,1,2, ... , 

1 (4.2.13) 
yn+1 = g2 (Xn+ \ yn) == _----'i!..------,--;­ n == 0,1,2, .... 

l+hv-~~ 

After substituting xn+1 , for g2 it gives the set of equations used in the 

analysis detailed below. 

It is not difficult to show that the fixed point of the numerical method II 

is the same as the critical point (4.2.3) of the system of ODE's (4.2.12). 

It is shown before that the trivial critical point is stable if, and only if, 

k < k*. The eigenvalues of the Jacobian associated with the method at the 
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Table 4.4: Fixed points and observed h-boundaries for nu'merical method II 
, 

R 

0.01 

x:nax 

19899 

x:nin 

187 

y* 

0 

Monotonic convergence 

O<h<oo 

0.1 19889 19 0 O<h<oo 

0.3 19858 6 0 O<h<oo 

0.5 19799 4 0 O<h<oo 

0.7 19666 3 0 O<h<oo 

0.9 19020 2 0 O<h<oo 

1 100 2 0 O<h<oo 

trivial fixed point (4.2.3) are 

1 
)\1 = 1, A2 == ---- ­

1 +h(v - k(3) 

It is clear that A2 is positive and less than unity regardless of h whenever 

k < k*. Therefore, it is expected that numerical method II converge to 

the fixed point for any value of h. Using the same parameter values and 

initial conditions as the numerical method I in Section 4.2.2, fixed points 

and expected h-boundaries are presented in Table 4.4. 

The numerical results represented in Table 4.4 show that the numerical 

method II is monotonically convergent for considerably large values of h. 

On the other hand, as h increases to much larger values, the accuracy of the 

numerical method is suspected. 

Comparing Table 4.3 and 4.4 shows that the numerical method II con­

verges much faster than the numerical method I. 
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4.3 	 Mathematical models used for longer peri­

ods of time 

To devise mathematical models to predict the dynamics population for longer 

periods of time it is necessary to allow imn1igration to the group of suscept­

ibles and death from all groups. 

Figure 4.3.1 is a flow diagram illustrating the rnodel describing the flows 

of the individuals to and from all groups. 

__f~__~~~~~__~.I~__y~(t_)~~_V__~·~I__z~(t_)~ 

Figure 4.3.1: A flow diagram illustrating the model for longer periods of time. 

In addition to the variables and parameters defined in Section 4.2, let 

f: be the immigration rate to the susceptible group, 


Jl: present the natural mortality rate, 


JlA: be the additional mortality rate due to AIDS occurring within the AIDS 


patients group and 

z(t): represent the number of full blown AIDS patients at time t. 

The system of ordinary differential equations simulating Figure 4.3.1 is 
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modified as follows 

d:~t) == il(X, y, z) == r - /3kx(t) ~tl) - /1x(t), x(O) == XO 

d~(/) == i2(X, y, z) == {3kx(t) ~(1) - (v + p,)y(t), y(O) == yO 

d~(tt) == i3(X,y,Z) == vy(t) - (p, +PA)Z(t), Z(O) == Zo 

(4.3.14) 

t > 0 

where 

N(t) == x(t) + y(t) +z(t). 

It is assumed that diagnosed AIDS patients are withdrawn from the pop­

ulation; as long as the number of AIDS cases (z(t)) is relatively small, their 

inclusion in N(t) would have little effect. 

It can also be assumed that the in1migration of susceptibles occurs at a 

rate proportional to the total population N (t). This lneans 

r == roN(t) 

rather than being a constant. Neither modification will have much effect in 

the initial stage of the epiden1ic, and as the epidemic of AIDS gets underway 

it is quite plausible that changing behaviour could have the effect of reducing 

the rate of in1migration into the homogeneously mixing male hOInosexual 

community being modelled. 

The behaviour of this model is explored in the following section in addition 

to the investigation of the effects of the sexual behaviour changes on the 

transmission dynamics of the disease. 

4.3.1 Model analysis 

The system of equations under investigation given by (4.3.14) will be analysed 

to ensure that it does not predict chaos or divergence in the system, when 

91 




chaos or divergence is not a feature of the system. 

The steady state of (4.3.14) occurs when the time derivatives vanish. 

Therefore, ~~ = ~ = ~~ = 0 gives the critical points 

X1*=[r. OO]T (4.3.15)
J.l.' , 

and 

( 4.3.16) 

The first equilibriun1/ critical point (4.3.15) is trivial because as t -+ 00 

there will be no exposed or infectious individual left in the population. 

The stability of the critical points Xl * and X 2 * is examined by gen­

erating the Jacobian (J), of the form (2.2.:3), at the trivial critical point 

J~ = J\x=x 1", Therefore 

-k{3 o 
o k{3 - fL - v o 
o v 

The determinant of the Jacobian, associated with (4.3.14) at the critical 

points (4.3.15) and (4.3.16) are given by 

(4.3.17) 

(V+J.i)(J-L+fLA) (v-k(3+J.l.)[J.l.A( v-kJ3) -J-Lk(3]IJ;\ = k(3(V+J.i.+J-LA) 

respectively. 

The determinant of the Jacobian at a particular critical point is the 

product of its eigenvalues. Therefore, when the determinant is equal to zero, 
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at least one of the eigenvalues of the Jacobian is equal to zero. This means 

that the particular critical point is neutrally stable. 

The determinant of J;, represented by IJ;I, vanishes when k = kr == V~/f. 

Also, the determinant of J; represented by IJ;I vanishes whenever k == k; == 
V+J.L d k k* VJ.LA Th b'f' ,.T an = 2 == f3(IJ.+J.LA)· e 1 tIrcatIon parameter IS unIque, therefore to 

identify the bifurcation paranleter of the system, the eigenvalues of J; and 

J; will be examined simultaneously. 

At the trivial critical point (4.3.15) the eigenvalues of J; are the roots of 

the equation 

D()") = ().. +p)(A - kf3 + f-L +V)(A +J.t +!lA)' 

Therefore, 

are the eigenvalues of the trivial critical point (4.3.15). 

The eigenvalues of J; are real and negative whenever k < kT, which Uleans 

that the trivial critical point (Xl *) is stable and whenever k > kt the trivial 

critical point is unstable. The stability properties of the model is suulmarised 

in Table 4.5. 

Table 4.5 shows that there is only one unique value of k (in this case 

k = k;). This will be regarded as the bifurcation parameter of the system of 

ordinary differential equations. Therefore, the reproductive rate 

R==~==~.
ki v + jJ, 

For R < 1 all the eigenvalues of the Jacobian at the trivial critical point 

are negative real numbers, meaning that the trivial critical point is stable 

and for R > 1 all the eigenvalues of the non-trivial critical point are negative 
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Table 4.5: Stability analysis for the long-time peTiod 'model 
, 

k = ki k > kik < k'2 k k*2 I k'2 < k < kt 

- - 0IJ~I + 
stablestable stable neutrally stable unstablexr 

- -0 0IJ;\ + 
neutrally stable stableunstable 00 unstablex; 

~Table 4.6: Stability p'foperties of the long-time period model 

Trivial critical point Non-trivial cri tical point 

R < 1 k < k*1 stable unstable 

R=l k = ki I nett trally stable neutrally stable 

R>l k > ki unstable stable 

real nUlnbers or complex with negative real part, which n1eans that the non­

trivial critical point is stable. Finally, whenever R = 1 the non-trivial and 

trivial critical points coincides, which is neutrally stable. 

Overall, both critical points of the systern (4.3.14) exchange their stability 

properties as k passes through k~ or equally as R passes through unity. This 

is summarised in Table 4.6. 

1
By using the parameter values f3 = 0.23, r = 4~OO, V 4.~5' /-l = 32 and 

/-lA = 1 the steady state solution for populations with different levels of the 

sexual activity (or reproductive rate) are summarised in Table 4.7. 

Table 4.7 indicates the susceptihles (x*), infected (y*) and AIDS cases 

(z*) change rapidly, whenever reproductive rate (R) increase from 1 to 2. 
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Table 4.7: Steady state solution lo-r the long-tirr~e pe'riod -model 

R k x* y* 

,50.0 52.60 135 5497 1122 

20.0 21.00 347 5470 1117 

10.0 10.50 725 5421 1107 

,5.0 5.:30 1598 5:308 , 1084 

2.0 2.10 5746 4772 974 

4.3.2 Nunlerical nlethod 1 

Replacing the derivatives in (4.:3.14) by their first-order, forward-difference 

approxinlations given by (:3.2.1) and considering the right hand side at the 

base tinle level (Euler's method) gives, 

(4.3.18) 


for n 0, 1,2,3, . ". 

Rearranging the above equations to find, X 11-+ 1 , yn+I and zn+I explicitly 

gIves, 

xn+1 == 9 (xn yn z11-) = xn +h[l' _ f3kxn 
yn Ilxn]- 1 , , xn+yn+zn r" , 

yn+l =92(Xn,yn,zn) = yn + h[{3kyn xn+~:+zn - (v +J.l)yn], (4.3.19) 

zn+l =93( xn, yn, zn) = zn + h[vyn - (~L + fLA)Zn], 

for n = 0, 1,2,3, .. '. 
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The numerical method is convergent if the nUIl1erical solution finally 

:r 1L+1converge to a fixed point, which n1eans at steady state ;rn = = :r, 

yn = yn+l = y and zn = zn+l = z. Therefore, equations 

x = 91(X, y, z) = ;1: +h[f - j3k;r x+~+z - ~l;r], 


Y = 92(:r, y, z) == y+h[f3kyx+~+z - (v +p)y], (4.3.20) 


z = 9:3(:r, y, z) == z +h[vy - (~l + ~lA)Z], 


give the nUIllerical Inethod fixed i)oints. It is easy to show that the fixed 

points of the nunlerical Inethod are the SaIne as the critical points of the 

system (4.3.14). 

The eigenvalues of the Jacobian of the form (:3.2.4) evaluated at the trivial 

critical point 

1 - hp -hk(J o 

J* == -.1\ 1 == o l+h(k(3-v-p) oJI"-"'*J\. 

o hv 1 - h(p +p'A) 

are 

(4.:3.21 ) 

The nunlerical method will converge monotonically to the fixed point if, 

and only if, the equation (3.2.8) is satisfied. Therefore, 

o< Ai < 1, \;f'i E {1, 2, 3} 

gIves 

O<l-hv<l, O<l-h(v+p-k;3)<l, O<l-h(~+~A)<l, 

and 

111 


o< h < rnin( -, kj3' + )v v + fL -.~ ~l ~lA 
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is the expected h-boundary for 1110notonic convergence. 

The nurnerical method is oscillatory convergent if, and only if, equation 

(3.2.9) is satisfied. Therefore, 

1 < Ai < 0, Vi E {I, 2, 3} 

1 < 1 - hv < 0, -1 < 1 - h (v :+ P -. k j3) < 0, -1 < 1 - h (It + {t A) < 0 

and 

1 1 1 ') 2 2 
rnin( -, . , ) < It < rnin(::·, , It + {LA)

V V + {L - kj3 jl + {t A V V + It - k/3 

is regarded as the expected h-boulldary for oscillatory convergence. 

These principles lead to the construction of Table 4.8. This table rep­

resents the expected h-boundaries for 1110notonic convergence , oscillatory 

convergence and chaos or divergence. 

Table 4.8 shows that as R decreases, upper linlit of h-boundaries in­

creases, therefore bigger tilne steps may be chosen for populations with rel­

atively sDlaller reprod uctive rate (R), which rneans less Illllnber of iterations 

to con verge. 

With the san1e parameter values as used in Section 4.3.1 and the ini­

tial values x(O) = XO = 94300, y(O) = yO = 5000 and z(O) = ZO = 200, 

the real (observe.d) h-boundaries of the numerical nlethod I for nlonotonic 

convergence, oscillatory convergence and divergence are presented in Table 

4.9. 

Statistical hypothesis shows that there is no significant difference between 

the colunlns of Table 4.8 and Table 4.9 representing expected and observed 

h-boundaries. Therefore, it can be concluded that the theory of convergence 

matches the computational results. 
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Table 4.8: Expected h-bo'undaTies for' the rwm,e'fical 'lneihod I 

R k 

. 50.0 50.6 

20.0 20.0 

Monotonic Oscillatory 

convergence convergence 

o< h :::; 0.104 0.104 < h :::; 0.208 

o< h :::; 0.278 i 0.278 < h :::; 0.5,57 

Divergence 

h > 0.208 

h > 0.,557 

10.0 10.5 o< h :::; 0.671 0.67 < h :::; 1.340 h > 1.:340 

5.0 ,5.3 0<h:::;1.116 1.12 < h :::; 2.240 h > 2.240 

2.0 2.1 o< h :::; 0.994 0.994 < h :::; 1.988 h > 1.988 

Table 4.9: Observed h-boundaTies for the n7.1rnerical m,ethod I 

R k ~1onotonic 

convergence 

Oscillatory 

convergence 

Divergence 

50.0 50.6 o< h :::; 0.094 0.094 < h :S 0.207 h > 0.207 

20.0 21.0 o< h :S 0.27.5 0.275 < h :S 0.557 h > 0.557 

10.0 10.5 a < h :S 0.571 0.571 < h :S 1.180 h > 1.180 

5.0 5.3 o< h :S 1.10,5 1.105 < h :S 1.991 h > 1.991 

2.0 2.1 o< h :::; 0.992 0.992 < h :S 1. 954 h > 1.954 

1.0 1.0 o< h :S 0.954 0.954 < h :S 1.921 h > 1.921 

0.9 0.95i o< h :S 0.954 0.954 < h :::; 1.921 h > 1.921 
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4.3.3 Numerical 111ethod II 

The development of the numerical method II will be based on the alternative 

method, (see Section 3.3.2). Approxinlating the derivatives in (4.3.14) by 

(3.2.1), and evaluating the variables on the right hand side of (4.:3.14) as 

follows 

(4.:3.22) 

for n = 0, 1, 2, .. '. After re-arranging, gives 

) = -----"'----:-::-r-r­

1+h(t1+v- --::::--r:~-=--~ 
(4.:3.2:3 ) 


for n = 0, 1,2, .. '. 

After substituting for xn+l and yn+l gives a set of equations llsed in the 

analysis detailed below. 

It is possible to show that the fixed points of the nurnerical method II 

are the same as critical points (4.3.1,5) and (4.3.16) of the systenl of ODEs 

(4.3.14). 

The eigenvalues of the Jacobian associated with (4.3.23) at the trivial 

critical point (4.3.15) are 

1 1 A _ 1 
Al = 1+h(v + 11 - k(3)' A2 = 1 +hit' 3 - 1 + h(11 + 

For k < k~, eigenvalues Al,2,3 are positive and less than unity regardless of 

the h value. This means that the numerical n1ethod is expected to converge 

for very big values of h. 
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For k == k;, )'l 1, this I1leanS that the nUlnerical solution is neutrally 

stable. 

For the non-trivial fixed/critical point, it is not possible to present the 

analysis of the numerical lllethod parametrically~ as they are very large algeb­

raic expressions. By using the sanle paranleter values as llsed in Section 4.3.2, 

Table 4.10 is generated to indicate the expected h-boundaries for 111onotonic, 

oscillatory convergence and chaos or divergence. 

It is expected that whenever 0 < Ai < 1, the nUll1ericallnethod converge 

monotonically and whenever -1 < .Ai < 0, the nUll1erica.l solution exhibits 

oscillatory convergence, for i = {I, 2~ :3}. (Note that all the h-bounclary 

values are rounded down to HUlke sure that the eigenvalues do not exceed 

unity. ) 

Table 4.11 represents the real (observed) h-bounclaries for 11l0notonic and 

oscillatory convergence and chaos and divergence. The initial values :r(O) == 

~TO = 94300, y(O) == yO = 5000 and z(O) = zO == 200 were used to generate 

COlllputational results. 

For R > 1, the statistical hypotheses show SOlne minor differences between 

the columns of Tables 4.10 and 4.11. 

