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LARGE VECTOR SPACES OF BLOCK-SYMMETRIC STRONG
LINEARIZATIONS OF MATRIX POLYNOMIALS

M. I. BUENO∗, F. M. DOPICO †, S. FURTADO ‡, AND M. RYCHNOVSKY §

Abstract. Given a matrix polynomial P (λ) =
∑k

i=0 λ
iAi of degree k, where Ai are n × n matrices with

entries in a field F, the development of linearizations of P (λ) that preserve whatever structure P (λ) might posses

has been a very active area of research in the last decade. Most of the structure-preserving linearizations of P (λ)
discovered so far are based on certain modifications of block-symmetric linearizations. The block-symmetric lin-

earizations of P (λ) available in the literature fall essentially into two classes: linearizations based on the so-called

Fiedler pencils with repetition, which form a finite family, and a vector space of dimension k of block-symmetric

pencils, called DL(P ), such that most of its pencils are linearizations. One drawback of the pencils in DL(P ) is

that none of them is a linearization when P (λ) is singular. In this paper we introduce new vector spaces of block-

symmetric pencils, most of which are strong linearizations of P (λ). The dimensions of these spaces are O(n2),

which, for n ≥ √
k, are much larger than the dimension of DL(P ). When k is odd, many of these vector spaces

contain linearizations also when P (λ) is singular. The coefficients of the block-symmetric pencils in these new

spaces can be easily constructed as k × k block-matrices whose n× n blocks are of the form 0, ±αIn, ±αAi, or

arbitrary n× n matrices, where α is an arbitrary nonzero scalar.

Key words. block-symmetric linearizations, Fiedler pencils with repetition, generalized Fiedler pencils with

repetition, matrix polynomials, strong linearizations, structured matrix polynomials, vector space DL(P )
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1. Introduction. Let F be an arbitrary field and Mn(F) be the set of n ± n matrices

with entries in F. Throughout this paper we consider the matrix polynomial of degree k and

size n± n

P (λ) =
k⋃

i=0

λiAi, where A0, . . . , Ak � Mn(F), Ak ∅= 0. (1.1)

The matrix polynomial P (λ) is said to be singular if detP (λ) is identically zero, and it is

said to be regular otherwise. Matrix polynomials arise in many applications, are receiving

considerable attention in the literature in the last years, and some general references on this

topic are [13, 19, 29].

The most extended way to deal in theory and applications with matrix polynomials is

via linearizations [13]. A linearization of the matrix polynomial P (λ) is a pencil L(λ) =
λL1 L0 of size (nk)± (nk) such that there exist two unimodular matrix polynomials, i.e.,

matrix polynomials with constant nonzero determinant, U(λ) and V (λ), which satisfy

U(λ)L(λ)V (λ) =

]
P (λ) 0
0 In(k−1)

⌊
,

where In(k−1) is the identity matrix of size n(k 1)± n(k 1). Even more interesting are

the strong linearizations of P (λ) [12], whose definition requires to introduce first the reversal
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of P (λ) as the polynomial revP (λ) := λk P (1/λ). Then a linearization L(λ) of P (λ) is

said to be strong if revL(λ) is also a linearization of revP (λ). The key property of strong

linearizations is that they have the same finite and infinite regular spectral structures as P (λ)
[11]. We emphasize that we are using the classical definitions and sizes of linearizations and

strong linearizations. Extensions of these concepts allowing other sizes have been considered

recently by several authors (see [11] and the references therein). In this paper, given a pencil

L(λ) = λL1 L0, we will call the constant matrices L0 and L1 the coefficients of L(λ) of

degree 0 and 1, respectively.

The matrix polynomials that arise in applications have very often particular structures.

For example, they can be symmetric, Hermitian, palindromic, or alternating, among many

other possible structures (see [20, 21, 23, 27] and the references therein for more details).

Most structured matrix polynomials have spectra with particular symmetries or constrains.

Therefore, it is important to have strong linearizations of such structured matrix polynomi-

als that share the same structure, so that they preserve the properties of the spectrum un-

der the effect of rounding errors if structure-preserving numerical algorithms for the corre-

sponding generalized eigenvalue problem are used on the linearizations. Additionally, it is

desirable to have a large class of structured strong linearizations that can be constructed eas-

ily, from which one can select a linearization with the most favorable properties in terms,

for instance, of conditioning and backward errors of eigenvalues [28], sparsity patterns, or

the recovery of eigenvectors. This has motivated an intense research activity in the last

years on the development of structure-preserving strong linearizations of matrix polynomi-

als. The following list of references is an incomplete sample of recent papers on this topic

[2, 3, 4, 6, 7, 10, 17, 18, 22, 23, 24, 25, 26, 32].

Most structure-preserving strong linearizations of matrix polynomials appearing in the

literature are obtained from block-symmetric strong linearizations via some manipulations.

The notion of block-symmetry is defined as follows (see for instance [17]): let H = (Hij)
k
i,j=1,

with Hij � Mn(F), be a k ± k block-matrix and define the block-transpose HB of H as the

k ± k block-matrix having the block Hji in the block position (i, j), for 1 ≥ i, j ≥ k. Then,

we say that H is block-symmetric if H = HB and 1 we say that a pencil L(λ) = λL1 L0

is block-symmetric if both matrices L1 and L0 are block-symmetric. Therefore, the develop-

ment of block-symmetric strong linearizations of matrix polynomials is the key step towards

obtaining structure-preserving strong linearizations and has received considerable attention

in the literature. Essentially, two main classes of block-symmetric strong linearizations are

available nowadays. They are described in the next two paragraphs.

Given a matrix polynomial P (λ) as in (1.1), the associated vector space of block-symme-

tric pencils DL(P ) was introduced and studied in [17, 22]. Recently, an insightful functional

interpretation for DL(P ) has been presented in [30]. The space DL(P ) is a k-dimensional

vector space over F of block-symmetric pencils most of which are strong linearizations of

P (λ) when P (λ) is regular. The pencils in this space are easily constructible from the matrix

coefficients of P (λ). However, a drawback of DL(P ) is that it does not contain any lineariza-

tion of P (λ) if P (λ) is singular [9, Theorem 6.1], which questions the utility of such space

also when P (λ) is regular but very close to be singular, even in the case a staircase algo-

rithm valid for “numerically singular pencils” is used [31]. To the best of our knowledge, no

vector spaces of block-symmetric strong linearizations for singular matrix polynomials have

appeared so far in the literature. To introduce spaces of this type for polynomials with odd

degree is one of the main contributions of this paper.

The other main class of block-symmetric strong linearizations of P (λ) as in (1.1) are

1Observe that if Hij = HT
ij for all (i, j), then H is block-symmetric if and only if it is symmetric.



Large vector spaces of block-symmetric strong linearizations 3

based on the so-called Fiedler pencils with repetition (FPR) introduced in [32], and whose

definition is reminded in Definition 5.1. The family of FPR is a finite family of pencils

that are strong linearizations of P (λ) under certain conditions. It was shown in [32] that

some FPR are in fact block-symmetric, and the complete characterization of all FPR that

are block-symmetric has been recently obtained in [4]. It is important to remark that some

block-symmetric FPR are strong linearizations when P (λ) is singular and its degree is odd.

It is also worth noting that the pencils in the standard basis of DL(P ) [17, Section 3.3] are

block-symmetric FPR [32, Corollary 2].

In this paper, we expand in a significative way the classes of block-symmetric strong

linearizations of P (λ) discussed previously. In a certain sense, we proceed by combining

both approaches since, starting from the finite family of block-symmetric FPR, we are able

to construct many vector spaces, consisting mostly of block-symmetric strong linearizations

of P (λ), with dimension much larger than DL(P ), that is, we get large infinite families of

block-symmetric strong linearizations.

We start our trip by extending the family of FPR to a new much larger family of pencils

that we call generalized Fiedler pencils with repetition (GFPR). The pencils in this family are

easily constructible from the coefficients of the k-degree matrix polynomial P (λ) in (1.1).

More precisely, their coefficient matrices can be seen as block-matrices whose blocks are of

the form 0, In, ⊕Ai, or arbitrary n ± n matrices. We give sufficient conditions for a GFPR

to be a strong linearization of P (λ). Then, we consider a subset of block-symmetric pencils

inside the family of GFPR, which contains the block-symmetric FPR, and, therefore, the

standard basis for DL(P ). We define the vector space generated by these block-symmetric

GFPR and call it the extended DL(P ), denoted by EDL(P ). Thus, the space DL(P ) is a

subspace of EDL(P ). When k ∼ 3, we construct many other subspaces of EDL(P ) which

consist mostly of strong linearizations of P (λ) and give an easily constructible basis for each

of them. Although some of these spaces contain linearizations only when P (λ) is regular

(satisfying some extra additional nonsingularity conditions), we also obtain many subspaces

consisting mostly of block-symmetric strong linearizations when P (λ) is a singular matrix

polynomial with odd degree. The largest dimension of the new subspaces we introduce is⌋
(k−1)2

4 n2 +1, which is much larger than the dimension k of DL(P ) if n ∼ k. Note that

the dimension depends not only on the degree of P (λ) but also on its size. An interesting

property of the pencils in these large subspaces is that all of them can be obtained from a

block-symmetric FPR by choosing carefully some of its blocks, replacing them by n ± n
arbitrary matrices, and, finally, multiplying the remaining blocks by an arbitrary scalar. This

simple replacement procedure is described in Section 2 in the particular case of the FPR in

the standard basis of DL(P ).

Another remarkable property of many of the new block-symmetric strong linearizations

that we introduce is that they preserve the sign characteristic [13, 14] of P (λ), when P (λ)
is Hermitian and has real eigenvalues. At present, this property has been proved only for

one linearization: the last pencil in the standard basis of DL(P ) [1, Lemma 2.8]. Note that

the proof in [1] can be easily extended to prove that many other pencils in DL(P ) preserve

the sign characteristic, but that it remains valid only for matrix polynomials with semisimple

eigenvalues. For brevity, we postpone the study of this interesting question to [5].

The paper is organized as follows. In Section 2, we present simple examples that illus-

trate how to construct some large new spaces of block-symmetric strong linearizations of a

matrix polynomial P (λ) as in (1.1). The complete formal construction of all the spaces that

we introduce in this paper is rather technical, as well as the proof that they mostly contain

strong linearizations, and is deferred to Section 7. In Section 3, we present some defini-

tions and results introduced in previous papers relative to tuples of integers. The elementary
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matrices used throughout the paper to construct different classes of pencils associated with

P (λ) are considered in Section 4 and, based on them, we introduce in Section 5 the fam-

ily of GFPR and give conditions for a pencil in this family to be a strong linearization of

P (λ). In Section 6, we study the index tuples that define a block-symmetric GFPR and give

a canonical form for these tuples, which allows us to obtain a canonical expression for each

of the block-symmetric GFPR. In this section, we also define the extended DL(P ) space,

EDL(P ), as the subspace generated by the block-symmetric GFPR and show that DL(P ) is

one of its subspaces. In Section 7, we introduce the key spaces in this paper, the so-called

Single-EDL(P ) subspaces, give a basis for each of them, and show that their elements are

almost all strong linearizations of P (λ) when P (λ) is regular (satisfying some nonsingularity

conditions) or when P (λ) is singular and has odd degree. We also provide in Section 7 some

concrete examples of Single-EDL(P ) subspaces. Finally, in Section 8, the conclusions and

some lines of future research are summarized.

2. Large spaces of block-symmetric strong linearizations obtained from pencils in
the standard basis of DL(P ). In this section we show how to construct some special cases

of the new large dimensional vector spaces of block-symmetric pencils associated with a

matrix polynomial P (λ) as in (1.1) introduced in this work. Moreover, we present without
proofs sufficient conditions under which pencils in these subspaces are strong linearizations of

P (λ). These conditions clearly indicate that almost all pencils in these subspaces are strong

linearizations of P (λ) when the field F is infinite. The main purpose of this section is to

convince the reader that, once a given block-symmetric Fiedler pencil with repetition (FPR)

[4, 32] is given, to construct the new space of potential strong linearizations based on it is

very simple, as well as it is very simple to state sufficient conditions under which the pencils

in this space are strong linearizations of P (λ). However, we will see in subsequent sections

that, both, proving rigorously that these conditions are indeed sufficient and describing all

the families of new spaces of block-symmetric linearizations require many technical details

that may hide this simplicity. These technicalities are mainly a consequence of the fact that

block-symmetric FPR are naturally defined as long products of certain elementary matrices

[4, 32], instead of being defined in terms of its entries. Before starting, we warn the reader

that although this section includes several forward references to results in next sections, these

references should be skipped in a first reading, since they are not needed for understanding

this section and, in some sense, they are envisioned as a guide to some of the most important

results proved in this work.

The new subspaces of block-symmetric pencils associated with P (λ) in (1.1) that we in-

troduce are presented in Definition 7.1 and are called Single-EDL(P ) subspaces. We define

one such subspace for each block-symmetric FPR introduced in [4] (the concepts of FPR and

block-symmetric FPR are refreshed in Definition 5.1 and in the second paragraph in Section 6,

respectively). In this section, we define in a very simple way some Single-EDL(P ) subspaces

of large dimension. More precisely, we consider here the Single-EDL(P ) subspaces associ-

ated with those block-symmetric FPR in the standard basis for the space of block-symmetric

pencils DL(P ) [17, 22]. The pencils in this basis were proved to be block-symmetric FPR

recently in [32, Corollary 2], but they are very well-known since long time ago [20] and have

the fundamental advantage over other block-symmetric FPR that their descriptions in terms

of block entries is extremely simple [17, Section 3.3].

