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ACCURATE SOLUTION OF STRUCTURED LEAST SQUARES
PROBLEMS VIA RANK-REVEALING DECOMPOSITIONS∗
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JUAN M. MOLERA‡

Abstract. Least squares problems minx ‖b − Ax‖2 where the matrix A ∈ Cm×n (m ≥ n) has
some particular structure arise frequently in applications. Polynomial data fitting is a well-known in-
stance of problems that yield highly structured matrices, but many other examples exist. Very often,
structured matrices have huge condition numbers κ2(A) = ‖A‖2 ‖A†‖2 (A† is the Moore–Penrose
pseudoinverse of A) and therefore standard algorithms fail to compute accurate minimum 2-norm
solutions of least squares problems. In this work, we introduce a framework that allows us to com-
pute minimum 2-norm solutions of many classes of structured least squares problems accurately, i.e.,
with errors ‖x̂0 − x0‖2/‖x0‖2 = O(u), where u is the unit roundoff, independently of the magnitude
of κ2(A) for most vectors b. The cost of these accurate computations is O(n2m) flops, i.e., roughly
the same cost as standard algorithms for least squares problems. The approach in this work relies in
computing first an accurate rank-revealing decomposition of A, an idea that has been widely used
in recent decades to compute, for structured ill-conditioned matrices, singular value decompositions,
eigenvalues, and eigenvectors in the Hermitian case and solutions of linear systems with high relative
accuracy. In order to prove that accurate solutions are computed, a new multiplicative perturbation
theory of the least squares problem is needed. The results presented in this paper are valid for both
full rank and rank deficient problems and also in the case of underdetermined linear systems (m < n).
Among other types of matrices, the new method applies to rectangular Cauchy, Vandermonde, and
graded matrices, and detailed numerical tests for Cauchy matrices are presented.
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1. Introduction. Structured matrices arise frequently in theory and applica-
tions [44, 45]. As a consequence, the design and analysis of special algorithms for
performing structured matrix computations is a classical area of numerical linear al-
gebra that attracts the attention of many researchers. Special algorithms for solving
structured linear systems of equations or structured eigenvalue problems are included
in many standard references [15, 24, 29, 35, 51], but special algorithms for solving
structured least squares (LS) problems do not appear so often in the literature. The
goal of special algorithms is to exploit the structure to increase the speed of compu-
tations, and/or to decrease storage requirements, and/or to improve the accuracy of
the solutions with respect to standard algorithms. On this latter goal, let us mention
that algorithms for solving structured linear systems of equations more accurately
than standard methods have been developed from the early days of numerical linear
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algebra [5] and many papers have been published on this topic since then (see the
references in [17, 29]). Although some preliminary ideas on accurate structured eigen-
value computations date from the 1960s [33], the systematic development of accurate
algorithms for structured eigenvalue problems is much more recent, having started
in the early 1990s with the celebrated paper [13], and has also received considerable
attention (see [3, 12, 14, 16, 18, 19, 20, 23, 34, 48, 53] among other references). The
present paper focuses on a part of accurate numerical linear algebra for which there
are not many references available in the literature: algorithms for solving structured
LS problems minx ‖b − Ax‖2, where A ∈ Cm×n and b ∈ Cm, with much more ac-
curacy than the one provided by standard algorithms and roughly with the same
computational cost, that is, O(n2m) flops. These algorithms have received attention
for diagonally scaled matrices [2, 10, 30, 47], but outside this class of matrices we only
know reference [42].

The standard method for solving full column-rank LS problems minx ‖b − Ax‖2
is via the QR factorization computed with the Householder algorithm [29, Chap-
ters 19 and 20]. This method is backward stable, that is, the computed solution
x̂0 is the exact solution of an LS problem minx ‖(b + Δb) − (A + ΔA)x‖2, where
‖Δb‖2 ≤ c umn ‖b‖2, ‖ΔA‖2 ≤ c umn3/2 ‖A‖2, u is the unit roundoff of the com-
puter, and c denotes a small integer constant [29, Theorem 20.3]. Backward error
results of the same type hold for other methods of solution of LS problems based on
orthogonal decompositions as, for instance, the singular value decomposition (SVD).1

This strong backward error result, together with classical normwise perturbation the-
ory of LS problems [52, Theorem 5.1] (see also [4, Theorem 1.4.6, p. 30]), implies the
following forward error bound in the computed solution x̂0 with respect to the exact
solution x0:

(1.1)
‖x̂0 − x0‖2

‖x0‖2 ≤ (c umn3/2)

(
κ2(A) +

‖A†‖2‖b‖2
‖x0‖2 + κ2(A)

2 ‖b−Ax0‖2
‖A‖2 ‖x0‖2

)
,

where A† is the Moore–Penrose pseudoinverse of A, ‖A‖2 denotes the spectral norm
of A, and κ2(A) = ‖A‖2 ‖A†‖2 is the spectral condition number of A. The bound
in (1.1) is larger than u κ2(A) (in fact, it can be much larger) and so (1.1) does not
guarantee any digit of accuracy in the computed solution if κ2(A) � 1/u. Unfortu-
nately, many structured matrices arising in applications are very ill-conditioned and
standard algorithms for LS problems may compute solutions with huge relative errors.
Two famous examples are Vandermonde matrices, which arise in polynomial data fit-
ting, and Cauchy matrices [29, Chapters 22 and 28]. (For more recent information on
condition numbers of square and rectangular Vandermonde matrices see, respectively,
[39, 40] and [41].) It should be noted that often ill-conditioned LS problems arise as
a consequence of noisy data and that in these cases it may be more convenient to
first regularize the problem, for instance, by truncating the SVD of A [26], than to
compute an accurate solution of the noisy problem. However, we emphasize that this
is not the scenario studied in this work and that we assume that the data are not

1It should be noted that the backward error in A committed by solving LS problems via the
Householder QR factorization is columnwise, i.e., ‖ΔA(:, j)‖2 ≤ c umn ‖A(:, j)‖2 for j = 1 : n
(MATLAB notation), and therefore it is stronger than the one mentioned above. This columnwise
bound also holds for LS problems solved via the SVD computed with properly implemented one-sided
or two-sided Jacobi methods [19, 20], but not if the SVD is computed by methods whose first step
is to bidiagonalize the matrix, since in these methods orthogonal transformations are applied to A
from both sides in a way that does not guarantee columnwise bounds.
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affected by noise and then it is of interest to compute the solution as accurately as
possible.