It can be concluded that in sonle cases nunlerical results are inconsistent 

with the theoretical predictions. 
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Table 4.10: Expected h-bo'llnda'ries for the the nu'merical 'method II 

R k Monotonic Oscillatory Divergence 

convergence convergence 

50.0 

20.0 

10.0 

5.0 

2.0 

52.60 

21.00 

10.,50 

5.30 

2.10 

o< h ::; 4.23 

o< h ::; 4.40 

0<h::;4.72 

o< h ::; 5.40 

o< h ::; 8.66 

4.23 < h ::; 8.30 

4.40 < h ::; 8.37 

4.72 < h ::; 8.,57 

5.40 < h ::; 9.24 

8.66 < h ::; 13.85 

h > 8.30 

h > 8.37 

h > 8.57 

h > 9.24 

h > 1:3.85 

1.0 

0.9 I 

1.00 

0.9,5 

O<h<oo 

O<h<oo 

- ­
I 

-.­

Table 4.11: Observed h-boundaries fOT the rl1unerical rnethod II 

R k Monotonic 

convergence 

Oscillatory 

convergence 

Divergence 

,50.0 50.6 o< h :::; 0.08 0.08 < h ::; 0.13 h > 0.13 

20.0 21.0 o< h :::; 0.22 0.22 < h ::; 0.37 h > 0.37 

10.0 10.5 0< h:::; 0.47 0.47 < h ::; 0.74 h > 0.74 

5.0 5.3 o< h < 1.10 1.10 < h:::; 1.70 h > 1.70 

2.0 2.1 O<h 2.00 2.00 < h :::; 7.30 h > 7.30 

1.0 

I 

1.0 O<h<oo - ­ - ­

0.9 0.95 O<h<oo - ­ - ­
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VA
YA(t) 

4.4 Mathematical models of two infected groups 

This model separates the infected population into two groups, according to 


whether or not they ultinlately develop AIDS (Anderson et al. [8] and Van 


et al. [109]). This acllnits the possibility of allowing the lnean incubation 


period for AIDS to be different fronl the lllean infectious period arllong those 


seropositives who do not develop AIDS. 


Figure 4.4.1 is a flow diagranl illustrating the nlodel. 

{3k
P7V 

r 
/-l (fl + J-lA ) 

Yi\(t) 
V)i 

ZA:(t) 
(1 - p)~; 

1 
/-l /l 

Figure 4.4.1: A flow diagram illustrating the m,odcl for two infected groUlJs. 

The additional parallleters considered for this Iuodel are as follows: 

p: 	 the proportion of the infected individuals who finally develop AIDS, 


the mean of incubation period for infected who develop AIDS, 

VA 

v 
1
_ : the mean of infectious period of seropositives who do not develop AIDS. 

A 

Moreover, the additional variables are 


YA(t): the number of infected who ultimately develop AIDS up to tiIne -t, 


YA(-t): the number of infected who do not develop AIDS up to time t, 


ZA(t): the number of AIDS cases up to time t, 
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ZA( t): the number of non-infectious seropositives up to tiIne t. 

The system of ordinary differential equations for a cletenninistic approx­

imation of the Figure 4.4.1 is as follows: 

dx(t) = !l(X YA Y- ZA 7-) - r - j3k ro,(t)YA(t)+YA(t) "'"'(t)dt - "A" - A - .... N(t) r""'-" 


d Y A ( t) = f (,>' Y Y -,." ?' - ) lJ13 k,.,· (t) YA (t)+Y A (t) (+' ) (t )
dt - 2 <v, A, A, "'-'A, '" A .' t ,v. N(t) - J1 VA YA J'l 

dY;d t ) = f (, ,-,., ~-) - (1 )f3k' (t)YA(t)+Y'i(t) ( ) (I)dt - 3 X, YA, YA, ..:-A, "'A - - p X N(t) - f1. + VA YA ' , 

dz1?) == !4(X, YA, YA, ZA, ZA) = VAYA(f) - (ji, + JlA)ZA(t), 

dz A (t) = - r (:1'" Y Y - "" 4 '" -) -- ,)1 'IJ - (t ) r It ..;.. - A-dt J 5 A, A, ""'. ''''A t; A.l A - - ( t ) ' , 


t > 0 


:r(O) = :1'0, YA(O) = y~, y}.(O) = y~, Z.4(O) = Z~~ Z.lI(O) = z~ 


(4.4.24 ) 

where lV(t) == x(t) + YA(t) + y}.(t) + ZA(t) + ZA(t) seeIns nlost appropriate. 

So far, the population has been taken to be closed, with attention being 

concentrated on the initial stage of the spread of the infection. 

4.4.1 Model analysis 

The system of equations under investigation given by (4.4.24) will be analysed 

to ensure that it does not predict chaos or divergence in the systenl, when 

chaos or divergence are not features of the system. 

The steady state of the system (4.4.24), occurs when the time derivatives 

vanish (2.2.1), that is, ~~ = ~ == ~ = 0/. = ~ == 0 giving the critical 

points 

x* =;, YA =0, YA == 0, zA == 0, zA == 0 ( 4.4.25) 
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and 

x* - f(tk+V;d[J.I(tt+ttA )+VA[P+tkA (i-p)]] 

• - tt[V.4.[Jl;dkp(l-p)-p(Jl+V A)]+k/1.H( I-p)J+kjJ(tt+JLA)(tt+pV Al] ~ 


1 '" - rp(tL+ttA)[tt(tt-kj3)+VA[tt-kjJ(1-p)]+v ,dtt+UA -kjJp)] . 

YA - (tt+v..d [VA [/lA[P(tt+V.4 )-k,6( I-p)]-kptt( I-p)]-kf3(~t+pUA)(~I,+ttA)) , 


1 ":.. = f( I-p)(/I+ILA )(t1 (/1-k,6}+VA[IL-k!3(l-p )]+v A (IL+VA -k{3p)] (4.4.26)YA (tt+vA )[VA[ttA [P(tt+vA )-kf3( I-p)]-kf3/l (1-p )]-k,t3(IL+PU Ii Htt+tLA)) ~ 

z* - rpUA[JL(fl-ki3)+VA[~I-kl1(1-p)]+v Ii (/t+V.t\ -kp;3)] 

A - (J-L+v l d[VA[PA[k!3(1-p }-p(tt+vI'd]+k!3IL( I-p )]+k/3(JL+JlA)(IL+PVJil] , 


,,*_ _ f( I-P)(J.l+tLA}V:\ [11 (/I-I,{1)+u A[lt-kf3( I-p))+v:\ (tL+VA -k,6p)] 

- A - tt(!-L+UA )[VA[tl A[k!3( 1-P)-P(tt+uA )]+k/3!-L( I-p )]+kf3(tt+JlA)(tL+pU A)] 1 


the first equilibriUln/ critical point (4.4.25) is trivial 1 a.s there are no infectious 

individuals at the steady state. 

The stability of the critical points (4.4.25) and (4.4.26) will he exalnined. 

This is achieved by generating the .lacobian of the fo1'n1 (2.2.:3), evaluated at 

the trivial critical point. The Jacobian associated with (4.4.24) at the trivial 

critical point (4.4.25) is giveIl by 

-/1 -kf3 -kf3 0 0 

0 k(3p - /1 - VA kf3p 0 0 

J~ == 0 kf3(1-p) k{3 (1 - p) - Jl - vA 0 0 

0 VA 0 -1-1< - J.lA 0 

0 0 VA 0 -Il 

The determinant of the Jacobian vanishes when 

k == k* == (fL +VA)(/1 +VA) (4.4.27)
f3[J-t +VA (1 - p) +VAP] 

This unique value of k (4.4.27) is regarded as the bifurcation parameter of 

the model equations. 
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-------------------------~-

Therefore, the total reproductive rate of the fonn (2.3.8) is given by 

R ~ ~ ~ k;3[f.l + VA (1 p) +VAP] 
k* (/-£ + VA)(f.l + vjd 

Note that this model involves with two groups of infectives known a.s 

YA, YA· Therefore the total reproductive rate is 

Investigation shows that 

P +p) +VA(1- p) + VAP] _ kj3((f.l +vA)(l - p) + (/-t +V,4Jp] 

(It +VA)(p +VA) (p + VA)(lt +VA) 

followed by 
;3k fJk

R= +(1-])) . 
+VA IL+vA 

Therefore, RA = PJ.L!~A : is the reproductive rate of infected who ultin1ately 

develop AIDS, and 

Rji = (1 - p) J.L!~A : is the reproductive rate of the infected group who do not 

develop AIDS. 

The actual balance between the two terms of the overall reproductive rate 

will depend on p. It is possible to allow the infectivity paran1eter (3 to differ 

between two groups of infected, which also affects the balance. 

Overall, both critical points of the system (4.4.24) exchange their stability 

properties as R passes through unity which has been summarised in Table 

4.12. 

Assuming p = 0.7 meaning that 70% of the HIV positive individuals de­

velop full blown AIDS, j3 == 0.23 is the probability of a susceptible individual 

catching the virus per sexual partner. Moreover, VA = 4,~5 means that the 

average incubation period of the infected individuals who ultilnately develop 
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Table 4.12: Stability pToperi2:es of the critical points 

R<l 

Trivial critical point 

stable 

Non-trivial critical point 

unstable 

R=l neutrally stable neutra,l1y stable 

R>l unstable stable 

Table 4.1 :3: Steady state solutions for double-infected model 

R k ,1'* y* '1)*­ I '1)* + y*­ ..,* '7*_ 
I 

<4 +.4 . .4 . ,A A ""A "'A 

50.0 I 36.5 i :353 :3828 4051 7879 782 8643 ! 9425 

20.0 14.6 899 3779 :3999 7778 771 85:31 9:302 

15.0 11.0 1211 :3750 :3969 7720 766 8468 9234 
I 

10.0 7.:3 1854 369:3 :3908 7601 754 83:36 ' 9090 

5.0 3.6 :3958 :3.502 I 3706 7208 715 7907 8622 

2.0 1.4 12:384 2740 2899 .56:39 559 , 6185 6744 

1.0 0.7 \42667 I 0 o II o II 0 o II o II 
0.8 0.6 142667 I 0 o oo II II 0 o II 

AIDS is 4.75 years. VA 1~5 n1eans that the infected population who do not 

develop AIDS are sexually active for 15 years. The value r = 4~OO means 

that about 1333 individuals join the pool of sexually active homosexual pop­

ulation every year and j.l = 12 means that on average homosexual people 

are sexually active for 32 years. Finally fJA == 1 is the life expectancy of a 

full-blown AIDS patient. 

Critical points for various reproductive rates R, are sunln1arised in the 

Table 4.13. 
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Whenever R = 1 at least one of the eigenvalues of the Jacobian is equal 

to zero. Therefore, the non-trivial and trivial critical points coincide, which 

is neutrally stable. 

Table 4.13 indicates that as R increases the total number of HIV and 

AIDS cases iIlcreases and the nUIl1ber of susceptihles decreases. The high 

impact of the infection appears as soon as the infectious moves frOID static 

(R = 1) to developnlent stage (R > 1). 

4.4.2 NU111ericai 111etllod I 

Replacing the derivatives in (4.4.24) by their first-order, forward-difference 

approxinlations given by (:3.2.1) and considering the right hand side at the 

base time level (Euler's method) gives 

zr:+ 1 -z': 
A h A 

(4.4.28) 

= 11A-yT!: lI""n
A """:;'.4' 

for n = 0,1, 2,3, .. '. 

Rearranging the above equations explicitly gives 

(4.4.29 ) 
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for n = 0, 1,2,3, . ". 

The numerical nlethod is stable if, after n iterations, the numerical solu­

tion converge to a fixed point which nleans xn+l = xn == X, V~+l == VA = VA, 

n+l _ n - d n+l n n+l n Th.r 1YA - YA - YA an zA == zA == ZA, zA = zA = ZA:' erelore, tle systenl 

of equations 

x - 91 (x, VA, YA, ZA, ZA) = ° 
VA - 92(X, VA, VA, ZA, ZA) = a 
YA - 93(X, VA, VA, zA, ZA) = 0 ( 4.4.30) 

zA - 94(X,YA,YA,ZA,ZA:) = 0 

zA - 95(:e, VA, VA, zA, ZA) = 0 

associated with (4.4.29) show that the fixed points of the nunlerical nlethocl 

are the same as the critical points of the systenl of ODEs (4.4.24). 

The numerical method will converge to a fixed point if eigenvalues of the 

J acobian of the [orIn (:3.2.4) at that particular fixed point do not exceed 

unity. 

Applying the conditions (3.2.8) and (3.2.9) on the eigenvalues of the Jac­

obian of the fonn (3.2.4), expected h-boundaries for monotonic, oscillatory 

convergence and divergence for the system (4.4.24) are sumlnarisecl in Table 

4.14. 

Choosing the initial values x(O) = x D = 94300, YA(O) == Y~ ::::: 3500, 

Y..1(O) = y~ = 1500, ZA(O) = z~ = 600 and Z..1(O) = z~ == 100, the real (ob­

served) h-boundaries for monotonic, oscillatory convergence and divergence 

are summarised in Table 4.15. 

There are some non-significant differences between the columns of the 

Tables 4.14 and 4.15 representing h-boundaries. 
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Table 4.14: E:rpected h-boundaTies fOT the n7.tmerical 'method I 

R k Monotonic Oscillatory Divergence 

convergence I convergence 

50.0 36.5 O<h 0.27 0.27 < h ::; 0..54 h > 0..54 

20.0 14.6 0<11, 0.81 0.81 < h ::; 1.62 h > 1.62 

11.015.0 1.00 < h ::; 2.00o< h < 1.00 h > 2.00 

10.0 7.3 11, > 1.940.97 < h :::; 1.94o< h ::; 0.97 

5.0 3.6 O<h 0.99 0.99 < h ::; 1.98 h > 1.98 
I 

1.4 0.97 < h :::; 1.~)42.0 o< h ::; 0.97 h > 1.94 

1.0 0.7 10 < It ::; 0.951 0.95 < h ::; 1.9 I h > 1.9 

0.8 0.6 1 0 < h ::; 0.961 0.96 < h ::; 1.921 h > 1.92 

4.4.3 Nutuerical llletllod II 

The clevelopnlent of the numerical rnethocl II will be based on the first order 

approximations (3.2.1), in which t = tn (see Section 3.3.2). 

Approximating the derivatives in (4.4.24) by (3.2.1), and evaluating the 

variables on the right hand side of (4.4.24) as follows 
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Table 4.15: Observed h-boundaries f01' the nU1nerical method I 

R k Monotonic 

convergence 

Oscillatory Divergence 

convergence 

50.0i 36.5 o< h S; 0.13 0.13 < h ::; 0.35 h > 0.35 

20.0 14.6 o< h S; 0.39 0.39 < 11. ::; 0.86 h > 0.86 
I 

15.0 11.0 o< h S; 0.,59 0.55 < h ::; 1.10 h > l.10 

10.0 7.3 o< h ::; 0.97 0.97 < h ::; 1.65 h > 1.65 

5.0 :3.6 O<h 0.99 0.99 < h S; 1.98 h > 1.98 

2.0 
I 

1.4 O<h 1.30 1.30 < h ::; l.90 h > 1.90 

l.0 0.7 10 < h s 0.95l 0.95 < h ::; l.90 I h > 1.90 

0.8 0.6! 0 < h S; 0.96 I 0.96 < h ::; 1.92 I h > 1.92 

after re-arranging gives 

(4.4.32) 

for 	n = 0,1,2" ". 

Substituting for g1, g2, g3 and 94 in the above equations gives a set of 
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equations used in the analysis detailed below. 

It is possible to show that the fixed points of the numerical method 11, 

using (3.2.3) are the saIne as critical points (4.4.25), (4.4.26) of the systen1 

of ODEs (4.4.24). 

Whenever k < k* the eigenvalues of the Jacobian associated with the 

rnethod at the trivial fixed point (4.4.2,5) are positive and less than unity 

regardless of h value. This 111eans 'that the numerical method is expected to 

converge monotonically for large values of tin1e step (h). 

If k == k'" then >11 1, which Ineans that the numerical solution is neut­

rally stable. 