Let us describe the standard basis of DL(P ). It was shown in [17] that if P (λ) is a matrix

polynomial of degree k and size n± n as in (1.1), then for every L(λ) � DL(P ) there exists

a unique vector v � F
k such that

L(λ)×(Λ ◦ In) = v ◦ P (λ) and (ΛT ◦ In)×L(λ) = vT ◦ P (λ),
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where Λ = [λk−1 λk−2×××λ 1]T and ◦ denotes the Kronecker product. This vector v is

called the ansatz vector of L(λ). As a consequence of this result DL(P ) is isomorphic to F
k

and, therefore, DL(P ) has dimension k. In [17], the so-called standard basis for DL(P ) was

obtained by considering the pencils whose ansatz vector is one of the vectors in the standard

basis for Fk. The description of the pencils in the standard basis for DL(P ) in terms of the

coefficients of P (λ) can be obtained as follows [17, Theorem 3.5]: for j = 1 : k, define

Lj(P ) :=

⎤⎥⎥⎥⎥⎦
0 ××× ××× Ak

... . .
.

Ak−1

... . .
.

. .
. ...

Ak Ak−1 . . . Ak−j+1

⎣∑∑∑∑⎢ and Uj(P ) :=

⎤⎥⎥⎥⎥⎦
Aj−1 . . . A1 A0

... . .
.

. .
. ...

A1 . .
. ...

A0 ××× ××× 0

⎣∑∑∑∑⎢ ,

and the k ± k block-symmetric matrix

Xm :=

]
Lm(P ) 0

0 Uk−m(P )

⌊
, for m = 0 : k,

where the matrices L0(P ) and U0(P ) are taken to be void. Then, the standard basis for

DL(P ) is }D1(λ, P ), . . . , Dk(λ, P )| with

Dm(λ, P ) = λXm Xm−1, for m = 1 : k. (2.1)

Each of the Single-EDL(P ) subspaces discussed in this section is obtained from a pencil

Dm(λ, P ) as follows:

≤Multiply the pencil Dm(λ, P ) by an arbitrary scalar α � F.

≤ Replace some (not arbitrary) blocks of the form ⊕αAi in αXm and αXm−1 by

arbitrary n± n matrices.

We illustrate in Examples 2.1 and 2.2 which blocks are replaced by arbitrary matrices in two

concrete cases and, after that, we provide the general replacement rule.

EXAMPLE 2.1. Let P (λ) be the matrix polynomial in (1.1) with k = 5 and consider the
pencil D1(λ, P ) in (2.1), that is,

λ

⎤⎥⎥⎥⎥⎦
A5 0 0 0 0
0 A3 A2 A1 A0

0 A2 A1 A0 0
0 A1 A0 0 0
0 A0 0 0 0

⎣∑∑∑∑⎢
⎤⎥⎥⎥⎥⎦

A4 A3 A2 A1 A0

A3 A2 A1 A0 0
A2 A1 A0 0 0
A1 A0 0 0 0
A0 0 0 0 0

⎣∑∑∑∑⎢ ,

and, based on it, define the block-symmetric pencils of the form

λ

⎤⎥⎥⎥⎥⎦
αA5 0 0 0 0
0 αA3 B2,1 B3,1 B4,1

0 B2,1 αA1 B3,2 0
0 B3,1 B3,2 0 0
0 B4,1 0 0 0

⎣∑∑∑∑⎢
⎤⎥⎥⎥⎥⎦

αA4 αA3 B2,1 B3,1 B4,1

αA3 αA2 αA1 B3,2 0
B2,1 αA1 αA0 0 0
B3,1 B3,2 0 0 0
B4,1 0 0 0 0

⎣∑∑∑∑⎢ ,

where α � F is an arbitrary scalar and B2,1, B3,1, B3,2, and B4,1 are arbitrary n ± n
matrices. It is immediate to see that this family of pencils forms a vector space of dimension
4n2 +1 over F. This family is an instance of a Single-EDL(P ) subspace that we call F1(P ).
A basis for F1(P ) is obtained by taking α = 1 and considering the pencil in which all
the blocks Bi,j are 0, as well as all the pencils in which 3 of the blocks Bij are 0 and the
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remaining one has exactly one entry equal to 1 and all the other entries equal to 0. It can
be shown that any pencil in F1(P ) such that α ∅= 0 and B4,1 and B3,2 are nonsingular is
a strong linearization of P (λ). Observe that this implies that even when P (λ) is singular
almost all pencils in F1(P ) are strong linearizations of P (λ).

EXAMPLE 2.2. In our second example, we consider P (λ) in (1.1) with degree k = 7
and start the construction from the pencil D4(λ, P ) = λX4 X3 in (2.1):

X4 =

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 0 0 A7 0 0 0
0 0 A7 A6 0 0 0
0 A7 A6 A5 0 0 0
A7 A6 A5 A4 0 0 0
0 0 0 0 A2 A1 A0

0 0 0 0 A1 A0 0
0 0 0 0 A0 0 0

⎣∑∑∑∑∑∑∑∑⎢
,

X3 =

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 0 A7 0 0 0 0
0 A7 A6 0 0 0 0
A7 A6 A5 0 0 0 0
0 0 0 A3 A2 A1 A0

0 0 0 A2 A1 A0 0
0 0 0 A1 A0 0 0
0 0 0 A0 0 0 0

⎣∑∑∑∑∑∑∑∑⎢
.

Based on D4(λ, P ) define the family of block-symmetric pencils of the form λ ⌊X4
⌊X3 with

⌊X4 =

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 0 0 C1,3 0 0 0
0 0 αA7 C2,3 0 0 0
0 αA7 αA6 αA5 0 0 0

C1,3 C2,3 αA5 αA4 0 0 0
0 0 0 0 αA2 B2,1 B3,1

0 0 0 0 B2,1 αA0 0
0 0 0 0 B3,1 0 0

⎣∑∑∑∑∑∑∑∑⎢
,

⌊X3 =

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 0 C1,3 0 0 0 0
0 αA7 C2,3 0 0 0 0

C1,3 C2,3 αA5 0 0 0 0
0 0 0 αA3 αA2 B2,1 B3,1

0 0 0 αA2 αA1 αA0 0
0 0 0 B2,1 αA0 0 0
0 0 0 B3,1 0 0 0

⎣∑∑∑∑∑∑∑∑⎢
,

where α � F is an arbitrary scalar and B2,1, B3,1, C1,3, and C2,3 are arbitrary n ± n
matrices. Again, it is immediate to see that this family of pencils forms a vector space of
dimension 4n2 + 1 over F. It is also a particular case of a Single-EDL(P ) subspace that
we call F4(P ). A basis for F4(P ) is obtained by taking α = 1 and considering the pencil in
which all the blocks Bi,j and Cp,q are 0, as well as all the pencils in which 3 of the blocks
Bij and Cp,q are 0 and the remaining one has exactly one entry equal to 1 and all the other
entries equal to 0. If A0 and A7 are nonsingular, then it can be shown that any pencil in
F4(P ) such that α ∅= 0 and B3,1 and C1,3 are nonsingular is a strong linearization of P (λ).
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In contrast with the situation in Example 2.1, we cannot ensure that a pencil in F4(P ) for
k = 7 is a strong linearization of P (λ) if P (λ) is singular.

The replacement rule that we have used in Examples 2.1 and 2.2 to construct the spaces

Fm(P ) starting from αDm(λ, P ) = λ (αXm) (αXm−1) is very simple and is as follows:

(a) Replace in αXm all non-identically zero off-diagonal blocks in αUk−m(P ) by

arbitrary n± n matrices preserving block-symmetry;

(b) The arbitrary matrices introduced in step (a) located below (resp. above) the block-

diagonal of αUk−m(P ) replace the blocks located one column leftwards (resp.

one row upwards) in αXm−1;

(c) Replace in αXm−1 all non-identically zero off-diagonal blocks in αLm−1(P ) by

arbitrary n± n matrices preserving block-symmetry;

(d) The arbitrary matrices introduced in step (c) located below (resp. above) the block-

diagonal of αLm−1(P ) replace the blocks located one row downwards (resp. one

column rightwards) in αXm.

This replacement rule is valid for defining the Single-EDL(P ) subspace Fm(P ) associated

with the FPR Dm(λ, P ) for any polynomial P (λ) of arbitrary degree k ∼ 3 and for any

value of m � }1, . . . , k| . This rule can be stated as the formal Definition 2.1 of the spaces of

block-symmetric pencils Fm(P ) in terms of block indices.

DEFINITION 2.1. Let P (λ) be an n ± n matrix polynomial of degree k as in (1.1). Let
Dm(λ, P ), m = 1 : k, be the mth pencil in the standard basis of DL(P ) defined in (2.1). The
family of block-symmetric pencils Fm(P ) is the set of those pencils obtained from Dm(λ, P )
as follows: first, for any α � F get αDm(λ, P ) = λ(αXm) (αXm−1) and then

≤ replace the blocks in positions (m+ i,m+ j) and (m+ j,m+ i) in αXm, and the
blocks in positions (m + i,m + j 1) and (m + j 1,m + i) in αXm−1, by an
arbitrary n±n matrix Bi,j , for i = 2 : k m and j = 1 : min}i 1, k m i+1| ;
and

≤ replace the blocks in positions (i, j) and (j, i) in αXm−1 and the blocks in positions
(i, j+1) and (j+1, i) in αXm, by an arbitrary n±n matrix Ci,j , for i = 1 : m 2
and j = max}m i, i+ 1| : m 1.

Let us go back to our guiding Examples 2.1 and 2.2 and observe that the coefficients of

the pencils in Fm(P ) have the same block diagonal structures as Xm and Xm−1. These struc-

tures allow us to describe very easily sufficient conditions under which the pencils in Fm(P )
are strong linearizations of P (λ). For this purpose, we only need to consider the block-

antidiagonals of the diagonal blocks of the coefficients of the pencils in Fm(P ). Then the

mentioned sufficient conditions are that the arbitrary matrices in these block-antidiagonals are

nonsingular and that if αAk or αA0 appears more than once in the same block-antidiagonal,

then Ak or A0 must be nonsingular. These sufficient conditions are stated rigorously in The-

orem 2.2, together with other basic properties of the family of pencils Fm(P ). The complete

proof of this theorem will be presented in Subsection 7.2 taking into account the representa-

tion of generalized Fiedler pencils with repetition in terms of products of certain elementary

matrices. However, we observe that the fact that Fm(P ) is a vector subspace is a straight-

forward consequence of Definition 2.1 and that the value of the dimension of Fm(P ) follows

from counting the number of arbitrary matrices mentioned in Definition 2.1.

THEOREM 2.2. Let P (λ) be an n± n matrix polynomial of degree k as in (1.1) and let
Fm(P ) be the family of block-symmetric pencils introduced in Definition 2.1. Then, Fm(P )
is a vector space over F of dimension)⌋

(k m)2

4

⌈
+

⌋
(m 1)2

4

⌈[
n2 + 1.
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Moreover, if the notation in Definition 2.1 is used, then a pencil L(λ) in Fm(P ) is a strong
linearization of P (λ) when the following conditions hold:

(a) α ∅= 0;
(b) the matrices Bi,k−m−i+1, for i = 	k−m

2 {+ 1 : k m, and Ci,m−i, for i = 1 :

m−1

2 �, are nonsingular matrices;
(c) A0 is nonsingular if k m is odd;
(d) Ak is nonsingular if m is even.
A basis for the space Fm(P ) can be obtained as described in Examples 2.1 and 2.2. A

general procedure for obtaining a basis of any Single-EDL(P ) subspace will be presented in

Theorem 7.2. Observe that, for each m, the intersection of the spaces Fm(P ) and DL(P ) is

the vector space of dimension 1 generated by Dm(λ, P ).
Concerning conditions (c) and (d) in Theorem 2.2 note that, in each pencil in Fm(P )

corresponding to some α ∅= 0, we have at least one block equal to αA0 and one block

equal to αAk in the matrix coefficient of the term of degree 0 and 1, respectively. The block

αA0 or αAk appears more than once in the respective matrix coefficient when k m is

odd or m is even, respectively, and if it is singular, then Theorem 2.2 does not ensure that

the corresponding pencil is a strong linearization of P (λ). In particular, if P (λ) is a singular

matrix polynomial, for Theorem 2.2 to ensure that Fm(P ) contains strong linearizations of

P (λ) we need that m and the degree of P (λ) are odd as, in this case, the blocks A0 and

Ak are both singular. A simple consequence of the general Theorem 5.5 is that, if P (λ) is

regular, then the sufficient conditions (b), (c), and (d) given in Theorem 2.2 for a pencil in

Fm(P ) with α ∅= 0 to be a strong linearization of P (λ) are also necessary.

REMARK 2.1. From Definition 2.1 (see also Examples 2.1 and 2.2), it is clear that if
P (λ) is symmetric the pencils in Fm(P ) are symmetric if and only if all the arbitrary n± n
matrices Bi,j and Ci,j are symmetric. This extra condition defines a subspace Sym(Fm(P ))
of Fm(P ) whose dimension is)⌋

(k m)2

4

⌈
+

⌋
(m 1)2

4

⌈[ )
n2 + n

2

[
+ 1.