Our goal in this work is to present a numerical framework for the solution of LS
problems and to prove that it allows us to compute for many classes of structured
matrices solutions with error bounds much smaller than (1.1). The framework we
introduce relies on the concept of rank-revealing decomposition (RRD). Different ver-
sions of this idea had been studied as early as in the 1960s [22, 27] (see also [36, 49] and
references therein), but the definition of RRD we use is the one introduced recently
in [12] for computing the SVD with high relative accuracy. An RRD of A ∈ Cm×n

is a factorization A = XDY , where X ∈ Cm×r, D = diag(d1, d2, . . . , dr) ∈ Cr×r is
diagonal and nonsingular, and Y ∈ Cr×n, rank (X) = rank (Y ) = r, and X and Y
are well-conditioned. Note that this means that the rank of A is r and that if A
is ill-conditioned, then the diagonal factor D is also ill-conditioned. We propose to
compute the minimum 2-norm solution of minx ‖b−Ax‖2 in two main stages:

1. First stage. Compute an RRD of A = XDY , accurately in the sense of [12].
(We revise the precise meaning of “accuracy” in this context in Definition
2.3.)

2. Second stage. It has three steps: (1) compute the unique solution x1 of
minx ‖b−Xx‖2 via Householder QR factorization; (2) compute the solution x2

of the linear system Dx2 = x1 as x2(i) = x1(i)/di, i = 1 : r; and (3) compute
the minimum 2-norm solution x0 of the underdetermined linear system Y x =
x2 using the Q method [29, Chapter 21]. The vector x0 is the minimum
2-norm solution of minx ‖b−Ax‖2.

The intuition behind why this procedure computes accurate solutions, even for ex-
tremely ill-conditioned matrices A, is that each entry of x2 is computed with a relative
error less than u (given D and x1), that is, the ill-conditioned linear system Dx2 = x1

is solved very accurately, and that minx ‖b − Xx‖2 and Y x = x2 are also solved
accurately because X and Y are well-conditioned. We will prove in section 5 that
the relative error for the minimum 2-norm solution x̂0 computed by the proposed
procedure is

(1.2)
‖x̂0 − x0‖2

‖x0‖2 ≤ u f(m,n)

(
κ2(Y ) + κ2(X)

‖A†‖2 ‖b‖2
‖x0‖2

)
,

where f(m,n) is a modestly growing function of m and n. Note first that (1.2)
improves (1.1), because X and Y are well-conditioned and so the only potentially
large factor in (1.2) is ‖A†‖2 ‖b‖2/‖x0‖2, which also appears in (1.1). But the really
important point on the bound (1.2) is that if A is fixed, then ‖A†‖2 ‖b‖2/‖x0‖2 is
small for most right-hand sides b, even for very ill-conditioned matrices A. This is
well known if A is square and nonsingular (see [1, 9] and [17, section 3.2]). It can
be shown [7, section 4.1], [8] that it also holds for general matrices in two senses: for
most vectors b that are everywhere in the space and for most vectors b with a fixed
value of the relative residual ‖Ax0 − b‖2/‖b‖2 not too close to 1. In this paper the
sentence “for most vectors b” may be understood in either of these two senses.

The framework and the results discussed above resemble those presented in [17]
for computing accurate solutions of structured linear systems. However, the analysis
for LS problems requires completely different techniques for developing the new mul-
tiplicative perturbation theory that is needed to prove the error bound in (1.2). In
addition, the results and algorithms we present are fully general, since they remain
valid both for full rank and rank defective matrices A, and they also can be applied
to solve accurately underdetermined linear systems.
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The computation of an accurate RRD A = XDY is the difficult part in the
framework above. For most well-conditioned matrices an accurate RRD can be com-
puted with standard Gaussian elimination with complete pivoting (GECP) or with the
Householder QR algorithm with column pivoting and when, very rarely, this fails to
produce well-conditioned X and Y factors, then other pivoting strategies can be used
[25, 43, 46]. However, for ill-conditioned matrices accurate RRDs can be computed
only for particular classes of structured matrices through special implementations of
GECP that exploit carefully the structure and, in the case of graded matrices, also
via Householder QR factorization with complete pivoting [28].

Fortunately, as a by-product of the intense research performed in the last two
decades on computing SVDs with high relative accuracy, there exist algorithms to
compute accurate RRDs of many classes of m × n structured matrices in O(mn2)
flops. See [12] and [17, section 1] for a detailed list of these classes of matrices.
Most of the algorithms that compute accurate RRDs determine exactly the rank
of rank deficient matrices and even in this case the framework introduced in this
paper solves LS problems with relative errors bounded as in (1.2). This error bound
is O(u f(m,n)) for most right-hand sides independently of the traditional condition
number of the matrices and so guarantees accurate solutions.

The paper is organized as follows. Preliminaries are introduced in section 2.
Section 3 provides an expression for the variation of the Moore–Penrose inverse un-
der multiplicative perturbations, which is applied to LS problems in subsection 4.1.
Then, in subsection 4.2 we get perturbation bounds for LS problems whose coefficient
matrix is given as an RRD under perturbations of the factors. Section 5 presents a
new algorithm for accurately solving LS problems via RRDs and its error analysis.
The accuracy of this algorithm is checked via numerical tests in section 6. Finally,
conclusions and future work are discussed in section 7.

2. Preliminaries and basic concepts. Since we consider LS problems, we will
use the most natural norms for these problems: the Euclidean vector norm, i.e., given
x = [xi]

n
i ∈ Cn, ‖x‖22 :=

∑n
i=1 |xi|2, and for matrices A ∈ Cm×n the corresponding

subordinate matrix spectral norm ‖A‖2 := max‖x‖2=1 ‖Ax‖2. The symbol I stands
for the identity matrix, the size will be clear from the context, and A∗ denotes the
conjugate-transpose of A. We will use MATLAB notation for submatrices: A(i : j, :)
indicates the submatrix of A consisting of rows i through j, and A(:, k : l) indicates
the submatrix of A consisting of columns k through l. Given A ∈ Cm×n, with m ≥ n,
its singular values are denoted as σ1(A) ≥ · · · ≥ σn(A) ≥ 0. Next Lemma 2.1 will be
needed to derive some perturbation bounds.

