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Abstract. We present necessary and sufficient conditions for the existence of a matrix poly-
nomial when its degree, its finite and infinite elementary divisors, and its left and right minimal
indices are prescribed. These conditions hold for arbitrary infinite fields and are determined mainly
by the “index sum theorem,” which is a fundamental relationship between the rank, the degree, the
sum of all partial multiplicities, and the sum of all minimal indices of any matrix polynomial. The
proof developed for the existence of such polynomial is constructive and, therefore, solves a very
general inverse problem for matrix polynomials with prescribed complete eigenstructure. This result
allows us to fix the problem of the existence of �-ifications of a given matrix polynomial, as well as
to determine all their possible sizes and eigenstructures.
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1. Introduction. Matrix polynomials are essential in the study of dynamical
problems described by systems of differential or difference equations with constant
coefficient matrices

(1.1) Pd Δ
dx(t) + · · ·+ P1 Δx(t) + P0 x(t) = y(t),

where Pi ∈ F
m×n, F is an arbitrary field, Pd �= 0, and Δj denotes the jth differential

operator or the jth difference operator, depending on the context. More precisely, the
system (1.1) is associated to the matrix polynomial of degree d

(1.2) P (λ) = Pdλ
d + · · ·+ P1λ+ P0.

The importance of matrix polynomials in different applications is widely recognized
and is discussed in classic references [14, 18, 29], as well as in more recent surveys
[32]. These references consider infinite fields, but it is worth emphasizing that matrix
polynomials over finite fields are also of interest in applications like convolutional
codes [12].

A matrix polynomial P (λ) is regular when P (λ) is square and the scalar poly-
nomial detP (λ) has at least one nonzero coefficient. Otherwise P (λ) is said to be
singular. When P (λ) is regular, the solutions of the system of differential/difference

∗Received by the editors April 8, 2014; accepted for publication (in revised form) by F. Tisseur
December 17, 2014; published electronically March 24, 2015. This research was partially supported
by the Ministerio de Economı́a y Competitividad of Spain through grant MTM-2012-32542 and
by the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization), funded by the
Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office.

http://www.siam.org/journals/simax/36-1/96413.html
†Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain

(fteran@math.uc3m.es, dopico@math.uc3m.es).
‡Department of Mathematical Engineering, Université Catholique de Louvain, 1348 Louvain-
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equations (1.1) depend on the eigenvalues and elementary divisors of P (λ). When
P (λ) is singular, the solutions of (1.1) are also determined by the left and right
null-spaces of P (λ), which describe, respectively, constraints on the differential or
difference equations to have compatible solutions, and also degrees of freedom in the
solution set (see [37] for the case of polynomials of degree 1). The key concepts of left
and right minimal indices are related to the null-spaces of P (λ) [12, 18] and so the
elementary divisors, together with the left and right minimal indices, are called the
complete eigenstructure of P (λ) [35].

The problem of computing the complete eigenstructure of matrix polynomials has
been widely studied since the 1970s (see [35] and the references therein) and, in par-
ticular, it has received a lot of attention in the last decade in order to find algorithms
which are efficient, are stable, are able to preserve structures that are important in
applications, may give reliable information on the complete eigenstructure under per-
turbations (stratifications), and are able to deal with large-scale matrix polynomial
problems. This computational activity has motivated, in addition, the revision of
many theoretical concepts on matrix polynomials to make them more amenable to
computational purposes. To present a complete list of recent references on matrix
polynomials is out of the scope of this work. So we just mention here the following
small sample that may help the reader to look for many other recent references in this
area: [2, 3, 4, 5, 9, 15, 17, 21, 24, 30, 33].

In the context of the problems addressed in this paper, we would like to emphasize
just a few aspects of the recent research on matrix polynomials. First, considerable
activity has been devoted to the study of linearizations of matrix polynomials, due to
the fact that the standard way of computing the eigenstructure of a matrix polynomial
P (λ) is through the use of linearizations [14, 35]. Linearizations of a matrix polynomial
P (λ) are matrix polynomials of degree 1 having the same elementary divisors and
the same dimension of the right and left null-spaces as P (λ) [8, Lemma 2.3], [10,
Theorem 4.1]. A second line of active recent research is the study of structured
matrix polynomials arising in applications, which has revealed that linearizations
cannot preserve the structure of some classes of structured polynomial eigenproblems
(see [10, section 7] and the references therein). This drawback of linearizations has
motivated the introduction of the new notion of �-ification in [10].

An �-ification of a matrix polynomial P (λ) of degree d is a matrix polynomial
Q(λ) of degree � such that P (λ) and Q(λ) have the same elementary divisors and the
same dimensions of the left and right null-spaces [10, Theorem 4.1]. An �-ification
is strong if it additionally has the same elementary divisors at ∞ as P (λ). Hence,
(strong) linearizations are just (strong) �-ifications with � = 1. Unlike what happens
with strong linearizations, it has been shown that for a fixed value � > 1 not every
matrix polynomial of degree d has a strong �-ification [10, Theorem 7.5]. This poses
the problem of the existence of �-ifications, which is clearly related to the inverse
problem of characterizing when a list of elementary divisors can be realized by a
polynomial of given degree � and given dimensions of its left and right null-spaces.

A third topic of current research we want to emphasize concerns “inverse poly-
nomial eigenvalue problems of given degree,” which have received attention in the
literature since the 1970s [23, Theorem 5.2], have also been considered in classic refer-
ences [14, Theorem 1.7], and recently have been studied in [17, Theorem 5.2], [19], and
[30, section 5] (see also [22, section 9.1]), where new results that extend considerably
the previous ones have been proved. Among all these references only [17] consid-
ers the existence and construction of matrix polynomials of given degree, with given
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elementary divisors, and given minimal indices, although only in the particular case
of constructing polynomials with full rank, i.e., with only left or only right minimal
indices but not with both. Quadratic inverse matrix polynomial eigenvalue problems
have also been considered in [6] and, as a consequence of the study of quasi-canonical
forms, in the ongoing works [11, 20].

In this paper, we consider the general inverse polynomial complete eigenstructure
problem of given degree and we present necessary and sufficient conditions for the
existence of a matrix polynomial of given degree, given finite and infinite elementary
divisors, and given left and right minimal indices. These necessary and sufficient con-
ditions are determined mainly by the “index sum theorem,” a result discovered in
the early 1990s for real polynomials [25, 28] and recently rediscovered, baptized, and
extended to arbitrary fields in [10]. These necessary and sufficient conditions hold
for arbitrary infinite fields and the proof of our main result is constructive, assum-
ing that a procedure for constructing minimal bases is available (see [12, section 4]).
Therefore, matrix polynomials with the desired properties can indeed be constructed,
although the procedure on which our proof relies is not efficient from a computa-
tional point of view. Finally, the solution of this general inverse matrix polynomial
eigenstructure problem allows us to completely solve the problem of the existence of
�-ifications of a given polynomial P (λ), as well as to determine all their possible sizes
and eigenstructures.

The paper is organized as follows. In section 2, we review basic notions. Section 3
states and proves the main results of the paper, which requires us to develop some
auxiliary lemmas. In section 4, existence, sizes, and minimal indices of �-ifications
are studied. Finally, section 5 presents the conclusions and some directions of future
research.

2. Preliminaries. The most important results in this paper hold for any infinite
field F. However, many auxiliary lemmas and definitions are valid for arbitrary fields
F (finite or infinite). Therefore, we adopt the following convention for stating results:
if the field is not explicitly mentioned in a certain result, then such result is valid for
an arbitrary field. Otherwise, we will indicate explicitly that the field is infinite.

Next, we introduce some basic notation. The algebraic closure of the field F is
denoted by F. By F[λ] we denote the ring of polynomials in the variable λ with
coefficients in F, and F(λ) denotes the field of fractions of F[λ]. Vectors with entries
in F[λ] will be termed as vector polynomials and the degree of a vector polynomial is
the highest degree of all its entries. In denotes the n × n identity matrix and 0m×n

the null m× n matrix.
Throughout the paper, we assume that the leading coefficient Pd of a matrix

polynomial P (λ) =
∑d

i=0 Piλ
i is nonzero and then we say that the degree of P (λ) is

d, denoted deg(P ) = d. Some references say in this situation that P (λ) has “exact
degree” d [17], but we will not follow this convention for brevity.

Unimodular matrix polynomials often will be used. They are defined as follows
[13].

Definition 2.1. A square matrix polynomial U(λ) is said to be unimodular if
detU(λ) is a nonzero constant.

Note that the inverse of a unimodular matrix polynomial is also a unimodular
matrix polynomial and that products of unimodular matrix polynomials are also uni-
modular. Therefore unimodular matrix polynomials form a transformation group and
under this group a unique canonical form of an arbitrary matrix polynomial can be
obtained [13]. This canonical form and some related definitions are introduced in
Theorem 2.2 and Definition 2.3, respectively.
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Theorem 2.2. Let P (λ) be an m × n matrix polynomial. Then there exist
unimodular matrix polynomials U(λ) and V (λ) such that

(2.1) U(λ)P (λ)V (λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(λ) 0 . . . 0

0 p2(λ)
. . .

... 0r×(n−r)

...
. . .

. . . 0
0 . . . 0 pr(λ)

0(m−r)×r 0(m−r)×(n−r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=: D(λ),

where p1(λ), . . . , pr(λ) are monic scalar polynomials and pj(λ) is a divisor of pj+1(λ),
for j = 1, . . . , r−1. Moreover, the m×n diagonal matrix polynomial D(λ) is unique.

Definition 2.3. The matrix D(λ) in (2.1) is called the Smith normal form of the
matrix polynomial P (λ). The polynomials pj(λ) are called the invariant polynomials
of P (λ). An invariant polynomial pj(λ) is trivial if pj(λ) = 1; otherwise pj(λ) is
nontrivial (i.e., deg(pj(λ)) ≥ 1).

A finite eigenvalue of P (λ) is a number α ∈ F such that pj(α) = 0 for some
j = 1, . . . , r. The partial multiplicity sequence of P (λ) at the finite eigenvalue α is
the sequence

(2.2) 0 ≤ δ1(α) ≤ δ2(α) ≤ · · · ≤ δr(α),

such that pj(λ) = (λ− α)δj(α) qj(λ) with qj(α) �= 0, for j = 1, . . . , r. The elementary
divisors of P (λ) for the finite eigenvalue α are the collection of factors (λ − α)δj(α)

with δj(α) > 0, including repetitions.
The number r in (2.1) is the rank of P (λ), which is denoted by rank(P ).
The rank of P (λ) is often called its “normal rank,” but we will not use the

adjective “normal” for brevity. An m × n matrix polynomial P (λ) is said to have
full rank if rank(P ) = min{m,n}. Observe that some of the partial multiplicities at
α appearing in (2.2) may be zero, but for defining the elementary divisors for α we
consider only the partial multiplicities that are positive.