A procedure in terms of block-entries similar to the one given in this section could be

applied to produce a space of pencils such that almost all pencils are strong linearizations of a

matrix polynomial P (λ) as in (1.1) starting with any of the block-symmetric FPR associated

with P (λ) introduced in [4], not necessarily with a pencil in the standard basis of DL(P ).
However, for those Single-EDL(P ) subspaces obtained from an FPR not in the standard basis

of DL(P ), a description in terms of products of elementary matrices is more convenient and

natural, since the Fiedler pencils and the FPR are originally described in this way (as opposed

to DL(P )). Therefore, a block-entry description of general Single-EDL(P ) subspaces is

complicated and will not be pursued in this paper. Instead, we present a unified description

of all the cases in terms of products of elementary matrices. This description requires the use

of some tools that will be introduced in the next sections.

3. Equivalence of index tuples. In this section we include some definitions and results

on index tuples that will be crucial in the paper, in particular, in the construction of the Fiedler

pencils with repetition (FPR) and the generalized Fiedler pencils with repetition (GFPR).

We will use the following notation. If a and b are two integers, we denote

a : b :=

}
a, a+ 1, . . . , b, if a ≥ b,
A, if a > b.

DEFINITION 3.1. We call an index tuple to a finite ordered sequence of integer numbers.
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Each of these integers is called an index. The number of indices in an index tuple t is called
its length and is denoted by \t\.

Given an index tuple t and an integer a, we denote by a+t the index tuple obtained from

t by adding a to each of its indices. Given index tuples t1, . . . , ts, we denote by (t1, . . . , ts)
the index tuple obtained by concatenating the indices in the index tuples t1, . . . , ts in the

indicated order.

DEFINITION 3.2. We say that two nonnegative indices i, j in an index tuple commute if
\i j\∅= 1.

DEFINITION 3.3. Let t and t′ be two index tuples of nonnegative integers. We say that
t′ is obtained from t by a transposition if t′ is obtained from t by interchanging two distinct
commuting indices in adjacent positions. If i and i+ 1 are the positions of the interchanged
indices in t, we call the transposition that produces t′ from t to the permutation of }1 : \t\|
obtained by interchanging i and i+ 1 in the identity permutation (1 : \t\).

We will use the standard notation in abstract algebra for transpositions [16]. That is, by

(i, i + 1) we denote the permutation of }1 : \t\| obtained by interchanging i and i + 1 in

(1 : \t\).
DEFINITION 3.4. Given two index tuples t and t′ of nonnegative integers, we say that t

is equivalent to t′ if t = t′ or if t′ can be obtained from t by a sequence of transpositions. If
t and t′ are index tuples of negative integers and a is the minimum index among the indices
in t and t′, we say that t is equivalent to t′ if a+ t is equivalent to a+ t′. If t and t′ are
equivalent index tuples, we write t ⊂ t′.

Note that the relation ⊂ is an equivalence relation.

We observe that, if t = (i1, . . . , ir) and t′ are two equivalent index tuples of nonnegative

(resp. negative) integers, and t′ (resp. a + t′, where a is the minimum index in t) can be

obtained from t (resp. from a + t) by an ordered sequence of transpositions σ1, . . . , σs,
then t′ = (iσ(1), . . . , iσ(r)), where σ = σ1•×××•σs. Since no transposition σj corresponds to

positions where the same index lies, it follows that, though such sequence of transpositions is

not unique in general, the composition σ = σ1•×××•σs of any such sequence of transpositions

is unique. We then have the following definition.

DEFINITION 3.5. Let t and t′ be two equivalent index tuples of nonnegative (resp.
negative) integers. Suppose that t′ (resp. a + t′, where a is the minimum index in t) is
obtained from t (resp. from a + t) by an ordered sequence of transpositions σ1, . . . , σs.
Then we say that the composition σ = σ1 •×××•σs is the allowed permutation that transforms

t into t′.
Observe that, if t′ and t = (i1, . . . , ir) are equivalent we may have t′ = (iτ(1), . . . , iτ(r)),

where τ is not the allowed permutation that transforms t into t′.
EXAMPLE 3.1. Let t = (1 : 3, 0 : 1, 0) = (i1, i2, i3, i4, i5, i6). The tuple t is equivalent

to the tuple t′ = (1, 0, 2, 1, 0, 3) which is obtained from t by the following sequence of
transpositions

t = (i1, i2, i3, i4, i5, i6) ⊂ (i1, i2, i4, i3, i5, i6) ⊂ (i1, i4, i2, i3, i5, i6)

⊂ (i1, i4, i2, i5, i3, i6) ⊂ (i1, i4, i2, i5, i6, i3) = t′.

The transpositions associated with the previous interchanges of indices, given in the same
order in which they were implemented, are: (3, 4), (2, 3), (4, 5), (5, 6). Therefore, σ = (3, 4)•
(2, 3) • (4, 5) • (5, 6) = (1, 4, 2, 5, 6, 3) is the allowed permutation that transforms t into t′.

Note that we also have t′ = (i5, i4, i2, i1, i6, i3). However the permutation τ = (5, 4, 2, 1,
6, 3) is not the allowed permutation that transforms t into t′.

In the construction of the FPR and GFPR we will require some index tuples satisfying

the following property.
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DEFINITION 3.6. [32, Definition 7] Let t = (i1, i2, . . . , ir) be an index tuple of either
nonnegative integers or negative integers. Then, t is said to satisfy the Successor Infix Prop-

erty (SIP) if for every pair of indices ia, ib � t, with 1 ≥ a < b ≥ r, satisfying ia = ib, there
exists at least one index ic = ia + 1 with a < c < b.

Note that any subtuple of consecutive indices of a tuple satisfying the SIP also satisfies

the SIP. Also, the SIP is invariant under equivalence.

Next we give a canonical form for tuples satisfying the SIP under the equivalence relation

given in Definition 3.4.

DEFINITION 3.7. [32, Theorem 1] Let t be an index tuple with indices from }0 : h| ,
h ∼ 0. Then t is said to be in column standard form, or, analogously, t is said to be a
csf-tuple, if

t = (as : bs, as−1 : bs−1, . . . , a2 : b2, a1 : b1) ,

with h ∼ bs > bs−1 > ×××> b2 > b1 ∼ 0 and 0 ≥ aj ≥ bj , for all j = 1 : s. We call each
subtuple of consecutive indices (ai : bi) a string in t.

EXAMPLE 3.2. The tuples t1 = (3 : 4, 0 : 2) and t2 = (1 : 4, 0 : 3, 0 : 2, 1, 0) are
csf-tuples with indices from }0 : 4| .

The connection between the column standard form of an index tuple and the SIP is shown

in the following result.

LEMMA 3.8. [32, Theorem 2] Let t be an index tuple.
≤ If the indices of t are all nonnegative integers, then t satisfies the SIP if and only if
t is equivalent to a tuple in column standard form.

≤ If the indices of t are all negative integers and a is the minimum index in t, then t
satisfies the SIP if and only if a + t is equivalent to a tuple in column standard
form.

Taking into account Proposition 2.12 in [4], it follows that two tuples in column standard

form are equivalent if and only if they coincide. We then have the following definition.

DEFINITION 3.9. The unique index tuple in column standard form equivalent to an index
tuple t of nonnegative integers satisfying the SIP is called the column standard form of t and
is denoted by csf(t).

Note that, in particular, if t is simple (that is, t has no repeated indices), then t satisfies

the SIP and, therefore, t is equivalent to a unique tuple in column standard form.

In the construction of our linearizations the symmetric tuples will play a crucial role.

DEFINITION 3.10. An index tuple t = (t1, . . . , tr) is symmetric if rev(t) ⊂ t, where
rev(t) := (tr, . . . , t1).

4. Elementary matrices and matrix assignments. We start this section by defining

some matrices, denoted by Mi(B), that will be used in the definition of the Fiedler pencils

with repetition (FPR) and the generalized Fiedler pencils with repetition (GFPR) presented

in the next section. Note that these matrices, or a permutation similarity of them, were con-

sidered in the literature before [2, 3, 4], but associated with a matrix polynomial P (λ), i.e.,

with the block B being a matrix coefficient of P (λ) or obtained from a matrix coefficient of

P (λ) by inversion or/and multiplication by 1.

Let k ∼ 2 be an integer and B an arbitrary n ± n matrix. Then we define the following

elementary block-matrices partitioned into k ± k blocks of size n± n:

M0(B) :=

]
I(k−1)n 0

0 B

⌊
, M−k(B) :=

]
B 0
0 I(k−1)n

⌊
,
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Mi(B) :=

⎤⎥⎥⎦
I(k−i−1)n 0 0 0

0 B In 0
0 In 0 0
0 0 0 I(i−1)n

⎣∑∑⎢ , i = 1 : k 1, (4.1)

and

M−i(B) :=

⎤⎥⎥⎦
I(k−i−1)n 0 0 0

0 0 In 0
0 In B 0
0 0 0 I(i−1)n

⎣∑∑⎢ i = 1 : k 1.

Note that, for i = 1 : k 1, Mi(B) and M−i(B) are invertible for any B. More-

over, (Mi(B))−1 = M−i( B). On the other hand, the matrices M0(B) and M−k(B) are

invertible if and only if B is invertible.

REMARK 4.1. It is easy to check that the commutativity relations

Mi(B1)Mj(B2) = Mj(B2)Mi(B1) (4.2)

hold for any n± n matrices B1 and B2 if \\i\ \j\\∅= 1 and \i\∅= \j\.
DEFINITION 4.1. Let t = (i1, i2, . . . , ir) be an index tuple with indices from } k :

k 1| . Then, we call a matrix assignment for t to an ordered collection X := (X1, . . . , Xr)
of arbitrary n ± n matrices. We say that the matrix Xj is assigned to the position j in t.
The matrix assignment X for t is said to be nonsingular if the matrices assigned by X to the
positions in t occupied by the 0 and k indices are nonsingular.

Note that, if 0 and k are not indices in t, then any matrix assignment for t is nonsingu-

lar.

Given a permutation σ of }1 : r| and a matrix assignment X = (X1, . . . , Xr) for an

index tuple t, we denote by σ(X) the matrix assignment for t given by (Xσ(1), . . . , Xσ(r)).
In particular, we denote by rev(X) the matrix assignment for t obtained from X by reversing

the order of the matrices, that is, rev(X) = σ(X), where σ = (r, r 1, . . . , 1).
DEFINITION 4.2. Let t = (i1, i2, . . . , ir) be a symmetric index tuple with indices from

either } k : 1| or }0 : k 1| , X be a matrix assignment for t, and σ be the allowed per-
mutation that transforms t into rev(t). Then, X is said to be a symmetric matrix assignment
for t if rev(X) = σ(X).

If X = (X1, . . . , Xr) is a matrix assignment for a nonempty index tuple t = (i1, . . . , ir)
with indices from } k : k 1| , we denote

Mt(X) := Mi1(X1)Mi2(X2)×××Mir (Xr).

If t and X are empty, then Mt(X) := Ikn.
Note that, in particular, if X1, . . . Xs are matrix assignments for the index tuples t1, . . . ,

ts, respectively, then

Mt1,...,ts(X
1, . . . , Xs) := M(t1,...,ts)(X

1, . . . , Xs) = Mt1(X
1)×××Mts(X

s).

If P (λ) is an n± n matrix polynomial of degree k as in (1.1) and i � } k : k 1| , we

consider the following abbreviated notation:

MP
i :=

}
Mi( Ai), if i ∼ 0
Mi(A−i), if i < 0

.
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If t = (i1, ..., ir) is a nonempty index tuple, we denote MP
t := MP

i1
MP

i2
×××MP

ir
. If t

is the empty tuple, MP
t := Ikn. Note that, in particular, if t1, . . . , ts are index tuples, then

MP
t1,...,ts = MP

t1 ×××MP
ts .

DEFINITION 4.3. We say that X = (X1, . . . , Xr) is the trivial matrix assignment for
the index tuple t = (i1, . . . , ir), with indices from } k : k 1| , associated with the matrix
polynomial P (λ) as in (1.1), if Mij (Xj) = MP

ij
for j = 1 : r.

Note that, if X is the trivial matrix assignment for t associated with P (λ), then Mt(X) =
MP

t . Moreover, if t is a symmetric index tuple, then the trivial matrix assignment for t
associated with P (λ) is a symmetric matrix assignment for t since it assigns equal matrices

to positions occupied by equal indices.

The next lemma shows that, when computing Mt(X), the tuple t can be replaced by

any equivalent tuple, as long as some appropriate reordering of the matrices in the matrix

assignment X for t is done. This result generalizes one part of Lemma 4.3 in [4].

LEMMA 4.4. Let t be an index tuple with indices from either }0 : k 1| or } k :
1| and let X be a matrix assignment for t. If t is equivalent to t′ and σ is the allowed

permutation that transforms t into t′, then Mt(X) = Mt′(σ(X)).
Proof. Assume t = (i1, . . . , ir) is equivalent to t′. Then, t′ can be obtained from t

by a sequence of interchanges of distinct indices which are not consecutive integers. By

Remark 4.1, if the indices ij and il, with \\ij\ \il\\ ∅= 1, are interchanged, then Mij (Xj)
and Mil(Xl) commute, where Xj and Xl are the matrices assigned by X to the positions j
and l in t, respectively. Thus the result follows.

The next example illustrates the previous lemma.

EXAMPLE 4.1. Let t = (1 : 3, 0 : 1, 0) = (i1, i2, i3, i4, i5, i6) and t′ = (1, 0, 2, 1, 0, 3)
be the equivalent tuples given in Example 3.1. It was shown there that the permutation σ =
(1, 4, 2, 5, 6, 3) is the allowed permutation that transforms t into t′. Let X = (X1, . . . , X6)
be a matrix assignment for t. Then, taking into account Lemma 4.4,

Mt(X) = M(1,2,3,0,1,0)(X1, X2, X3, X4, X5, X6)
= M(iσ(1),iσ(2),iσ(3),iσ(4),iσ(5),iσ(6))(Xσ(1), Xσ(2), Xσ(3), Xσ(4), Xσ(5), Xσ(6))

= M(1,0,2,1,0,3)(X1, X4, X2, X5, X6, X3)
= Mt′(σ(X)).