Table 4.16 represents expected h-bounclaries of the numerical Inethocl II 

for Il1onotonic convergence, oscillatory convergence and divergence. 

\Vith the saIne initial values as used in Section 4.4.2, Table 4.17 represents 

real (observed) h-boundaries. 

The difference between the colurnns of Tables 4.16 and 4.17 representing 

h-boundaries is not significant. 
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Table 4.16: Expected h-boundaries for the nU1nericai method II 

I 

R k :~donotonic Oscillatory 

I 

Divergence 

convergence convergence 

.50.0 :36.5 o< h ::; :3.3 3.3 < h ::; 271.5 h > 271..5 

20.0 14.6 o< h ::; 12.2 12.2 < h ::; 226.5 h > 226.,5 

1.5.0 11.0 o< h ::; 13.8 13.8 < h ::; 223.0 h > 223.0 

10.0 7.:3 o< It ::; 16.1 16.1 < h ::; 233.5 h > 2:33.5 

.5.0 3.6 o< h ::; 21.6 21.6 < h ::; 380.5 h > 380 ..5 

2.0 1.4 o< h ::; 37.3 h > 5000.037.3<h<00 

Table 4 17' ObsErved h-bo'undarifs for the nU1ner£cal 'method II... ' , 

DivergenceOscillatory 

con vergence 

l\1onotonickR 

convergence 

h > 270.00.2 < h ~ 270.0o< h ~ 0.236.550.0 

h > 200.00.5 < h ~ 200.0o< h ~ 0.,514.620.0 

h > 220.00.7 < h ::; 220.0o< h < 0.711.015.0 

h > 225.01.1 < h ::; 22.5.0o< h < 1.17.310.0 

h> 370.03.2 < h ::; 370.0o< h < 3.23.65.0 

-8.0 < h < 00O<h 8.01.4 
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4.5 Conclusion and summary 

The mathematical analysis presented in this chapter suggests that, whenever 

individuals in a. population choose less than k* (bifurcation parameter) num­

ber of sexual partners per unit of time then the disease will eventually dis­

appear. The bifurcation paranleter is a unique pararneter, which leads to 

the calculation of the reproductive rate. The total population's reproductive 

rate is the sun1 of group's ·reproductive rates. 

Comparing the two nunlerical 111ethocls used to solve presented models 

show that the ntlIllericallnethocl II converges for nnlch bigger values of tirne 

step (h). However, in some circu111stances the accuracy and relia.bility of the 

numerical lllethod II is suspected. 

vVhenever the eigenvalues of the Jacobian associated with the nunler­

ical Inethod are than unity the llu111erical 111Cthod is convergent,. This 

does not 11lean that whenever eigenvalues the Jacobian associated with the 

numerical 111ethod are less than unity the nurnerical n1ethod is necessarily 

convergent. 
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Chapter 5 

Mathematical modelling of the 

effect of heterogeneity in sexual 

behavioural in the transmission 

dynamics of HIV/ AIDS 

So far, mathernatical modelling of the transmission dynanlics of HIV / AIDS 

in human populations with horllogeneous sexual behaviour has been studied 

studied. Heterogeneity in sexual behaviour serves to complicate maths and 

in general, acts to increase the endemic prevalence from that pertaining in 

a population with hon10geneity in sexual behaviour (see Anderson and May 

[9], Garnett and Anderson [50)). 

Grouping individuals of a population according to their level of sexual 

activity from the highest to the lowest, require SOUle assumptions on the 

sexual contacts within and between groups. The aiu1 is to obtain equa­

tions that are consistent with observed population sexual contacts and to 
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investigate the effect of heterogeneity in sexual behaviour on the transmis­

sion dynamics of HIV / AIDS. 

Section 5.2 gives a brief review of the range of mixing functions cur­

rently used in rnathematical models of sexually transnlitted diseases, spread 

within hurnan con1munities. S0111e results of the developing theory of rnixing 

matrices is given proposing the need for further constraints. In addition to 

presenting constraints that ensure the description of the full range of lnix­

ing patterns in a given population, for defined population pararneters in a 

specified tirlle interval. 

Section .5.4 exanlines how the new constraints lllay be applied in gener­

ating cOlllpatible mixing nlatrices. The rneaning of the nlixing extremes are 

examined in the light of the new constraints. Of particular in1portance in 

this context is the observation that the distribution of individuals by number 

of sex partners tend to be highly skewed in character where nlost individuals 

have few partners and a few have Inany. This ill1plies that in a. defined C0111­

munity the nurnber of people in the highest sexual activity group tends to be 

small, which in turn liInits the possibilities of partnership with individuals 

in this group. 

Section 5.4.2 presents the characteristics and the definitions of a large 

population. 

Section 5.5 presents n1athematical rnodelling of the transmission dynam­

ics of HIV / AIDS in a heterogeneous population. Finally, Section 5.6 con­

cludes this chapter. 
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5.1 Introduction 

Levels of sexual activity varies in populations and with time for a particular 

individual. Stratifying population according to the level of sexual activity, 

allows the effect of behavioural heterogeneity to be explored. 

Sexual rnixing patterns are described by Dlixing Dlatrices whose elements 

satisfy certain constraints impose~ by the nature of the problenl (see Uche 

[108] and Anderson et at. -[10]). 

In this chapter the IllOSt general fonn of Inixing Inatrices (see Castillo­

Chavez and Blythe [28], Hynlan and Stanley [62]) is introduced followed by 

an elnphasis ou obtaining Inixing nlatrices that are consistent with observed 

population parcuneters. 

Specifying silnple and conlpact functions to define the elements of the 

Inixing I11atriceH has been the centre of past studies. Population paranlcters 

are used to define the elements of nlixing matrices (see Blythe ft al. [19]). 

Some COlllIllonly used forms of mixing matrices include the: 

i) 	Assortative matrix (like with like): is the fornl of an identity matrix. 

It is used whenever sexual activity groups are totally isolated fronl one 

another. For instance, all the individuals from a certain sexual activity 

group choose sexual partners only from their own group (see Blythe et . 

ai. [19] and Anderson et at. [10)). 

ii) 	Partially assortative matrix (random mixing): is used whenever 

sexual activity groups are mixed. For instance, individuals from a 

certain sexual activity group choose sexual partners randomly from 

any any other sexual activity groups (see Castillo-Chavez et at. [29] 

and [30)). 
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iii) 	Dis-assortative matrix (like with unlike): has elements equal to zero 

on the diagonal and is used whenever all the individuals only choose 

sexual partners fronl other groups (see Anderson et al. [10]). 

iv) 	Preferred lllatrix: is the form of a convex linear con1bination of 

mixing Inatrices. 

Overall, the developments of lnathematical theory of mixing matrices paid 

very little attention to the counting process that is involved in the recording 

of partnerships. However, in practice it is usual for the understanding of 

sexual mixing patterns, to design sexual behaviour surveys, which record 

the l1l11nber of partners of individuals in a defined population in a specified 

time interval (see Schnlitz et al. [101]). A careful analysis of the surveys 

is necessary to exaluine how the current theory of mixing matrices can be 

developed to nlake full use of available surveys. 

5.2 	 Necessary constraints of the elements of 

the mixing matrices 

In order to discuss the conditions on the elements of the mixing nlatrices the 

following parameters of the population need to be defined, 

N : the total population size, 

s : the number of sexual activity groups, 


Ni : the sizes of discrete activity groups, i = 1,2, ... ,s. 


ki : the mean number of new sexual partners acquired by group Ni per unit 


of time, i 	= 1,2" .. ,S. 
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p 	: the mixing matrix of size s x s, representing the sexual mixing pattern 

within and between groups. 


Pij : represents the elements of the mixing matrix, specifying the proportion 


of sexual partners of activity group j acquired from activity group i. 


All the elements of the rnixing matrix necessarily satisfies the following 

set of conditions: 

o~ Pij ::; 1, Vi,j E {1,2,· .. ,s} 	 (5.2.1) 

'Lj=lPij==l, ViE{1,2,· .. ,s} 	 ( 5.2.2) 

(5.2.:3) 


The constraint (5.2.:3) is the balance equation ensuring that the llurnber 

of new sexual partnershjps of individuals in group i formed with individuals 

from group j, equals the number of new partnerships of individuals in group 

j taken from group i. 

Later an example shows that equations (.5.2.1-5.2.3) are just necessary 

conditions on the element's of the mixing matrices and are not necessarily 

sufficient. 

The following functional fornls satisfy conditions (5.2.1-5.2.3) therefore 

described as potential nlixing rnatrices representing the sexual patterns such 

as: 

i) 	Assortative population: elements of the assortative population mix­

ing matrix are the form of 

I, 	 if ~==J 
(,5.2.4)

Pij 	=: l;j =: { 0, if i # j 

118 




in which the mixing matrix is the form of an s x s identity matrix, 

1 0 0 

o 1 0 
p= 

o 0 1 

ii) 	Proportionate mixing population: elerllents of the proportionate 

mixing matrix are presented' by 

Njk j
Pij 	= ---'----"-- (,5.2.5 )

L~I.=l Nm,km, 

Therefore proportionate rnixing nlatrix is the form of 

2::=1 Nmh'mP= 

5.2.1 Implications of the Inixing matrices 

Some implications of the constraints (5.2.1-5.2.3) are listed below: 

i) 	Linear combination: linear combination of mixing matrices is a mix­

ing matrix. Suppose PI and P2 are two mixing matrices for a defined 

population then, 

(5.2.6) 


is a mixing matrix. 


Where fP is regarded as mixing parameter. Equation (5.2.6) is fre­


quently used to construct a variety of mixing matrices for defined pop­


ulation parameters (see Busenberg and Castillo-Chavez [26]). 
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ii) B·lased nlatrix: a very special form of the equation (5.2.6) is the linear 

conlbination of the assortative and proportionate nlatrices 

(5.2.7) 

is regarded as a. biased matrix. At ~ == 0, the biased matrix reduces 

to the proportionate, while at p == 1 it yields the assortative 11latrix. 

Therefore, biased rnatrix is, said to span the range from the propor­

tionate to the assortative extrernes. 

iii) Preferred Inatrix: finally, preferreclrnatrix with the elelnents 

(.5.2.8) 

Where Pi denotes nlixing paraIlleter of sexual activity group i. ~:Ji == 

0, Vi E {I, 2, ... ,.5} yields the proportionate matrix, whileVi == 1, Vi E 

{I, 2, ... ,.'3} gives the assortative matrix. As a result the preferred mat­

rix is sa.id to span the saIne range as the biased matrix (see Dche [108]). 

5.3 Counting process 

Developments of mathenlatical theory of mixing matrices paid very little at­

tention to the counting process that is involved in the recording of partner­

ships. Sexual behaviour surveys, record the number of partners of individuals 

in a defined population in a specified time interval (see Schmitz et at. [101]). 

Assuming that a, band c are three individuals belong to a population of 

size N, the facts about the sexual relations among those individuals are: 

i) not reflexive: an individual a cannot mix with himself, 

ii) symmetric: if a mixes with b, then b also mixes with a, 
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iii) 	non-transitive: if individual a mixes with band b mixes with c does 

not necessarily mean that a mixes with c. 

The symmetric nature of the Inixing relation implies that when two people 

form a partnership, the partnership is counted for each of them. 

Within the unit of time, (nlost often chosen as one year), the partnerships 

of all individuals are counted. A cl.istinc~ion is made between the nunlber of 

sexual contacts/acts and 'the l1unlber of partnerships. During the unit of 

tilue, partnership with an individual is counted once. For example, if the 

unit of time is one year (Jan. 1 - Dec. 31), and an individual a has sexual 

contacts with two individuals b (Feb. - Apr. and Jun. - Dec.) and c (Mar. -

Jun.) therefore, individual a is said to fornl two partnerships within the time 

period even though there Iuay be numerous sexual contacts in a partnership, 

breakage and reunion of sexual acquaintance. 

Where interest lies in the nunlber of sexual contacts, extensions can be 

made in a straight forward way by defining an appropriate unit of time and 

counting process. 

In the following section, an example is used to exanline the sufficiency of 

(5.2.l-5.2.3) constraints in defining the possible mixing patterns in popula­

tions of finite size, for specified population parameters. 

5.3.1 	 Exalnple 1 ))Insufficiency of the necessary constraints 

for populations of finite size" 

The constraints (5.2.1-5.2.3) have been employed in most published theor­

etical and numerical studies of the influence of different patterns of sexual 

contact between sexual activity groups on the spread of sexually transmitted 
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Table 5.1: Sexual Activity Groups 

Activity group Group index 

'l 

Group size 

Ni 

Range of new 

sexual partnership 

ki 

Low 1 8 1-3 2 

Moderate 2 3 3-5 4 

High 3 2 5-7 6 

Total 13 

infections. 

Figure 5.3.1 describes the pattern of new partnership formation in a closed 

population of 13 individuals in a defined time interval. The data of such a 

survey is tabulated in Table 5.1. 

Figure 5.3.1: Sexual partnership network in a population of13 individuals. 

<=--_::::> : High activity group o/size 2, acquire 5-7 sexual partners per unit a/time, 

o :Moderate activity group o/size 3, acquire 3-5 sexual partners per unit o/lime, 

o : Low activity group 0/size 8. acquire 1-3 sexual partners per unit 0/time. 

The population is stratified into three sexual activity groups low, moder­

ate and high. The high activity group comprises of individuals with five or 

more new sexual partners per unit of time. 

Therefore 
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give 

Nk = [16 12 12 r 
The mixing constraints (5.2.1-5.2.3) are insufficient in limiting the rnixing 

matrices of this population to those that are possible. For instance, the 

assortative matrix given by the identity matrix 

1 0 0 

p=:: 0 1 0 

o 0 1 

represents a possible mixing pattern for this population satisfying the COIl­

straints (5.2.1-5.2.3). However, if the assortative lnatrix is used as a possible 

mixing matrix, the number of new partnerships in the high activity group 

within their group is N3k3 =:: 12. With the high activity group cOlllpris­

ing only two individuals, the counting process allows theln maxin1um 2 new 

partnerships amongst thernselves. 

With the counting process defined in section 5.3, two individuals cannot 

form 12 new partnerships between themselves. Therefore, the assortative 

matrix is not a possible mixing rnatrix for this population. The suggestion 

is that the other functional forms in the literature cannot be guaranteed 

to represent mixing matrices in populations of finite size and with specified 

population parameters. 

The need is for a better method of characterising mixing matrices. This 

is reflected by an example in this section, that the size of an activity group 

can limit the number of possible new partnerships that an activity group can 

form within itself. 
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5.4 	 Sufficient constraints of the mixing matrices 

of homosexual populations 

In this section sufficient constraints to developing true mixing matrices of a 

homosexual population are presented. 

For a homosexual population of size N, stratified by sexual activity into 

s discrete activity groups of sizes Nil with mean number of new partners ki 

respectively in a specified tin1e interval, sorted according to ki - 1 < kil i = 

{l, 2, ... s} the mixing matrix p is defined as a s X s matrix of the fonn of, 

.EJ..L ~ 
NIk! Ntkl 

~ ~ 
N 2 k2 N2 k2 p= 

~ ...9:.&-
Nsk s Nflks 

1 
0:11 0:12NIkl 

1 
021 022N2k2 (,5.4.9) 

1 
Nsk.s Osl a s2 ass 

in which aij, is the number of individuals from activity group j among the 

new partners of individuals in activity group i, satisfying the following con­

ditions, 

1. 

2. 


(5.4.11) 
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3. 

$ 

L:= (Xij == Niki' \fi E {I, 2" .. ,s}, (5.4.12) 
j=1 

4. 
s 

L:=(Xij==Njkj , \fjE{1,2, .. ·,s}, (5.4.13) 
i=l 

5. 