Given a matrix polynomial P (λ) over a field F which is not algebraically closed,
its elementary divisors for an eigenvalue α may not be polynomials over F according
to Definition 2.3. To avoid this fact, we define, following [13, Chapter VI], the set
of elementary divisors of P (λ) (note that we do not specify here any eigenvalue) as
the set of positive powers of monic irreducible scalar polynomials different from 1
over F appearing in the decomposition of each invariant polynomial pj(λ) of P (λ),
j = 1, . . . , r, into irreducible factors over F. So, for instance, if F = R, then the
elementary divisors of P (λ) may be positive powers of real scalar polynomials of
degree one or of real quadratic scalar polynomials with two complex conjugate roots.

Matrix polynomials may have infinity as an eigenvalue. Its definition is based on
the so-called reversal matrix polynomial [21].

Definition 2.4. Let P (λ) =
∑d

j=0 Pjλ
j be a matrix polynomial of degree d; the

reversal matrix polynomial revP (μ) of P (λ) is

(2.3) revP (μ) := μdP

(
1

μ

)
= Pd + Pd−1 μ+ · · ·+ P0 μ

d.
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We emphasize that in this paper the reversal is always taken with respect to
the degree of the original polynomial. Note that other options are considered in [10,
Definition 2.12].

Definition 2.5. We say that ∞ is an eigenvalue of the matrix polynomial P (λ)
if 0 is an eigenvalue of revP (μ), and the partial multiplicity sequence of P (λ) at ∞ is
the same as that of the eigenvalue 0 in revP (μ). The elementary divisors μγj , γj > 0,
for the eigenvalue μ = 0 of revP (μ) are the elementary divisors for ∞ of P (λ).

Remark 2.6. It is well known that rank(P ) = rank(revP ) (see, for instance, [22,
Proposition 3.29]). Therefore, the length of the partial multiplicity sequence of P (λ)
at ∞ is equal to rank(P ), as for any other eigenvalue of P (λ). So, it follows from
Definition 2.5 that P (λ) is a matrix polynomial having no eigenvalues at ∞ if and
only if its highest degree coefficient matrix Pd has rank equal to rank(P ).

The simple Lemma 2.7 will be used to establish certain conditions for the existence
of matrix polynomials of given degree d.

Lemma 2.7. Let P (λ) be a matrix polynomial with rank r. Then P (λ) has strictly
less than r elementary divisors for the eigenvalue ∞.

Proof. Let P (λ) =
∑d

j=0 Pjλ
j with Pd �= 0. Then revP (0) = Pd �= 0, and this

implies that revP (λ) has less than r elementary divisors for the eigenvalue 0, since
otherwise revP (0) = 0.

To avoid confusion with finite eigenvalues, the variable μ is used instead of λ for
the infinite eigenvalue and its elementary divisors, and γj is used instead of δj for the
partial multiplicities at ∞.

Remark 2.8. The partial multiplicity sequence at ∞ of a matrix polynomial
P (λ) as defined in Definition 2.5 should not be confused with the structural indices
of P (λ) at ∞ as defined, for instance, in [18, pp. 447, 450] (and in other refer-
ences on linear system theory and control theory), although both concepts are re-
lated as we explain in this remark. The definition in [18, p. 447] is based on the
Smith–MacMillan form [18, p. 443]. Given any m × n rational matrix R(λ) there
exist unimodular matrix polynomials U(λ) and V (λ) such that U(λ)R(λ)V (λ) =
diag(θ1(λ)/ψ1(λ), . . . , θr(λ)/ψr(λ), 0, . . . , 0), where each pair (θi(λ) , ψi(λ)) is formed
by coprime monic polynomials for i = 1, . . . , r, and θj(λ) divides θj+1(λ) and ψj+1(λ)
divides ψj(λ), for j = 1, . . . , r − 1. The matrix

diag(θ1(λ)/ψ1(λ), . . . , θr(λ)/ψr(λ), 0, . . . , 0)

is called the Smith–MacMillan form ofR(λ) and is unique. The roots of θ1(λ), . . . , θr(λ)
are called the finite zeros of R(λ), while the roots of ψ1(λ), . . . , ψr(λ) are called the
finite poles of R(λ) [18, p. 446]. If α ∈ F is a finite zero or a finite pole (or simultane-
ously both) of R(λ), then one can write θi(λ)/ψi(λ) = (λ−α)σi(α) (θ̃i(λ)/ψ̃i(λ)) with
θ̃i(α) �= 0, ψ̃i(α) �= 0, for i = 1, . . . , r, and the sequence σ1(α) ≤ · · · ≤ σr(α) is the
sequence of structural indices of R(λ) at α [18, p. 447]. The sequence of structural
indices of R(λ) at ∞ is thus defined to be the sequence of structural indices of R(1/λ)
at 0 [18, p. 450]. Observe that if σ1(α) < 0, then α is a pole, and that if σr(α) > 0,
then α is a zero, where α may be ∞.

A matrix polynomial P (λ) of degree d > 0 is a special case of rational matrix
and, therefore, we can define its zeros, poles, and structural indices as above. Since
the Smith–MacMillan form of a matrix polynomial is just its Smith form (2.1), we
see immediately that P (λ) has no finite poles, that the finite zeros of P (λ) are equal
to the finite eigenvalues of P (λ), and that the sequence of structural indices of P (λ)
at any finite zero α coincides with the partial multiplicity sequence of P (λ) at the
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finite eigenvalue α. The situation with infinity is not so simple. First, note that
P (1/λ) has for sure a pole at zero and, so, P (λ) has for sure a pole at ∞, but
P (λ) may have or not have an eigenvalue at ∞, as is clear from Remark 2.6. The
key observation in this context is that the Smith form of the reversal polynomial
revP (λ) = λd P (1/λ) is just λd times the Smith–MacMillan form of the rational
matrix P (1/λ). This implies that if σ1(∞) ≤ · · · ≤ σr(∞) is the sequence of structural
indices of P (λ) at ∞, then 0 ≤ d + σ1(∞) ≤ · · · ≤ d + σr(∞) are the multiplicities
of 0 as a root of the invariant polynomials of revP (λ). Therefore, ∞ is an eigenvalue
of P (λ) if and only if 0 < d + σi(∞) for at least one i = 1, . . . , r and, in this case,
0 ≤ d+ σ1(∞) ≤ · · · ≤ d+ σr(∞) is the partial multiplicity sequence of P (λ) at the
eigenvalue ∞. Observe that in fact 0 = d+ σ1(∞) as a consequence of Lemma 2.7 or
simply because the largest order of the pole at ∞ of a matrix polynomial of degree d
is precisely its degree.

An m× n matrix polynomial P (λ) whose rank r is smaller than m and/or n has
nontrivial left and/or right null-spaces over the field F(λ):

N�(P ):=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
,

Nr(P ):=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
.

It is well known that every subspace V of F(λ)n has bases consisting entirely of
vector polynomials. In order to define the singular structure of P (λ), we need to
introduce minimal bases of V .

Definition 2.9. Let V be a subspace of F(λ)n. A minimal basis of V is a basis of
V consisting of vector polynomials whose sum of degrees is minimal among all bases
of V consisting of vector polynomials.

It can be seen [12, 18] that the ordered list of degrees of the vector polynomials
in any minimal basis of V is always the same. These degrees are then called the
minimal indices of V . This leads to the definition of the minimal indices of a matrix
polynomial.

Definition 2.10. Let P (λ) be an m× n singular matrix polynomial with rank r
over a field F, and let the sets

{
y1(λ)

T , . . . , ym−r(λ)
T
}
and {x1(λ), . . . , xn−r(λ)} be

minimal bases of N�(P ) and Nr(P ), respectively, ordered so that 0 ≤ deg(y1) ≤ · · · ≤
deg(ym−r) and 0 ≤ deg(x1) ≤ · · · ≤ deg(xn−r). Let ηi = deg(yi) for i = 1, . . . ,m− r
and εj = deg(xj) for j = 1, . . . , n − r. Then the scalars η1 ≤ η2 ≤ · · · ≤ ηm−r and
ε1 ≤ ε2 ≤ · · · ≤ εn−r are, respectively, the left and right minimal indices of P (λ).

In order to give a practical characterization of minimal bases, we introduce Def-
inition 2.11. In the following, when referring to the column (resp., row) degrees
d1, . . . , dn (resp., d′1, . . . , d′m) of an m× n matrix polynomial P (λ), we mean that dj
(resp., d′j) is the degree of the jth column (resp., row) of P (λ).

Definition 2.11. Let N(λ) be an n× r matrix polynomial with column degrees
d1, . . . , dr. The highest-column-degree coefficient matrix of N(λ), denoted by Nhc, is
the n× r constant matrix whose jth column is the coefficient of λdj in the jth column
of N(λ). N(λ) is said to be column reduced if Nhc has full column rank.

Similarly, let M(λ) be an r×n matrix polynomial with row degrees d1, . . . , dr. The
highest-row-degree coefficient matrix of M(λ), denoted by Mhr, is the r× n constant
matrix whose jth row is the coefficient of λdj in the jth row of M(λ). M(λ) is said
to be row reduced if Mhr has full row rank.

Remark 2.12. Note that the rank of an n× r column reduced matrix polynomial
N(λ) is r [18, Chapter 6]. So, column reduced matrix polynomials have full column
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rank. A similar observation holds for row reduced matrix polynomials and full row
rank.

The next example illustrates the difference between the leading coefficient of a
matrix polynomial and its highest-column-degree and highest-row-degree coefficient
matrices.

Example 2.13. Consider the following matrix polynomial with degree 3:

P (λ) =

⎡⎣ 0 λ3 + λ2

λ+ 1 3λ
λ2 4

⎤⎦.
Then the leading coefficient, P3, the highest-column-degree coefficient, Phc, and the
highest-row-degree coefficient, Phr, of P (λ) are

P3 =

⎡⎣ 0 1
0 0
0 0

⎤⎦, Phc =

⎡⎣ 0 1
0 0
1 0

⎤⎦, Phr =

⎡⎣ 0 1
1 3
1 0

⎤⎦.
Theorem 2.14 provides a characterization of those matrix polynomials whose

columns or rows are minimal bases of the subspaces they span. Theorem 2.14 is
a minor variation of [12, Main Theorem (2), p. 495], which we think is easier to use in
practice when F is not algebraically closed. In [18, Theorem 6.5-10], we can find the
corresponding result stated only for the complex field, but the proof remains valid for
any algebraically closed field.