Lemma 2.1. Let B,C ∈ Cm×n, let S ⊆ Cm and W ⊆ Cn be vector subspaces,
and let PS ∈ C

m×m and PW ∈ C
n×n be the orthogonal projectors onto S and W,

respectively. Then the following statements hold:

(a) ‖PSB + (I − PS)C‖2 ≤
√
‖B‖22 + ‖C‖22 .

(b) ‖BPW + C(I − PW )‖2 ≤
√
‖B‖22 + ‖C‖22 .

Proof. (a) Let x ∈ Cn with ‖x‖2 = 1. Since the vectors PSBx and (I − PS)Cx
are orthogonal, then ‖(PSB+(I−PS)C)x‖22 = ‖PSBx‖22+‖(I−PS)Cx‖22 ≤ ‖Bx‖22+
‖Cx‖22 ≤ ‖B‖22 + ‖C‖22 and

‖PSB + (I − PS)C‖2 = max
‖x‖2=1

‖(PSB + (I − PS)C)x‖2 ≤
√
‖B‖22 + ‖C‖22 .

Part (b) follows from part (a) applied to the conjugate-transpose matrix.
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In sections 4.2 and 5, we will need the entrywise absolute value of a matrix. Given
a matrix G ∈ Cm×n with entries gij , we denote by |G| the matrix with entries |gij |.
Expressions like |G| ≤ |B|, where B ∈ Cm×n, mean |gij | ≤ |bij | for 1 ≤ i ≤ m, 1 ≤
j ≤ n.

We denote by A† ∈ Cn×m the Moore–Penrose pseudoinverse of A ∈ Cm×n [6],
which is the unique matrix that satisfies

(2.1) (i) AA†A = A, (ii) A†AA† = A†, (iii) (AA†)∗ = AA†, (iv) (A†A)∗ = A†A .

For any matrix Z, we denote by R(Z) its column space and by PZ the orthogonal
projector onto R(Z). It is easy to see that R(A∗) = R(A†), PA = AA†, and PA∗ =
PA† = A†A [6].

The second stage of the computation of the minimum 2-norm solution of
minx ‖b−Ax‖2 in the framework we propose is based on the following simple lemma.

Lemma 2.2. Let A=XDY be an RRD of A∈Cm×n; then A† = Y †D−1X†. Conseq-
uently, the minimum 2-norm solution of both an LS problem minx∈Cn ‖b−XDY x‖2
and a consistent underdetermined linear system XDY x = b is given by

(2.2) x0 = Y †D−1X†b.

Proof. The minimum 2-norm solution of both problems is given by x0 = A† b. A
well-known property [6] of the Moore–Penrose pseudoinverse states that if F ∈ Cm×r

and G ∈ Cr×n and rank (F ) = rank (G) = r, then (FG)† = G†F †. Lemma 2.2 follows
from two successive applications of this property.

We define, following [12], the precise meaning of an accurate computed RRD of
a matrix A. We add, with respect to [12], the condition (2.5) that guarantees that
the computed and exact well-conditioned factors X and Y have condition numbers of
similar magnitude.

Definition 2.3. Let A = XDY be an RRD of A ∈ Cm×n, where X ∈
Cm×r, D = diag(d1, . . . , dr) ∈ Cr×r, and Y ∈ Cr×n, and let X̂ ∈ Cm×r, D̂ =

diag(d̂1, . . . , d̂r) ∈ Cr×r, and Ŷ ∈ Cr×n be the factors computed by a certain algo-

rithm in a computer with unit roundoff u. We say that the factorization X̂D̂Ŷ has
been accurately computed, or is an accurate RRD, if

‖X̂ −X‖2
‖X‖2 ≤ u p(m,n),

‖Ŷ − Y ‖2
‖Y ‖2 ≤ u p(m,n), and(2.3)

|d̂i − di|
|di| ≤ u p(m,n), i = 1 : r,(2.4)

where p(m,n) is a modestly growing function of m and n, i.e., a function bounded by
a low degree polynomial in m and n, such that

(2.5) max{κ2(X) , κ2(Y )} u p(m,n) < 1/2 .

For example, the algorithm to compute an RRD of an m × n (m ≥ n) real Cauchy
matrix presented2 in [11, section 4] computes the factors with an entrywise relative
error bounded by 9nu/(1− 9nu).

2The algorithm in [11] covers only the square case, but it is trivial to modify it for rectangular
Cauchy matrices.
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Let us discuss the role of (2.5). The Weyl perturbation theorem [50] for singular

values and (2.5) imply that rank (X) = rank (X̂) = r, rank (Y ) = rank (Ŷ ) = r, and
that

(2.6)
κ2(X)

3
≤ κ2(X̂) ≤ 3 κ2(X) and

κ2(Y )

3
≤ κ2(Ŷ ) ≤ 3 κ2(Y ) .

This will allow us to use either κ2(X) and κ2(Y ) or κ2(X̂) and κ2(Ŷ ) in the rounding
error bounds obtained in section 5 by modifying somewhat the constants involved in
the bounds.

In section 5 we will use the conventional error model for floating point arithmetic
[29, section 2.2]. In addition, we will assume that neither overflow nor underflow oc-
curs.

3. Multiplicative perturbation results for the Moore–Penrose pseu-
doinverse. In this section and in section 4.1, we consider a multiplicative pertur-
bation of a general matrix A ∈ C

m×n, that is, a matrix Ã = (I +E)A(I + F ), where
(I + E) ∈ Cm×m and (I + F ) ∈ Cn×n are nonsingular matrices. The final goal is to
bound, in section 4.1, ‖x̃0 − x0‖2/‖x0‖2, where x0 and x̃0 are the minimum 2-norm

solutions of the LS problems minx∈Cn ‖Ax− b‖2 and minx∈Cn ‖Ãx− b̃‖2, respectively.
This goal is achieved via Theorem 3.2, where we obtain two expressions for Ã† in
terms of A†, (I+E)−1, and (I+F )−1. Multiplicative perturbation theory of matrices
has received considerable attention in the literature in the context of accurate compu-
tations of eigenvalues and singular values [21, 31, 32, 37, 38] and also in the context
of accurate solution of linear systems of equations [17, Lemma 3.1] but, as far as we
know, it has not been studied in the context of accurate solution of LS problems.
First we present a technical result that is used in the proof of Theorem 3.2.