(Xij = Ctji, \fi,j E {1,2,.·. ,s}, (5.4.14) 

6. 

s s

I: L:= O'ij S !vIin{ Ni ( Ni - 1), s(!vI(l;r iVikd}· (5.4.15) 
i=l j=1 

Equation (5.4.10) states that the number of sexual partners of the 'i th 

group taken from group j group Dlust be less than the total number of sexual 

partner changes Dlade by group i and group j and NiNj (i.e. the Inaxin1a.l 

number of partner changes possible between the two groups). The term 

Ni( Ni - 1) is the maximal number of within-group partner changes for the 

ith group. The term, Pij = 0 in equation (5.4 .11) represents the zero mixing 

matrix where no new partnerships are being formed; clue to either the activity 

groups being empty or individuals in the population not choosing new sexual 

partner. Equations (5.4.12) and (5.4.13) state that the total number of new 

partners of individuals in activity groups i and j within and between groups 

are equal to the maximum possible number of new sexual partners that can 

be formed by the group and (5.4.14) follows the synlmetrical nature of the 

mixing matrix. 
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5.4.1 	 Example 2 "Sufficient constraints of the populations of 

finite size" 

By applying conditions (5.4.10-5.4.15) on the elements of mixing matrices of 

a homosexual population presented in Example 1, Section 5.3.1 the following 

mixing matrices are produced, 

~ 1.0
4 4 

1. 1.A== 0 2 2 

1. 1. 1. 
4 2 <1 

72.. 
12 12 

32.. ~B 
12 12 12 
7 2.. .1.­
12 12 12 

Figures 5.4.1 and 5.4.2 represent the possible sexual network for n1ixing 

matrixes A and B. 

It can be observed that equations (5.4.10-5.4.15) elinlinate all the false 

mixing matrices such as assortative matrix. 
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5.4.2 Large populations 

Generally the nUlnber of partnerships formed within a large population is 

enornlOllS. Therefore 

Qij (Xi' +1p' _ __ "-' ---,,-J__ 

lJ - N.k. "-' N.k· 
~ I ! ~ 

which ilnplies that Ctij Dlay be either odd or even. For such populatioIl, the 

number of elernents of the set of Inixing Dlatrices beCOIne enornl0usly large 

rnaking the listing of the set of mixing matrices difficult in practice. The 

adoption of a level of approximation to reduce the number of elenlents of the 

set, becoIl1es necessary. This depends on the detail of the problem in which 

the Inatrices are developed to describe the sexual contact between individuals 

of the population. 

A population of size N is said to be large if, changes of the order of the 

reciprocal of 1\.1 in N)~i in an elelnent of a mixing TIlatrix neither affect the 

mixing Dlatrix nor the subject of application of the mixing matrix. 

In models of the transmission dynamics of HIY / AIDS, a population is 

considered large if, only if, every 111atrix p, such that 

has the same effect as p on the magnitude of the force of infection in the sense 

that projected trends of incidence of HIV / AIDS populations are similar when 

either Pij or Pij is used. 
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5.5 Heterogeneous population 

Mathematical models used In sirnulations, stratifies the population into s 

groups, according to their level of sexual activity. The population is also 

divided into, susceptibles Xi( t) :ri, infected Yi( t) == Yi and full-blown AIDS 

Zi(t) Zi groups, where - {1,2,'" ,s}. Figure ,5.4 IS a flow diagrarn1, 

illustrating the model population. 

.. 

r ". 

: 

... ,... 

J1 ... 
". 

ks f3 .. ... 

Figure 5.4: Aflow diagram illustrating the model used to simulate the HIVepidemic and the impact 
ofdifferent sexual mixing patterns. 
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The lnodel is defined by the following set of ordinary differential equa­

tions: 

s - r. - ,..,..1"[3,\",8 (p,,1!.L) II'YO.dt - t <~lh, 0j=1 IJ N - r-6 ,{Jt, 
J 

~~i = ;c i k i [3 I:j=l (Pij iJ ) - (11, + V)Yi (5.5.16)
j 

~ = VYi - (p + JlA )Zi 

for i = {I, 2, ... , s }. 

Where 

Nj : is the total nUluber of individuals in activity group j. 

i, j = {I, 2, ... , s} : indicate the indexes of the sexual activity groups~ 

r( specify the immigration rate to the sexual activity group i, 

k i : represent the rate of sexual partner change of group i, 

Pij: denote the elelnents of rnixing nlatrix satisfying the set of conditions 

represented by equations (5.4.10-.5.4.1.5), 

Section 2.3.1 shows that the trivial critical point is of the form of 

M' 
(5 ..5.17)xi = yi = 0, zi = 0 

for i = {I, 2, ... ,s}. 

The effect of sexual behaviour changes (different level of mixing) on the 

transmission dynarnics of HIV/ AIDS is explored numerically by the following 

example. 
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-----------------------

5.5.1 	 Exalnple 3 "The effect of sexual behaviour changes on 

the transmission dynamics of HIV/ AIDS" 

Assuming a population is stratified into three sexual activity groups (8 == 3). 

Suppose NI 10000~ lVz == 4Nl = 40000, N3 == 5NI == 50000, r l == 100, 

rz = 2.5rl == 250, f3 == ,5f1 == 500, ,l == 1/32, ItA == 1, f3 == 0.2 and v == 0.1. 

Substituting k2 == k1 /6 and k3 == kl/36 in the lnodel equations (.5.5.16) and 

choosing preferred nlatrix (5.2.8) with the elements 

1 - ) 
Pij 	== Pi Iij + 2:8 (1 __. )!{ k ' 0 ~ Pi ~ 1, Vi E {I, 2, ... , .s } 

m=l 	 pm m m 

as nlixing Inatrix covering froln dis-assortative to randolll and assortative 

sexual nlixing patterns. 

i) 	Dis-assortative nlixing pattern: assunling the a.bove population 

with dis-assortative sexual Inixing behaviour (PI == pz == P3 = 0.1) 

gives the dis-assortative ll1ixing Inatrix 

0.60 0.3:3 0.07 

(5.,5.18)Pd 	== 0.50 0.43 0.07 

0.50 0.3:3 0.17 

The determinant of the Jacobian associated with (5.5.16) at the trivial 

critical point (,5 ..5.17) vanishes whenever, 

k~ == 3.16 

which is regarded as the bifurcation parameter. Assuming kl 12, 

gives the total reproductive rate 

kl
R= - = 3.8ki 
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and the steady state solution 

x; == [726 8385 14768 589 1051 293 57 102 28 r 
ii) Random nlixing pattern: assuming the population with a randolll 

sexual mixing partner (PI == P2 == P3 == 0.,5) the randorn nlixing lnatrix 

IS 

0.78 0.18 0.04 

(5.,5.19)Pr == 0.28 0.68 0.04 

0.28 0.18 0.,54 

Therefore the bifurcation paranleter associated with the lnodel (5 ..5.16) 

IS 

·* -	 .) 6k1 -...,. 

Assuming kl == 12~ gives the total reproductive rate of the randolu 

Inixing population is 
k 

Hr· == -ItI == 4.6.*
1 

and 	the steady state solution 

x; == [646 9064 15256 608 889 177 59 86 17 r 
iii) 	Assortative nlixing pattern: assuming the population with an as­

sortative sexual partner acquisition behaviour (~)l == P2 == Ps == 0.9) 

giyes the mixing matrix 

0.95 0.04 0.01 

(5.5.20)Pa = 0.05 0.94 0.01 

0.05 0.04 0.91 

The bifurcation parameter of the assortative mixing population is 

k~ == 2.1 
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Assunling kl == 12, gives the total reproductive rate 


kl 

Ra == ki == 5.7 


and the steady state solution 


X: = [568 10746 15845 627 489 :37 61 47 4 r 
Comparing the total reproductive rates of the population with clis-assortative 

(Rd ), random (Rr) and assortative' (Ra) sexual Inixing patterns indicate that 

Rd < Rr < Ra, nleaning that the total reproductive rate for population with 

dis-assortative sexual rnixing behaviour is grater than the total reproductive 

rate of a population with randOll1 mixing followed by the total reproductive 

rate of a population with assortative sexual 111ixing behaviour. 

Figures 5.5.1-5.,5.12 represent the gra.phical solution to the systenl of equa­

tions (,5. ,5.16) simulating the transIl1ission clynalnics of HIV / AIDS in a pop­

ulation with [1'0111 assortative to randorn and clis-assortative sexual mixing 

behaviour. 

Figures 5.5.1-5.5.2 represent the susceptible population in three sexual 

activity groups ranging from 'assortative' to 'random' and 'dis-assortative' 

sexual mixing patterns. In general, at the steady state the total number of 

susceptibles for the assortative rnixing pattern is shown to be higher than 

the random, which in turn is greater than a clis-assortative mixing pattern, 

for all sexual activity groups. The growths of the number of the susceptible 

population from dis-assortative to random is 6% and from dis-assortative to 

assortative 10%, for sexual activity group 1 as shown in Figure .5.,5.1. In 

Figure 5.5.2, the growths from dis-assortative to random is 2% and from dis­

assortative to assortative 4%, for sexual activity group 2. In Figure 5.5.3, 

the growth from dis-assortative to random is 16% and fronl dis-assortative 

to assortative 87%, for sexual activity group 3. 
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Figures 5.5.4-5.5.5 represent the HIV infection for sexual activity groups 

1 and 2 which indicate that the lnixing patterns have no significant impact 

on the steady state solution (less than 5%). 

Figure 5.5.6 represents HIV infected population within sexual activity 

groups 3, indicating that at the stea.dy state, HIV infected populations with 

an assortative rnixing pattern dec'lines to zero due to low levels of sexual 

partner acquisition and the total llUll1ber of HIV infected with random nlixing 

pattern" == 1500" is lower than the dis-assorta.tive nlixing pattern" =1800n . 

Figures 5..5.7, .5.5.8 and .5.5.9 represent the total nunlber of full-blown 

AIDS population in sexual activity groups 1, 2 and:3 according to the sexual 

mixing patterns. Figures 5.5.7 and 5.5.8 show that sexual mixing pattern 

has no significant irnpact on the total llurnber of full-blown AIDS cases for 

sexual activity group 1 and 2 at steady state. Figure 5.,5.9 shows that total 

number of full-blown AIDS population with assortative sexual mixing pattern 

vanishes at early stage. It also indicates that total nutnber of full-blown 

AIDS cases with ranclOll1 nlixing pattern is lower than dis-assortative mixing 

pattern at all the time. 

Figures 5.,5.10, 5..5.11 and 5 ..5.12 represent the total number of suscept­

ible, HIV infected and full-blown AIDS cases in the population respectively. 

Figure 5..5.10 indicates that the growth of the number of susceptibles froIn 

dis-assortative to random sexual mixing pattern is 14% and to assortative 

mixing is 71 %. Figure 5.,5.11 indicates that the number of HIV infected from 

dis-assortative to random sexual mixing pattern decline by 6% and to as­
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sortative mixing decline by 35%. Figure 5.5.12 indicates that the number of 

full-blown AIDS cases from dis-assortative to random sexual mixing pattern 

decline by 6% and to assortative mixing decline by 35o/c,. 

From the above it can be concluded that whenever the sexual mixing 

pattern varies from a range of assortative to rancioln and dis-assortative the 

number of susceptibles decrease and the nun1ber of HIV infected and AIDS 

cases increase. 

134 




[' Assortative 
120 ~ 

Random1l0~ 
Disassortative 

100 __ 
4.)

;:e 
0.. 
4.) 
u 90 
~ 

CIl 

80 


70 


o 10 20 30 40 Year 
Figure 5.5.1: Susceptibles in sexual activity group 1 withfi-om assortative to random 
and disassortative sexual partner acquisition. 
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Figure 5.5.2: Susceptibles in sexual activity group 2 withfrom assortative to random 
and disassortative sexual partner acquisition. 
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Figure 5.5.3: Susceptibles in sexual activity group 2 withfrom assortative to random 
and disassortative sexual partner acquisition. 
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Figure 5.5.4: HIV infected population in sexual activity group I with from assorla/ive 
to random and disassortative sexual partner acquisition. 
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Figure 5.5.5: HIV infected population in sexual activity group2 wi/hJrom assortative 
to random and disassortative sexual partner acquisition. 
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Figure 5.5.6: HIV infected population in sexual activity group2 withlrom assortative 
to random and disassortative sexual partner acquisition. 
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Figure 5.5.7: Full-blown AIDS population in sexual activity group I wi/hfrom assortative 
to random and disassortative sexual partner acquisition. 
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Figure 5.5.8: Full-blown AIDS population in sexual activity group 2 withfrom assortative 
to random and disassortatlve sexual partner acquisition. 
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Figure 5.5.9: Full-blown AIDS population in sexual activity group 3 withfrom assortative 
to random and disassortative sexual partner acquisition. 
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Figure 5.5.10: Total Susceptibles in all sexual activity groups withlrom assortative to 
disassortative sexual partner acquisition. 
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Figure 5.5.11: Total HIV infected population in all sexual activity groups with/rom 
assortalive to random and disassortative sexual partner acquisition. 
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Figure 5.5.]2: Tota/full-blown AIDS population in all sexual activity groups with from 
assor/ative to random and disassortative sexual partner acquisition. 
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5.6 Discussion 

In this chapter numerical exanlples illustrate the insufficiency of the existing 

constraints on the elements of the nlixing matrixes for a population of finite 

size. The major problelU arises with the characteristics and nature of the 

sexual activity of individuals in a population that reports snlall nUInber of 

individuals in high activity groups. 

Some constraints are presented satisfying all the necessary and sufficient 

conditions on the elenlents of the mixing matrix of a finite size population of 

homosexual Inen to be a true Inixing Inatrix. 

Investigations showed that, assortative populations are less susceptible to 

the spread of HIV / AIDS than nlixed or dis-assortative populations. In other 

words, whenever sexual mixing pattern varies from a range of assortative 

to random and c1is-assortative the nUITlber of susceptibles decrease and the 

number of HIV infected and A IDS cases increase. 
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Chapter 6 

Mathematical modelling of the 

effect of the antiviral therapies 

in the transmission dynamics of 

HIVjAIDS 

With new age luedicine and \\'ith discoveries in antiviral treatments adnlin­

istered to patients suffering from HIV and AIDS, it is inevitable to take the 

impact of such treatments into account when devising mathematical models 

of HIV / AIDS. 

Treatment which acts to increase the incubation period before the on­

set of serious immunodeficiency, but has no impact on the infectiousness 

of a patient, is obviously beneficial to the individual. However, it can in­

crease net morbidity and mortality when used on a community wide basis. 

When treatment prolongs the incubation period and reduces the infectious­

ness, community based chemotherapy is beneficial to both the individual and 

140 




community. 

In this chapter the impact of anti-HIV treatInents in a population with 

various sexual behaviour is investigated. 

6.1 Introduction 

Detection and treatnlcnt of the so called cofactoT .sex·ually transmitted dis­

eases has begun to have an effect on the net rate of trans1l1ission of HIV 

in human population. However, the simplest lnethods to cont.rol HIV are 

condom use and education to encourage reduction in the rate at which in­

dividuals acquire new sexual partners. Although siluple in concept, little is 

understood at present of how to induce behavioural changes in any given 

society or con1ll1unity. 

Ideally vaccines will eventually be a.vailable, but if they have only tIlocler­

ate efficacy, or induce only short duration of protection, behavioural change 

will continue to be the desired intervention to linlit HIV spread. 

A further option in wealthy countries is the use of conlmunity wide pro­

grammes designed to treat all infected individuals with antiviral therapy. 

This obviously acts to the benefit of the individual who receives treatment 

(given the availability of a safe and efficacious drug), but it can also act to 

reduce net transmission within the community if therapy red1lces the infec­

tiousness of a treated patient. A nun1ber of antlviral agents are able to slow 

the replication rate of HIV, at least for periods of short to nledium duration 

(i.e. 6 months to a year), and have therefore been able to slow the rate 

of progression to serious disease or to prolong the life expectancy of AIDS 

patients. 
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Examples of the, drugs currently or potentially of use are nucleoside re­

verse transcription inhibitors such as zidovudine (ZDV), didanosine (ddJ) 

and thiacytidine (8TC), non-nucleoside reverse transcription inhibitors such 

as £-697 and nevirapine, and protease inhibitors such as saquinavir ( see 

Fischl et af., [47]; Cooper, [33]; Volberding and Graham, [110]). The high 

mutation rate of ElV coupled with its very high replication rate within the 

host results in the rapid evolution, of resistance to all the drugs in current 

use (see Richlnan et al., [97]). After the initiation of therapy, vira.enlia often 

declines rapidly with a concOlnitant rise in CD4+ cells. However, the rapid 

emergence of resistant variants of the virus can lead to viraenlia returning to 

its pre-treatment level within a few weeks of repeated exposure to the drug 

(see Ho et at., [61]; vVei t:f at., [111]). 