Theorem 2.14. The columns (resp., rows) of a matrix polynomial N(λ) over
a field F are a minimal basis of the subspace they span if and only if N(λ0) has full
column (resp., row) rank for all λ0 ∈ F and N(λ) is column (resp., row) reduced.

Proof. We prove the result only for columns, since for rows it is similar. Let n× r
be the size of N(λ). According to [12, Main Theorem (2), p. 495], the columns of
N(λ) are a minimal basis if and only if N(λ) has full column rank modulo p(x) for
all irreducible p(x) ∈ F[λ] and N(λ) is column reduced. So, we only need to prove
that N(λ) has full column rank modulo p(x) for all irreducible p(x) ∈ F[λ] if and only
if N(λ0) has full column rank for all λ0 ∈ F. Note that “N(λ) has full column rank
modulo p(x) for all irreducible p(x) ∈ F[λ]” is equivalent to “the greatest common
divisor of all r× r minors of N(λ) is 1” [12, p. 496], which is equivalent to “the Smith

normal form of N(λ) is
[
Ir 0

]T
over F” [13, Chapter VI]. But the Smith forms of

N(λ) over F and F are the same and the latter statement is obviously equivalent to
“N(λ0) has full column rank for all λ0 ∈ F.”

Remark 2.15. In this paper, for brevity, we often say that a p×q matrix polynomial
N(λ) with p ≥ q (resp., p < q) is a minimal basis if the columns (resp., rows) of N(λ)
are a minimal basis of the subspace they span.

Lemma 2.16 gathers some known simple properties that will be used in what
follows. These properties are by no means new. For instance, Lemma 2.16(b) can be
found in [1, Lemma 3.5] and Lemma 2.16(c) can be found in [31], although a simpler
proof can be obtained using the ideas in [26]. We include proofs of these results just
to keep the paper self-contained.

Lemma 2.16. Let N(λ) be a matrix polynomial over a field F:
(a) If the columns of N(λ) form a minimal basis and R is a nonsingular con-

stant matrix, then the columns of RN(λ) form a minimal basis with the same
column degrees as N(λ).
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(b) If N(λ0) has full column rank for all λ0 ∈ F, then there exists a matrix
polynomial Z(λ) such that

[
N(λ) Z(λ)

]
is unimodular.

(c) If N(λ0) has full column rank for all λ0 ∈ F and P (λ) is any other matrix
polynomial such that the product N(λ)P (λ) is defined, then the invariant
polynomials of P (λ) and N(λ)P (λ) are identical.

Results analogous to those in (a), (b), and (c) hold for rows.
Proof. Part (a) follows from Theorem 2.14 and the observation that RNhc is the

highest-column-degree coefficient matrix of RN(λ).
(b) Let n × r, n ≥ r, be the size of N(λ), and observe that the Smith form

of N(λ) is the constant matrix D = [Ir 0]T ∈ F
n×r. Therefore, by (2.1), N(λ) =

U(λ)DV (λ), with U(λ) and V (λ) unimodular matrix polynomials, and N(λ) =
U(λ)diag(V (λ), In−r)D. Finally, define

[
N(λ) Z(λ)

]
:= U(λ)diag(V (λ), In−r) and

note that this matrix is unimodular.
(c) Assume that N(λ) ∈ F

n×r and P (λ) ∈ F
r×t, and let P (λ) = Q(λ)D(λ)Y (λ)

be such that D(λ) is the Smith form of P (λ), and Q(λ) and Y (λ) are unimodular.
Then, by part (b), there exists Z(λ) such that

[
N(λ) Z(λ)

]
is unimodular and

N(λ)P (λ) =
[
N(λ) Z(λ)

] [Q(λ)
In−r

] [
D(λ)

0(n−r)×t

]
Y (λ),

which proves the result, since
[
N(λ) Z(λ)

]
diag(Q(λ), In−r) is unimodular.

We close this section by introducing the eigenstructure of a matrix polynomial.
Definition 2.17. Given an m×n matrix polynomial P (λ) with rank r, the eigen-

structure of P (λ) consists of the following lists of scalar polynomials and nonnegative
integers:

(i) the invariant polynomials p1(λ), . . . , pr(λ), with degrees δ1, . . . , δr (finite struc-
ture),

(ii) the partial multiplicity sequence at ∞, γ1, . . . , γr (infinite structure),
(iii) the right minimal indices ε1, . . . , εn−r (right singular structure), and
(iv) the left minimal indices η1, . . . , ηm−r (left singular structure).
We emphasize that some of the integers in Definition 2.17 can be zero and/or can

be repeated. Even all integers in some of the lists (i)–(iv) can be zero. In some recent
references (see [10]) the eigenstructure of P (λ) is defined to consist only of the lists
in parts (i) and (ii) of Definition 2.17, while the name “singular structure” is used
for the right and left minimal indices. We are extending here to matrix polynomials
the shorter and classical terminology of “eigenstructure” often used for matrix pencils
[34]. Note that the name “eigenstructure” of a matrix polynomial has also been used
in a somewhat different sense in [35], where the authors include the structural indices
at ∞ (see Remark 2.8), instead of the partial multiplicity sequence at ∞.

3. Matrix polynomials of given degree with prescribed eigenstructure.
We first recall the index sum theorem. This theorem establishes a simple relationship
between the eigenstructure, the degree, and the rank of any matrix polynomial with
coefficients over an arbitrary field. To our knowledge, it was first stated in [25, 28]
for matrix polynomials over the real field and was recently extended in [10] to matrix
polynomials with coefficients over arbitrary fields.

Theorem 3.1 (index sum theorem). Let P (λ) be an m × n matrix polynomial
of degree d and rank r having the following eigenstructure:

• r invariant polynomials pj(λ) of degrees δj , for j = 1, . . . , r,
• r infinite partial multiplicities γ1, . . . , γr,
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• n− r right minimal indices ε1, . . . , εn−r, and
• m− r left minimal indices η1, . . . , ηm−r,

where some of the degrees, partial multiplicities, or indices can be zero, and/or one
or both of the lists of minimal indices can be empty. Then

(3.1)
r∑

j=1

δj +
r∑

j=1

γj +
n−r∑
j=1

εj +
m−r∑
j=1

ηj = dr.

Remark 3.2. A very interesting remark pointed out by an anonymous referee
is that the index sum theorem for matrix polynomials can be obtained as an easy
corollary of a more general result valid for arbitrary rational matrices, which is much
older than reference [28]. This result is [36, Theorem 3], which can also be found
in [18, Theorem 6.5-11]. Using the notion of structural indices at α introduced in
Remark 2.8 and [18, p. 452, eq. (32), p. 460, eq. (40)], Theorem 6.5-11 in [18] can
be stated as follows: Let R(λ) be any m×n rational matrix with rank r, let S be the
set of (different) zeros and poles of R(λ) including possibly ∞, and let η1, . . . , ηm−r

and ε1, . . . , εn−r be the left and right minimal indices of R(λ), respectively. Then

(3.2)
∑
α∈S

(
r∑

i=1

σi(α)

)
+

n−r∑
j=1

εj +

m−r∑
j=1

ηj = 0.

This equation can be applied, in particular, to any m × n matrix polynomial P (λ)
of degree d, which always has a pole at ∞ and so (nonzero) structural indices at
∞. In addition, we proved in Remark 2.8 that for P (λ) the terms in the sequence
d + σ1(∞) ≤ · · · ≤ d + σr(∞) either are all zero or are the r partial multiplicities
at ∞ of P (λ). So, adding dr to both sides of (3.2) applied to P (λ), and taking into
account the discussion in Remark 2.8 on finite eigenvalues, gives (3.1) and proves the
index sum theorem.

The proof of Theorem 3.1 in [10] uses a particular linearization of P (λ), together
with the corresponding result for pencils. For matrix pencils (i.e., when d = 1),
Theorem 3.1 follows from the Kronecker canonical form (KCF) [13], and using this
canonical form, one can show also that there exist m × n matrix pencils with given
rank r having all possible regular and singular eigenstructures satisfying the constraint
(3.1). However, a similar result for matrix polynomials of degree d > 1 is not available
in the literature and it is not obvious to prove, since there is nothing similar to the
KCF for polynomials of degree larger than one.1 To establish this result is the main
contribution of the present paper. This is presented in Theorem 3.3.

Theorem 3.3. Let m, n, d, and r ≤ min{m,n} be given positive integers.
Let p1(λ), . . . , pr(λ) be r arbitrary monic polynomials with coefficients in an infinite
field F and with respective degrees δ1, . . . , δr and such that pj(λ) divides pj+1(λ) for
j = 1, . . . , r−1. Let 0 ≤ γ1 ≤ · · · ≤ γr, 0 ≤ ε1 ≤ · · · ≤ εn−r, and 0 ≤ η1 ≤ · · · ≤ ηm−r

be given lists of nonnegative integers. Then, there exists an m× n matrix polynomial
P (λ) with coefficients in F, with rank r, with degree d, with invariant polynomials
p1(λ), . . . , pr(λ), with partial multiplicities at ∞ equal to γ1, . . . , γr, and with right
and left minimal indices respectively equal to ε1, . . . εn−r and η1, . . . , ηm−r if and only
if (3.1) holds and γ1 = 0.

1It is interesting to mention here the significative advances on Kronecker-like quasi-canonical
forms for quadratic matrix polynomials obtained in [20].
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The necessity of (3.1) and γ1 = 0 in Theorem 3.3 follows immediately from the
index sum theorem and Lemma 2.7. However, the proof of the sufficiency of these
conditions is nontrivial and requires a number of auxiliary lemmas, which will be
presented in subsection 3.1. This proof is based on techniques that were used in [17,
Theorem 5.2] to prove the particular case of Theorem 3.3 in which P (λ) has full row
or full column rank. We will see that to prove the general case demands considerable
more effort.

In subsection 3.2, we present an alternative statement of Theorem 3.3 which is
more convenient for proving the results on �-ifications included in section 4.