As will be seen in the next section the matrix coefficients of a generalized Fiedler pencil

with repetition associated with a matrix polynomial P (λ) as in (1.1) can be viewed as block-

matrices whose blocks are of the form 0n, In, ⊕Ai, or arbitrary n ± n matrices. This fact

motivates the following definition.

DEFINITION 4.5. Let t = (i1, . . . , ir) be a tuple with indices from either }0 : k 1| or
} k : 1| . We say that t is operation free if, for any matrix assignment X = (X1, . . . , Xr)
for t, the n±n block-entries of the product Mt(X) are either 0n, In, or Xj , with j � }1 : r| ,
and the positions where each of these blocks lies do not depend on the particular matrix
assignment X , that is, those positions only depend on t.

THEOREM 4.6. Let t be a tuple with indices from either }0 : k 1| or } k : 1| . The
tuple t is operation free if and only if t satisfies the SIP.

Proof. Suppose that t = (i1, . . . , ir), as in the statement, is an operation free tuple. Then,

for any matrix polynomial P (λ) as in (1.1), the blocks of Mt(X) are 0n, In, or Aij (resp.

Aij ), for j = 1 : r, if t has nonnegative (resp. negative) indices, when X is the trivial matrix

assignment associated with P (λ), that is, MP
t is operation free according to [32, Definition

6]. By Theorem 2 in [32], if t has nonnegative indices, and by Theorem 3 in [32], if t has

negative indices, it follows that t satisfies the SIP.
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Now suppose that t = (i1, . . . , ir) satisfies the SIP. We prove the result when t has

nonnegative indices. By Theorem 2 in [32], for any matrix polynomial P (λ) as in (1.1), all

n ± n blocks of MP
t are either 0n, In or Aij , for j = 1 : r. Since each block-entry of

MP
t can be viewed as a sum of products of r factors, each factor being an entry of each of the

matrices Mij (which is either 0n, In, or a block Aij for j = 1 : r), we conclude that no such

nonzero summands cancel for arbitrary Aij . Therefore, the operation free property on MP
t

implies that at most one nonzero such summand may appear in each block-entry of MP
t and

it is equal to either In or Aij . Thus, all the factors in this summand are In except, maybe,

one factor of the form Aij . Also, all the zero summands are associated with products

having a factor 0. As a consequence, when we consider replacements of the matrices Aij

by arbitrary matrices, more precisely, when we consider the assignment X = (X1, . . . , Xr)
for t, we conclude that all the n±n blocks of Mt(X) are identically either 0n, In, or a block

Xj , j = 1 : r, and the position of these blocks is independent of X . Thus, t is operation free.

Taking into account [32, Theorem 2], a consequence of Theorem 4.6 is that an index

tuple t is operation free if and only if MP
t is operation free according to [32, Definition 6].

The following lemma provides an insight on the structure of products of elementary

matrices associated with index tuples satisfying the SIP. Based on it, in Theorem 5.3 we

describe the structure of the matrix coefficients of a GFPR.

LEMMA 4.7. Let t = (i1, . . . , ir) be a tuple satisfying the SIP with indices from either
}0 : k 1| or } k : 1| and let X = (X1, . . . , Xr) be a generic matrix assignment for
t. Then, each block-entry of Mt(X) is either 0n, In or Xj; for each Xj there is exactly
one position in the block-matrix Mt(X) whose entry is identically equal to Xj; Mt(X) has
no block-rows and no block-columns identically zero; and in each block-row and in each
block-column of Mt(X) at most one block identically equal to In appears.

Proof. We prove the result when t has nonnegative indices. The claim that each block-

entry of Mt(X) is either 0n, In, or Xj is an immediate consequence of Theorem 4.6.

The fact that Mt(X) has no block-rows and no block-columns identically zero follows

from Theorem 4.6 and the nonsingularity of Mt(X) for nonsingular matrix assignments.

Note that this fact was observed in [7, Section 2.2].

Now we prove the rest of the result by induction on r. If r = 1, by the definition of the

elementary matrices Mi(B) introduced at the beginning of this section, the block X1 appears

exactly once in Mi1(X1) and there is at most one block In in each block-row and block-

column of Mi1(X1). Now suppose that r > 1 and the claim is true for r 1. By Theorem

4.6, t′ := (i1, . . . , ir−1) and t are operation free. Thus, by the inductive hypothesis, for

X ′ = (X1, . . . , Xr−1), each Xj appears exactly once in the matrix Mt′(X
′), and at most

one block In appears in each block-row and in each block-column of Mt′(X
′). If ir = 0, this

implies that the last block-column of Mt′(X
′) has no blocks Xj and, therefore, has exactly

one block In, since there are no zero block-rows or block-columns. In this case, the claim

follows. Now suppose that ir > 0. We consider the product of the submatrix of Mt′(X
′)

corresponding to the k ir, k ir + 1 block-columns, say Qt′ , by the matrix

Rir :=

]
Xr In
In 0

⌊
.

Observe that the remaining block-columns of Mt′(X
′) stay unchanged in Mt(X). Denote

by
]
Y1 Y2

⌊
, where Y1, Y2 are n± n blocks, an arbitrary block-row of Qt′ . We have

]
Y1 Y2

⌊] Xr In
In 0

⌊
=
]
Y1Xr + Y2 Y1

⌊
, (4.3)
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which implies that either Y1 = In and Y2 = 0, or Y1 = 0. Thus, we deduce that the (k ir)th
block-column of Mt′(X

′) has no blocks Xj . Since Mt′(X
′) has no zero block-rows and no

zero block-columns, by the inductive hypothesis, the (k ir)th block-column of Mt′(X
′)

must have exactly one block In. Then, it follows that the (k ir + 1)th block-column of

Mt(X) has a block In and all the other entries are 0.
Also, the (k ir)th block-column of Mt(X) has exactly one block Xr, among some

other possible blocks Xj with j ∅= r, and at most one block In.
The number of blocks equal to In in each block-row of Mt(X) is the same as in the

corresponding block-row of Mt′(X
′), as the number of blocks equal to In in the second

member of (4.3) is the same as in [Y1 Y2]. Thus, the claim follows.

The next lemma, which generalizes Lemma 5 in [32], shows that the block-transpose of

a product of elementary matrices associated with an operation-free index tuple behaves as the

regular transpose.

LEMMA 4.8. Let t be an index tuple satisfying the SIP with indices from either }0 : k 1|
or } k : 1| and let X be a matrix assignment for t. Then,

MB
t (X) = Mrev(t)(rev(X)).

Proof. Let t = (i1, . . . , ir) and X = (Xi1 , . . . , Xir ), and suppose that t has indices

from }0 : k 1| . The proof is similar if t has indices from } k : 1| .
We prove the result by induction on the length r of t. The result is obvious for r = 1

since the elementary matrix Mi1(X1) is block-symmetric. Now suppose that r > 1 and the

claim is true for r 1. Let t′ = (i1, . . . , ir−1) and X ′ = (X1, . . . , Xr−1). By the inductive

hypothesis,

Mir (Xr)M
B
t′ (X

′) = Mrev(t)(rev(X)).

Let us view Mt(X) as a k ± k block-matrix and let p, q � }1 : k| . We show that the

blocks in position (p, q) in H1 := Mir (Xr)M
B
t′ (X

′) and in HB
2 = [Mt′(X

′)Mir (Xr)]
B are

the same.

Assume that p ∅= k ir, k ir +1. Then, the block in position (p, q) in H1 is the block

in position (p, q) in MB
t′ (X

′). On the other hand, the block in position (p, q) in HB
2 is the

block in position (q, p) in H2, which is the block in position (q, p) in Mt′(X
′) and the result

follows.

Assume now that p = k ir + 1. Note that ir ∅= 0 in this case. Then, the block in

position (p, q) in H1 is the block in position (k ir, q) in MB
t′ (X

′). On the other hand, the

block in position (p, q) in HB
2 is the block in position (q, p) in H2, which is the block in

position (q, k ir) of Mt′(X
′) and the result follows.

Finally, let p = k ir. Suppose that ir ∅= 0. Let Y1 and Y2 be the blocks of MB
t′ (X

′)
in positions (k ir, q) and (k ir + 1, q), respectively. Then, the element in position (p, q)
of H1 is given by XrY1 + Y2. Since the qth block-row of Mt′(X

′) is the qth block-column

of its block-transpose, the element in position (p, q) in HB
2 , which is the element in position

(q, p) in H2, is Y1Xr + Y2. Since an index tuple satisfying the SIP is operation free, Y1 must

be either 0 or In. Thus, XrY1 + Y2 = Y1Xr + Y2 and the result follows. If ir = 0, the proof

can be done using similar arguments.

The last lemma in this section gives conditions that ensure that a product of elementary

matrices is block-symmetric.

LEMMA 4.9. Let t be a symmetric index tuple satisfying the SIP with indices from either
}0 : k 1| or } k : 1| , and let X be a symmetric matrix assignment for t. Then, Mt(X)
is block-symmetric.
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Proof. Let t and X be as in the statement. Since t is symmetric, t is equivalent to rev(t).
Let σ be the allowed permutation that transforms t into rev(t). Then, rev(X) = σ(X),
which implies that

Mt(X) = Mrev(t)(σ(X)) = Mrev(t)(rev(X)) = MB
t (X),

where the first and last equalities follow from Lemmas 4.4 and 4.8, respectively.

5. Generalized Fiedler pencils with repetition. Let P (λ) be an n± n matrix polyno-

mial of degree k as in (1.1). Next we introduce the family of Fiedler pencils with repetition

associated with P (λ), defined in [32]. The matrix coefficients of these pencils are products

of elementary matrices Mi(B), where the blocks B are coefficients of P (λ).

DEFINITION 5.1. (FPR) Let P (λ) be a matrix polynomial of degree k as in (1.1). Let
h � }0 : k 1| . Let q and z be permutations of }0 : h| and } k : h 1| , respectively.
Let lq and rq be tuples with indices from }0 : h 1| such that (lq,q, rq) satisfies the SIP. Let
lz and rz be tuples with indices from } k : h 2| such that (lz, z, rz) satisfies the SIP.
Then, the pencil

MP
lq,lz (λM

P
z MP

q )MP
rz,rq (5.1)

is called a Fiedler pencil with repetition (FPR) associated with P (λ).

An important property of an FPR is that its matrix coefficients can be seen as k ± k
block-matrices whose blocks are of the form 0n, In, or ⊕Ai [32].

The pencils in the standard basis of DL(P ) (introduced in Section 2) are examples of

FPR ([4, Lemma 5.7] and [32, Corollary 2]).

EXAMPLE 5.1. Let P (λ) be a matrix polynomial of degree 6 as in (1.1). The FPR given
by q = (3 : 4, 1 : 2, 0), lq = (0 : 2, 0), rq = (3, 1 : 2, 0 : 1, 0), z = ( 6 : 5), lz = A, and
rz = ( 6) is the pencil D2(λ, P ) defined in Section 2, that is,

λ

⎤⎥⎥⎥⎥⎥⎥⎦
0 A6 0 0 0 0
A6 A5 0 0 0 0
0 0 A3 A2 A1 A0

0 0 A2 A1 A0 0
0 0 A1 A0 0 0
0 0 A0 0 0 0

⎣∑∑∑∑∑∑⎢

⎤⎥⎥⎥⎥⎥⎥⎦
A6 0 0 0 0 0
0 A4 A3 A2 A1 A0

0 A3 A2 A1 A0 0
0 A2 A1 A0 0 0
0 A1 A0 0 0 0
0 A0 0 0 0 0

⎣∑∑∑∑∑∑⎢ .

Here we extend the family of FPR to a larger family of pencils which we call generalized
Fiedler pencils with repetition .

DEFINITION 5.2. (GFPR) Let P (λ) be a matrix polynomial of degree k as in (1.1). Let
h � }0 : k 1| . Let q and z be permutations of }0 : h| and } k : h 1| , respectively.
Let lq and rq be tuples with indices from }0 : h 1| such that (lq,q, rq) satisfies the SIP. Let
lz and rz be tuples with indices from } k : h 2| such that (lz, z, rz) satisfies the SIP. Let
X, Y, Z and W be matrix assignments for lq, rq, lz and rz, respectively. Then, the pencil

LP (λ) = Mlq,lz (X,Z)(λMP
z MP

q )Mrz,rq (W,Y ) (5.2)

is called a generalized Fiedler pencil with repetition (GFPR) associated with P (λ).

Note that, if X , Y , Z, and W are, respectively, the trivial matrix assignments for lq , rq ,

lz and rz , then LP (λ) is a FPR associated with P (λ). Thus, the family of FPR is contained

in the family of GFPR.
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EXAMPLE 5.2. The pencil D2(λ, P ), given in Example 5.1, can also be seen as the
GFPR defined by the tuples q, rq , lq , z, rz , and lz given in that example, and the trivial
matrix assignments for these tuples.