As such most of the antiviral agents currently in use do not prolong the life 

expectancy of AIDS patients beyond a few months to a few years. The use of 

combinations of drugs holds out lnore promise for the long term suppression 

of viraenlia (and hence the prevention of serious immunodeficiency), but 

current trials of various cOlnbinations have not been of sufficient duration to 

fully assess the benefits from cOD1bination therapy (Han1mer ei: at., [,58]). 

At present it is not clear that what different drugs cOlnbination could 

provide the best therapy. For example, is it best to administer three different 

drugs to the patient all at once or should use be staggered with sequential 

use of each drug? Since the object is to delay the onset of multiple drug 

resistance, much more thought needs to be given to the population genetics 

of viral replication under the selective pressures imposed by antiviral therapy. 

In the absence of any behavioural change resulting froDl treatment and 

associated counselling, antiviral therapy that influences viral load within the 

treated patient is likely to reduce infectiousness to susceptible sexual part ­
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ners. The degree to which treatment of the individual will influence the trans­

mission 'within a community is sonlewhat difficult to assess, in the absence of 

a mathematical framework mirroring the dynanlics of viral transmission. In 

this chapter I examine the issue, (extending previous work of G. P. Garnett 

and R. M. Anderson [52], by the developnlent and analysis of lllore detailed 

model) of the inlpact of antiviral treatment on the infectiousness of a treated 

patient, and of changes in CD4+ cell nluubers during the incubation period 

of AIDS. Depending on the increase or decrease of the number of CD4+ cells 

the treated patients Illove back to the previous or next stage of the infection 

respecti vely. 

Anderson, Gupta and May (9); Gupta, Anderson and Nlay [.56]; Gupta 

and Anderson [5.5] have exanlined the irnpact. of antiviral therapy at the 

community base with heterogeneous sexual activity and various patterns of 

mixing between sexual activity groups. This includes, the effect of anti­

viral therapy on the endemic prevalence of HIV infections and the associated 

mortality due to AIDS. One conclusion of these theoretical studies' was that 

community wide treatment vvith antiviral drugs or immuIlotherapies that 

lengthen the incubation period of AIDS, without significantly reducing the 

infectiousness of treated individuals can increase the rate at which HIV-l 

spreads in addition to increase the AIDS related death rate. This conclusion 

depends on the magnitude of transmission success in the community, the de­

gree of heterogeneity in sexual activity, the patternof mixing between sexual 

activity groups, and whether or not treatment is associated with changes in 

sexual behaviour (see Anderson et ai., [9]). 

To examine these issues it is important to note that, the time scale and 

magnitude of an epidemic of an infectious disease depends on the magnitude 

of the basic reproductive rate (2.3.2). 
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6.2 	 Details of the mathematical model incor­

porating CD4+ cell density 

In this section, I have extended the model described by G. P. Garnett and 

R. :Nt Anderson [,52]' which describes progression of an HlV infected patient 

from infection to AIDS by reference to the average CD4+ cells. I use this 

template vvithin a broader fraInewoJ:k to Inirror the transmission dynamics of 

HlV and antiviral therapy. The choice of CD4+ cells is a sinlple consequence 

of the fact that this 111arker of progression is often used to decide whether or 

not to ini tiate antiviral therapy. 

The broad structure of the extended nlodel is represented diagramnlatic­

ally in Figure 6.2.1. Susceptibles enter a prinla.ry infection class from which 

they progress at constant stage specific rates to further stages of infection, 

until they develop AIDS. The stages of infection represent different levels of 

CD4 count. At all stages those infected can be treated at a stage specific rate 

upon which they enter a tI'eatInent class, and froIn which they progress to 

further stages or go back to previolls stage of infection at a different (slower) 

rate or back into the untreated class. 

This framework is used to examine how treatment alters the pattern of 

an AIDS epidemic in a single sex conlmunity. In the model structure it is 

assumed that treated" individuals can pass to an untreated class, to reflect 

both the termination of treatment due to adverse reactions to the drug and 

the failure of the drug to be effective, as a consequence of the emergence of 

drug resistant strains of the virus. 
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Untreated Treated 

Figure 6.2.1. Ajlow diagram illustrating the model used to simulate the HIV epidemic and the impact ofantiviral therapy. 
Susceptibles enter a primary infection class from which they progress at constant stage specific rates to fltrther stage 
olin/eclion, until they develop AIDS. At all stages those infected can be treated at a stage specific rate upon which 
they enter a treatment class, andfrom which they progress to further stage ofinfection at a different (slower) rate or 
back into the untreated class or alternatively back into the previous stage ofinfection. 
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Let: 

i, j : specify sexual activity groups index, from the highest (sexual activity 

group 1) to the lowest (sexual activity group 3) range of sexual partner 

acquisition per unit of time. 

0:' : denote the stage of infection~ froIl1 primary HIV infection to full-blown 

AIDS, 0:' = {l,'" ~ 7}. 

T : represent the treatn1ent< status, T = 1 untreated and T = 2 denotes treated 

population. 

In general~ nlathelTIatical nlodel used in SilTIulations represents the pop­

ulation at risk of HIV infection divided into three groups i,j = {1~ 2~ :3}, 

with different levels of sexual activity according to rates of sexual partner 

change, k i (see Figure 5.5.1~ Section 5.5). The population is also divided into 

susceptibles T, infected y and full-blown AIDS z. 

In particular, the susceptible group (x) is subdivided into imax = :3 groups 

according to the level of sexual activity. The infected population (y) is sub­

divided into imax x Omax X Tmax = 36 groups according to the level of sexual 

activity (i), stage of infection (0) and treatment status (T). Also~ full-blown 

AIDS population is subdivided into i max x Tmax = 6 groups according to the 

level of sexual activity and treatment status. Therefore, total population is 

divided into 3 + 36 + 6 = 45 groups. Constructing the rnodel by a set of 45 

non-linear ordinary differential equations gives, 
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!Ei - r· - x ·k· ,\,,3 {p .. ,,6 ,\,,2 ({3 ~)}dt - t '2 t '---'j=1 lJ L..,a=1 wT=l aT N - /-lXi
J 

dYill - 'k. ,,3 { ",,6 ,,2 ({3 YJ':-t1" )} ( + ) s:
dt - Xl l wj=l PLJ wn:::l wr=l en N - It Vu +Tl Yill +UIYil2 

J 

t> 0 


i = {I, 2~ :3} 

(6.2.1) 

where: 

fi : is the immigration rate to the group of susceptibles in sexual activity 

group i, 

/-l : specifies the natural mortality rate, 

/-IT : denote mortality rates due to AIDS related disease according to the 

treatment status, 


/3aT : indicates the probability that an infected partner transmits infection to 
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a susceptible partner which depends upon the stage of infection and treat­

ment status, 

Pij : are the mixing parameters indicating the probability that a partner of 

someone from sexual activity group i is from sexual activity group j, 

ki : indicate rates at which sexual activity group i, acquire new sexual part ­

ners, 

VaT : indicate the rate of nl0veluent froIn stage 0' to the next stage (0' + 1) 

depending whether treated or not, 

Ta : is the rate at which untreated individuals in stage 0' are diagnosed and 

join the treated group, 

60 : is the rate at which treated individuals in stage a reject treatment due 

to adverse side effects, 

0"0: : is the rate at which treated individuals in stage 0' return to previous 

stage of infection due to increasing the CD4+ cell count. 

Sexual mixing patterns between individuals in different sexual activity 

groups has an important influence in the pattern of the epidemic (see Section 

5.5). I define the pattern mixing on a scale froln 'assortative' (like with like) 

to 'random' and 'dis-assortative' by using the preferred nlixing matrix (,5.2.8) 

with the elenlents of the form of 

(1 - p.i)Njkj 

Pij = ~i Iij + L:s (1 _ )N k ,OS Pi S 1,


m=l rPm m m 

Parameter values of the rates of progression to AIDS are presented in 

Table 6.1, derived from the work of Longini et al. [76] based on the San 

Francisco Men's Health Study (see also Inodel developed by Jacquez et al. 

[64]). Assumptions made on the size of the population and its behavioural 

parameters used in implementations are summarised in Table 6.2. 
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Table 6.1: Rates of progress th7'01tgh the seven stage of HIV . .f t'... ... 'In ec '/,On 

0' CD4 cell count l'0' (Jed f3o:2 l/Vo:l 1/va 2 Cfa 80' 

1 0 0.2 0.1 
I 

NA NA 0.75 0.3 

2 >900 0.9 0.01 0.005 1.12 1.62 0.1 0.3 

3 700-899 0.72 0.01 0.005 1.39 1.89 0.1 0.4 
I 

4 .500-699 0.42 0.01 0.005 2.38 2.88 0.1 0.4 

5 :350-499 0.37 0.01 0.00,5 2.69 
I 

3.19 0.1 0.5 

6 200-:349 0.72 0.1 0.05 1.39 1.89 
I 

0.1 0.5 
I 

AIDS <200 1.4:3 NA NA 
I 

0.7 1.2 0.0 0.,5 

Table 6.2: Dernographic and beh(w-loural paramete1's used for model simula­

tions 

r i 

Activity group 1 

100 

Activity group 2 \ Activity group 3 

400 500 

Ni 20000 80000 100000 

I have l11acle S0111e Ininor alterations to these values to reflect the current 

understanding, such as an increase of 7 months in the duration of stay in the 

primary stage of infection with a corresponding decrease in the second stage. 

[c] 

Main interest is in the relative advantages and disadvantages of early 

treatment during the course of the incubation period. To examine the prob­

lem, for illustrative purposes, the impact of treatment on the duration of 

stay in anyone class is defined. Antiviral therapy (for example, zidovudine) 

acts to suppress viraen1ia and concomitantly, CD4 cell counts increase. As 

such drugs tend to slow the progression to AIDS. An example is the study by 

Cooper et ai. [34] which showed that induction of antiretroviral therapy in 
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subject with CD4 cell counts of over 400, significantly slowed the progression 

of disease and the decline in the CD4 cell count. In rough acc.ord with the 

available data, it is assumed that treatment adds six months to the average 

duration of stay in each stage of infection. 

The estimation of transnlission probabilities during the course of infection 

to the development of AIDS is fraught with ll1any problenls. Transmission 

probability is defined per sexual partnership (as opposed to per sexual act) 

since this is the lllost frequently Ineasllred parameter in studies of discordant 

sexual partnership (initially one infected, one susceptible) (Garnett and An­

derson, [,50)). The relationship between the two Dleasures (per partnership 

and per act) is unclear at present due to lllllCh heterogeneity in the available 

data. Heterogenei ty in the likelihood of translnission over the incubation 

period of AIDS is known to occur, and the 1110st reasonable assu111ption at 

present is that the likelihood is, in sonle Inanner, related to the level of 

viraemia (certainly the case for vertical translnission). This is an area of 

uncertainty since the quantity of virus in the blood nlay not reflect infec­

tiousness and furthern10re, the genetic constitution of the viral nlay be 1110re 

important than viral load. However, in the absence of knowledge to the con­

trary, I assume that infectiousness is proportional to viraemia and that it is 

highest in the earliest stages of infection (Anderson, [6); Jacques d at., [64]). 

The values recorded in Table 6.1 for changes in infectiousness in thedif­

ferent stages of infection, plus those assunled for the way trea.tnlent lengthens 

the duration of stay in anyone group (i.e. 6 months for all groups) are purely 

illustrative at present. Their definition within a model framework highlights 

the need of the quantitative data in this area. 

Other areas of uncertainty include the details of sexual behaviour. As 

defined the model framework includes heterogeneity in the rate of sexual 
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partner acquisition and variability in the pattern of mixing between sexual 

activity groups (random and assortative i.e. like with like (see Garnett and 

Anderson, [51])). The endemic prevalence of HlV infection in the absence 

of treatment is a function of transmission success as defined earlier. A key 

component of this success is the nlagnitude of the average transmission prob­

ability over the incubation period for aSSUIllPtions of randonl or rnoderately 

assortative mixing between sexual ~ctivity groups. If the pre-treatment value 

of the transmission probability is low (but sufficient for R > 1) then small 

reductions in its value arising fronl the treatnlent of a fraction of the infected 

population will have a significant inlpact on HIV prevalence. 

6.3 	 The analysis of the effect of antiviral ther­

apies and sexual mixing patterns in trans­

mission dynamics of HIV/ AIDS 

To exalnine the effect of the antiviral therapies and different sexual nlixing 

patterns in the transnlission dynamics of HlV/ AIDS, mathematical model 

(6.2.1) is analysed (see Sections 2.3.1 and 2.3.2) and solved using alternative 

method (see Section 3.3.2) choosing optimum tinle step of h == 0.127 (see 

Section 3.2.3). 

Mixing matrices representing sexual mixing patterns for the population 

detailed in Table 6.1, Section 6.2 from dis-assortative to random and assort­

ative using preferred matrix (5.2.8) are presented as follow: 

i) 	Dis-assortative sexual mixing pattern: substituting luixing para­

meters ~1 == pz = P3 = 0.1 in the equation (5.2.8) gives the dis­
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assortative n1ixing matrix 

0.60 0.33 0.07 

Pd = 0.50 0.43 0.07 (6.3.2) 

0.50 0.33 0.17 

representing the population with dis-assortative sexual partner acquis­

ition behaviour. 

ii) 	Randoln sexual mixing pattern: substituting mixing paran1eters 

t>1 = t>2 = t>3 = 0.5, in equation (.5.2.8) gives 

0.78 0.18 0.04 

Pr == (6.3.3)0.28 0.68 0.04 

0.28 0.18 0.54 

representing the population with random sexual partner acquisition 

behaviour. 

iii) 	Assortative sexual nlixing pattern: substitutjng mixing paralnet­

ers f)l P2 = g:J3 = 0.9, in equation (5.2.8) gives 

0.9.5 0.04 0.01 

(6.3.4 )Pa 	= 0.05 0.94 0.01 

0.05 0.04 0.91 

representing the population with assortative sexual acquisition beha-

VlOUI'. 

The above mixing matrices are used to proceed with the following model 

analysis. 

The trivial critical point of the system (6.2.1), is of the form of 

X* - [r1 r 2 r 3 0 ... O]T (6.3.5 ) 1 - , , " ,
Jl 	 I-l Jt 

(see Section 2.3.1). This will be used later in computing reproductive rate. 
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6.3.1 Untreated populatioll 

In the implementations, systerll of equations (6.2.1) can be used to describe 

a population without trea.tlnent. 

Parameter 1'a for 0 = {I,· .. ,6} represent the rate at which HIV infected 

population receive treatment at stage 0, the seventh stage of infection is full­

blown AIDS, therefore 1'7 represent the proportion of full-hlown AIDS popula­

tion who receive treatn1ent. Placing zero instead of 1'0 for a = {I, .. " 7} and 

the initial values of the treated population fixed at zero in 1110del equations 

(6.2.1) give a set of equation siIl1ulating the population without treatn1ent. 