3.1. Auxiliary lemmas and proof of Theorem 3.3. Lemma 3.4 will allow
us to reduce the proof of Theorem 3.3 to the case when all partial multiplicities at ∞
are zero, i.e., when there are no infinite eigenvalues. Lemma 3.4 is a particular case
of [22, Proposition 3.29, Theorems 5.3 and 7.5] or [27, Theorem 4.1]. The statement
of Lemma 3.4 does not follow the style of the results in [22], but it is stated exactly
as it will be used in the proof of Theorem 3.3.

Lemma 3.4. Let F be an infinite field, let {λ1, . . . , λs} ⊂ F be any finite subset
of F, with λi �= λj if i �= j, and let ω ∈ F be such that ω �= λi, for i = 1, . . . , s. Let
Pω(λ) be an m× n matrix polynomial with coefficients in F, of degree d, and rank r.
Suppose that Pω(λ) has no infinite eigenvalues, that 1/(λ1−ω), . . . , 1/(λs−ω) are the
nonzero finite eigenvalues of Pω(λ), and that λ0 = 0 is an eigenvalue of Pω(λ) with
less than r associated elementary divisors. Let us define the following m × n matrix
polynomial over F:

(3.3) P (λ) := (λ− ω)d Pω

(
1

λ− ω

)
.

Then
(a) P (λ) has degree d and rank r;
(b) μ0 = ∞ is an eigenvalue of P (λ) with partial multiplicity sequence equal to

the partial multiplicity sequence of λ0 = 0 in Pω(λ);
(c) the finite eigenvalues of P (λ) are λ1, . . . , λs and, for each j = 1, . . . , s, the

partial multiplicity sequence of λj is equal to the partial multiplicity sequence
of 1/(λj − ω) in Pω(λ);

(d) the minimal indices of P (λ) and Pω(λ) are identical.
Proof. As a consequence of the results in [22, 27] mentioned above, we only need

to prove that P (λ) has the same degree as Pω(λ), since Möbius transformations of
matrix polynomials do not preserve the degree in general [22, p. 6]. In our case, if
Pω(λ) = Q0 + λQ1 + · · · + λdQd, with Qd �= 0, then Q0 �= 0 because Pω(λ) has less
than r elementary divisors at 0. Since

P (λ) = (λ− ω)dQ0 + (λ − ω)d−1Q1 + · · ·+Qd,

we obtain that P (λ) has degree d.
Remark 3.5. Lemma 3.4 is valid only for infinite fields and this is the reason why

Theorem 3.3 is valid only for infinite fields as well. In the proof of Theorem 3.3, for
proving the existence of a polynomial P (λ) with infinite eigenvalues and prescribed
complete eigenstructure, in particular with prescribed finite eigenvalues λ1, . . . , λs, we
will prove instead the existence of a polynomial Pω(λ) as the one in Lemma 3.4 and
then the desired P (λ) will be given by (3.3). The problem is that if F is finite, then
λ1, . . . , λs might be all the elements in the field and, in this case, we cannot choose ω
as in Lemma 3.4.



 

 
 

 
 

 
 

 
 

 

 

 

 
 
 

 

 
 

 

 
 

 

 
 
 

Copyright  by SIAM. Unauthorized reproduction of this article is prohibited.
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Lemma 3.6 will also be used in the proof of Theorem 3.3, more precisely in the
proof of the key Lemma 3.8. We do not claim any originality in Lemma 3.6: Lemma
3.6(a) follows easily from techniques in [18, Chapter 6] and Lemma 3.6(b) is explicitly
stated in a somewhat different form in [12, p. 503]. However, taking into account the
fundamental role that Lemma 3.6 plays in this work, we include proofs of both parts
that use only basic results on matrix polynomials, in such a way that any reader can
follow them without effort. As we comment below some steps of these proofs follow
also from well-known results in multivariable system theory [29], but to understand
them requires familiarity with the literature in that area. Note that the convention
introduced in Remark 2.15 is used in Lemma 3.6 and, also, very often in this section.

Lemma 3.6. Let M(λ) and N(λ) be matrix polynomials of sizes n × r and n ×
(n− r), respectively, such that

(3.4) M(λ)TN(λ) = 0,

and let Mhc and Nhc be the highest-column-degree coefficient matrices of M(λ) and
N(λ), respectively. Then,

(a) if M(λ) and N(λ) are both column reduced, then there exists a nonsingular
n× n constant matrix R such that

MT
hc R

−1 =
[
0r×(n−r) Ir

]
and RNhc =

[
In−r

0r×(n−r)

]
;

(b) if M(λ) and N(λ) are both minimal bases with column degrees ε̂1, . . . , ε̂r and
ε1, . . . , εn−r, respectively, then

r∑
i=1

ε̂i =
n−r∑
j=1

εj .

Proof. (a) Let ε1, . . . , εn−r be the degrees of the columns ofN(λ) and let ε̂1, . . . , ε̂r
be the degrees of the columns of M(λ). Define Dε(λ) := diag(λε1 , . . . , λεn−r ) and

D̂ε(λ) := diag(λε̂1 , . . . , λε̂r ). Then, we can write

(3.5) M(λ) = Mhc D̂ε(λ) + M̃(λ) and N(λ) = Nhc Dε(λ) + Ñ(λ).

Observe that

(3.6) deg( colj(M̃(λ)) ) < ε̂j , for j = 1, . . . , r, and deg( colj(Ñ(λ)) ) < εj ,

for j = 1, . . . , n− r, where colj(A) denotes the jth column of a matrix A. Since Nhc

has full column rank, there exists a constant nonsingular n× n matrix R1 such that

R1 Nhc =

[
In−r

0r×(n−r)

]
so R1 N(λ) =

[
In−r

0r×(n−r)

]
Dε(λ) +R1Ñ(λ).

Therefore, we have M(λ)T R−1
1 R1N(λ) = 0, from (3.4), which, combined with (3.5),

implies

D̂ε(λ)M
T
hcR

−1
1

[
In−r

0r×(n−r)

]
Dε(λ) + D̂ε(λ)M

T
hcÑ(λ)

+ M̃(λ)T NhcDε(λ) + M̃(λ)T Ñ(λ) = 0.

(3.7)
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The right- and left-hand sides of (3.7) are r × (n − r) matrix polynomials and the
(i, j) entry of (3.7) is(

MT
hcR

−1
1

[
In−r

0r×(n−r)

])
ij

λε̂i+εj + hij(λ) = 0,

where deg(hij(λ)) < ε̂i + εj by (3.6), for i = 1, . . . , r and j = 1, . . . , n− r. Therefore,

(3.8) MT
hcR

−1
1

[
In−r

0r×(n−r)

]
= 0, which implies MT

hcR
−1
1 =

[
0r×(n−r) X

]
,

where X is an r × r nonsingular matrix, since Mhc has full column rank. Finally,
define the n× n matrix R2 = diag(In−r, X), note that

MT
hcR

−1
1 R−1

2 =
[
0r×(n−r) Ir

]
and R2R1 Nhc =

[
In−r

0r×(n−r)

]
,

and take R = R2R1.
(b) Let us partition M(λ)T = [M1(λ)

T , M2(λ)
T ], with M2(λ) ∈ F[λ]r×r, and

N(λ) = [N1(λ)
T , N2(λ)

T ]T , with N1(λ) ∈ F[λ](n−r)×(n−r). Theorem 2.14 and
Lemma 2.16(b) guarantee that M(λ)T can be completed to a unimodular matrix[

U11(λ) U12(λ)
M1(λ)

T M2(λ)
T

]
∈ F[λ]n×n.

Note that

(3.9)

[
U11(λ) U12(λ)
M1(λ)

T M2(λ)
T

] [
N1(λ)
N2(λ)

]
=

[
Z(λ)

0r×(n−r)

]
.

From Theorem 2.14, we get that [In−r , 0(n−r)×r]
T is the Smith normal form of N(λ),

which implies that the matrix Z(λ) ∈ F[λ](n−r)×(n−r) in (3.9) is unimodular. Let
R ∈ F

n×n be a nonsingular constant matrix as in part (a) and define[
Û11(λ) Û12(λ)

M̂1(λ)
T M̂2(λ)

T

]
:=

[
U11(λ) U12(λ)
M1(λ)

T M2(λ)
T

]
R−1 and[

N̂1(λ)

N̂2(λ)

]
:= R

[
N1(λ)
N2(λ)

]
,

(3.10)

where, as a consequence of part (a), both M̂2(λ) and N̂1(λ) are square nonsingular
matrix polynomials with highest-column-degree coefficient matrices equal to Ir and
In−r, respectively.

2 Next consider the matrix polynomial

(3.11) V (λ) :=

[
V11(λ) V12(λ)
V21(λ) V22(λ)

]
:=

[
Û11(λ) Û12(λ)

M̂1(λ)
T M̂2(λ)

T

]−1

2At this point, a reader familiar with control theory can proceed via the following argument,
which has been kindly provided by an anonymous referee. The definitions of the concepts men-

tioned in this argument can be found in [18, 29]. Since M̂1(λ)T N̂1(λ) + M̂2(λ)T N̂2(λ) = 0,

we get M̂2(λ)−T M̂1(λ)T = −N̂2(λ) N̂1(λ)−1. Moreover, M̂1(λ)T , M̂2(λ)T are left-coprime and

N̂1(λ), N̂2(λ) are right-coprime. So, M̂2(λ)−T M̂1(λ)T and N̂2(λ) N̂1(λ)−1 are two irreducible
matrix-fraction descriptions of the same transfer matrix function. Then, it follows from [29, Theorem

3.1, Chapter 3] that M̂2(λ) and N̂1(λ) have the same nontrivial invariant polynomials and so the
same determinant up to a product by a nonzero constant. This latter determinantal property is what
we need to continue the proof and what we prove above by other means.
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and combine this definition with (3.9) and (3.10) to get[
N̂1(λ)

N̂2(λ)

]
=

[
V11(λ) V12(λ)
V21(λ) V22(λ)

] [
Z(λ)
0

]
,

which implies N̂1(λ) = V11(λ)Z(λ) and, since Z(λ) is unimodular,

(3.12) deg(det(N̂1(λ))) = deg(det(V11(λ))).

Next, since the matrices in (3.11) are unimodular, a standard property of minors of

inverses [16, p. 21] implies that det(V11(λ))/det(M̂2(λ)) = det(V (λ)) is a nonzero
constant, which combined with (3.12) yields

deg(det(M̂2(λ))) = deg(det(N̂1(λ))).

Since the highest-column-degree coefficient matrices of M̂2(λ) and N̂1(λ) are Ir and
In−r, respectively, we get, taking into account (3.10), that

r∑
i=1

ε̂i = deg(det(M̂2(λ))) = deg(det(N̂1(λ))) =

n−r∑
j=1

εj.