Lemma 3.1. Let A ∈ Cm×n and Ã = (I +E)A(I +F ) ∈ Cm×n, where (I +E) ∈
Cm×m and (I + F ) ∈ Cn×n are nonsingular matrices. Then the following equalities
hold:

(a) PA(I + E∗)(I − P
˜A) = 0.

(b) (I − P
˜A∗)(I + F ∗)PA∗ = 0.

Proof. (a) Since R(Ã) = R((I + E)A), then (I − P
˜A)(I + E)A = 0. Thus,

(I−P
˜A)(I+E)AA† = (I −P

˜A)(I +E)PA = 0, which is equivalent to PA(I +E∗)(I−
P

˜A) = 0.

(b) Apply (a) to Ã∗ = (I + F ∗)A∗(I + E∗) and conjugate and transpose the
equality.

Theorem 3.2 is the main result in this section and is valid for matrices with any
rank.

Theorem 3.2. Let A ∈ Cm×n and Ã = (I+E)A(I+F ) ∈ Cm×n, where (I+E) ∈
Cm×m and (I + F ) ∈ Cn×n are nonsingular matrices, and set Ê = (I + E)−1E and

F̂ = (I + F )−1F . Then

Ã† = P
˜A∗(I + F )−1A†(I + E)−1P

˜A and(3.1)

Ã† =
(
I + (I − P

˜A∗)F
∗ − P

˜A∗ F̂
)
A†

(
I + E∗(I − P

˜A)− ÊP
˜A

)
.(3.2)

Proof. We prove first (3.1). To this purpose, we define Z := P
˜A∗(I + F )−1A†

(I + E)−1P
˜A as the right-hand side of (3.1) and use (2.1)(i) for A and (2.1)(ii) for Ã

as follows:
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Z = Ã†Ã (I + F )−1A†(I + E)−1ÃÃ† = Ã† (I + E)AA†A (I + F )Ã†

= Ã† (I + E)A (I + F )Ã† = Ã† Ã Ã† = Ã† .

Next, we use (3.1) to prove (3.2). First, we write (I +E)−1 = I − (I +E)−1E =

I − Ê and (I + F )−1 = I − (I + F )−1F = I − F̂ . Substituting these expressions in
(3.1), we get

(3.3) Ã† = P
˜A∗(I − F̂ )A†(I − Ê)P

˜A = P
˜A∗(PA∗ − F̂ )A†(PA − Ê)P

˜A.

From Lemma 3.1(a) it follows that PA(I + E∗(I − P
˜A)) = PAP ˜A. Analogously, from

Lemma 3.1(b), ((I − P
˜A∗)F

∗ + I)PA∗ = P
˜A∗PA∗ . Finally, substitute these relations

in (3.3), use A†PA = A† and PA∗A† = A†, and get (3.2).

We emphasize that expression (3.2) ensures that under “small” multiplicative
perturbations ofA, i.e., small E and F , we obtain “small” multiplicative perturbations
of A†.

The assumptions of Theorem 3.2 guarantee that rank (A) = rank (Ã). This has
simplified considerably the analysis of the variation of the Moore–Penrose pseudoin-
verse with respect to general “additive” perturbations Ã = A+ΔA [50, 52].

Corollary 3.3 presents an expression for Ã† −A† that follows directly from (3.2).

Corollary 3.3. Under the assumptions of Theorem 3.2, we have

(3.4) Ã† −A† = A†ΘE +ΘFA
† +ΘFA

†ΘE ,

where ΘE = E∗(I − P
˜A)− ÊP

˜A and ΘF = (I − P
˜A∗)F ∗ − P

˜A∗ F̂ .

4. Perturbation results for least squares problems. The error analysis of
the new algorithm outlined in the introduction requires finding perturbation bounds
for the variation of the minimum 2-norm solution of an LS problem only to first
order. Finite bounds for the minimum 2-norm solution and for the residual also have
been obtained. They appear in [7] and in more generality in [8]. We will derive the
perturbation bounds in two steps. First for multiplicative perturbations and then for
additive perturbations of the factors of an RRD.

4.1. Multiplicative perturbation results for least squares problems. First
we consider the LS problem

(4.1) min
x∈Cn

‖Ax− b‖2, A ∈ C
m×n, b ∈ C

m,

and the multiplicatively perturbed LS problem

(4.2) min
x∈Cn

‖Ãx− b̃‖2, Ã = (I + E)A(I + F ) ∈ C
m×n, b̃ = b+ h ∈ C

m ,

where (I + E) ∈ C
m×m and (I + F ) ∈ Cn×n are nonsingular matrices. An upper

bound, to first order, for the relative difference between the minimum 2-norm solutions
x0 = A†b and x̃0 = Ã†b̃ of (4.1) and (4.2) is derived in Theorem 4.1, where it is
understood that x0 �= 0.
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Theorem 4.1. Let x0 and x̃0 be the minimum 2-norm solutions of (4.1) and
(4.2), respectively. Assume ‖E‖2 ≤ μ < 1, ‖F‖2 ≤ ν < 1, and ‖h‖2 ≤ ε‖b‖2. Then,
to first order in ε, μ, ν,

‖x̃0 − x0‖2
‖x0‖2 ≤

√
2 ν +

(
ε+

√
2μ

) ‖A†‖2‖b‖2
‖x0‖2 + h.o.t. ,(4.3)

where h.o.t. stands for higher order terms in ε, μ, ν.

Proof. From Corollary 3.3,

x̃0 − x0 = Ã†(b+ h)−A†b =
(
Ã† −A†

)
(b+ h) +A†h

=
(
A† ΘE +ΘF A† +ΘF A† ΘE

)
(b+ h) +A†h

=
(
A† ΘE +ΘF A† ΘE

)
(b+ h) + ΘF x0 +ΘF A†h+A†h

with ΘE and ΘF defined as in Corollary 3.3. Next, apply norm inequalities to get

‖x̃0−x0‖2 ≤ ‖ΘF ‖2‖x0‖2+[‖ΘE‖2 (1 + ‖ΘF‖2) (1 + ε) + ε (1 + ‖ΘF‖2)] ‖A†‖2 ‖b‖2 .