The GFPR given by the tuples q, rq , lq , z, rz , and lz in Example 5.1 and the matrix
assignments X = (X1, X2, X3, X4) for lq , Y = (Y1, Y2, Y3, Y4, Y5, Y6) for rq , Z = Afor lz ,
and W = (W1) for rz is

LP (λ) = λ

⎤⎥⎥⎥⎥⎥⎥⎦
0 A6 0 0 0 0
W1 A5 0 0 0 0
0 0 Y1 Y3 Y5 Y6

0 0 X3 Y2 Y4 0
0 0 X2 X4 0 0
0 0 X1 0 0 0

⎣∑∑∑∑∑∑⎢

⎤⎥⎥⎥⎥⎥⎥⎦
W1 0 0 0 0 0
0 A4 Y1 Y3 Y5 Y6

0 A3 A2 Y2 Y4 0
0 X3 A1 A0 0 0
0 X2 X4 0 0 0
0 X1 0 0 0 0

⎣∑∑∑∑∑∑⎢ .

REMARK 5.1. If lq,q, rq are as in Definition 5.2, then, since (lq,q, rq) satisfies the SIP,
both lq and rq satisfy the SIP. Moreover, because q is a permutation of }0 : h| , it can be seen
that (lq, rq) satisfies the SIP, as stated in Theorem 4 in [32]. Similarly, if lz , z, rz are as in
Definition 5.2, (lz, rz) satisfies the SIP, as stated in Theorem 5 in [32].

REMARK 5.2. Using the commutativity relations in Remark 4.1, the matrix coefficient of
the term of degree 1 of a GFPR as in (5.2) can be written in the form

[Mlz (Z)MP
z Mrz (W )]Mlq,rq (X,Y ).

Similarly, the matrix coefficient of the term of degree 0 can be written in the form

[Mlq (X)MP
q Mrq (Y )]Mlz,rz (Z,W ).

We now describe the structure of the matrix coefficients of a GFPR associated with a

matrix polynomial P (λ) as in (1.1). Each of these matrix coefficients is the product of some

elementary matrices determined by two index tuples (one of negative indices and one of

nonnegative indices, at least one of which is nonempty) satisfying the SIP. Among other

properties, we prove that these matrix coefficients are operation-free, which implies that each

of them can be seen as a block-matrix whose blocks are of the form 0n, In, ⊕Ai, or arbitrary

n± n matrices.

THEOREM 5.3. (Structure of a GFPR) Let P (λ) be a matrix polynomial of degree k as
in (1.1) and let

LP (λ) := λL1 L0 = Mlq,lz (X,Z)(λMP
z MP

q )Mrz,rq (W,Y )

be the GFPR associated with P (λ) as in Definition 5.2. Then:
(a) L1 (resp. L0) is a k± k block matrix in which each of the n± n blocks is either 0n,

In, Ak, Ak−1, . . . , Ah+1 (resp. Ah, Ah−1, . . . , A0) or a matrix in the matrix
assignments for the tuples lq , rq , lz , and rz .

(b) For each block Ak, Ak−1, . . . , Ah+1 (resp. Ah, Ah−1, . . . , A0) and each of
the matrices in the matrix assignments for lq, rq , lz , and rz , there is exactly one
position in the block-matrix L1 (resp. L0) whose entry is identically equal to that
block; L1 (resp. L0) has neither identically zero block-rows nor identically zero
block-columns; and in each block-row and in each block-column of L1 (resp. L0) at
most one block identically equal to In appears.
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(c) L1 = diag(C11, C22), where C11 is a (k h)±(k h) block-matrix which contains
the blocks in the matrix assignments for the tuples z, lz , and rz , and C22 is an h±h
block-matrix which contains the blocks in the matrix assignments for the tuples lq
and rq .

(d) L0 = diag(D11, D22), where D11 is a (k h 1)± (k h 1) block-matrix which
contains the blocks in the matrix assignments for the tuples lz and rz , and D22 is a
(h+1)± (h+1) block-matrix which contains the blocks in the matrix assignments
for the tuples q, lq , and rq .

Proof. We only prove the result for L1 = Mlq,lz (X,Z)MP
z Mrz,rq (W,Y ). From Re-

mark 5.2, we get L1 =
]
Mlz (Z)MP

z Mrz (W )
⌊
Mlq,rq (X,Y ). In addition, (lz, z, rz) satis-

fies the SIP by definition of GFPR and (lq, rq) satisfies the SIP by Remark 5.1. Therefore,

Lemma 4.7 can be applied separately to Mlz (Z)MP
z Mrz (W ) and to Mlq,rq (X,Y ). Finally,

note that from the definition of the elementary matrices, we get that Mlz (Z)MP
z Mrz (W ) =

diag(C11, Ihn) and Mlq,rq (X,Y ) = diag(I(k−h)n, C22), where C11 and C22 are as in the

statement.

From the definitions of FPR and GFPR and taking into account Theorem 5.3, it follows

that the family of GFPR strictly contains the family of FPR.

Next we study conditions for a GFPR to be a strong linearization of a matrix polynomial

P (λ) as in (1.1). For this purpose, we introduce first the following definition.

DEFINITION 5.4. Let P (λ) be a matrix polynomial as in (1.1) and LP (λ) be a GFPR
associated with P (λ) as in (5.2). We say that LP (λ) satisfies the nonsingularity conditions if
the matrix assignments X for lq , Y for rq , Z for lz , and W for rz are all nonsingular.

Note that, if LP (λ) is a FPR as in (5.1), LP (λ) satisfies the nonsingularity conditions

when none of the following happens:

1. 0 is an index in lq or rq and A0 is singular;

2. k is an index in lz or rz and Ak is singular.

The fact that λMP
z MP

q in (5.2) is a generalized Fiedler pencil and that these pencils

are strong linearizations of P (λ) [8] allow us to present in Theorem 5.5 sufficient conditions

for a GFPR to be a strong linearization.

THEOREM 5.5. Let P (λ) be a matrix polynomial as in (1.1) and LP (λ) be a GFPR
associated with P (λ) as in (5.2). Then:

≤ If LP (λ) satisfies the nonsingularity conditions, LP (λ) is a strong linearization for
P (λ).

≤ If P (λ) is regular and LP (λ) is a strong linearization for P (λ), LP (λ) satisfies the
nonsingularity conditions.

Proof. Let LP (λ) be a pencil of the form (5.2), where X , Y , Z, and W are matrix

assignments as described in Definition 5.2. If LP (λ) satisfies the nonsingularity conditions,

the matrices Mlq,lz (X,Z) and Mrz,rq (W,Y ) are nonsingular matrices. Thus, the pencils

LP (λ) and λMP
z MP

q are strictly equivalent. Since λMP
z MP

q is a strong linearization

of P (λ) (when P (λ) is regular or singular), the first claim follows.

To prove the second claim, note that, if LP (λ) does not satisfy the nonsingularity condi-

tions, then LP (λ) would be a singular pencil and, therefore, it would not be a linearization of

a regular P (λ), as any linearization of a regular matrix polynomial is also regular.

6. Block-symmetric GFPR. In this section, given a matrix polynomial P (λ) as in (1.1),

we characterize a family of block-symmetric GFPR associated with P (λ) from which we

construct, in Section 7, vector spaces most of whose pencils are strong linearizations of P (λ).
In [4, Corollary 5.6 and Theorem 3.17] it was proven that an FPR of the form (5.1) is

block-symmetric for any matrix polynomial P (λ) if and only if (lq,q, rq), (lq, rq), (lz, z, rz),
and (lz, rz) are symmetric index tuples. We are interested in constructing a family of block-
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symmetric GFPR which, in particular, contains the block-symmetric FPR. Taking into ac-

count these facts and motivated by Lemma 4.9, we will use these symmetric tuples in the

construction of our block-symmetric GFPR, which we characterize in this section. For this

purpose, we need to refresh some concepts and results about symmetric index tuples that were

introduced in [4].

DEFINITION 6.1. Let h ∼ 0 be an integer. We say that w is an h-admissible tuple if w
is a permutation of }0 : h| and

csf(w) = (h 1 : h, h 3 : h 2, . . . , p+ 1 : p+ 2, 0 : p)

for some 0 ≥ p ≥ h. We call p the index of w.
Observe that, if w has index p, then the sequence of lengths of the strings in csf(w) is

of the form (2, . . . , 2, p+ 1). This implies that h and p have the same parity.

DEFINITION 6.2. Let h ∼ 0 and w be an h-admissible tuple with index p. We call the
symmetric complement of w to the tuple cw defined as follows:

≤ cw = (h 1, h 3, . . . , p+ 3, p+ 1, (0 : p)revc), if p ∼ 1,
≤ cw = (h 1, h 3, . . . , 1), if p = 0 and h > 0,
≤ cw is empty if h = 0,

where (0 : p)revc := (0 : p 1, 0 : p 2, . . . , 0 : 1, 0).
In [4, Lemma 3.11] it was shown that, if w and cw are as in Definitions 6.1 and 6.2,

respectively, then (w, cw) and cw are symmetric and satisfy the SIP. Moreover, by [4, Lemma

3.15], if a tuple (lq,q, rq) as in Definition 5.2 is symmetric, with (lq, rq) symmetric, then

(lq,q, rq) ⊂ (tw,w, cw, rev(tw))

and

(lq, rq) ⊂ (tw, cw, rev(tw))

for some h-admissible tuple w and some index tuple tw with indices from }0 : h 1| .
Next we provide a family of block-symmetric GFPR that extends the family of block-

symmetric FPR introduced in [4].

THEOREM 6.3. Let P (λ) be a matrix polynomial of degree k as in (1.1) and let h � }0 :
k 1| . Let w and k+v be h-admissible and (k h 1)-admissible index tuples, respectively,
and let tw and k + tv be index tuples with indices from }0 : h 1| and }0 : k h 2| ,
respectively, such that (tw,w, cw, rev(tw)) and (tv,v, cv, rev(tv)) satisfy the SIP (cw and
k+ cv are the symmetric complements of w and k+v, respectively). Let X and Y be matrix
assignments for tw and tv , respectively. Then, the GFPR

LP (λ) = Mtw,tv (X,Y )(λMP
v MP

w )MP
cw,cv

Mrev(tw),rev(tv)(rev(X), rev(Y )). (6.1)

is block-symmetric.
Proof. Let LP (λ) := λL1 L0. We need to see that LBP (λ) = LP (λ), or equivalently,

LB1 = L1 and LB0 = L0. We prove the result for L0. The result for L1 can be proven similarly.

By Remark 5.2, L0 can be written in the form

H1H2 := [Mtw(X)MP
w,cw

Mrev(tw)(rev(X))][Mtv (Y )MP
cv
Mrev(tv)(rev(Y ))].

Note that H1 = I(k−h−1)n ⊗H ′
1 and H2 = H ′

2 ⊗ I(h+1)n, for some (h+ 1)± (h+ 1) and

(k h 1)± (k h 1) matrices H ′
1 and H ′

2, respectively. Thus, we have LB0 = HB
1 H

B
2 .

Now the result follows from Lemma 4.9 taking into account Remark 5.1 and the fact that

(X,Y , rev(X)) and (Y,Z, rev(Y )) are symmetric matrix assignments for the symmetric
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index tuples (tw,w, cw, rev(tw)) and (tv, cv, rev(tv)), respectively, where Y and Z are the

trivial matrix assignments for (w, cw) and (cv), respectively, associated with P (λ).
Note that any pencil of the form (6.1) is a strong linearization of a matrix polynomial

P (λ) if the matrices Mtw,tv (X,Y ) and MP
cw,cv

are nonsingular.

Observe that the block-symmetric FPR introduced in [4] form a subset of the set of

block-symmetric GFPR introduced above. To see that, take X and Y to be the trivial matrix

assignments associated with P (λ) for tw and tv , respectively.

It is interesting to remark that, for k > 2, when the field F is infinite, while the family

of block-symmetric FPR associated with a matrix polynomial P (λ) as in (1.1) is finite, the

family of block-symmetric GFPR contains infinitely many pencils, since the matrices in the

assignments X and Y are arbitrary.

We now consider the smallest vector space containing the block-symmetric GFPR asso-

ciated with a matrix polynomial P (λ) introduced above.

DEFINITION 6.4. Let P (λ) be a matrix polynomial as in (1.1). We call the extended

DL(P ) to the vector space generated by the family of block-symmetric GFPR associated
with P (λ) given in Theorem 6.3, and denote it by EDL(P ).

We observe that the space EDL(P ) contains the space DL(P ) as will follow from Re-

mark 6.2.

REMARK 6.1. Though any block-symmetric FPR associated with a matrix polynomial
P (λ) is symmetric when P (λ) is [4, Theorem 5.2 and Corollary 5.6], this is not necessarily
true when the pencil is a block-symmetric GFPR. However, if the matrices in the matrix
assignments X and Y are all symmetric, then a block-symmetric GFPR associated with P (λ)
as in Theorem 6.3 is symmetric when P (λ) is. Moreover, the subspace of EDL(P ) generated
by the family of block-symmetric GFPR associated with P (λ) in which X and Y are matrix
assignments formed by symmetric matrices is such that all the pencils in it are symmetric
when P (λ) is.

6.1. Canonical expression for the block-symmetric GFPR. Every index tuple can,

in general, be expressed in several equivalent ways. Next we give a canonical form under

equivalence for symmetric index tuples of the form (tw,w, cw, rev(tw)) which allows us to

express a block-symmetric GFPR of the form (6.1) associated to a generic P (λ) in a standard

way. More precisely, the tuples w and v used in the construction of a block-symmetric GFPR

can be chosen to have minimum index. This canonical expression of a GFPR also facilitates

the computation of the dimension of the subspaces of block-symmetric strong linearizations

that we obtain in Section 7, which will be given in terms of the lengths of the corresponding

tuples tw and tv . We observe that among equivalent tuples of the form (tw,w, cw, rev(tw)),
the tuple in canonical form has tw maximal, that is, of largest length. This can be easily seen

taking into account that equivalent tuples of the form (tw,w, cw, rev(tw)) have the same

indices and the corresponding subtuples w are all permutations of }1 : h| . Moreover, cw has

minimum number of indices when the index of w is the smallest.