The population is stratified into three sexual activity groups, including 

susceptible, six stages of HIV infection and full-blown AIDS patients. Para­

meter values are presented in 6.1, Section 6.2. 

i) 	Dis-assortative sexual nl1xlng pattern: the deternlinallt of the 

Jacobian associated \vi th the D10del equation (6.2.1) of the fornl of 

(2.2.3), at the trivial critical point (6.3.5), after substituting dis-assortative 

mixing nlatrix (6.3.2) vanishes whenever, 

k~ = .5.48 

Assuming sexual activity group 1 with an average of kl = 65 new 

sexual partners per unit of time, gives the total reprodlictive rate of 

the population 
kl

Rd 	== - = 11.86 (6.3.6)
ki 

ii) 	Random sexual mixing pattern: by substituting random mixing 

matrix (6.3.3) in model equation (6.2.1), the determinant of its Jac­

obian of the form of (2.2.3) at the trivial critical point (6.3.5) vanishes 
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whenever, 

k; =4.29 

Assuming sexual activity group 1 with an average of kl = 65 new 

sexual partners per unit of time, gives the total reproductive rate of 

the population 

kl 
Rr = k* = 15.15 (6.:3.7)

1. 

iii) A ssortative sexual Inixing pattern: finally by substituting assort­

ative rnixing 111atrix (6.3.4) in model equations (6.2.1), the determinant 

of its .Jacobia.n of the form of (2.2.:3) at the trivial critical point (6.3 ..5) 

vanishes whenever, 


k; =3.39 


Assllrning sexual activity group 1 with a.n average of kl = 65 new sexua1 

partners per unit of tilue, gives the total reproductive rate 

k1
Ra = -k = 19.17 (6.3.8)

~* 
1 

Comparing the total reproductive rates of the population with dis-assortative 

(6.3.6), randonl (6.3.7) and assortative (6.3.8) sexual mixing patterns in­

dicate that Rd < Rr < Ra , meaning that the total reproductive rate for 

dis-assortative sexual pattern is grat,er than the total reproductive rate of 

the random nlixing followed by the total reproductive rate of the assortative 

mixing pattern. 

In this section, Figures 6.3.1-6.3.21 represent the graphical solution of the 

system of equa.tions (6.2.1) simulating the population without treatment. 

Figures 6.3.1-6.3.3 represent the susceptible population in three sexual 

activity groups ranging from 'assortative' to 'random' and 'dis-assortative' 
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sexual mixing patterns. In general, at the steady state the total nmnher of 

susceptibles for the assortative mixing pattern is shown to be higher than 

the random, which in turn is greater than a dis-assortative mixing pattern, 

for all sexual activity groups. The growths of the nU111ber of the susceptible 

population from dis-assortative to random is 10% and from clis-assortative 

to assortative 16%, for sexual activity group 1 as shown in Figure 6.3.1. In 

Figure 6.3.2, the growths fronl clis-assortative to random is 12% and from clis­. . 

assortative to assortative 2.5%, for sexual activity group 2. In Figure 6.3.3~ 

the growth fro111 clis-assortative to randoll1 is 14% and fronl dis-assortative 

to assortative 4:3%, for sexual activity group 3. 

From the above therefore, it may he concluded that the growth of the 

nunlber of susceptihles is sho\;vn to clernonstrate a pattern; naIllely that the 

growth for sexual activity group :3 is higher than group 2 and group 2 higher 

than group 1. This Ineans the effect of sexual mixing patterns on the lllunber 

of susceptihles in populations with lower nurnber of sexual partner acquisition 

is more considerable. 

Figures 6.:3.4-6.:3.9 represent the six stages of HIV infection for sexual 

activity groups 1 and 2 which indicate that the Inixing patterns have no 

significant impact on the steady state solution (less than 5%). Significantly, 

the transient state shows that the assortative nlixing pattern contains the 

highest peaks occurring within a shorter period of time conlpared to those 

of a random and dis-assortative nature which occur at later periods of time 

at all stages respectively. 

Figures 6.3.10, 6.3.11 and 6.3.12 represent the six stages of HIV infected 

population within sexual activity groups 3. Figure 6.3.10 shows that at the 

steady state, HIV infected populations with an assortative Inixing pattern 

declines to zero due to low levels of sexual partner acquisition. In Figures 
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6.3.11 and 6.3.12, at the steady state, the total nunlber of HIV infected with 

random mixing pattern" =400" is lower than the dis-assortative mixing pat­

tern" =570". In the transient state the assortative mixing pattern contains 

the highest peaks occurring within a shorter period of tinle cOlnpared to 

those of a randonl and dis-assortative nature which occur at later periods of 

time at all stages. 

Figures 6.3.13, 6.3.14 and 6.3.15 represent the total nU111ber of HIV infec­

ted population for sexual activity groups 1, 2 and 3 according to the sexual 

mixing patterns. Figures 6.:3.13 and 6.3.14 show that sexual mixing pat­

tern has no significant ilnpact on the total nUlllber of HIV infected for sexual 

activity group 1 and 2 at steady state. Figure 6.3.15 shows that total nUlnber 

of HIV infected population with assortative sexual lllixing pattern vanishes 

at early stage. It also indicates that totallllunber of HIV infected population 

with random lnixing pattern is lower than dis-assortative Inixing pattern at 

,all the time. 

Figures 6.3.16, 6.3.17 and 6.3.18 represent the total number of full-blown 

AIDS population for sexual activity groups 1, 2 and :3 according to the sexual 

mixing patterns. Figures 6.3.16 and 6.3.17 show that sexual mixing pattern 

has no significant impact on the total number of full-blown AIDS cases for 

sexual activity group 1 and 2 at steady state. Figure 6.3.18 shows that total 

number of full-blown AIDS population with assortative sexual mixing pattern 

vanishes at early stage. It also indicates that total number of full-blown 

AIDS cases with random mixing pattern is lower than dis-assortative mixing 

pattern at all the time. In transient state of the solution, dis-assortative 

mixing pattern contains the highest pick followed by random and assortative 

mixing pattern at shorter period of time. 

Figures 6.3.19, 6.3.20 and 6.3.21 represent the total nunlber of suscept­
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ible, HIV infected and full-blown AIDS cases in the population respectively. 

Figure 6.3.19 indicates that the growth of the nuulber of susceptibles from 

dis-assortative to random sexual 111ixing pattern is 10% and to assortative 

mixing is 30%. Figure 6.3.20 indicates that the number of HIV infected from 

dis-assortative to random sexual 11lixing pattern decline by 10% and to as­

sortative mixing decline by 29%. Figure 6.3.21 indicates that the nUlnber of 

full-blown AIDS cases froll1 dis-ass?rtative to random sexual mixing pattern 

decline by 3% and to assortative 11lixing decline by 6%. 

Fron1 the above it can be concluded that for an untreated population 

whenever the sexual I11ixing pattern varies froln a range of assortative to ran­

dom and dis-assortative the nunlber of susceptihles decrease and the nU111ber 

of HIV infected and AIDS cases increase. 
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Figure 6.3.1: Susceptibles in sexual activity group j, from fully assor/alive to disQssor/ative 
sexual partner acquisition. 
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Figure 6.3.2: Susceptibles in sexual activity group 2. JromJully assortative to disassortaUve 
sexual partner acquisition. 

16000 

15000 

14000 
iU::c 13000

'.;::l 
0­
<D 
(,) 12000en 
::l 

en 
11000 

10000 

/ ..................[..........................···r······················ ............................-.... 


1 

// 1 ...... ------ ... ------- ­

.:'/ ,.",..,." r 1 

" '" I I./'".! ) - _._.

---It-·.. /.... ... ........ ' -' _..... -, - 'l' 
1 

-, -' ' 

--/., ../ ,J I 

\ .' 
-.~ .. J 

,_t_ .. ___ ·_·· 

o 50 100 150 Year 

Figure 6.3.2: Susceptibles in sexual activity group 2, Jrom Jully assortalive to disassortative 
sexual partner acquis ilion. 
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Figure 6.3.4: Six stages of HIV infectious in sexual activity group 1, withfullyassortalive 
sexual partner acquisition. 
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Figure 6.3.5: Six stages of HIV infectious in sexual activity group 1, with random 
sexual partner acquisition. 
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Figure 6.3.6: Six stages of HIV infectious in sexual activity group 1. with dlsassortative 
sexual partner acquisition. 
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Figure 6.3.7: Six stages ojHIV injection in sexual activity group2. with assortative 
sexual partner acquisition. 
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Figure 6.3.8: Six stages ojHIV infection in sexual activity group2. u'ilh random sexual 
partner acquisition. 
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Figure 6.3.9: Six stages ojHIV injection in sexual activity group2, with disassortative 
sexual partner acquisition. 
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Figure 6.3.10: Six stages ojHIV injection in sexual activity group3, with assortative 
sexual partner acquisition. 
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Figure 6.3.11: Six stages ojHIV irifection in sexual activity group3, with random sexual 
partner acquisition. 

400 


350 


300 


til 250
;:s 
,g 
-0 200
<2 
.5 


150 


s:> 
100 


50 


a=l 

............ a=2 

____ a=3 

a=4 

a=5 

a=6 

o 10 20 30 40 50 Year 


Figure 6.3.12: Six stages ojHIV injection in sexual activity group3, with disassortative 
sexual partner acquisition. 
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Figure 6.3.]3: Total HIV infected population in sexual activity group 1, withfi'om assortative to 

random and disassortative sexual partner acquisition. 
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Figure 6.3.14: Total HIV infected population in sexual activity group 2. with from assortative to 
random and disassortative sexual partner acquisition. 
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Figure 6.3.15: Total HIV infected population in sexual activity group 3, withfrom assorlative to 
random and disassortative sexual partner acqUisition. 
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Figure 6.3.16: Full blown A IDS population in sexual activity group J, with/rom assortative to random 
and disassortative sexual partner acquisition. 
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Figure 6.3.17: Full blown AIDS population in sexual activity group 2, with/rom assortative to random 
and disassortative sexual partner acquisition. 
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Figure 6.3.18: Full blown AIDS population in sexual activity group 3, with from assortative to random 
and disassortative sexual partner acquisition. 
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Figure 6.3.19: Population's total sllsceptible with from assortative to random and disassortative sexual 
mixing behaviour. 
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Figure 6.3.20: Population's total HIV infectious withJrom assortative to random and disassortative 
sexual mixing behaviour. 
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Figure 6.3.21: Population's total Jull-blown AIDS cases with fi-om assortalive to random and 
disassorlative sexual partner acquisition. 
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6.3.2 	 Partially treated population, assuming treatment 

has no effect in infectiousness 

Model equation (6.2.1) can be used to describe a partially treated popula­

tion, assuming that treatment does not effect infectiousness. Parameters (3a.2 

represent infectiousness (translnissioll probability) of the treated population 

at stage 0, 0 = {I"", 6}. Placing (30:1 = (30:2 for ex = {I"", 6} in the 

model equations (6.2.1) gives a set of equation simulating a partially treated 

population in which treatlnent does not effect infectiousness. The popula­

tion stratified into three sexual activities groups, including susceptible, six 

stages of HIV infection and full-blown AIDS patients. Parameter values are 

presented in 6.1, Section 6.2. 

i) 	Dis-assortative sexuallnixing pattern: by substituting dis-assortative 

mixing Inatrix (6.:3.2) in the rnodel equations (6.2.1), the determinant 

of the Jacobian of the fonn of (2.2.3) associated with the systern at the 

trivial critical point (6.:3.,5) vanishes whenever, 

k~ = 5.95 

Assuming sexual activity group 1 with an average of kl = 65 new sexual 

partners per unit of time, gives the total reproductive rate 

k
Rd = _1 	= 10.92 (6.3.9)

ki 

ii) Random sexual nlixing pattern: by substituting random mixing 

matrix (6.3.3) in the model equations (6.2.1), the determinant of the 

Jacobian of the form of (2.2.3), associated with the model equation at 

the trivia.l critical point (6.3.5) vanishes whenever, 

k; = 4.65 
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Assuming sexual activity group 1 with an average of kl == 6,5 new sexual 

partners per unit of time, gives the total reproductive rate 

kl 
Rr == -k == 13.98 	 ( 6.3.10) .*

1 

iii) 	Assortative sexual InlXll1g pattern: by substituting assortative 

mixing nlatrix (6.3.4) in the nlodel equations (6.2.1), the determina.nt of 

the Jacobian of the fornl of (2.2.3), associated with the 1110del equation 

at the trivial critical point (6.3.,5) vanishes whenever, 

k~ == 	 3.67 

Assuming sexual activity group 1 with an average of kl == 65 new sexual 

partners per unit of tilne, gi ves the total reproductivE' rate 

kl
Ra == - == 17.71 	 (6.:3.11)

ki 

Comparing tota.l reproductive rates with from dis-assortative (6.3.9), to 

random (6.3.10) and assortative (6.3.11) sexual mixing patterns indicate that 

Rd < Rr < Ra 111eaning that the total reproductive rate for dis-assortative 

sexual pattern is grater than the total reproductive rate of the random nlixing 

followed by the total reproductive rate of the assortative nlixing pattern. 

Figures 6.3.22-6.3.54 represent the graphical solution to the systenl of 

equations (6.2.1) simulating a partially treated population assuming that 

treatment does not effect infectiousness. 

Figures 6.3.22-6.3.24 represent the susceptible population in three sexual 

activity groups ranging from 'assortative' to 'random' and 'dls-assortative' 

sexual mixing patterns. In general, the total number of susceptihles for the 

assortative pattern is shown to be higher than the random pattern, which ill 
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turn is greater than a dis-assortative 111ixing pattern, for all sexual activity 

groups at the steady state. 

At the stea.dy state, the gro'wths of the nUl11ber of the susceptible pop­

ulation from dis-assortative to randolll is 25% and frol11 dis-assortative to 

assortative 75%, for sexual activity group 1 as shown in Figure 6.3.22. In 

Figure 6.3.23, the growths from clis-assortative to random is 8% and from 

dis-assortative to a.ssortative 16%, for sexual activity group 2. In 6.3.24, 

the growth froln dis-assortative to randolll is 2% and fronl dis-assortative to 

assortative 5%, for sexual activity group 3. 

From the above therefore, it Inay be conel uded that the growth of the 

number of susceptihles is shown to clelllonstrate a pattern; namely that the 

growth for sexual a.ctivity group 1 is higher tha.n group 2 and group 2 higher 

than group 3. This 111eanS the effpet. of sexual mixing patterns on the nUl11ber 

of susceptibles in populations with higher nUlllber of sexual partner acquisi­

tion is more considerable. 

Figures 6.:3.2.5-6.:3.:36 represent six stages of treated and untreated HIV in­

fectious population within sexual activity groups 1 and 2 which indicate that 

the mixing patterns have no significant impact on the steady state solution 

(less than 5%). Hovvever at, steady state the total number of treated HIV 

infectious population appear to be one third of the untreated HIV infectious 

population, this ratio depends on the rates at which infected population are 

diagnosed and receive treatment (TO') for a == {I",' ,6}. 

Significantly, the transient state shows that the dis-assortative mixing 

pattern contains the highest peaks occurring within a shorter period of time 

compared to those of a randOIn and assortative nature which occur at later 

periods of time at all stages for both treated and untreated populations. 
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Figures 6.3.37-6.3.42 represent the six stages of treated and untreated 

HIV infectious population within sexual activity groups 3. Figures 6.3.37 

and 6.3.40 show that at the steady state, treated and untreated HIV infec­

tious populations with an assortative mixing pattern declines to zero due 

to sexual life style (assortative rnixing). In Figures 6.3.38 and 6.3.39 at the 

steady state, the total nlunber of untreated HIV infectious with random 

mixing pattern is lower than the ~lis-assortative mixing pattern. In Figures 

6.3.41 and 6.3.42 at the steady state, the total number of treated HIV infec­

tious with random nlixing pattern is lower than the dis-assortative mixing 

pattern. Theses show an increase of 47% froIll random Inixing pattern to 

dis-assortative lnixing for both treated and untreated HIV infected popula­

tion within sexual activity group :3. In the transient state the dis-assortative 

mixing pattern contains the highest peaks occurring within a shorter period 

of time compared to those of a randonl and assortative nature which occur 

at later periods of tiIne at all stages. 

Figures 6.:3.4:3, 6.3.44 and 6.3.45 represent the treated and untreated 

AIDS population in sexual activity group 1, showing assortative, rancloln 

and dis-assortative patterns respectively. At steady state no significant dif­

ference is observed according to sexual mixing patterns for both treated and 

untreated AIDS populations. However, the transient state shows that the as­

sortative n1ixing pattern contains the highest peak occurring within a shorter 

period of time compared to those of a random and dis-assortative nature 

which occur at later periods. 