From Lemma 2.1, ‖ΘE‖2 ≤
√
‖E‖22 + ‖Ê‖22 and ‖ΘF ‖2 ≤

√
‖F‖22 + ‖F̂‖22, where Ê

and F̂ are defined as in Theorem 3.2. To first order, ‖Ê‖2 = ‖E‖2 and ‖F̂‖2 = ‖F‖2,
and therefore ‖ΘE‖2 ≤ √

2μ and ‖ΘF ‖2 ≤ √
2 ν. Hence, (4.3) follows.

The bound in Theorem 4.1 improves significatively the classical bound [52, The-

orem 5.1] of LS problems under general additive perturbations Ã = A + ΔA. To
describe this bound, let x̃0 be the minimum 2-norm solution of the LS problem
minx∈Cn ‖(b+Δb)−(A+ΔA)x‖2 and define εA := ‖ΔA‖2/‖A‖2 and εb := ‖Δb‖2/‖b‖2.
Then, if rank(A) = rank(Ã), a minor modification of [4, Theorem 1.4.6] gives to first
order in εA and εB

(4.4)
‖x̃0 − x0‖2

‖x0‖2 ≤ 2 κ2(A) εA +
‖A†‖2 ‖b‖2

‖x0‖2 εb + κ2(A)
2 ‖b−Ax0‖2
‖A‖2 ‖x0‖2 εA.

In (4.4), the relative variation of the minimum 2-norm solution depends on κ2(A) and
κ2(A)

2. However, the bound in Theorem 4.1 is independent of κ2(A) and κ2(A)
2.

The only potentially large factor in (4.3) is ‖A†‖2 ‖b‖2/‖x0‖2, present also in (4.4).
This can be even larger than κ2(A). But it can be shown [7, 8] that ‖A†‖2 ‖b‖2/‖x0‖2
is a moderate number except for very particular choices of b. This was previously
studied when A is a nonsingular matrix in [17, section 3.2]. Although the fact that
A ∈ Cm×n is rectangular forces nontrivial modifications, the main conclusions remain
the same. Therefore, we can say that (4.3) always improves the classical bound (4.4)
for general additive perturbations and that if ‖E‖2, ‖F‖2, and ‖h‖2 are tiny, then
(4.3) produces tiny bounds for ‖x̃0 − x0‖2/‖x0‖2 for almost all b.

The bound (4.3) is essentially optimal, since ‖A†‖2‖b‖2/‖x0‖2 is up to a moderate
constant the condition number under multiplicative perturbations of LS problems
[7, 8].

Finally, observe that Theorem 4.1 is valid both if m ≥ n or if m < n. Thus, it
is valid also for multiplicative perturbations of solutions of underdetermined linear
systems.
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4.2. Perturbation of least squares problems through factors. The error
analysis in section 5 will require us to use a perturbation bound for minimum 2-norm
solutions of LS problems whose coefficient matrix is given as an RRD under additive
perturbations of each factor of the RRD. Such perturbation bound is obtained in
Theorem 4.2.

Theorem 4.2. Let X ∈ Cm×r, D ∈ Cr×r, and Y ∈ Cr×n be such that rank (X) =
rank (Y ) = r and D is diagonal and nonsingular, and let b ∈ Cm. Let x0 be the
minimum 2-norm solution of minx∈Cn ‖b−XDY x‖2 and x̃0 be the minimum 2-norm
solution of minx∈Cn ‖(b+h)−(X+δX)(D+δD)(Y +δY )x‖2, where ‖δX‖2 ≤ α‖X‖2,
‖δY ‖2 ≤ β‖Y ‖2, |δD| ≤ ρ|D|, and ‖h‖2 ≤ ε‖b‖2. Assume that

(4.5) μ := ακ2(X) < 1 and ν := [β + ρ(1 + β)]κ2(Y ) < 1.

Then to first order in α, β, ρ, and ε

(4.6)
‖x̃0 − x0‖2

‖x0‖2 ≤
√
2 (β+ρ)κ2(Y )+

(
ε+

√
2ακ2(X)

) ‖Y †D−1X†‖2‖b‖2
‖x0‖2 +h.o.t.

Proof. Let us call A = XDY and Ã = (X + δX)(D + δD)(Y + δY ). Let us write

Ã as a multiplicative perturbation of A as follows:

Ã = (I + δXX†)XD (I +D−1 δD)Y (I + Y †δY )

= (I + δXX†)XDY (I + Y †D−1 δD Y ) (I + Y †δY )

=: (I + E)A(I + F ),

where E = δXX† and F = Y †δY + Y †D−1 δD Y + Y †D−1 δD δY . Next, taking into
account that ‖D−1 δD‖2 ≤ ρ, we get

‖E‖2 ≤ ακ2(X) = μ < 1, ‖F‖2 ≤ [β + ρ(1 + β)]κ2(Y ) = ν < 1,

and Theorem 4.2 follows immediately from Theorem 4.1 and Lemma 2.2.
Since the factors X and Y of an RRD are well-conditioned, we see from (4.6)

that the sensitivity with respect to perturbations of the factors of the minimum
2-norm solution of the LS problem minx∈Cn ‖b − XDY x‖2 is again controlled by
‖A†‖2‖b‖2/‖x0‖2, where A† = Y †D−1 X†, which is a moderate number for most
vectors b as discussed above.

5. Algorithm and error analysis. We present in this section Algorithm 5.1
for solving an LS problem minx∈Cn ‖b−Ax‖2 and we prove that it computes the min-
imum 2-norm solution with relative error bounded by O(u) ‖A†‖2 ‖b‖2/‖x0‖2, which
is simply O(u) for most vectors b according to the discussion in [7, 8, 17]. The first
step of the algorithm computes an accurate RRD of A = XDY ∈ Cm×n in the sense
of Definition 2.3. The next steps of Algorithm 5.1 are based on Lemma 2.2 and the
following observations: (1) x1 = X†b is the unique solution of the full column rank LS
problem minx∈Cr ‖b−X x‖2; (2) x2 = D−1(X†b) is the unique solution of the linear
system Dx = x1; and (3) Y †(D−1(X†b)) is the minimum 2-norm solution of the full
row rank underdetermined linear system Y x = x2. Observe that this procedure is
valid both if m ≥ n and if m < n. Therefore, in the latter case and if rank (A) = m,
the procedure solves accurately the underdetermined linear system Ax = b. The
minimum 2-norm solution x0 of the underdetermined system Y x = x2 is computed
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via the Q-method described in [29, section 21.1]. We are now in position to state
Algorithm 5.1.