Clearly, given an integer h ∼ 0, there exists a unique h-admissible tuple, up to equiva-

lence, of index 0 or 1. This index is 0 if h is even and is 1 if h is odd.

DEFINITION 6.5. We call the admissible tuple associated with h ∼ 0 to the unique
h-admissible tuple of index 0 or 1 in column standard form. We denote this tuple by wh.

EXAMPLE 6.1. The admissible tuple associated with h = 4 is (3 : 4, 1 : 2, 0). The
admissible tuple associated with h = 5 is (4 : 5, 2 : 3, 0 : 1).

Next we characterize the index tuples twh
such that (twh

,wh, cwh
, rev(twh

)) satisfy

the SIP, where wh is the admissible tuple associated with h and cwh
is the corresponding

symmetric complement.

DEFINITION 6.6. Given h ∼ 0, we say that an index tuple t is in canonical form for h if
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t is of the form )
a1 : h 2, a2 : h 4, . . . , a�h

2 � : h 2

⌋
h

2

⌈[
(6.2)

with 0 ≥ ai ≥ h 2i + 1 (if ai = h 2i + 1, then the string ai : h 2i is empty). We say
that such a tuple is maximal if ai = 0 for all i. In this case, we denote the tuple by th and we
say that (0 : h 2i) is its i-th string.

Note that, if h = 0, 1, an index tuple in canonical form for h is necessarily empty.

Moreover, for h > 1, a tuple in canonical form for h is, by definition, in column standard

form.

LEMMA 6.7. Let h ∼ 0 and wh be the admissible tuple associated with h. Let cwh
be

the symmetric complement of wh and let twh
be an index tuple with indices from }0 : h 1| .

Then, (twh
,wh, cwh

, rev(twh
)) satisfies the SIP if and only if twh

is equivalent to a tuple in
canonical form for h.

Proof. Assume that (twh
,wh, cwh

, rev(twh
)) satisfies the SIP. Since twh

is a subtu-

ple of indices in consecutive positions of a tuple satisfying the SIP, it also satisfies the SIP

and, by Lemma 3.8, it is equivalent to a tuple in column standard form. Thus, the tuple

(twh
,wh, cwh

, rev(twh
)) is equivalent to (csf(twh

), csf(wh), cwh
, rev(csf(twh

))), which

also satisfies the SIP. Therefore, for any bi that is the last index of a string in csf(twh
), the

index bi + 1 must appear to the left of bi in csf(wh). Since wh is the admissible tuple

associated with h,

csf(w) = (h 1 : h, h 3 : h 2, . . . , p+ 1 : p+ 2, 0 : p), p � }0, 1| . (6.3)

Thus, bi + 1 occurs to the left of bi in csf(wh) only if bi is the last index of a string in

csf(wh) different from h, that is, bi = h 2j for some j � }1 :
⌋
h
2

⌈| .
Assume now that twh

is equivalent to a tuple of the form (6.2). It is easy to ver-

ify that (csf(twh
), csf(wh), cwh

, rev(csf(twh
))) satisfies the SIP and, therefore, so does

(twh
,wh, cwh

, rev(twh
)).

DEFINITION 6.8. Let h ∼ 0 and w be an h-admissible tuple. Let cw be the symmetric
complement of w and let tw be an index tuple with indices from }0 : h 1| . We say that
(tw,w, cw, rev(tw)) is in reduced index form if

1. w = wh, that is, w is the admissible tuple associated with h; and
2. tw is in canonical form for h.

Note that, by Lemma 6.7, a tuple (tw,w, cw, rev(tw)) in reduced index form satisfies

the SIP.

LEMMA 6.9. Let h ∼ 0 and w be an h-admissible tuple of index p. Let cw be the sym-
metric complement of w. Then, (w, cw) is equivalent to the index tuple (tp,wh, cwh

, rev(tp))
and cw is equivalent to (tp, cwh

, rev(tp)), where wh is the admissible tuple associated with
h, cwh

is the symmetric complement of wh, and tp is the maximal tuple in canonical form
for p, that is, tp = (0 : p 2, 0 : p 4, . . . , 0 : p 2

⌋
p
2

⌈
) for p ∼ 2 (tp is empty if p < 2).

Proof. Let (w, cw) be as in the statement of the theorem. We prove the result by induc-

tion on the index p of w. If p � }0, 1| , the result follows trivially as wh = w and tp is

empty.

Now suppose that p > 1 and that the result holds for p′ < p. Recall the notation revc
introduced in Definition 6.2. We have

w ⊂ (h 1 : h, h 3 : h 2, . . . , p+ 1 : p+ 2, 0 : p)

⊂ ((0 : p 2), (h 1 : h, h 3 : h 2, . . . , p 1 : p))
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and

cw = (h 1, h 3, . . . , p+ 1, (0 : p)revc)

⊂ ((0 : p 2), (h 1, h 3, . . . , p 1, (0 : p 2)revc), rev(0 : p 2)).

Let w∗ = (h 1 : h, . . . , p 1 : p, 0 : p 2). Note that w∗ is an h-admissible tuple of index

p 2. Moreover, the symmetric complement of w∗ is cw∗ = (h 1, h 3, . . . , p 1, (0 :
p 2)revc). As a consequence,

(w, cw) ⊂ (0 : p 2,w∗, cw∗ , rev(0 : p 2)) (6.4)

and

cw ⊂ (0 : p 2, cw∗ , rev(0 : p 2)). (6.5)

By the inductive hypothesis, (w∗, cw∗) is equivalent to (tp−2,wh, cwh
, rev(tp−2)) and cw∗

is equivalent to (tp−2, cwh
, rev(tp−2)). Now the result follows from (6.4) and (6.5). Note

that p 2 2
⌋
p−2
2

⌈
= p 2

⌋
p
2

⌈
.

The next lemma shows that the reduced index form is canonical under equivalence in the

set of symmetric index tuples of the form (tw,w, cw, rev(tw)) that satisfy the SIP.

LEMMA 6.10. Let h ∼ 0 and w be an h-admissible tuple of index p. Let cw be the
symmetric complement of w and let tw be an index tuple with indices from }0 : h 1|
such that (tw,w, cw, rev(tw)) satisfies the SIP. Then, (tw,w, cw, rev(tw)) is equivalent to
a unique tuple (twh

,wh, cwh
, rev(twh

)) in reduced index form. Moreover, the tuple twh
is

equivalent to (tw, tp) and (twh
, cwh

, rev(twh
)) is equivalent to (tw, cw, rev(tw)), where tp

is the maximal tuple in canonical form for p.
Proof. First we show the existence part of the first claim. By Lemma 6.9, (tw,w, cw,

rev(tw)) is equivalent to (tw, tp,wh, cwh
, rev(tp), rev(tw)). By Lemma 6.7, (tw, tp) is

equivalent to a tuple twh
in canonical form for h. Thus, (tw,w, cw, rev(tw)) is equivalent to

the tuple (twh
,wh, cwh

, rev(twh
)), which is in reduced index form.

Now we prove uniqueness. Suppose that (tw,w, cw, rev(tw)), as in the statement of the

theorem, is equivalent to the index tuples in reduced index form (twh
,wh, cwh

, rev(twh
))

and (t′wh
,wh, cwh

, rev(t′wh
)). By Lemma 2.14 in [4], we have twh

⊂ t′wh
, which implies

csf(twh
) = csf(t′wh

). Since twh
= csf(twh

) and t′wh
= csf(t′wh

), we deduce that twh
=

t′wh
.

The first part of the second claim follows from the proof of the existence claim and the

uniqueness of twh
.

The second part of the second claim follows from Lemma 6.9 taking into account that

twh
is equivalent to (tw, tp).
Next we use Lemma 6.10 to obtain a canonical expression for the block-symmetric GFPR

given in (6.1).

THEOREM 6.11. Let 0 ≥ h < k. There exist index tuples twh
and k + tvh

in canonical
form for h and k h 1, respectively, such that, for any matrix polynomial P (λ) of degree
k as in (1.1), the block-symmetric GFPR given in Theorem 6.3 can be expressed as

Mtwh
,tvh

(Y ,Z)(λMP
vh

MP
wh

)MP
cwh

,cvh
Mrev(twh

),rev(tvh )(rev(Y ), rev(Z)), (6.6)

where wh is the admissible tuple associated with h, cwh
is the symmetric complement of wh,

wk−h−1 is the admissible tuple associated with k h 1, vh = k + wk−h−1, k + cvh
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is the symmetric complement of wk−h−1, and Y and Z are matrix assignments for twh
and

tvh , respectively. Moreover, any pencil of the form (6.6) is a block-symmetric GFPR.
Proof. The fact that any pencil of the form (6.6) is a block-symmetric GFPR is an im-

mediate consequence of Theorem 6.3. Now we prove the first claim. Consider a pencil of the

form (6.1). By Remark 5.2, this pencil can be written as λL1 L0, with

L0 = [Mtw(X)MP
w,cw

Mrev(tw)(rev(X))][Mtv (Y )MP
cv
Mrev(tv)(rev(Y ))] (6.7)

and

L1 = [Mtv (Y )MP
v,cv

Mrev(tv)(rev(Y ))][Mtw(X)MP
cw

Mrev(tw)(rev(X))]. (6.8)

Let (twh
,wh, cwh

, rev(twh
)) and k+(tvh , vh, cvh

, rev(tvh
)) be the unique tuples in reduced

index form equivalent to (tw,w, cw, rev(tw)) and k + (tv,v, cv, rev(tv)), respectively,

given by Lemma 6.10. We then have that (twh
, cwh

, rev(twh
)) is equivalent to (tw, cw,

rev(tw)), and k + (tvh , cvh
, rev(tvh

)) is equivalent to k + (tv, cv, rev(tv)). Also,

twh
⊂ t∗w := (tw, tp) and tvh

⊂ t∗v := (tv, k + tp′),

where p and p′ are the index of w and k + v, respectively.

Because of Lemma 6.9, the tuple (t∗w,wh, cwh
, rev(t∗w)) (resp. (t∗w, cwh

, rev(t∗w))) can

be obtained from the tuple (tw,w, cw, rev(tw)) (resp. (tw, cw, rev(tw))) by a sequence of

transpositions not involving the indices of tw. Analogously, the tuple k+(t∗v, vh, cvh
, rev(t∗v))

(resp. k + (t∗v, cvh , rev(t
∗
v))) can be obtained from the tuple k + (tv,v, cv, rev(tv)) (resp.

k + (tv, cv, rev(tv)) by a sequence of transpositions not involving the indices of k + tv .

Let σ (resp. τ ) be the allowed permutation that transforms t∗w (resp. t∗v) into twh
(resp.

tvh ). Let Y ′ be the trivial matrix assignment for tp and Z′ be the trivial matrix assignment

for k+ tp′ . Using Lemma 4.4, the result follows for the matrix assignments Y = σ(X,Y ′)
and Z = τ(Y,Z′) for twh

and tvh , respectively.

A pencil of the form (6.6) associated with P (λ) is uniquely determined by h, twh
, tvh ,

Y , and Z. We then have the following notation.

DEFINITION 6.12. We denote by LP (h, twh
, tvh

,Y ,Z) a block-symmetric GFPR as in
Theorem 6.11.

Observe that, if h = k 1, tvh is necessarily empty. Analogously, if h = 0, twh
is

necessarily empty.

According to Theorem 6.11, every block-symmetric GFPR as in Theorem 6.3 is of the

form LP (h, twh
, tvh

,Y ,Z), for some h, twh
, tvh , Y , Z.

We denote LP (h, twh
, tvh

) := LP (h, twh
, tvh ,Y ,Z), when Y and Z are the trivial ma-

trix assignments for twh
and tvh

, respectively. Note that LP (h, twh
, tvh) is a FPR. Moreover,

every block-symmetric FPR associated with P (λ) is of the form LP (h, twh
, tvh) for some h,

twh
, tvh

[4, Corollary 5.6].

REMARK 6.2. The space EDL(P ) introduced in Definition 6.4 contains the space
DL(P ) as, for m = 1 : k, the pencil Dm(λ, P ) in the standard basis for DL(P ) (see Section
2) is the FPR LP (k m, tk−m, k + tm−1), where tk−m and tm−1 are the maximal index
tuples in canonical form for k m and m 1, respectively ([32, Corollaries 1 and 2] and
[4, Lemma 5.7]).

The next example illustrates the previous remark.

EXAMPLE 6.2. Let P (λ) be a matrix polynomial of degree 6 as in (1.1). Let h = 4,
twh

= (0 : 2, 0), tvh
= A, Y = (X1, X2, X3, X4) be a matrix assignment for twh

, and Z be
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the empty matrix assignment. Then, the pencil LP (h, twh
, tvh ,Y ,Z) is given by

λ

⎤⎥⎥⎥⎥⎥⎥⎦
0 A6 0 0 0 0
A6 A5 0 0 0 0
0 0 A3 X3 X2 X1

0 0 X3 A1 X4 0
0 0 X2 X4 0 0
0 0 X1 0 0 0

⎣∑∑∑∑∑∑⎢

⎤⎥⎥⎥⎥⎥⎥⎦
A6 0 0 0 0 0
0 A4 A3 X3 X2 X1

0 A3 A2 A1 X4 0
0 X3 A1 A0 0 0
0 X2 X4 0 0 0
0 X1 0 0 0 0

⎣∑∑∑∑∑∑⎢ .