Lemma 3.7 is a simple technical result needed to prove Lemma 3.8. Observe
that Lemma 3.7 is nothing but [29, Lemma 4.1, Chapter 5] with the unimodular
transformations written explicitly in a way that is convenient for their use in this
paper.

Lemma 3.7. Let k and d be nonnegative integers such that k − d > 1. Let Q(λ)
be a 2× 2 matrix polynomial

Q(λ) =

[
a(λ) b(λ)
c(λ) e(λ)

]
such that

deg(a(λ)) = d, deg(b(λ)) ≤ d− 1, deg(c(λ)) ≤ k − 1, deg(e(λ)) = k,

and a(λ) and e(λ) are monic. Let c(λ) = ck−1λ
k−1 + ck−2λ

k−2 + · · ·+ c0 and[
ã(λ) b̃(λ)
c̃(λ) ẽ(λ)

]
:=

[
1 0

(ck−1 + 1)λk−d−1 −1

]
Q(λ)

[
1 λ
0 1

]
.

Then,

deg(ã(λ)) = d, deg(̃b(λ)) = d+ 1, deg(c̃(λ)) = k − 1, deg(ẽ(λ)) ≤ k − 1,

and ã(λ), b̃(λ), and c̃(λ) are monic.
Proof. A direct computation yields[

1 0
(ck−1 + 1)λk−d−1 −1

]
Q(λ)

[
1 λ
0 1

]

=

[
a(λ) λa(λ) + b(λ)

(ck−1 + 1)λk−d−1a(λ) − c(λ) (ck−1 + 1)λk−d−1(λa(λ) + b(λ))− (λc(λ) + e(λ))

]
.
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The result follows immediately from this expression.
Lemma 3.8 shows that given any lists of invariant polynomials and right minimal

indices there always exists a row reduced matrix polynomial P (λ) with the degrees of
its rows “as close as possible” and having precisely these invariant polynomials and
right minimal indices. Observe that such P (λ) has full row rank, i.e., it has no left
minimal indices, since it is row reduced, and if its row degrees were all equal, then
P (λ) would not have infinite eigenvalues. Therefore, by (3.1), the row degrees of P (λ)
can all be equal only if the sum of the degrees of the given invariant polynomials plus
the given right minimal indices is a multiple of the number of invariant polynomials.
Lemma 3.8 is the key piece in the proof of Theorem 3.3 and its proof is rather technical.

Lemma 3.8. Let r, n be two positive integers with r ≤ n. Let p1(λ), . . . , pr(λ) be
r monic scalar polynomials, with respective degrees δ1 ≤ · · · ≤ δr and such that pj(λ)
is a divisor of pj+1(λ) for j = 1, . . . , r − 1. Let ε1 ≤ · · · ≤ εn−r be a list of n − r
nonnegative integers (which is empty if n = r). Define

δ :=

r∑
j=1

δj and ε :=

n−r∑
j=1

εj ,

and write

δ + ε = rqε + tε, where 0 ≤ tε < r.

Then there exists an r × n row reduced matrix polynomial P (λ) with tε row degrees
equal to qε + 1 and r − tε row degrees equal to qε, and such that p1(λ), . . . , pr(λ) and
ε1, . . . , εn−r are, respectively, the invariant polynomials and the right minimal indices
of P (λ). The degree of P (λ) is thus qε + 1 if tε > 0 and qε otherwise.

Proof. The proof closely follows the proof of Theorem 5.2 in [17]. We prove
first in detail the most difficult case r < n and sketch at the end the proof of the
much easier case r = n. Let Ñ(λ) ∈ F[λ]n×(n−r) be any (right) minimal basis with

column degrees ε1 ≤ · · · ≤ εn−r. A specific way to construct such Ñ(λ) is to place
on the main diagonal λε1 , . . . , λεn−r and on the first subdiagonal 1, . . . , 1. Now, let
Q̃(λ) ∈ F[λ]r×n be any minimal basis of N�(Ñ) and let ε̂1 ≤ · · · ≤ ε̂r be its row

degrees. So, Q̃(λ)Ñ(λ) = 0 and according to Lemma 3.6(b),

(3.13) ε =

r∑
i=1

ε̂i =

n−r∑
j=1

εj .

Next, define Q̂(λ) := diag(p1(λ), . . . , pr(λ)) Q̃(λ). Observe that Q̂(λ) is row reduced,

since Q̃(λ) is, and Q̂hr = Q̃hr, i.e., the highest-row-degree coefficient matrices are

equal, Q̂(λ)Ñ (λ) = 0, the row degrees of Q̂(λ) are ε̂1 + δ1 ≤ · · · ≤ ε̂r + δr, and

p1(λ), . . . , pr(λ) are the invariant polynomials of Q̂(λ), by Lemma 2.16(c) (for rows).

Therefore, we can apply Lemma 3.6(a) to Q̂(λ)Ñ(λ) = 0 and to prove the existence
of a nonsingular matrix R with the properties specified in that lemma. This matrix
R allows us to define the following two matrix polynomials:

(3.14) Q(λ) = Q̂(λ)R−1 ∈ F[λ]r×n and N(λ) = RÑ(λ) ∈ F[λ]n×(n−r).

From the discussion above, it is easy to check thatQ(λ) andN(λ) satisfy the following:
(i) Q(λ)N(λ) = 0,
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(ii) Q(λ) is row reduced and N(λ) is a minimal basis of Nr(Q),

(iii) Qhr =
[
0r×(n−r) Ir

]
and Nhc =

[
In−r 0(n−r)×r

]T
,

(iv) Q(λ) has invariant polynomials p1(λ), . . . , pr(λ) and right minimal indices
ε1, . . . , εn−r,

(v) the sum of the row degrees of Q(λ) is δ + ε.

In addition, the matrix polynomial Q(λ) has row degrees ε̂1 + δ1 ≤ · · · ≤ ε̂r + δr,
which are denoted by

(3.15) d1 := ε̂1 + δ1, d2 := ε̂2 + δ2, . . . , dr−1 := ε̂r−1 + δr−1, dr := ε̂r + δr,

for simplicity. So, Q(λ) may not have the row degrees of the sought P (λ) in the
statement of Lemma 3.8, but Q(λ) satisfies all the other properties of P (λ). Observe,
moreover, that the sum of the row degrees of P (λ) is also δ + ε.

If dr−d1 ≤ 1, then the degrees of the r rows of Q(λ) differ at most by 1 and their
sum is δ+ε, which implies that the row degrees of Q(λ) are the ones in the statement
and the proof is finished by taking P (λ) = Q(λ). Therefore, let us assume dr−d1 > 1
in the rest of the proof. The strategy of the rest of the proof consists in applying
very particular unimodular transformations U(λ) = Π Ũ(λ) and V (λ), where Π is a
permutation,

(3.16) Q(λ) → U(λ)Q(λ)V (λ), N(λ) → V (λ)−1N(λ),

in such a way that U(λ)Q(λ)V (λ) and V (λ)−1N(λ) satisfy the properties (i), (ii),

(iii), (iv), and (v) above and, in addition, the row degrees of Ũ(λ)Q(λ)V (λ) are

d1+1, d2, . . . , dr−1, dr−1, while Π Ũ(λ)Q(λ)V (λ) has its row degrees in nondecreasing
order. Clearly after a finite sequence of this type of transformations we will get a
matrix polynomial Qlast(λ) which will have the properties of P (λ) in the statement.

Let us show how to construct the unimodular matrices U(λ) and V (λ) mentioned
in the previous paragraph. For this purpose let us partition the matrix polynomials
Q(λ) and N(λ) as follows:

n−r 1 r−2 1

Q(λ) =
1

r−2

1

⎡⎣Q11(λ) Q12(λ) Q13(λ) Q14(λ)
Q21(λ) Q22(λ) Q23(λ) Q24(λ)
Q31(λ) Q32(λ) Q33(λ) Q34(λ)

⎤⎦ and

N(λ) =

n−r

1

r−2

1

⎡⎢⎢⎣
N1(λ)
N2(λ)
N3(λ)
N4(λ)

⎤⎥⎥⎦ .

(3.17)

Observe that, as a consequence of property (iii), i.e., of the structure of Qhr, and
(3.15), deg(Q12(λ)) = d1, deg(Q14(λ)) ≤ d1 − 1, deg(Q32(λ)) ≤ dr − 1, and
deg(Q34(λ)) = dr. Therefore, by Lemma 3.7, there exists α ∈ F such that

(3.18)

[
1 0

αλdr−d1−1 −1

] [
Q12(λ) Q14(λ)
Q32(λ) Q34(λ)

] [
1 λ
0 1

]
=

[
J12(λ) J14(λ)
J32(λ) J34(λ)

]
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with deg(J12(λ)) = d1, deg(J14(λ)) = d1 +1, deg(J32(λ)) = dr − 1, and deg(J34(λ)) ≤
dr − 1. Based on (3.18), we define the following unimodular matrices:

Ũ(λ) :=

⎡⎣ 1 0 0
0 Ir−2 0

αλdr−d1−1 0 −1

⎤⎦ ∈ F[λ]r×r and

Ṽ (λ) :=

⎡⎢⎢⎣
In−r 0 0 0
0 1 0 λ
0 0 Ir−2 0
0 0 0 1

⎤⎥⎥⎦ ∈ F[λ]n×n.

Direct computations taking into account (3.18) show that

(3.19)
J(λ) := Ũ(λ)Q(λ)Ṽ (λ)

=

⎡
⎣ Q11(λ) J12(λ) Q13(λ) J14(λ)

Q21(λ) Q22(λ) Q23(λ) Q24(λ) + λQ22(λ)
αλdr−d1−1Q11(λ)−Q31(λ) J32(λ) αλdr−d1−1Q13(λ) −Q33(λ) J34(λ)

⎤
⎦,

where, for i = 1, 3 and j = 2, 4, the Jij(λ) blocks are those in (3.18), and also

(3.20)

H(λ) := Ṽ (λ)−1N(λ) =

⎡⎢⎢⎣
In−r 0 0 0
0 1 0 −λ
0 0 Ir−2 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
N1(λ)
N2(λ)
N3(λ)
N4(λ)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
N1(λ)

N2(λ)− λN4(λ)
N3(λ)
N4(λ)

⎤⎥⎥⎦.
Taking into account the properties (i), (ii), (iii), (iv), and (v) of Q(λ) and N(λ),
(3.15), (3.18), (3.19), and (3.20), we deduce easily the following properties for J(λ)
and H(λ):

1. J(λ)H(λ) = 0.
2. J(λ) has the same invariant polynomials as Q(λ), that is, p1(λ), . . . , pr(λ).
3. The row degrees of J(λ) are d1 + 1, d2, . . . , dr−1, dr − 1 and its sum is equal

to δ + ε.
4. J(λ) is row reduced, since

Jhr =

⎡⎣0 0 0 1
0 0 Ir−2 X

X 1 X X

⎤⎦ ,

where the entries in X are not specified.
5. The column degrees ofH(λ) are the same as those ofN(λ), that is, ε1, . . . , εn−r.
6. H(λ) is column reduced since

Hhc =

⎡⎢⎢⎣
In−r

X

0
0

⎤⎥⎥⎦ .