Algorithm 5.1 (accurate solution of LS problems via RRD).
Input: A ∈ C

m×n, b ∈ C
m

Output: x0 minimum 2-norm solution of minx∈Cn ‖b−Ax‖2

Step 1: Compute an accurate RRD of A = XDY in the sense of Definition 2.3,
where X ∈ Cm×r, D ∈ Cr×r is diagonal, Y ∈ Cr×n, and
rank (A) = rank (X) = rank (Y ) = rank (D) = r.

Step 2: Compute the unique solution x1 of minx∈Cr ‖b−X x‖2 using the
Householder QR factorization of X .

Step 3: Compute the unique solution x2 of the diagonal linear system Dx = x1

as x2(i) = x1(i)/dii, i = 1, . . . , r.
Step 4: Compute the minimum 2-norm solution x0 of Y x = x2 using the Q

method, i.e., via Householder QR factorization of Y ∗.

The cost of Step 1 of Algorithm 5.1 depends on the specific type of matrices and
algorithm used, as discussed in the introduction. All these algorithms cost O(mn2)
flops if m ≥ n and O(m2n) flops if m < n. The leading terms of the costs of Steps 2,

3, and 4 are 2r2(m−r/3), r, and 2r2(n−r/3) flops, respectively. Since r ≤ min{m,n},
the total cost of Algorithm 5.1 is O(mn2) flops if m ≥ n and O(m2n) flops if m < n.

The backward rounding errors committed by Algorithm 5.1 are analyzed in
Theorem 5.2. We will use the following notation introduced in [29, sections 3.1 and
3.4]:

(5.1) γn :=
nu

1− nu
and γ̃n :=

cnu

1− cnu
,

where c denotes a small integer constant whose exact value is not essential in the
analysis. Before proving Theorem 5.2, let us comment on the meaning of its assump-
tions. First, we assume that the factors X̂ , D̂, Ŷ computed in Step 1 in floating
point arithmetic satisfy (2.3), (2.4), and (2.5), which imply rank (X) = rank (X̂) = r,

rank (D) = rank (D̂) = r, rank (Y ) = rank (Ŷ ) = r, and (2.6). Therefore, we can

use κ2(X) and κ2(Y ) in the errors of Steps 2 and 4 instead of κ2(X̂) and κ2(Ŷ ) at
the cost of not paying attention to the exact values of the numerical constants in the
error bounds. The assumption (5.2) guarantees that the backward errors ΔX̂ on X̂

in Step 2 preserve the full rank, i.e., rank (X̂) = rank (X̂ +ΔX̂) = r, and the same

for the backward errors on Ŷ in Step 4. The technical assumption (5.3) is needed for
applying [29, Theorem 21.4] in the error analysis of Step 4.

We present in Theorem 5.2 two statements for the backward errors of Algo-
rithm 5.1, one with respect to the computed factors X̂, D̂, and Ŷ of A and another
with respect to the exact ones, which is the result to be used in practice. The reason
for presenting these two statements is that the former gives stronger columnwise and
rowwise backward errors in X̂ and Ŷ , respectively, than the latter. This may be
used to give stronger final backward errors for some particular classes of matrices, as
Cauchy matrices. We do not follow this line here.

Theorem 5.2. Let X̂ ∈ Cm×r, D̂ ∈ Cr×r, and Ŷ ∈ Cr×n be the factors of A
computed in Step 1 of Algorithm 5.1 and assume that they satisfy the error bounds
(2.3) and (2.4) with respect to the exact factors X, D, and Y of A. Assume also
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that (2.5),

max{κ2(X), κ2(Y )}√r γ̃rmax{m,n} < 1, and(5.2)

κ2(Y )n r2 γ̃n < 1(5.3)

hold. Let x̂0 be the computed minimum 2-norm solution of minx∈Cn ‖b−Ax‖2 using
Algorithm 5.1 in finite precision with unit roundoff u. Then the following statements
hold:

(a) x̂0 is the exact minimum 2-norm solution of

(5.4) min
x∈Cn

‖(b+Δb)− (X̂ +ΔX̂)(D̂ +ΔD̂)(Ŷ +ΔŶ )x‖2,

where

‖ΔX̂(:, j)‖2 ≤ γ̃mr ‖X̂(:, j)‖2, ‖ΔŶ (j, :)‖2 ≤ γ̃nr‖Ŷ (j, :)‖2 for j = 1, . . . , r,

|ΔD̂| ≤ γ̃1 |D̂|, ‖Δb‖2 ≤ γ̃mr ‖b‖2 .
(b) x̂0 is the exact minimum 2-norm solution of

(5.5) min
x∈Cn

‖(b+Δb)− (X +ΔX)(D +ΔD)(Y +ΔY )x‖2,

where

‖ΔX‖2 ≤ (u p(m,n) +
√
r γ̃mr +

√
r γ̃mr u p(m,n)) ‖X‖2,

‖ΔY ‖2 ≤ (u p(m,n) +
√
r γ̃nr +

√
r γ̃nr u p(m,n)) ‖Y ‖2,

|ΔD| ≤ (u p(m,n) + γ̃1 + γ̃1 u p(m,n)) |D|, ‖Δb‖2 ≤ γ̃mr ‖b‖2 .
(c) If x0 is the exact minimum 2-norm solution of minx∈Cn ‖b − Ax‖2, then

‖x̂0 − x0‖2/‖x0‖2 can be bounded as in Theorem 4.2 with α = (u p(m,n) +√
r γ̃mr +

√
r γ̃mr u p(m,n)), β = (u p(m,n)+

√
r γ̃nr +

√
r γ̃nr u p(m,n)), ρ =

(u p(m,n) + γ̃1 + γ̃1 u p(m,n)), and ε = γ̃mr. In particular, to first order in
u, and if c is a small integer constant, then