Note that if Y is the trivial matrix assignment for twh
, then LP (h, twh

, tvh ,Y ,Z) = LP (h,
twh

, tvh
) is the FPR D2(λ, P ) of the standard basis of DL(P ), that is, the pencil

λ

⎤⎥⎥⎥⎥⎥⎥⎦
0 A6 0 0 0 0
A6 A5 0 0 0 0
0 0 A3 A2 A1 A0

0 0 A2 A1 A0 0
0 0 A1 A0 0 0
0 0 A0 0 0 0

⎣∑∑∑∑∑∑⎢

⎤⎥⎥⎥⎥⎥⎥⎦
A6 0 0 0 0 0
0 A4 A3 A2 A1 A0

0 A3 A2 A1 A0 0
0 A2 A1 A0 0 0
0 A1 A0 0 0 0
0 A0 0 0 0 0

⎣∑∑∑∑∑∑⎢ .

7. Single-EDL(P ) subspaces. It is well-known that if P (λ) is regular, almost all pen-

cils in DL(P ) are strong linearizations of P (λ) [17, Section 7]. However, no pencil in DL(P )
is a linearization of a singular P (λ) [9, Theorem 6.1]. In this section, we introduce subspaces

of the space EDL(P ) presented in Definition 6.4, other than DL(P ), that we call Single-

EDL(P ) subspaces, in which almost all pencils are strong linearizations of P (λ) when F is

infinite. These subspaces are not contained in DL(P ), many of them have trivial intersec-

tion with this space, and have dimensions much larger than DL(P ). Moreover, when P (λ)
is singular and its degree k is odd, we also provide subspaces in which almost all pencils

are strong linearizations of P (λ), which is in stark contrast with the situation for DL(P ).
As a consequence, the subspaces that we introduce are, as far as we know, the first vector

spaces of strong block-symmetric linearizations for singular matrix polynomials available in

the literature.

In Section 2 we discussed particular Single-EDL(P ) subspaces, which we called Fm(P ).
Each subspace Fm(P ) can be obtained from the pencil Dm(λ, P ) in the standard basis of

DL(P ) by multiplying some blocks by an arbitrary fixed scalar and replacing the remaining

blocks, identified in Definition 2.1, by arbitrary n ± n matrices. It turns out that our general

Single-EDL(P ) subspaces can be obtained in a similar way, by starting with an arbitrary

block-symmetric FPR, not necessarily a pencil in the standard basis of DL(P ), as illustrated

in the following example. However, the explicit description of the positions of the blocks to

be replaced is in general very technical and involved and, thus, we do not give it here.

EXAMPLE 7.1. Let P (λ) be a matrix polynomial of degree k = 5 as in (1.1). Let h = 4,
tw = (2, 0), and tv = A. The FPR LP (4, tw, tv) is

λL1 L0 := λ

⎤⎥⎥⎥⎥⎦
A5 0 0 0 0
0 A3 A2 In 0
0 A2 A1 0 A0

0 In 0 0 0
0 0 A0 0 0

⎣∑∑∑∑⎢
⎤⎥⎥⎥⎥⎦

A4 A3 A2 In 0
A3 A2 A1 0 A0

A2 A1 A0 0 0
In 0 0 0 0
0 A0 0 0 0

⎣∑∑∑∑⎢ .

Note that each matrix coefficient L1 and L0 can be viewed as the direct sum of two ma-
trices (one of them being empty in the case of L0). The matrix in the upper left corner
corresponds to the blocks assigned to the indices in the tuple (tv, cv, rev(tv)) (in L0) and
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in the tuple (tv,v, cv, rev(tv)) (in L1); the matrix in the lower right corner corresponds
to the blocks assigned to the indices in the tuple (tw, cw, rev(tw)) (in L1) and the tuple
(tw,w, cw, rev(tw)) (in L0).

We will replace some selected blocks in L1 and L0 by arbitrary matrices and multiply
the remaining blocks by an arbitrary constant γ in order to obtain the pencils in a sub-
space of EDL(P ). We first make the replacements in the block associated with the tuple
(tw, cw, rev(tw)), that is, the lower right corner of L1, say Q. Note that cw has no re-
peated indices. Also, the GFPR LP (4, tw, tv, X, Y ) is block-symmetric for any matrix as-
signments X and Y for tw and tv . Moreover, the positions in the matrix coefficients of
LP (4, tw, tv, X, Y ) of the block assigned to an index i in tw or tv is independent of the
matrix assignment. Thus, we can conclude that the block assigned to an index in tw (and
the same index in rev(tw)) occurs in symmetric positions in Q, and, conversely, if the same
block occurs in symmetric positions in Q, then this block is assigned to an index in tw (and
the same index in rev(tw)). There are two pairs of symmetric positions in Q occupied by
the same block Ai, namely, the block A2 (associated with the index 2 in tw and rev(tw))
occurs in positions (3,2) and (2,3) in L1, and the block A0 (associated with the index 0 in
tw and rev(tw)) occurs in positions (5,3) and (3,5) in L1. We replace the two occurrences
of the block A2 by an arbitrary matrix X2 and the two occurrences of the block A0 by an
arbitrary matrix X1. We then multiply the remaining blocks in Q by γ and get the pencil

λ

⎤⎥⎥⎥⎥⎦
A5 0 0 0 0
0 γA3 X2 γIn 0
0 X2 γA1 0 X1

0 γIn 0 0 0
0 0 X1 0 0

⎣∑∑∑∑⎢
⎤⎥⎥⎥⎥⎦

A4 A3 A2 In 0
A3 A2 A1 0 A0

A2 A1 A0 0 0
In 0 0 0 0
0 A0 0 0 0

⎣∑∑∑∑⎢ .

Next we focus on the block associated with the tuple (tw,w, cw, rev(tw)), that is, the lower
right corner of L0, say Q′. We will replace the blocks corresponding to the same indices
involved in the replacements in Q by the respective matrices Xi. The block corresponding
to the index 2 lies in L0 in positions (3, 1) and (1, 3), and we replace it by X2; the block
corresponding to the index 0 lies in L0 in positions (5, 2) and (2, 5), and we replace it by
X1. Note that the positions of these replaced blocks are obtained from the positions in L1 by
decreasing the column (resp. the row) by 1 if the position is below (resp. above) the main
diagonal of L1. Also note that, in general, the blocks Ai associated with the index i in the
subtuple (w, cw) could occur in symmetric positions in Q′, though it is not the case here.
Finally, we multiply the rest of nonzero blocks in Q′ by γ. In this way we obtain the set of
pencils of the form

λ

⎤⎥⎥⎥⎥⎦
A5 0 0 0 0
0 γA3 X2 γIn 0
0 X2 γA1 0 X1

0 γIn 0 0 0
0 0 X1 0 0

⎣∑∑∑∑⎢
⎤⎥⎥⎥⎥⎦

γA4 γA3 X2 γIn 0
γA3 γA2 γA1 0 X1

X2 γA1 γA0 0 0
γIn 0 0 0 0
0 X1 0 0 0

⎣∑∑∑∑⎢ .

In a similar way, we could make the replacements in the left upper corner matrices of L0 and
L1, starting first with the matrix L0. However, in this case, there are no symmetric positions
occupied by blocks of the form Ai and, thus, there are no replacements to make. The only



Large vector spaces of block-symmetric strong linearizations 25

thing left to do is to multiply the blocks in Q′ by γ. We get the pencil

λ

⎤⎥⎥⎥⎥⎦
γA5 0 0 0 0
0 γA3 X2 γIn 0
0 X2 γA1 0 X1

0 γIn 0 0 0
0 0 X1 0 0

⎣∑∑∑∑⎢
⎤⎥⎥⎥⎥⎦

γA4 γA3 X2 γIn 0
γA3 γA2 γA1 0 X1

X2 γA1 γA0 0 0
γIn 0 0 0 0
0 X1 0 0 0

⎣∑∑∑∑⎢ .

(7.1)

The set of pencils of the previous form, with γ running over F and X1, X2 running over

Mn(F), forms a subspace of EDL(P ), which we will call a Single-EDL(P ).
From now on we assume that P (λ) is a matrix polynomial of degree k ∼ 3.

In this section we use very often the notation LP (h, tw, tv,Y ,Z), introduced in Defini-

tion 6.12, to denote a block-symmetric GFPR as in Theorem 6.11.

7.1. General approach to Single-EDL(P ) subspaces. In this section we construct sub-

spaces of EDL(P ) obtained from each block-symmetric FPR associated with a matrix poly-

nomial P (λ) (not necessarily obtained from a pencil in the standard basis of DL(P ), as those

subspaces considered in Section 2) and we show that most of the pencils in these subspaces

are strong linearizations of P (λ), when P (λ) is regular satisfying some nonsingularity con-

ditions or when P (λ) is singular of odd degree. The subspaces described in Theorem 2.2 are

particular cases of these general subspaces that we call the Single-EDL(P ) subspaces.

Let t be an index tuple. We denote by S(n, t) the set of all matrix assignments for t
whose matrices are of size n± n and have entries in F.

DEFINITION 7.1. Let P (λ) be an n ± n matrix polynomial of degree k as in (1.1) and
0 ≥ h < k be an integer. Let tw (resp. k + tv) be a tuple in canonical form for h (resp.
k h 1). Define

SP
1 (h, tw, tv) :=

}LP (h, tw, tv,Y ,Z) + αLP (h, tw, tv, 0, 0) : α � F,Y � S(n, tw), Z � S(n, tv)| .

We call SP
1 (h, tw, tv) a Single-EDL(P ) subspace.

It is easy to see that SP
1 (h, tw, tv) is a vector space over F.

Note that each Single-EDL(P ) subspace SP
1 (h, tw, tv) is associated with a single FPR,

namely, with LP (h, tw, tv), since the pencils in SP
1 (h, tw, tv) are obtained from the multi-

ples of LP (h, tw, tv) by replacing the blocks corresponding to the indices in tw and tv by

arbitrary matrices. This observation is the motivation for the name Single-EDL(P ) subspace.

We also observe that, by Theorem 6.11, any block-symmetric GFPR associated with P (λ) as

in Theorem 6.3, belongs to a Single-EDL(P ) subspace associated with P (λ).
EXAMPLE 7.2. Let k = 5, h = 4, tw = (0 : 2, 0), tv = A. Then, SP

1 (h, tw, tv) is given
by the family of pencils

λ

⎤⎥⎥⎥⎥⎦
γA5 0 0 0 0
0 γA3 X3 X2 X1

0 X3 γA1 X4 0
0 X2 X4 0 0
0 X1 0 0 0

⎣∑∑∑∑⎢
⎤⎥⎥⎥⎥⎦

γA4 γA3 X3 X2 X1

γA3 γA2 γA1 X4 0
X3 γA1 γA0 0 0
X2 X4 0 0 0
X1 0 0 0 0

⎣∑∑∑∑⎢ ,

where γ � F and Xi � Mn(F) for i = 1 : 4. Notice that γ = α + 1, where α is as in
Definition 7.1. Moreover, this Single-EDL(P ) subspace coincides with the subspace F1(λ)
introduced in Definition 2.1, that is, it is built on D1(λ, P ), the first pencil in the standard
basis of DL(P ).
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Next we give a basis and the dimension of the vector space SP
1 (h, tw, tv). We denote by

Eij the n± n matrix with 1 in position (i, j) and 0 in all other positions.

THEOREM 7.2. Let P (λ) be an n ± n matrix polynomial of degree k as in (1.1) and
0 ≥ h < k. Let tw (resp. k + tv) be a tuple in canonical form for h (resp. k h 1) with
length l (resp. l′). Then, SP

1 (h, tw, tv) is a subspace of EDL(P ) of dimension (l+ l′)n2+1.
A basis of SP

1 (h, tw, tv) is given by

β := {LP (h, tw, tv, 0, 0)}∪
⋃

s=1:l
t1,t2=1:n

LP (h, tw, tv, Xs,t1,t2 , 0)∪
⋃

p=1:l′
q1,q2=1:n

LP (h, tw, tv, 0, Yp,q1,q2),

where 0 denotes a matrix assignment in which all matrices are zero, Xs,t1,t2 is the matrix
assignment for tw in which all matrices are 0 except the one in position s which is Et1,t2 , and
Yp,q1,q2 is the matrix assignment for tv in which all matrices are 0 except the one in position
p which is Eq1,q2 .

Proof. It follows easily from Lemma 4.7 that SP
1 (h, tw, tv) is a vector space generated

by the pencils in β. Note that the cardinality of β is r := (l + l′)n2 + 1. Now we prove

that the pencils in β are linearly independent. Let us denote these pencils by b1, . . . , br, with

b1 := LP (h, tw, tv, 0, 0)| , and consider the equation

α1b1 +×××+ αrbr = 0, αi � F. (7.2)

We want to show that αi = 0, i = 1 : r. Since P (λ) is a polynomial of degree k, the

matrix Ak is not 0. By Lemma 4.7, the block Ak appears in the same position in the matrix

coefficient of the term of degree 1 of each pencil bi. This implies that

r⋃
i=1

αi = 0. (7.3)

On the other hand, taking into account Lemma 4.7 and the definition of the matrix assign-

ments Xs,t1,t2 and Yp,q1,q2 , it follows that each pencil bi, i = 2 : r, has an entry equal to 1 in

a position in which all other pencils have a 0. Thus, (7.2) implies αi = 0 for i = 2 : r. From

(7.3), we get α1 = 0 and the result follows.