Figures 6.3.46, 6.3.47 and 6.3.48 represent the treated and untreated 

AIDS population in sexual activity group 2, showing assortative, randoln 

and dis-assortative patterns respectively. At steady state no significant dif­

ference is observed according to the sexual mixing patterns for both treated 
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and untreated full-blown AIDS cases. However~ the transient state shows 

that the dis-assortative mixing pattern contains the highest peak occurring 

within a shorter period of tirrle compared to those of a random and assort­

ative nature which occur at later periods of time at all stages. 

Figures 6.3.49, 6.3.,50 and 6.3.51 represent the treated and untreated 

AIDS population in sexual activity group 3. At steady state the number of 

treated and untreated AIDS cases, with assortative sexual behaviour declines 

to zero. At steady state, the random pattern is lower than the dis-assortative 

pattern by a factor of 50% for both treated and untreated AIDS populations. 

In transient state of the solution, dis-assortative nlixing pattern contains the 

highest pick followed by ranelonl and assortative nlixing pattern at shorter 

period of tinle. 

Figures 6.3.52\ 6.:3.5:3 and 6.3.54 represent the total nU111ber of suscept­

ible, HIV infected and full-blown AIDS cases in a partially treated popula­

tion respectively assurning that the treatment does not effect infectiousness. 

Figure 6.:3 ..52 indicates that the growth of the nUluber of susceptibles froin 

dis-assortat i ve to randonl sexual Inixing pattern is 11% and to assortati ve 

mixing is 32%. Figure 6.3.53 indicates that the number of HIV infected from 

dis-assortative to random sexual mixing pattern decline by 16% and to as­

sortative mixing decline by 31%. Figure 6.3.54 indicates that the ntunber of 

full-blown AIDS cases from dis-assortative to random sexual mixing pattern 

decline by 10% and to assortative n1ixing decline by 31%. 
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Figure 6.3.22: Susceptibles in sexual activity group I. withfrom assortative to random and 
disassortative sexual partner acquisition. assuming treatment does not effect infectiOllsness. 
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Figure 6.3.23: SusceptibLes in sexual activity group 2, with from assortative to random and disassortative 

sexual partner acquisition, assuming treatment does not effect infectiousness. 
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Figure 6.3.24: Susceptibles in sexual activity group 3,withfrom ass or/alive to random and disassortalive 

sexual partner acquisition, assuming treatment does not effect infectiousness. 
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Figure 6.3.25: Six stages ofuntreated HIV infectious in sexual activity group /, with assortative 
sexual partner acquisition, assuming treatment does not effect infectiousness. 
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Figure 6.3.26: Six stages ofuntreated HIV infectious in sexual activity group 1. with random 
sexual partner acquisition, assuming treatment does not effect infectiousness. 
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Figure 6.3.27: Six stages ofzmtreated HIV infectious in sexual activity group /, with disassortative 
sexual partner acquisition. assuming treatment does not effect infectiousness. 
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Figure 6.3.28: Six stages oftreated HIV infection in sexual activity group I, with assortative 
sexual partner acquisition, assuming treatment does not effect infectiousness. 
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Figure 6.3.29: Six stages aftreated HIV infection in sexual activity group /,with random 
sexual partner acquisition, assuming treatment does not effect infectiousness, 
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Figure 6.3.30: Six stages aftreated HIV infection in sexual activity group 1, with disassortative 
sexual partner acquisition, assuming treatment does not effect infectiousness. 
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Figure 6.3.31: Six stages oJuntreated HIV injection in sexual activity group2, with assortative sexual 
partner acquisition, assuming treatment does not effect infectiousness. 

o 10 20 30 Year 

Figure 6.3.32: Six stages oJuntreated HIV injection in sexual activity group2, with random sexual 

partner acquisition. assuming treatment does not effect inJectiousness. 
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Figure 6.3.33: Six stages o/untreated HIV infection in sexual activity group2, with disassortative 

sexual partner acquisition. assuming treatment does not effect infectiousness. 
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Figure 6.3.34: Six stages oftreated HIV infection in sexual activity group 2, with assortalive sexual 
partner acquisition, assuming treatment does not effect irifectioltsness. 
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Figure 6.3.35: Six stages oftreated HIV infection in sexual activity group 2. with random sexual 
partner acquisition, assuming treatment does not effect infectiousness. 
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Figure 6.3.36: Six stages aftreated HIV infection in sexual activity group 2, with disassortative sexual 
partner acquisition, assuming treatment does not effect lnfocliousness. 
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Figure 6.3.37: Six stages oJuntreated HIV infection in sexual activity group3. with assortative 
sexual partner acquisition. assuming treatment does not effect infectiousness. 
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Figure 6.3.38: Six stages oJuntreated HIV irifection in sexual activity group3. with random 
sexual partner acquisition, assuming treatment does not effect infectiollsness. 

300 • 

/'.\'"
250': ,'.

j! >\\ 
III • i I . \ 
§l 200 - .': -I • \ 

'is If I \\ I 

~ :1,' ,;.~ j
.5 150 - -I[,l '.~. 
> .: I • , \\'\ 

:t -_.J!: --J-~ \.~~.\ I
] 100 , : 1/ ,,' "l\ • I 

" ; I 1/ '" ...J).~ ,.,..".... ..1 .... ......,.._............. f.~ .............".t ................ 


e 
0:1 

I ! / /}I :~-.......-:,:1=.~.'.::.~ - - - ~::. ~::..:-.:.~ :.~ ::.:.::,. f . § 50 .• : _. '1/ ~ - - - - ..J- - • - !

iJ/ ..if '-. -._. '-.:... ................. 1............ _................... :. 

~..... . --:---. .....-r..... " ,I 
o 10 20 30 Year 

Figure 6.3.39: Six stages oJuntreated HIV infection in sexual activity group3, with disassorlative 
sexual partner acquisition, assuming treatment does not effect inJectiousness. 
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Figure 6.3.40: Six stages oftreated HIV infection in sexual activity group 3, with assortative 
sexual partner acquisition, assuming treatment does not effect infectiollsness. 
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Figure 6.3.41: Six stages oftreated HI V infection in sexual activity group 3, with random 
sexual partner acquisition, assuming treatment does not effect infectiollsness. 
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Figure 6.3.42: Six stages oftreated HIV infection in sexual activity group 3, with disassortative 
sexual partner acquisition, assuming treatment does not effect infectiousness. 
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Figure 6.3.43: Treated and zlI1treatedJull blown AIDS population in sexual activity group I. with 
assortative sexual partner acquisition, assuming treatment does not effect infectiousness. 
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Figure 6.3.45: Treated and untreatedJull blown AIDS population in sexual activity group I, with 
random sexual partner acquisition, assuming treatment does not effect infectiousness. 
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Figure 6.3.45: Treated and untreatedfuli blown AIDS population in sexual activity group I, with 
disassortative sexual partner acquisition, assuming treatment does not effect infectiousness. 
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Figure 6.3.46: Treated and lmtreatedfidl-blown AIDS population in sexual activity group 2, with 
assortalive sexual partner acquisition. assuming treatment does not effect infectiousness, 
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Figure 6.3.47: Treated and untreatedfidl blown AIDS population in sexual activity group 2, with 
random sexual partner acquisition, assuming treatment does not effect infectiousness. 
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Figure 6. 48: Treated and untreatedfult blown AIDS population in sexual activity group 2, with 
disassortative sexual partner acquisition, assuming treatment does not effect infectiousness. 
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Figure 6.3.49: Treated and untreatedfutl blown AIDS population in sexual activity group 3, with 

assarlalive sexual partner acquisition, assuming treatment does not effect infectiollsness . 
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Figure 6.3.50: Treated and untreatedfull blown AIDS population in sexual activity group 3, with 
random sexual partner acquisition, assuming treatment does not effect infectioZlsness. 
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Figure 6.3.51: Treated and untreatedfull blown A IDS population in sexual activity group 3, with 
disassortative sexual parlner acquisition, assuming treatment does not effect irifectiousness. 
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6.3.3 	 Partially treated population, assuming treatnlent 

reduces the infectiousness by 50% 

Model equation (6.2.1) can be used to describe a partially treated popula­

tion Assuming that treatnlent reduces infectiousness by 50%. Parameters f3cx2 

represent infectiousness (tranSlllission pro babili ty) of the treated population 

at stage Q for Q = {1, ... ,7}. Placing Pol. = 0.5f3t:d for a = {1, ... ,6} in the 

lTIodel equations (6.2.1) gives a set of equation sinlulatillg a partially treated 

population in which treatnlent reduces the infectiousness by 50%. The popu­

lation stratified into three sexual activities groups, including susceptible, six 

stages of HIV infection and full-blown AIDS patients. Pararneter values are 

presented in 6.1; Section 6.2. 

i) 	Dis-assortative sexualluixing pattern: by substituting dis-assortative 

mixing Inatrix (6.3.2) in 1110del equations (6.2.1), the deterrninant of 

the Jacobian of the fOfIn of (2.2.:3) associated with the nl0del equation 

at the trivial critical point (6.:3.5) vanishes whenever, 

k~ = 6.89 

Assuming sexual activity group 1 with an average of kl = 65 new sexual 

partners per unit of tin1e; gives the total reproductive rate 

kl
Rd 	= -'= 9.43 (6.3.12)

kj 

ii) 	Random sexual mixing pattern: by substituting random mixing 

matrix (6.3.3) in model equations (6.2.1), the detenninant of the Jac­

obian of the form of (2.2.3 associated with the model equation at the 

trivial critical point (6.3.5 vanishes whenever, 

k~ = 5.38 
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Assuming sexual activity group 1 with an average of kl = 6.5 new sexual 

partners per unit of time, gives the total reproductive rate 

(6.3.13) 


iii) 	Assortative sexual lTIIXlng pattern: by substituting assortative 

mixing matrix (6.3.4) in model equations (6.2.1), the detennillant of 

the Jacobian of the fOrIn of (2.2.3) associated with the Inodel equation 

at the trivial critical point (6.3.5) vanishes whenever, 

Assuming sexual activity group 1 with an average of ILl = 6,5 new sexual 

partners per unit of tinle, gives the total reproductivE' rate 

kl
Ra 	= - = 15.29 (6.:3.14)

k*1 

Comparing total reproductive rates with froul dis-assortative (6.3.12), to 

random (6.3.13) and assortative (6.3.14) sexual mixing patterns indicate that 

Rd < Rr < Ra meaning that the total reproductive rate for dis-a.ssortative 

sexual pattern is grater than the total reproductive rate of the randorll Inixing 

followed by the total reproductive rate of the assortative Inixing pattern. 

Figures 6.3.22a-6.3.54a represent the graphical solution to the system of 

equations (6.2.1) simulating a partially treated population assuming that 

treatment reduces the infectiousness by 50% at all stages. 

Figures 6.3.22a-6.3.24a represent the susceptible population in three sexual 

activity groups ranging from 'assortative' to 'randoln' and 'dis-assortative' 

sexual mixing patterns. In general, the total number of susceptihles for the 

assortative pattern is shown to be higher than the randonl pattern, which in 

182 




turn is greater than a dis-assortative mixing pattern, for all sexual activity 

groups at the steady state. 

At the steady state, the growths of the number of the susceptible pop­

ulation from dis-assortative to random is 25% and from dis-assortative to 

assortative 75%, for sexual activity group 1 as shown in Figure 6.3.22a. In 

Figure 6.3.23a, the growths from clis-assortative to random is 8% and frOln 

dis-assortative to assortative 16~, for sexual activity group 2. In Figure 

6.3.24a, the growth from dis-assortative to randOIn is 13% and from dis­

assortative to assortative 35fJ('), for sexual activity group 3. 

Figures 6.3.25a-6.3.36a represent six stages of treated and untreated HIV 

infectious population within sexual activity groups 1 and 2 which indicate 

that the mixing patterns have no significant inlpact on the steady state solu­

tion (less than .So/c:)). However at steady state the total number of treated HIV 

infectious population appear to be one third of the untreated HIV infectious 

population, this ratio depends on the rates at which infected population 

are diagnosed and receive treatment (r·O'). Significantly, the transient state 

shows that the assortative nlixing pattern contains the highest peaks occur­

ring within a shorter period of time cOInpared to those of a ranelOln and 

dis-assortative nature which occur at later periods of tin1e at all stages for 

both treated and untreated populations. 

Figures 6.3.37a-6.3.42a represent the six stages of treated and untreated 

HlV infectious population within sexual activity groups 3. Figures 6.3.37a 

and 6.3.40a show that at the steady state, treated and untreated HIV infec­

tious populations with an assortative mixing pattern declines to zero due to 

sexual mixing behaviour and low levels of sexual partner acquisition. In Fig­

ures 6.3.38a and 6.3.3980 at the steady state, the total nunlber of untreated 

HIV infectious with random mixing pattern is lower than the dis-assortative 
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mixing pattern. In Figures 6.3.41a and 6.3.42a at the steady state, the total 

number of treated HIV infectious with random mixing pattern is lower than 

the dis-assortative mixing pattern. Theses show an average increase of 52% 

from random nlixing pattern to dis-assortative mixing for both treated and 

untreated HIV infected population. In the transient state the dis-assortative 

mixing pattern contains the highest peaks occurring within a shorter period 

of tinle compared to those of a randonl and assortative nature which occur 

at later periods of tinle at all stages. 

Figures 6.3.4:3a-6.:3.4Sa represent the treated and untreated AIDS pop­

ulation in sexual activity groups 1 and 2 showing assortative, ra.udonl and 

dis-assortative nlixing patterns. At steady state no significant difference is 

observed upon sexual Illixing patterns for both treated and untreated AIDS 

populations (less than 5%). However, an increase of 100% on the total llunl­

ber of AIDS cases is observed froIn untrea.ted and treated populations. In 

transient sta.te assortative rnixing pattern contains the highest peak occur­

ring within a shorter period of tinl€' cornparecl to those of a ranclomand 

dis-assortative nature which occur at later periods of tinle at all stages. 

Figures 6.:3.49a, 6.:3 ..50a and 6.3 ..51a represent the treated and untreated 

AIDS population in sexual activity group 3. At steady state the number of 

treated and untreated AIDS cases with assortative sexual behaviour declines 

to zero. At steady state, the random pattern is lower than the dis-assortati ve 

pattern by a factor of IOOIn transient state of the solution~ dis-assortative 

mixing pattern contains the highest pick followed by random and assortative 

mixing pattern at shorter period of time. 

Figures 6.3.52a, 6.3 ..53a and 6.3.54a represent the total number of sus­

ceptible, HIV infected and full-blown AIDS cases in a partially treated pop~ 

ulation respectively assuming that the treatnlellt reduces infectiousness by 
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50%. Figure 6.3.52a indicates that the growth of the number of susceptihles 

from dis-assortative to random sexual mixing pattern is 10% and to assortat­

ive mixing is 30%. Figure 6.3.53a indicates that the number of HIV infected 

from dis-assortative to random sexual mixing pattern decline by 11% and to 

assortative mixing decline by 29%. Figure 6.3.54a indicates that the num­

ber of full-blown AIDS cases fronl dis-assortative to random sexual 111ixing 

pattern decline by 4% and to assortative nlixing decline by 27%. 