‖x̂0 − x0‖2
‖x0‖2 ≤ c u

[
py(m,n)κ2(Y ) + px(m,n)κ2(X)

‖A†‖2‖b‖2
‖x0‖2

]
+O(u2) ,

where py(m,n) := (p(m,n) + nr3/2) and px(m,n) := (p(m,n) +mr3/2).
Proof. In order to prove part (a) let us write the backward errors in Steps 2, 3,

and 4.
1. The backward errors of Step 2 are given in [29, Theorem 20.3]: the solution

computed in Step 2, x̂1, is the exact solution of the LS problem

(5.6) min
x∈Cr

‖(b+Δb)− (X̂ +ΔX̂)x‖2 ,

where ‖ΔX̂(:, j)‖2 ≤ γ̃mr‖X̂(:, j)‖2, for j = 1, . . . , r, and ‖Δb‖2 ≤ γ̃mr ‖b‖2.
Therefore, ‖ΔX̂‖2 ≤ √

rγ̃mr‖X̂‖2. Recall that (2.3) and (2.5) imply

rank (X) = rank (X̂) = r, so the Weyl perturbation theorem [50] for singular

values and (5.2) imply |σr(X̂ + ΔX̂) − σr(X̂)|/σr(X̂) ≤ ‖ΔX̂‖2/σr(X̂) ≤√
rγ̃mrκ2(X̂) < 1, and rank (X̂) = rank (X̂ +ΔX̂) = r. So, x̂1 satisfies

(5.7) x̂1 = (X̂ +ΔX̂)†(b+Δb)

with X̂ +ΔX̂ ∈ C
m×r and rank (X̂ +ΔX̂) = r.
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2. As a consequence of [29, Lemma 3.5], the solution x̂2 computed in Step 3

obeys

(5.8) (D̂ +ΔD̂) x̂2 = x̂1 with |ΔD̂| ≤ γ̃1|D̂|

with D̂ +ΔD̂ ∈ C
r×r diagonal and nonsingular, by (2.4), (2.5), and (5.2).

3. The backward errors of Step 4 are given in [29, Theorem 21.4] under

the conditions rank (Ŷ ) = r, which follows from (2.3) and (2.5), and

‖ |Ŷ †| |Ŷ | ‖2 r n γn<1, which is guaranteed by (5.3), since ‖ |Ŷ †| |Ŷ | ‖2 r n γn ≤
κ2(Ŷ ) r2 n γn < 1. Under these conditions, the minimum 2-norm solution
computed in Step 4, x̂0, is the exact minimum 2-norm solution of the un-
derdetermined system (Ŷ +ΔŶ )x = x̂2 with ‖ΔŶ (j, :)‖2 ≤ γ̃nr‖Ŷ (j, :)‖2 for

j = 1, . . . , r. We can prove rank (Ŷ ) = rank (Ŷ +ΔŶ ) = r via an argument

similar to the one we used to prove the same for X̂ + ΔX̂ . Therefore, x̂0

obeys

(5.9) x̂0 = (Ŷ +ΔŶ )†x̂2

with Ŷ +ΔŶ ∈ Cr×n and rank (Ŷ +ΔŶ ) = r.
From (5.7), (5.8), (5.9), and Lemma 2.2 we have that

x̂0 = (Ŷ +ΔŶ )†(D̂ +ΔD̂)−1(X̂ +ΔX̂)†(b+Δb)

=
[
(X̂ +ΔX̂) (D̂ +ΔD̂) (Ŷ +ΔŶ )

]†
(b+Δb) .

This and the bounds we have developed for ΔX̂ , ΔD̂, and ΔŶ prove Theorem 5.2(a).
The proof of Theorem 5.2(b) follows easily from part (a). Equations (2.3) and

(2.4) allow us to write X̂ = X+EX , D̂ = D+ED, and Ŷ = Y +EY , where ‖EX‖2 ≤
u p(m,n) ‖X‖2, |ED| ≤ u p(m,n)|D|, and ‖EY ‖2 ≤ u p(m,n)‖Y ‖2. Therefore,

(5.10) X̂ +ΔX̂ = X + EX +ΔX̂ =: X +ΔX ,

where

‖ΔX‖2 ≤ ‖EX‖2 + ‖ΔX̂‖2 ≤ u p(m,n) ‖X‖2 +
√
r γ̃mr‖X̂‖2

≤ u p(m,n) ‖X‖2 +
√
r γ̃mr (‖X‖2 + ‖EX‖2)

≤ (u p(m,n) +
√
r γ̃mr +

√
r γ̃mr u p(m,n)) ‖X‖2 .(5.11)

Analogously, we can write

D̂ +ΔD̂ =: D +ΔD with |ΔD| ≤ (u p(m,n) + γ̃1 + γ̃1 u p(m,n)) |D| ,
Ŷ +ΔŶ =: Y +ΔY with ‖ΔY ‖2 ≤ (u p(m,n) +

√
r γ̃nr +

√
r γ̃nr u p(m,n)) ‖Y ‖2 .

If these equations and (5.10)–(5.11) are inserted into (5.4), then (5.5) is obtained and
part (b) is proved. Finally, part (c) is an immediate consequence of part (b) and
Theorem 4.2.

Observe that since in an RRD the factors X and Y are well-conditioned,
Theorem 5.2(c) guarantees that the forward error in the solution computed by
Algorithm 5.1 is bounded by O(u)‖A†‖2‖b‖2/‖x0‖2. Theorem 5.2(c) proves the bound
(1.2) in the introduction.
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6. Numerical experiments. Our numerical tests were done using MATLAB
and they illustrate how well the errors committed by Algorithm 5.1 compare with the
theoretical predictions and with the errors committed by the usual method to solve
LS problems using the QR factorization computed with the Householder algorithm as
implemented in MATLAB [29, section 20.2]. We have done tests for three important
classes of rectangular structured matrices that may have huge condition numbers:
Cauchy, Vandermonde, and graded matrices. Here we present only (to avoid a very
lengthly article) results for Cauchy matrices, the results for the other classes being
similar [7]. For matrices in these classes, accurate RRDs in the sense of Definition 2.3
can be computed using the algorithms in [11] and [28].