7. For all λ0 ∈ F, H(λ0) = Ṽ (λ0)
−1N(λ0) has full column rank, since N(λ0)

has. Therefore, H(λ) is a minimal basis of Nr(J) by Theorem 2.14.
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Two additional operations are needed in order to get the unimodular transfor-
mations announced in (3.16): first, a permutation Π such that the rows of ΠJ(λ) =

Π Ũ(λ)Q(λ)Ṽ (λ) are sorted with nondecreasing degrees, and second, to use

Lemma 3.6(a) to prove that there exists a nonsingular constant matrix R̃ such that

ΠJ(λ)R̃−1 = Π Ũ(λ)Q(λ)Ṽ (λ)R̃−1 has highest-row-degree coefficient matrix equal

to
[
0r×(n−r) Ir

]
and R̃H(λ) = R̃Ṽ (λ)−1N(λ) has highest-column-degree coefficient

matrix equal to
[
In−r 0(n−r)×r

]T
. Therefore, the matrices U(λ) and V (λ) in (3.16)

are

U(λ) = Π Ũ(λ) and V (λ) = Ṽ (λ)R̃−1,

and the proof of Lemma 3.8 is completed when r < n.
The proof of the case r = n is much easier, since there are no right minimal indices,

and we simply apply the unimodular transformations U(λ) and V (λ) considered above
to Q(λ) := diag(p1(λ), . . . , pr(λ)).

If in Lemma 3.8 we take pj(λ) = 1 for j = 1, . . . r, and use Theorem 2.14, then
we get directly Lemma 3.9.

Lemma 3.9. Let r, n be two positive integers with r ≤ n and let ε1 ≤ · · · ≤ εn−r

be a list of n− r nonnegative integers (which is empty if n = r). Define

ε :=

n−r∑
j=1

εj ,

and write it as

ε = rqε + tε, where 0 ≤ tε < r.

Then there exists an r × n row reduced matrix polynomial P (λ) with tε row degrees
equal to qε + 1 and r − tε row degrees equal to qε, and such that all the invariant
polynomials of P (λ) are trivial and ε1 ≤ · · · ≤ εn−r are its right minimal indices.
The degree of P (λ) is thus qε + 1 if tε > 0 and qε otherwise. In particular, the rows
of P (λ) form a minimal basis.

Lemma 3.9 implies just by transposition a similar result for the existence of
column reduced matrix polynomials with prescribed left minimal indices. This is
Lemma 3.10.

Lemma 3.10. Let r,m be two positive integers with r ≤ m and let η1 ≤ · · · ≤ ηm−r

be a list of m− r nonnegative integers (which is empty if m = r). Define

η :=

m−r∑
j=1

ηj ,

and write it as

η = rqη + tη, where 0 ≤ tη < r.

Then there exists an m × r column reduced matrix polynomial P (λ) with tη column
degrees equal to qη + 1 and r − tη column degrees equal to qη, and such that all the
invariant polynomials of P (λ) are trivial and η1 ≤ · · · ≤ ηm−r are its left minimal
indices. The degree of P (λ) is thus qη + 1 if tη > 0 and qη otherwise. In particular,
the columns of P (λ) form a minimal basis.

With Lemmas 3.10 and 3.8 at hand, we are in position to prove the main result
in this paper: Theorem 3.3.
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Proof of Theorem 3.3. As we commented in the paragraph just below the state-
ment of Theorem 3.3 the existence of P (λ) implies immediately (3.1) and γ1 = 0. So,
it remains to prove that (3.1) and γ1 = 0 imply that P (λ) exists.

In the first place, let us show that if there are nonzero partial multiplicities at
∞, then we can reduce the proof to the case in which all partial multiplicities at ∞
are zero. For this purpose, let {λ1, . . . , λs} ⊂ F be the union of the sets of (different)
roots of p1(λ), . . . , pr(λ), i.e., λi �= λk if i �= k, and let us express the polynomials
pj(λ) as

(3.21) pj(λ) = (λ − λ1)
δj(λ1) · · · (λ− λs)

δj(λs), j = 1, . . . r,

where some δj(λi) may be 0. Let ω ∈ F be such that ω �= λi, for i = 1, . . . s, and
define the polynomials

(3.22) qj(λ) = λγj

(
λ− 1

λ1 − ω

)δj(λ1)

· · ·
(
λ− 1

λs − ω

)δj(λs)

, j = 1, . . . r,

which satisfy that qj(λ) divides qj+1(λ) for j = 1, . . . , r − 1. Note, in addition, that
qj(λ) has coefficients in F (not only in F). This latter property follows from the
identity

qj(λ) = λdeg(pj)+γj
pj

(
ω + 1

λ

)
pj(ω)

and the fact that pj(λ) ∈ F[λ]. Observe that since kj := deg(qj) = deg(pj) + γj , we
have from (3.1) that

r∑
j=1

kj +

n−r∑
j=1

εj +

m−r∑
j=1

ηj = dr.

Therefore, if we construct an m × n matrix polynomial Pω(λ) with coefficients in
F, with rank r, with degree d, with invariant polynomials q1(λ), . . . , qr(λ), without
eigenvalues at ∞, with right minimal indices ε1, . . . , εn−r, and with left minimal
indices η1, . . . , ηm−r, then, according to Lemma 3.4, the polynomial P (λ) in (3.3) is
the polynomial in Theorem 3.3 (with γ1, . . . , γr partial multiplicities at∞). Therefore,
in the rest of the proof we assume that γ1 = · · · = γr = 0.

In this scenario, the hypothesis (3.1) becomes δ + ε+ η = dr, with δ =
∑r

j=1 δj ,

ε =
∑n−r

j=1 εj , and η =
∑m−r

j=1 ηj . Let K(λ) be an m × r matrix polynomial with the
properties of P (λ) in Lemma 3.10 and with columns sorted in nondecreasing order of
degrees, i.e., each of the first r− tη columns of K(λ) has degree qη and the remaining
ones have degree qη +1. Let M(λ) be an r×n matrix polynomial with the properties
of P (λ) in Lemma 3.8 and with rows sorted in nonincreasing order of degrees, i.e.,
each of the first tε rows of M(λ) has degree qε+1 and the remaining ones have degree
qε. Define the m× n matrix polynomial

(3.23) P (λ) = K(λ)M(λ) ∈ F[λ]m×n ,

which satisfies the following properties:
1. rank(P ) = r, since both K(λ) and M(λ) have rank r.
2. The invariant polynomials of P (λ) are identical to the invariant polynomi-

als of M(λ), that is, p1(λ), . . . , pr(λ), since K(λ) is a minimal basis and
Lemma 2.16(c) can be applied.
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3. The right minimal indices of P (λ) are ε1, . . . , εn−r, since Nr(P ) = Nr(M).
4. The left minimal indices of P (λ) are η1, . . . , ηm−r, since N�(P ) = N�(K).

Therefore, it only remains to prove that deg(P ) = d and that P (λ) has no eigenvalue
at ∞.

For this purpose, note that η = rqη + tη, with 0 ≤ tη < r, and δ + ε = rqε + tε,
with 0 ≤ tε < r, imply dr = δ + ε+ η = r(qη + qε) + (tη + tε), with 0 ≤ tη + tε < 2r.
But tη + tε = r(d− qη − qε) is a multiple of r and, therefore, tη + tε = 0 or tη + tε = r
and

d =

{
qη + qε if tη + tε = 0,
qη + qε + 1 if tη + tε = r.

On the other hand, if coli(A) (resp., rowi(A)) denotes the ith column (resp., row) of
a matrix A, we get from (3.23)

(3.24) P (λ) = col1(K) row1(M) + · · ·+ colr(K) rowr(M)

and observe that if tη + tε = 0, then all summands in (3.24) have degree d = qη + qε,
while if tη + tε = r, then all summands in (3.24) have degree d = qη + qε +1. In both
cases the matrix coefficient of degree d in P (λ) is

Pd = KhcMhr,

where Khc is the highest-column-degree coefficient matrix of K(λ) and Mhr is the
highest-row-degree coefficient matrix of M(λ). Since K(λ) is column reduced and
M(λ) is row reduced, we get that rank(Pd) = r, which implies that deg(P ) = d and
that P (λ) has no infinite eigenvalues. This completes the proof of Theorem 3.3. �

3.2. Theorem 3.3 expressed in terms of lists of elementary divisors
and minimal indices. Theorem 3.12 below expresses Theorem 3.3 as a realizability
result in the spirit of results included in [20] for quadratic matrix polynomials or,
equivalently, as a general inverse eigenproblem of matrix polynomials. Theorem 3.12
has the advantage of not assuming in advance which are the rank and the size of the
polynomial P (λ) whose existence is established. This feature is very convenient for
proving the results on �-ifications included in section 4.

Theorem 3.12 uses the concepts introduced in Definition 3.11.
Definition 3.11. A list L of elementary divisors over a field F is the concate-

nation of two lists: a list Lfin of positive integer powers of monic irreducible polyno-
mials of degree at least 1 with coefficients in F and a list L∞ of elementary divisors
μα1 , μα2 , . . . , μαg∞ at ∞. The length of the longest sublist of Lfin containing powers of
the same irreducible polynomial is denoted by gfin(L) and the length of L∞ is denoted
by g∞(L). The sum of the degrees of the elements in Lfin is denoted by δfin(L) and
the sum of the degrees of the elements in L∞ is denoted by δ∞(L).

Theorem 3.12. Let L be a list of elementary divisors over an infinite field F, let
Mr = {ε1, . . . , εp} be a list of right minimal indices, let Ml = {η1, . . . , ηq} be a list
of left minimal indices, and define

(3.25) S(L) = δfin(L) + δ∞(L) +
q∑

i=1

ηi +

p∑
i=1

εi.