Fron1 the above it can be concluded that whenever the sexual nl1xlng 

pattern varies frorn a range of assortative to clis-assortative for an untreated 

population the nurnber of susceptibles decrease and the number of HIV in­

fected and AIDS cases increase. 
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Figure 6.3.22a: Susceptibles in sexual activi~ group I, with from assortative to random and 
disassortative sexual partner acquisition. assuming treatment reduces infectiousness by 50%.. 
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Figure 6.3.23a: Susceptibles in sexual activity group 2, with from assortalive to random and 
disassortative 

sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.24a: Susceptibles in sexual activity group 3,withfrom assortative to random and 
disassortative sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.25a: Six stages ofuntreated HIV infectious in sexual activity group I, with assortative 
sexual partner acquisition. assuming treatment reduces infectiousness by 50%.. 
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Figure 6.3.26a: Six stages ofuntreated HIV infectious in sexual activity group I, with random 
sexual partner acquisition, assuming treatment reduces infectiousness by 50%.. 
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Figure 6.3.27a: Six stages ofuntreated HIV inftctious in sexual activity group /, with disassortative 
sexual partner acquisition, assuming treatment reduces infectiousness by 50%.. 
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F1gnre 6.3.28a: Six stages oftreated HIV infection in sexual activity group 1, with assortalive 
sexual partner acquisition, assuming treatment reduces irrfectiousness by 50%. 
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Figure 6.3.29a: Six stages oJtreated HIV infection in sexual activity group I, with random 
sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.30a: Six stages o/treated HIV infection in sexual activity group 1. with disassortative 
sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.31a: Six stages o/untreated HIV infection in sexual activity group 2, with assortative 
sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.32a: Six stages o/untreated HIV injection in sexual activity group2, with random sexual 
partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.33a: Six stages oJuntreated HIV infection in sexual activity group2, with disassortative 
sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.34a: Six stages oftreated HIV infection 'in sexual activity grollp 2, with assartalive 
sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.35a: Six stages oftreated HIV infection in sexual activity group 2, with random 
sexual partner acquisition, assuming treatment reduces infectiousness by 50%, 
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Figure 6.3.37a: Six stages oftreated HIV infection in sexual activity group 2, with disassortative sexual 
partner acquisition, assuming treatment reduces infectiousness by 50%, 
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Figure 6.3.37a: Six stages ofuntreated HIV injection in sexual activity group3, with assorla/ive 
sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.38a: Six stages ofuntreated HIV infection in sexual activity group3, with random 
sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.39a: Six stages ofuntreated HIV infection in sexual activity group3, with disassortative 
sexual partner acquisition, assuming treatment reduces infectiousness by 50%.. 
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Figure 6.3.40a: Six stages oftreated HIV infection 'in sexual activity group 3, with assortalive 
sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.41a: Six stages oftreated HIV infection in sexual activity group 3, with random 
sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.42a: Six stages oftreated HIV b1fection in sexual activity group 3, with disassortative 

sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.43a: Treated and untreated Jull blown AIDS population in sexual activity group I, with 
assortative sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.44a: Treated and untreatedJull blown AIDS population in sexual activity group 1, with 
random sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.45a: Treated and untreatedJult blown AIDS population in sexual activity group 1, with 
disassortative sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.46a: Treated and untreatedfull blown AIDS population in sexual activity group 2, with 
assortative sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.47a: Treated and untreatedfull blown AIDSpopulation in sexual activity group 2, with 
random sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.48a: Treated and untreatedfull blown AIDSpopulation in sexual activity group 2, with 
disassortative sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.49a: Treated and untreatedJull blown AIDS population in sexual activity group 3, with 
assortative sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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Figure 6.3.50a: Treated and untreatedfull blown AIDS population in sexual activity group 3, with 
random sexual partner acquisition, assuming treatment reduces infectiousness by 50%. 
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6.4 Conclusion 


This chapter has presented some results of the population level impact of 

antiviral therapy and sexual mixing patterns, based on the development and 

analysis of a complex model of the transmission dynamics of HIV in a male 

homosexual community. Antiviral therapy acts to increase life expectancy of 

the treated subjects (before the emergence and persistence of drug resistant 

strains of the virus (see Wei et al., [111]) by slowing the rate of progres­

sion to AIDS. In most cases, particularly when the transmission intensity is 

high before community wide treatment, benefit to the individual is translated 

into net benefit to the community. However, graphical solution presented in 

Section 6.3.2 shows that lengthening the infectious period by increasing life 

expectancy can enhance the transmission success of the virus and, concom­

itantly, increase the net rate of AIDS induced mortality over that present 

before wide-scale treatment. Section 6.3.3 showed that likelihood of this 

perverse outcome arising is minimised by the use of drugs that suppress vir­

aemia (assumed to equate with infectiousness) by 50% and by counselling 

of treated patients to impress upon them that treatment does not eliminate 

their infectiousness during unprotected sex. 

The elimination of transmission with extensive treatment coverage of in­

fected persons with a drug which suppresses infectiousness to zero will not 

be possible, because of the high infectiousness early in the incubation period 

coupled with the small probability of detection and treatment at the early 

stage of the disease. However, the benefits accruing from community wide 

use of drugs that effectively suppress infectiousness, even for periods of a few 

months to a few years1 could be very significant if treatment reaches a high 

fraction of the infected population. These benefits in reducing transmission 
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are over and above those received by individual patients. However, at present 

this would be an expensive method for the community wide control of trans­

mission, given the cheaper alternatives of inducing behavioural change and 

increased condom use. This is especially the case given uncertainties over the 

degree to which treatment reduces infectiousness, and the short dura.tion of 

suppression of viraemia before drug resistant viral strains becon1e cl0111ina,1lt. 

Studies of the population genetics and population dynan1ics of lIlY in 

patients treated with antiviral drugs have revealed the rapidity 'with \vhich 

drug resistance emerges (Wei et al., [Ill]; Ho et al., [61]). 

How transmissible the resistant strains are, and how they cornpcte \vi t.ll 

susceptible virus in the absence of treatment are key questions. Future \'\'ork 

on the conlmunity wide implications of antiviral therapy to suppress IIlV 

population growth in individual patients lTIUSt begin to address the popula­

tion genetics of the spread and persistence of drug resistant variants. 
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Chapter 7 

Summary and concluding 

remarks 

This thesis has mathematically n10clellecl the transmission dynamics of 

HIV / AIDS considering a single sex conlmunity. The AIDS endernic has been 

characterised by the broad and conlplex range of epidemiological and soci­

ological issues involved. Every endenlic that occurs is in SODle way unique 

from others, even within the same city or comn1unity. Different risk groups 

like homosexual males can cause and maintain an epidemic within their own 

group, or interact with other risk groups like heterosexuals and injecting drug 

users. 

Mathematical modellers are advised to direct their attention to specific 

questions, employing comparatively small models. In this way they can nlake 

valuable contributions to the understanding of the epidemiology of the dis­

ease, and assess the potential and actual impact of prevention and control 

measures. In addition to, identifying important issues, providing guidance 

on what additional data are critically needed from epidemiological and be­
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havioural studies. 

Chapter 1 is a broad discussion and review of the AIDS panc1enlic and 

the research efforts that has acconlpanied it. The knowledge of the hUlnan 

immune system is essential. The biggest obstacles facing collaborations is the 

inability of clinicians to understand advanced nlathematics and on the math­

ematician's part, the lack of knowledge of the underlying Inedical problem. 

It can take years to come to tern,ls with all the medical jargon l especially 

in a continually evolving area. This can be overcome through serious cr08S­

training of interdisciplinary scientists whose goal will be doing good science, 

which in turn would advance knowledge in both disciplines. 

The origin of AIDS epic1eIllic in different regions across the globe has 

been dated back to the early Seventies although not clear. The Illost recent 

statistics is also given. Injecting drug use appears to be the lTIain cause 

of the transnlission of the disease in SOITIe regions. The inlplications of the 

pandemic for the social fabric as it effect regions (most notably sub-Sahara 

Africa). 

In order to review the nl0delling of the epidenliology of HIV / AIDS, I 

first discuss the terminology of the AIDS modelling followed by difficulties 

encountered in modelling and natural history nlodels. A glossary of the 

terminology used throughout this thesis finalises this chapter. 

Chapter 2 discusses mathematical approach to the modelling of the trans­

mission dynamics of HIV! AIDS epidemic. It also describes the mathemat­

ical structure of the transmission dynamics of HIV!AIDS models in form 

of deterministic approximation in the form of ordinary differential equations 

(ODEs). This is then followed by the stability analysis of the system of 

ordinary differential equations, used in the concept of AIDS dynaInics mod­
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elling. Also, this chapter introduces some novel algorithms used in analysis of 

the transmission dynamic models throughout this thesis. These include the 

computational methods and algorithms to reduce the size of the complexity 

of the problem by bypassing sonle standard algorithms involved in lllodel 

analysis. An outline of the methods and novel techniques used in analysis of 

the system of ordinary differential equations devised to rnoelel transmission 

dynamics of HIV / AIDS throughout this thesis are presented. 

Chapter 3 discusses solution techniques of the HIV / AIDS transmission 

models. These include algorithms and techniques used to solve systern of 

ordinary differential equations. Also this chapter present a novel analytical 

approach in estimating boundary conditions on the nUlnerical method1s time 

step, covering a range from monotonically convergent to oscillatory conver­

gence even divergence. 

Two numerical methods including Euler's and an alternative method were 

enlployed as the solver engines in the inlplementations. In general, nunlerical 

method used to solve the Inathelnatical model should not predict chaos or 

divergence when chaos and divergence are not features of the systenl. The 

efficiency of the numerical integration of the systenlS of non-linear differential 

equations over the largest possible time step, bearing in nlind accuracy and 

stability, is of remarkable degree. The stability properties restrict the use of 

a large time step this is to avoid the presence of chaos or divergence in the 

solution of the model equations. 

Choosing the suitable numerical method using maximum possible time 

step increases the speed and performance of the computational tools bearing 

in mind the accuracy and stability. 

In order to eliminate the occurrence of the solution, which does not match 
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the stochastic nature of the problenl choosing the appropriate time step is 

essential. This occurs whenever a large-scale model is to be analysed and 

solved. Computational experience shows that, solving large-scale problerl1s 

are costly. As time step increase the number of iterations to converge to the 

steady state decreases. The theory of convergence and its extension are the 

keys to estimate the maximum time step. 

Chapter 4 applies the algorithms and the techniques described previously 

in Chapters 2 and 3 on the three existing models. To direct the attention of 

this work to specific questions~ three cornparatively small nl0dels are investig­

ated in details providing sonle valuable contributions to the understanding of 

the epidemiology of AIDS. Also the potential and actual impact of changing 

sexual behaviour in the translnission dynanlics of HIV / AIDS. 

The first mathematical nlodel is a basic nlodel stratifying the population 

into two groups of susceptible and infectives. The second one describes the 

nlathematical nl0del predicting transillission dynamics of AIDS for longer 

periods of tinle. This model stratifies the population into three groups of 

susceptible, infective and full-blown AIDS patients. Finally the third model 

stratifies population into five groups of susceptible, infectives who ultimately 

develop AIDS, and infectives who do not develop AIDS, full-blown AIDS 

patients and non-infectious seropositives. 

Mathematical analysis presented in this chapter suggest that, whenever 

individuals in a population choose less than k* (bifurcation parameter) num­

ber of sexual partners per unit of time then the disease will eventually disap­

pear. The bifurcation parameter is a unique parameter, which leads to the 

calculation of the reproductive rate. Reproductive rate is the average total 

number of secondary HIV infected cases made by one prinlary infected case. 

Whenever an infected population is stratified into subpopulations the total 
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reproductive rate is the sum of infected subpopulation reproductive rates. 

The aim of Chapter 5 is to obtain equations that are consistent with 

the observed population sexual contacts and to investigate the effect of het­

erogeneity in sexual behaviour on the transmission dynamics of HIV / AIDS. 

Heterogeneity in sexual behaviour increase the endenlic prevalence from that 

pertaining in a population with h01110geneity in sexual behaviour. Some res­

ults of the developing theory of 111jxing matrices is given proposing the need 

for further constraints. In addition to presenting constraints that ensure the 

description of the full range of Inixillg patterns of a given populatioIl, for 

defined population paranleters in a specified tinle interval. 

Also in this chapter the Ineaning of the rnixing extremes are exaluinecl 

in the light of the new constraints. Distribution of individuals by number of 

sexual partners tend to be highly skewed in character where most individuals 

have few partners and a few have many. This hnplies that in a defined com­

munity the number of people in the highest sexual activity group tends to be 

small, which in turn linlits the possibilities of partnership with individuals in 

this group. The effect of behavioural heterogeneity is explored by stratifying 

population according to the level of sexual activity. 

In this chapter numerical examples illustrate the insufficiency of the ex­

isting constraints on the elenlents of the mixing Inatrixes for a population 

of finite size. The major problem arises with the characteristics and nature 

of the sexual activity of individuals in a population that reports small num­

ber of individuals in high activity groups. Some constraints are presented 

satisfying all the necessary and sufficient conditions on the elements of the 

mixing matrix of a finite size population of homosexual men to be a true 

mixing matrix. 
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Graphical solution to the mathematical modelling of a population with 

heterogeneous sexual behaviour shows that, assortative populations are less 

susceptible to the spread of HIVI AIDS than mixed or dis-assortative popula­

tions. In other words, whenever sexual mixing pattern varies from a range of 

assortative to random and dis-assortative the number of susceptibles decrease 

and the nuruber of HIV infected and AIDS cases increase. 

Finally, Chapter 6 discusses the Dlathernatical modelling of the effect of 

the antiviral therapies in the transrnission dynalnics of HIV / AIDS within a 

population of homosexual I11ale, wi th heterogeneous sexual behaviour. Anti­

HIV treatments have begun to have an effect on the net rate of transmission of 

HIV in human population. Although silnple in concept, little is understood 

at present of how to induce behavioural changes in any given society or 

comnlunity. 

Behavioural change is the desired intervention to linlit HIV spread. The 

simplest methods to control HIV are conciOIn use and education to encourage 

reduction in the rate at which individuals acquire new sexual partners. A 

further option is the use of conullunity wide programrnes designed to treat all 

infected individuals with antiviral therapy. This obviously acts to the benefit 

of the individual who receives treatment (given the availability of a safe and 

efficacious drug), but it can also act to reduce net transmission within the 

community, if therapy reduces the infectiousness of a treated patient. 

SOUle conlplex mathematical models are devised and studied with the as­

sumptions made on the conditions of the treatment. These include a popula­

tion with no treatment, treated population assuming that treatment does not 

effect the infectiousness of the treated individuals and finally, treated popula­

tion assuming that treatment reduces the infectiousness by 50%. Comparing 

the graphical solutions indicate that whenever treatment does not effect the 
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infectiousness the anti-HIV treatment increase the net rate of HIV infection , 
full-blown AIDS and reduces the total number of susceptibles simultaneously. 

These rates increase according to the sexual mixing pattern from a range of 

assortative to random and dis-assortative respectively. 

Reduction of the infectiousness by anti-HIV treatrnent is the key to elim­

inate the transmission in a population with extensive treatInent coverage. 

However, suppressing the infectio1.lsness to zero will not be possible, because 

of the high infectiousness early in the incubation period coupled with the 

sn1all probability of detection and treatn1ent at the early stage of the disease. 

The benefits accruing froIll cornmunity wide use of drugs that effectively sup­

press infectiousness, even for periods of a few lllonths to a few years, could 

be very significant if treatment rea.ches a high fraction of the infected pop­

ulation. These benefits in reducing transmission are over and above those 

received by individual patients. 

At present this would be an expensive nlethod for the community wide 

control of trans111ission, given the cheaper alternatives of inducing behavi­

oural change and increased condonl use. This is especially the case given un­

certainties over the degree to which treatment reduces infectiousness, a.nd the 

short duration of suppression of vira.emia before drug resistant viral strains 

become dominant. 

How transmissible the resistant strains are, and how they compete with 

susceptible virus in the absence of treatment are key questions. Future work 

on the community wide implications of antiviral therapy to suppress HIV 

population growth in individual patients must begin to address the popula­

tion genetics of the spread and persistence of drug resistant variants. 

My work has contributed significantly to understanding the spread of 
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HIV/ AIDS. This work can provide education and health authorities with the 

tools to plan effective strategies to fight the spread of the virus. This thesis 

suggests that sex education at early stages is more effective than antiviral 

therapies in controlling the spread of the HIV / AIDS. 

As the Injecting Drug Use (IDU) is becorning a significant cause of the 

spread of HIV / AIDS in some areas in the world, a further research needs to 

be done to overcome this issue. 

As away of comparing the results obtained in this work and the previous 

work by other researchers these findings show that novel numerical methods 

can be applied to a systen1 of ordinary differential equations which incoIl1­

pases the administration of a cocktail of drugs to AIDS patients as well as 

the average number of sexual partners per year. This is a new work and has 

not been tackled by previous researchers in the same area. 
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