The entries of a Cauchy matrix C ∈ Rm×n, m ≥ n, are defined in terms of two
vectors z = [z1, . . . , zm]T ∈ R

m, y = [y1, . . . , yn]
T ∈ R

n as

(6.1) cij =
1

zi + yj
, i = 1, . . . ,m, j = 1, . . . , n.

Cauchy matrices have full column rank if zi �= zj for any i �= j, yk �= yl for any
k �= l, and zi �= −yj for all i, j. We will choose z and y with these properties and
so we consider only LS problems with unique solutions. Algorithm 3 in [11] uses
a structured version of GECP to compute an accurate RRD of any square Cauchy
matrix. This algorithm can be very easily extended to deal with rectangular matrices,
and this version is the one used in the tests of this section to compute the RRD in
Step 1 of Algorithm 5.1. The overall cost of this step is 2mn2− 2n3/3+O(n2+mn)
operations plus mn2/2− n3/6 +O(n2 +mn) comparisons.

In order to make easy references, let us summarize and give names to the two
algorithms that are used in this section for solving minx∈Rn ‖Cx−b‖2 with C a Cauchy
matrix:

• LS-QR: Given vectors z and y, the entries of C are computed as in (6.1) and
the LS problem is solved via the Householder QR factorization implemented
in MATLAB.

• LS-RRD: The LS problem is solved using Algorithm 5.1 with the RRD in Step

1 computed with the rectangular version of Algorithm 3 in [11] discussed
above.

If x̂0 is the unique solution of minx∈Rn ‖Cx − b‖2 computed by either of the two
algorithms and x0 is the exact solution, we know that the forward relative error
committed by Algorithm 5.1 satisfies (1.2) (see Theorem 5.2(c)). We also know that
the computed solution by the QR algorithm in MATLAB has a forward relative error
given in (1.1). This bound can be easily upper bounded to get [7, (7.1)]

(6.2)
‖x̂0 − x0‖2

‖x0‖2 ≤ cmn3/2 u κ2(A)
‖A†‖2‖b‖2

‖x0‖2 ,

which is a bound larger than (1.1) but simpler and reliable in most situations.

In our tests, we have generated Cauchy matrices with random z and y vectors
and random right-hand side vectors b. They have been chosen either from the uniform
distribution in [0, 1] or from the standard normal distribution. In all experiments we
have tested the eight resulting possibilities in the choice of the random distributions for
z, y, and b. We take as “exact” solution x0 the one computed via the svd command of
MATLAB run in variable precision arithmetic. In each test we have set the precision
to 2 log10 |D1/Dn|+30 decimal digits, where D1 and Dn are, respectively, the largest
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Fig. 6.1. Forward relative error ‖x̂0 − x0‖2/‖x0‖2 against κ2(C). C are random 100 × 50
Cauchy matrices. The vectors z and b are selected from the standard normal distribution and the
vector y from the uniform distribution in [0, 1]. In these tests, κ2(C) has been computed via high
precision arithmetic in MATLAB.

and the smallest (in absolute value) diagonal entries of the matrix D in the RRD of
C computed in Step 1 of Algorithm 5.1.

Two kinds of experiments have been done. In the first group, we have fixed the
size of the matrix: m × n = 100 × 50, 50 × 30, or 25 × 10. For each size we have
generated 50× 8 different sets of the random vectors z, y, and b, therefore generating
a total of 400 different LS problems for each size. Figure 6.1 shows some of the results
for the size 100 × 50. We observe that the relative error in the LS-RRD algorithm is
always of order u times a small constant, as predicted, while the error for LS-QR scales
almost linearly with κ2(C) until it saturates. The linear dependence on κ2(C) of the
relative error in LS-QR is the predicted by (6.2) since ‖C†‖2‖b‖2/‖x0‖2 has always
been moderate in these tests. Besides this, we have computed the right-hand sides
of (1.2) and (6.2) suppressing the dimensional constants. In all the experiments both
bounds are rather sharp and do not overestimate the actual errors. For other sizes
and other ways to generate z, y, and b the results have been similar.

We have performed a second group of tests where we have fixed the number of
rows of the matrix and varied the number of the columns. We have tested matrices
of sizes m × n with m = 100, n = 10 : 10 : 90 (5 × 8 sets of random vectors z, y, and
b for each size), m = 50, n = 10 : 2 : 40 (10 × 8 sets of random vectors z, y, and b for
each size), and m = 25, n = 5:5 :20 (20×8 sets of random vectors z, y, and b for each
size). This makes a total of 2280 matrices. Our results also agree here with (1.2) and
(6.2).

For all our experiments with Cauchy matrices, the range of the condition numbers
has been 100 � κ2(C) � 10100, the maximum value of the term ‖C†‖2‖b‖2/‖x0‖2 has
been 1376, 8 ≤ κ2(X) ≤ 72, and 13 ≤ κ2(Y ) ≤ 58.

7. Conclusions and future work. In this paper we have introduced and care-
fully analyzed a new algorithm to compute accurate solutions of those LS problems
minx∈Cn ‖Ax − b‖2 such that an accurate RRD of the coefficient matrix A can be
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computed. This is now possible for many classes of structured matrices [12, 17, 7]
that may have extremely large traditional condition numbers, and probably it will
be possible for more classes in the future. In addition, the new algorithm can be
applied to compute accurate minimum 2-norm solutions of underdetermined linear
systems. This work together with the previous papers [12, 16, 17] shows that for
those matrices for which accurate RRDs can be computed, we can perform accurately
and efficiently almost all basic tasks of numerical linear algebra, i.e., solution of linear
systems, solution of LS problems, computation of eigenvalues and eigenvectors of sym-
metric matrices, and computation of the SVD, and to obtain relative errors of order
u for very ill-conditioned problems where standard algorithms fail to provide even a
single correct digit of accuracy. The only basic problem that is excluded from this
framework is the nonsymmetric eigenvalue problem. Future research will investigate
to what extent RRDs allow us to solve accurately nonsymmetric eigenvalue problems.
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[48] I. Slapničar, Highly accurate symmetric eigenvalue decomposition and hyperbolic SVD, Linear
Algebra Appl., 358 (2003), pp. 387–424.

[49] G. W. Stewart, Matrix Algorithms: Volume I: Basic Decompositions, SIAM, Philadelphia,
1998.

[50] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York,
1990.

[51] D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM,
Philadelphia, 2007.
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