Then, there exists a matrix polynomial P (λ) with coefficients in F of degree d and
whose elementary divisors, right minimal indices, and left minimal indices are, re-
spectively, those in the lists L, Mr, and Ml if and only if
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(3.26) (i) d is a divisor of S(L), (ii)
S(L)
d

≥ gfin(L), and (iii)
S(L)
d

> g∞(L).
In this case, the rank of P (λ) is S(L)/d and the size of P (λ) is (q + S(L)/d)× (p+
S(L)/d).

Proof. (=⇒) Let us assume that P (λ) exists. Then Theorem 3.1 implies d rank(P )
= S(L), so, (3.26)(i) follows and rank(P ) = S(L)/d. The nontrivial invariant poly-
nomials of P (λ) are uniquely determined from the elementary divisors in the sublist
Lfin of L, as explained, for instance, in [13, Chapter VI, p. 142], and its number is
precisely gfin(L). Now (3.26)(ii) follows from rank(P ) ≥ gfin(L). Finally, (3.26)(iii)
follows from Lemma 2.7. The size of P (λ) is obtained from the rank-nullity theorem.

(⇐=) Let us assume that the three conditions in (3.26) hold and note that
(3.26)(iii) guarantees that S(L) > 0. From (3.26)(i) define the positive integer
r := S(L)/d.

First, let us denote for simplicity gfin := gfin(L) and construct with all the elements
in Lfin a sequence of monic polynomials qj(λ), j = 1, . . . , gfin, of degree larger than zero
and such that qj(λ) is a divisor of qj+1(λ) for j = 1, . . . , gfin − 1. This construction is
easy and is explained in [13, Chapter VI, p. 142]. Taking into account that r−gfin ≥ 0
by (3.26)(ii), we define the following list of r polynomials:

(3.27) ( p1(λ), . . . , pr(λ) ) =

⎛⎜⎝1, . . . , 1︸ ︷︷ ︸
r−gfin

, q1(λ), . . . , qgfin(λ)

⎞⎟⎠ .

Observe that the sum of the degrees of p1(λ), . . . , pr(λ) is precisely δfin(L).
Second, denote for simplicity g∞ := g∞(L) and let α1 ≤ α2 ≤ · · · ≤ αg∞ be the

exponents of the elements of L∞, which are all positive. Taking into account that
r − g∞ > 0 by (3.26)(iii), we define the following list of r nonnegative numbers:

(3.28) ( γ1, . . . , γr ) =

⎛⎜⎝0, . . . , 0︸ ︷︷ ︸
r−g∞

, α1, α2, . . . , αg∞

⎞⎟⎠ .

Observe that
∑r

i=1 γi = δ∞(L) and that γ1 = 0.
Finally, note that if we take r = S(L)/d, as defined before, m := q+S(L)/d, and

n := p + S(L)/d, then (3.25) becomes precisely (3.1) for the polynomials defined in
(3.27) and the partial multiplicity sequence at ∞ given in (3.28), and therefore the
existence of P (λ) follows from Theorem 3.3.

4. Existence and possible sizes and eigenstructures of �-ifications. The
new concept of �-ification of a matrix polynomial has been recently introduced in [10,
section 3] as a natural generalization of the classical definition of linearization [14].
One motivation for investigating �-ifications is that there exist matrix polynomials
with special structures arising in applications which do not have any linearization
with the same structure [10, section 7]. The results introduced in section 3 allow us
to establish easily in this section a number of new results on �-ifications that would be
difficult to prove by other means. Let us start by recalling the definition of �-ification.

Definition 4.1. A matrix polynomial R(λ) of degree � > 0 is said to be an
�-ification of a given matrix polynomial P (λ) if for some r, s ≥ 0 there exist unimod-
ular matrix polynomials U(λ) and V (λ) such that

U(λ)

[
R(λ)

Is

]
V (λ) =

[
P (λ)

Ir

]
.
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If, in addition, revR(λ) is an �-ification of revP (λ), then R(λ) is said to be a strong
�-ification of P (λ).

In [10], �-ifications are defined to have degree smaller than or equal to �. However,
since in most cases it is of interest to fix the exact degree of a matrix polynomial,
we focus in this paper on �-ifications with degree �. It is natural to think that in
applications the most interesting �-ifications of P (λ) should satisfy � < deg(P ), but
observe that the results presented in this section do not require such an assumption
and so they will be stated for any positive integer �. This is one of the reasons for
considering two identity matrices Is and Ir in Definition 4.1, although only one of
them is really needed [10, Corollary 4.4]. Observe also that, since we assume � > 0,
zero degree polynomials are never considered �-ifications in this work.

In this section we consider two matrix polynomials, P (λ) and R(λ), so it is con-
venient to adopt for brevity the following notation: for any matrix polynomial Q(λ),
δfin(Q) is the sum of the degrees of the invariant polynomials of Q(λ), δ∞(Q) is the
sum of the degrees of the elementary divisors at ∞ of Q(λ), gfin(Q) is the number
of nontrivial invariant polynomials of Q(λ) (equivalently, the largest of the geometric
multiplicities of the finite eigenvalues of Q(λ)), and g∞(Q) is the number of elemen-
tary divisors of Q(λ) at ∞ (equivalently, the geometric multiplicity of the infinite
eigenvalue of Q(λ)). We will often use this notation without explicitly referring to it.

The results of this section generalize to �-ifications of arbitrary degree what was
proved in Theorems 4.10 and 4.12 of [10] only for linearizations. In addition, we solve
for arbitrary infinite fields the conjecture posed in [10, Remark 7.6]. In the proofs
of this section, we will often use Theorem 4.1 in [10]. Therefore, we state below this
result in a form specially adapted to our purposes.

Theorem 4.2 (characterization of �-ifications [10, Theorem 4.1]). Consider a
matrix polynomial P (λ) and another matrix polynomial R(λ) of degree � > 0, and the
following three conditions on P (λ) and R(λ):

(a) dimNr(P ) = dimNr(R) and dimN�(P ) = dimN�(R) (i.e., P (λ) and R(λ)
have the same numbers of right and left minimal indices).

(b) P (λ) and R(λ) have exactly the same finite elementary divisors.
(c) P (λ) and R(λ) have exactly the same infinite elementary divisors.

Then,

(1) R(λ) is an �-ification of P (λ) if and only if conditions (a) and (b) hold;
(2) R(λ) is a strong �-ification of P (λ) if and only if conditions (a), (b), and (c)

hold.

Observe that condition (b) in Theorem 4.2 is equivalent to “P (λ) and R(λ) have
exactly the same nontrivial invariant polynomials.”

4.1. Results for standard �-ifications. Theorem 4.3 determines all possible
sizes, all possible nonzero partial multiplicities at ∞, and all possible minimal indices
of (possibly not strong) �-ifications of a given matrix polynomial P (λ). Recall that
according to Theorem 4.2 the nontrivial invariant polynomials as well as the numbers
of left and right minimal indices of any �-ification of P (λ) are the same as those of
P (λ). In Theorems 4.3 and 4.10 we use the standard Gauss bracket �x
 to denote the
smallest integer larger than or equal to the real number x.

Theorem 4.3 (size range of �-ifications). Let P (λ) be an m×n matrix polynomial
over an infinite field F with rank equal to r > 0, let � be a positive integer, and let

r̃ = max

{⌈
δfin(P )

�

⌉
, gfin(P )

}
.
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Then the following hold:
(a) There is an s1 × s2 �-ification of P (λ) if and only if

(4.1) s1 ≥ (m− r) + r̃, s2 ≥ (n− r) + r̃, and s1 − s2 = m− n.

In particular, the minimum-size �-ification of P (λ) has sizes s1 = (m− r)+ r̃
and s2 = (n− r) + r̃.

(b) Let 0 ≤ η̃1 ≤ · · · ≤ η̃m−r be a list of left minimal indices, let 0 ≤ ε̃1 ≤ · · · ≤
ε̃n−r be a list of right minimal indices, let 0 < γ̃1 ≤ · · · ≤ γ̃t be a (possibly
empty) list of nonzero partial multiplicities at ∞, and define

S̃ = δfin(P ) +
t∑

i=1

γ̃i +
m−r∑
i=1

η̃i +
n−r∑
i=1

ε̃i.

Then, there exists an �-ification R(λ) of P (λ) having the previous lists of
minimal indices and nonzero partial multiplicities at ∞ if and only if

(4.2) (i) � is a divisor of S̃, (ii)
S̃

�
≥ gfin(P ), and (iii)

S̃

�
> t.

The size of this R(λ) is s1 × s2, where

s1 = (m− r) +
S̃

�
and s2 = (n− r) +

S̃

�
.

Proof. (a) (⇒) If R(λ) has size s1 × s2 and is an �-ification of P (λ), then R(λ)
has the same nontrivial invariant polynomials as P (λ) and the same numbers, m− r
and n − r, of left and right minimal indices as P (λ) by Theorem 4.2(1). Therefore,
Theorem 3.1 applied to R(λ) implies rank(R) ≥ δfin(R)/� = δfin(P )/�, and Definition
2.3 implies rank(R) ≥ gfin(R) = gfin(P ). Therefore, rank(R) ≥ r̃. Finally, from the
rank-nullity theorem, we get

s1 = (m−r)+rank(R) ≥ (m−r)+ r̃ and s2 = (n−r)+rank(R) ≥ (n−r)+ r̃,

and s1 − s2 = m− n.
(a) (⇐) To see that there exists an �-ification of P (λ) for each size s1×s2 allowed

by (4.1), note first that each of these sizes can be written as

s1 = (m− r) + r̂, s2 = (n− r) + r̂,

for some r̂ ≥ r̃. Therefore, r̂ ≥ δfin(P )/�, and so there are nonnegative numbers
0 ≤ η̃1 ≤ · · · ≤ η̃m−r and 0 ≤ ε̃1 ≤ · · · ≤ ε̃n−r such that

� r̂ = δfin(P ) +

m−r∑
i=1

η̃i +

n−r∑
i=1

ε̃i.

In addition, r̂ ≥ gfin(P ). Combining all this information with Theorem 3.12, we get
that there exists a matrix polynomial R(λ) of degree �, with no elementary divisors
at ∞, with the same nontrivial invariant polynomials3 as P (λ), with left and right

3Recall that there is a bijection between the set of lists of finite elementary divisors and the set
of lists of nontrivial invariant polynomials [13, Chapter VI, p. 142].
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minimal indices equal, respectively, to 0 ≤ η̃1 ≤ · · · ≤ η̃m−r and 0 ≤ ε̃1 ≤ · · · ≤ ε̃n−r,
and with size s1 × s2 such that

s1 = (m− r) + r̂ and s2 = (n− r) + r̂.

This R(λ) is an �-ification of P (λ) by Theorem 4.2(1).
(b) It is an immediate consequence of Theorem 3.12 and Theorem 4.2(1).
Remark 4.4. Observe that Theorem 4.3(a) guarantees, in particular, that every

matrix polynomial has an �-ification for any positive degree �. Note, in addition,
that �-ifications can have arbitrarily large sizes. The three conditions in (4.1) are
redundant, since the second one follows from the first and the third ones. We write
all of them to make explicit both minimum sizes of �-ifications.

Remark 4.5. In Theorem 4.3(b) the cardinalities of the lists of left and right
minimal indices are m− r and n− r, respectively, and so they are determined by the
size and the rank of P (λ). However, the cardinality t of the list of nonzero partial
multiplicities at ∞ can be chosen, and, in particular, this list can be chosen to be
empty.

Remark 4.6. Let 0 ≤ η1 ≤ · · · ≤ ηm−r be the left minimal indices of P (λ), let 0 ≤
ε1 ≤ · · · ≤ εn−r be the right minimal indices of P (λ), and let 0 < γ1 ≤ · · · ≤ γg∞(P )

be the nonzero partial multiplicities at ∞ of P (λ), and define

S = δfin(P ) +

g∞(P )∑
i=1

γi +

m−r∑
i=1

ηi +

n−r∑
i=1

εi.

Theorem 4.3(b) implies that if � is a divisor of S, and if S/� ≥ gfin(P ) and S/� >
g∞(P ), then there exists an �-ification R(λ) of P (λ) with exactly the same complete
eigenstructure as P (λ) (barring trivial invariant polynomials). In particular, this
always happens if � is a divisor of d = deg(P (λ)), since in this case Theorem 3.1 implies
dr = S and so S/� ≥ r, which can be combined with r ≥ gfin(P ) and r > g∞(P ) (see
Lemma 2.7) to show that the three conditions in (4.2) hold. Observe that such R(λ)
is in fact a strong �-ification of P (λ) according to Theorem 4.2(2).

In particular, Theorem 4.3(b) implies that there always exist linearizations (just
make � = 1 in the discussion above) which preserve the complete eigenstructure of
P (λ). This result was already obtained in [35], although expressed in a different
language. An advantage of the approach in [35] is that a construction of such lin-
earizations was provided there. It is an interesting open problem to derive such a
construction for the case of �-ifications (with � > 1) that preserve the complete eigen-
structure of P (λ) under the conditions mentioned in the previous paragraph.

4.2. Results for strong �-ifications of regular polynomials. Our next re-
sult generalizes Theorem 7.5 in [10] in two senses. First, Theorem 4.7 is valid for
strong �-ifications of any degree, i.e., smaller than, equal to, or larger than the degree
of P (λ), while Theorem 7.5 in [10] is valid only for strong �-ifications with degree
smaller than or equal to the degree of P (λ). Second, Theorem 4.7 is valid for arbi-
trary infinite fields, while Theorem 7.5 in [10] is valid only for algebraically closed
fields.

Theorem 4.7 (size of strong �-fications of regular polynomials). Let P (λ) be an
n × n regular matrix polynomial over an infinite field F of degree d and let � be a
positive integer. Then, there exists a strong �-ification R(λ) of P (λ) if and only if

(4.3) (i) � is a divisor of dn, (ii)
dn

�
≥ gfin(P ), and (iii)

dn

�
> g∞(P ).
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In addition, the size of any strong �-ification of P (λ) is (dn)/�×(dn)/�. In particular,
if � > dn, then there are no strong �-ifications of P (λ).

Proof. Recall throughout the proof that Theorem 3.1 implies that dn = δfin(P )+
δ∞(P ), since P (λ) is regular and has no minimal indices.

First, assume that the conditions in (4.3) hold. Therefore, Theorem 3.12 with
S(L) = δfin(P )+ δ∞(P ) implies that there exists a regular matrix polynomial R(λ) of
degree � with the same nontrivial invariant polynomials as P (λ) and with the same
elementary divisors at ∞ as P (λ). Such R(λ) has size (dn)/�× (dn)/� and is a strong
�-ification of P (λ) by Theorem 4.2(2).

Next, assume that there exists a strong �-ification R(λ) of P (λ). According to
Theorem 4.2(2), R(λ) is regular and has the same nontrivial invariant polynomials
as P (λ) and the same elementary divisors at ∞ as P (λ). Therefore, if R(λ) has size
s×s, then Theorem 3.1 applied to R(λ) implies s� = δfin(P )+δ∞(P ), which, together
with Lemma 2.7, implies the conditions (4.3).

The following two corollaries follow easily from Theorem 4.7. Corollary 4.8 is well
known: both the result on existence and the result on size (see [7, Theorem 3.2] and
[10, Theorem 4.12]). We include this corollary here just to show that these classical
results can be retrieved from Theorem 4.7. Corollary 4.9 shows that Theorem 4.7
simplifies considerably if we assume that � ≤ deg(P ). Corollary 4.9 is related to
Theorem 7.5 in [10].

Corollary 4.8 (size of strong linearizations of regular polynomials). For any n×
n regular matrix polynomial P (λ) over an infinite field F of degree d ≥ 1, there always
exists a strong linearization of P (λ) and the size of any such strong linearization is
(dn)× (dn).

Proof. If � = 1, then (i) in (4.3) always holds, and the same happens for (ii) and
(iii), since n ≥ gfin(P ) and n > g∞(P ). The size follows also from Theorem 4.7.

Corollary 4.9. Let P (λ) be an n × n regular matrix polynomial of degree d
over an infinite field F and let 1 ≤ � ≤ d be an integer. Then, there exists a strong
�-ification of P (λ) if and only if � divides dn. In addition, the size of any strong
�-ification of P (λ) is (dn)/�× (dn)/�.

Proof. The result follows from Theorem 4.7 and the following observation: n ≥
gfin(P ) and n > g∞(P ) always hold, where the last strict inequality is because of
Lemma 2.7. In addition, d/� ≥ 1. Therefore, (ii) and (iii) in (4.3) automatically hold
in this case.

4.3. Results for strong �-ifications of singular polynomials. Theorem 4.10
determines all possible sizes and all possible minimal indices of strong �-ifications of
a given singular matrix polynomial P (λ). Recall that according to Theorem 4.2, the
nontrivial invariant polynomials, the elementary divisors at ∞, and the numbers of
left and right minimal indices of any strong �-ification of P (λ) are the same as those
of P (λ).

Theorem 4.10 (size range of strong �-ifications of singular polynomials). Let
P (λ) be an m× n singular matrix polynomial over an infinite field F with rank equal
to r > 0, i.e., at least one of m− r or n− r is nonzero, let � be a positive integer, and
let

r̃ = max

{⌈
δfin(P ) + δ∞(P )

�

⌉
, gfin(P ) , g∞(P ) + 1

}
.

Then the following hold:
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(a) There is an s1 × s2 strong �-ification of P (λ) if and only if

(4.4) s1 ≥ (m− r) + r̃, s2 ≥ (n− r) + r̃, and s1 − s2 = m− n.

In particular, the minimum-size strong �-ification of P (λ) has sizes s1 =
(m− r) + r̃ and s2 = (n− r) + r̃.

(b) Let 0 ≤ η̃1 ≤ · · · ≤ η̃m−r be a list of left minimal indices, let 0 ≤ ε̃1 ≤ · · · ≤
ε̃n−r be a list of right minimal indices, and define

S̃ = δfin(P ) + δ∞(P ) +

m−r∑
i=1

η̃i +

n−r∑
i=1

ε̃i.

Then, there exists a strong �-ification R(λ) of P (λ) having the previous lists
of minimal indices if and only if

(4.5) (i) � is a divisor of S̃, (ii)
S̃

�
≥ gfin(P ), and (iii)

S̃

�
> g∞(P ).

The size of this R(λ) is s1 × s2, where

s1 = (m− r) +
S̃

�
and s2 = (n− r) +

S̃

�
.

Proof. The proof is essentially the same as the proof of Theorem 4.3 and is
omitted. We just emphasize the key differences that have to be considered. If R(λ)
is a strong �-ification of P (λ), then R(λ) and P (λ) have the same nontrivial invariant
polynomials, the same numbers of left and right minimal indices, and, in addition, the
same elementary divisors at ∞ by Theorem 4.2(2). Therefore, Theorem 3.1 applied to
R(λ) implies rank(R) ≥ (δfin(P )+δ∞(P ))/�, Definition 2.3 implies rank(R) ≥ gfin(P ),
and Lemma 2.7 implies rank(R) > g∞(P ). Then, the role of δfin(P ) in the proof of
Theorem 4.3 is played here by δfin(P ) + δ∞(P ) and we have an additional constraint
on the geometric multiplicity at ∞.

Remark 4.11. Observe that Theorem 4.10(a) guarantees, in particular, that every
singular matrix polynomial has a strong �-fication for any degree �. Note, in addition,
that strong �-ifications of singular polynomials can have arbitrarily large sizes. These
two results are in stark contrast to the situation for regular matrix polynomials, since
Theorem 4.7 shows that, in this case, strong �-ifications exist only for certain values
of � and that their sizes are fixed.

5. Conclusions. We have solved a very general inverse problem for matrix poly-
nomials with completely prescribed eigenstructure. As far as we know, this is the first
result of this type that considers the complete eigenstructure, i.e., both regular and
singular, of a matrix polynomial of arbitrary degree. The solution of this inverse
problem has been used to settle the existence problem of �-fications of a given matrix
polynomial as well as to determine their possible sizes and eigenstructures.

The results presented in this work lead naturally to many related open problems,
for instance, the solution of inverse problems for structured matrix polynomials with
completely prescribed eigenstructure for classes of polynomials that are important in
applications, such as symmetric, skew-symmetric, alternating, and palindromic matrix
polynomials. Another open problem in this area is to develop efficient methods for
constructing, when possible, matrix polynomials of a given degree, with given lists of
finite and infinite elementary divisors, and with given lists of left and right minimal
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indices, since the construction used in the proof of Theorem 3.3 is not efficient in
practice. This is closely related to the problem of constructing strong �-ifications in
the situations that are not covered by the �-ifications presented in [10, section 5].
Finally, the problem of extending to finite fields the results of this paper is still open
as well.
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