EXAMPLE 7.3. Let P (λ) be a 2 ± 2 matrix polynomial of degree 3 as in (1.1). Ac-
cording to Theorem 7.2, SP

1 (0,A, ( 3)) has dimension 5 and a basis for this vector space is
}L1(λ), L2(λ), L3(λ), L4(λ), L5(λ)| , where

L1(λ) = λ

⎤⎦ 0 0 0
0 A3 A2

0 A2 A1

⎣⎢ ⎤⎦ 0 0 0
0 A2 0
0 0 A0

⎣⎢ ,

L2(λ) = λ

⎤⎦ 0 0 E11

0 A3 A2

E11 A2 A1

⎣⎢ ⎤⎦ 0 E11 0
E11 A2 0
0 0 A0

⎣⎢ ,

L3(λ) = λ

⎤⎦ 0 0 E12

0 A3 A2

E12 A2 A1

⎣⎢ ⎤⎦ 0 E12 0
E12 A2 0
0 0 A0

⎣⎢ ,

L4(λ) = λ

⎤⎦ 0 0 E21

0 A3 A2

E21 A2 A1

⎣⎢ ⎤⎦ 0 E21 0
E21 A2 0
0 0 A0

⎣⎢ ,
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L5(λ) = λ

⎤⎦ 0 0 E22

0 A3 A2

E22 A2 A1

⎣⎢ ⎤⎦ 0 E22 0
E22 A2 0
0 0 A0

⎣⎢ ,

with

E11 =

]
1 0
0 0

⌊
, E12 =

]
0 1
0 0

⌊
, E21 =

]
0 0
1 0

⌊
, and E22 =

]
0 0
0 1

⌊
.

Observe that SP
1 (0,A, ( 3)) coincides with the subspace F3(P ) introduced in Definition 2.1.

Next, the largest possible dimension that a Single-EDL(P ) subspace SP
1 (h, tw, tv) may

have is computed when h, tw and tv vary. Note that, for each h, taking into account Theorem

7.2, the maximal dimension is attained when the tuples tw and tv have largest lengths, that

is, when tw and k + tv are maximal tuples according to Definition 6.6. It can easily be seen

that the length of a maximal tuple tw in canonical form for h is 
h2

4 �. Thus, we have the

following result, which follows from the previous observations and Theorem 7.2.

COROLLARY 7.3. Let P (λ) be an n± n matrix polynomial of degree k as in (1.1). The
maximum dimension attained by the vector spaces SP

1 (h, tw, tv), when 0 ≥ h < k and tw,
k + tv are canonical tuples for h and k h 1, respectively, is

max
0≤h<k

})⌋
h2

4

⌈
+

⌋
(k h 1)2

4

⌈[
n2 + 1

[
=

⌋
(k 1)2

4

⌈
n2 + 1.

REMARK 7.1. (Symmetric pencils in SP
1 (h, tw, tv) when P (λ) is symmetric). Accord-

ing to Remark 6.1, in order to guarantee that a pencil T (λ) � SP
1 (h, tw, tv) is symmetric

when P (λ) is, T (λ) must be generated by matrix assignmentsY andZ whose matrices are all
symmetric. These symmetric pencils span a subspace Sym SP

1 (h, tw, tv)
[

of SP
1 (h, tw, tv).

A basis of Sym SP
1 (h, tw, tv)

[
can be obtained in a similar way to the basis of SP

1 (h, tw, tv)
in Theorem 7.2 with the following obvious modifications for guaranteeing symmetry: impose
t1 ≥ t2, q1 ≥ q2, and replace Et1,t2 (resp. Eq1,q2) by a matrix with 1 in positions (t1, t2) and
(t2, t1) (resp. (q1, q2) and (q2, q1)) and 0 in all other positions. So, with the notation of The-

orem 7.2, the dimension of Sym SP
1 (h, tw, tv)

[
is (l + l′)

)
n2+n

2

(
+ 1. Also, the maximum

dimension attained by Sym SP
1 (h, tw, tv)

[
, when h, tw, and tv vary, can be obtained with

a similar argument to that used to deduce Corollary 7.3. This maximum dimension is equal
to ⌋

(k 1)2

4

⌈)
n2 + n

2

[
+ 1.

Note that SP
1 (h, tw, tv) is isomorphic to the space F

n2(l+l′)+1, where l and l′ are, as

in Theorem 7.2, the lengths of tw and tv , respectively. Next we prove that, when some

restrictions on P (λ) are considered, almost all the pencils in the vector space SP
1 (h, tw, tv)

are strong linearizations of the matrix polynomial P (λ). To make the notion of “almost all”

rigorous we need to assume that the field F is infinite. With this assumption in mind, in

Theorem 7.5, we will mean by “almost all” that the isomorphic images in F
n2(l+l′)+1 of the

pencils in SP
1 (h, tw, tv) which are not strong linearizations of P (λ) form a closed nowhere

dense set in the Zariski topology (see [15] for details). Note that this condition holds if the

set is contained in an (affine) algebraic set on which a non constant multivariable polynomial

vanishes. In the particular case when F = R or F = C, any closed nowhere dense subset
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of Fn2(l+l′)+1 in the Zariski sense is closed nowhere dense when the standard topology on

F
n2(l+l′)+1 is considered, and, also, has zero Lebesgue measure.

LEMMA 7.4. Let P (λ) be a matrix polynomial of degree k as in (1.1). Let 0 ≥ h < k and
let tw and k+tv be tuples in canonical form for h and k h 1, respectively. Suppose that h
is even if A0 is singular and k h is odd if Ak is singular. Let L(λ) = LP (h, tw, tv, X, Y )+
αLP (h, tw, tv, 0, 0) be a pencil in SP

1 (h, tw, tv). If α ∅= 1 and X and Y are nonsingular
matrix assignments for tw and tv , respectively, then L(λ) is a strong linearization of P (λ).

Proof. Suppose that α ∅= 1. The pencil L(λ) can be written as

(α+ 1)Mtw,tv (X
′, Y ′) λMP

vh
MP

wh

[
MP

cwh
,cvh

Mrev(tw),rev(tv)(rev(X
′), rev(Y ′))

(7.4)

where vh = k+wk−h−1, and X ′ and Y ′ are the matrix assignments obtained from X and

Y , respectively, by multiplying each matrix by (α + 1)−1. By Theorem 5.5, if MP
cwh

, MP
cvh

and Mtw,tv (X
′, Y ′) are nonsingular, then (7.4) is a strong linearization of P (λ). Note that

Mtw,tv (X
′, Y ′) is nonsingular if and only if X ′ and Y ′ are nonsingular matrix assignments

if and only if X and Y are nonsingular matrix assignments. Also, MP
cwh

(resp. MP
cvh

) is

nonsingular if h (resp. k h 1) is even or A0 (resp. Ak) is nonsingular.

THEOREM 7.5. Let P (λ) be a matrix polynomial of degree k as in (1.1). Let 0 ≥ h < k
and let tw and k+ tv be tuples in canonical form for h and k h 1, respectively. Suppose
that h is even if A0 is singular and k h is odd if Ak is singular. Then, almost all the pencils
in the vector space SP

1 (h, tw, tv) are strong linearizations of P (λ).
Proof. Let L(λ) = LP (h, tw, tv, X, Y )+αLP (h, tw, tv, 0, 0) be a pencil in SP

1 (h, tw, tv).
It follows from Lemma 7.4 that L(λ) is a strong linearization of P (λ), unless α = 1 or any

of the matrix assignments X and Y is singular. Thus, letting l and l′ be the lengths of tw and

tv , respectively, the set containing the pencils in SP
1 (h, tw, tv) that are not strong lineariza-

tions of P (λ) is isomorphic to a subset of

X :=
)
} 1| ± F

n2(l+l′)
(
�
]

r̃

i=1

F
1+n2(l+l′−i) ± S ± F

n2(i−1)

⎡
,

where S ∈ F
n2

is the isomorphic image of the set of singular matrices in Mn(F) and r is the

sum of the number of occurrences of the indices 0 and k in tw and tv , respectively. The

set X is an (affine) algebraic set in F
n2(l+l′)+1 that coincides with the set of roots of the non

constant polynomial (x0 + 1)det(Xl+l′−r+1)×××det(Xl+l′) � F[x0, x
1
1, . . . , x

1
n2 , . . . , x

l+l′
1 ,

. . . , xl+l′
n2 ], where Xi, i = l + l′ r + 1, . . . , l + l′, is an n ± n matrix whose entries are

the variables xi
j , j = 1 : n2. The set X is closed nowhere dense in F

n2(l+l′)+1 in the Zariski

topology, which implies the claim.

Note that, from Theorem 7.5, we can conclude that, when P (λ) is singular of odd degree,

by choosing h even, we get a subspace SP
1 (h, tw, tv), for every possible choice of tw and tv ,

in which almost all the pencils are strong linearizations of P (λ).
We close this section with some remarks. First we note that two distinct pairs of tuples tw

and tv associated with a fixed h do not necessarily produce two Single-EDL(P ) subspaces

with trivial intersection. Consider 0 ≥ h < k and tuples tw and tv , where at least one of tw
or k+ tv contains the zero index. If t1w and k+ t1v are the tuples obtained from tw and k+ tv
by deleting one or more indices equal to zero in at least one of them (note that deleting a zero

index in k+ tv corresponds to the deletion of a k index in tv), then LP (h, t
1
w, t

1
v, X

1, Y 1)
coincides with LP (h, tw, tv, X, Y ), when X and Y are matrix assignments for tw and tv ,

respectively, with the property that the matrices corresponding to the positions of the deleted

indices in tw and tv , respectively, are In, and X1 and Y 1 are matrix assignments for t1w and
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t1v obtained from the matrix assignments X and Y by deleting the matrices in the positions of

the deleted indices in tw and tv . Thus, any pencil in SP
1 (h, t1w, t

1
v) is in SP

1 (h, tw, tv) and,

therefore, we can conclude that SP
1 (h, t1w, t

1
v) is a subspace of SP

1 (h, tw, tv). These ideas

are illustrated by the following example.

EXAMPLE 7.4. Let P (λ) be a matrix polynomial of degree k = 5 as in (1.1). Let h = 4,
tw = (0 : 2, 0), and tv = A. The subspace SP

1 (h, tw, tv) is given in Example 7.2. Now
consider t1w = (1 : 2) and t1v = A. Note that we have deleted both zeros in tw. Then, in
order to obtain SP

1 (h, t1w, t
1
v) we replace in the pencils in SP

1 (h, tw, tv) the blocks X1 and
X4, corresponding to the zero indices in tw, by γIn and get the pencils of the form

λ

⎤⎥⎥⎥⎥⎦
γA5 0 0 0 0
0 γA3 X3 X2 γIn
0 X3 γA1 γIn 0
0 X2 γIn 0 0
0 γIn 0 0 0

⎣∑∑∑∑⎢
⎤⎥⎥⎥⎥⎦

γA4 γA3 X3 X2 γIn
γA3 γA2 γA1 γIn 0
X3 γA1 γA0 0 0
X2 γIn 0 0 0
γIn 0 0 0 0

⎣∑∑∑∑⎢ ,

where Xi � Mn(F) and γ � F. It is clear that SP
1 (h, t1w, t

1
v) ∈ SP

1 (h, tw, tv) and that
the dimension of SP

1 (h, t1w, t
1
v) is strictly less than the dimension of SP

1 (h, tw, tv) since the
matrix coefficients of the general pencil in SP

1 (h, t1w, t
1
v) contain fewer free variables than

those in SP
1 (h, tw, tv).

Note that the space SP
1 (h, t1w, t

1
v) presented in the previous example corresponds to a

Single-EDL(P ) subspace constructed from a block-symmetric FPR which is not in the stan-

dard basis of DL(P ). However, SP
1 (h, t1w, t

1
v) is a subspace of F1(P ) introduced in Defi-

nition 2.1. Next we include an example of a Single-EDL(P ) subspace constructed from a

block-symmetric FPR not in the standard basis of DL(P ) and which is not a subspace of

Fm(P ) for any m.

EXAMPLE 7.5. If P (λ) is a matrix polynomial of degree k = 5 as in (1.1), h = 4,
tw = (2, 0), and tv = A(as in Example 7.1), then the subspace SP

1 (h, tw, tv) is given by the
set of pencils of the form (7.1) with Xi � Mn(F) and γ � F.

7.2. Proof of Theorem 2.2. Here we pay special attention to the subspaces discussed

in Section 2. We show that they are particular cases of Single-EDL(P ) subspaces and prove

Theorem 2.2.

PROPOSITION 7.6. Let P (λ) be a matrix polynomial of degree k as in (1.1) and 1 ≥
m ≥ k. The family Fm(P ) of pencils, introduced in Definition 2.1, is the Single-EDL(P )
subspace SP

1 (k h, tk−m, k + tm−1).
As mentioned in Remark 6.2, the pencils in the standard basis for DL(P ), where P (λ)

is a matrix polynomial of degree k, are those block-symmetric FPR of the form LP (k
m, tk−m, k + tm−1), m = 1 : k, where tk−m and tm−1 are the maximal index tuples in

canonical form for k m and m 1, respectively (see Definition 6.6). Namely, the mth

pencil Dm(λ, P ) in the standard basis of DL(P ) can be expressed as follows:

MP
tk−m,−k+tm−1,(λM

P
−k+wm−1

MP
wk−m

)MP
cwk−m

,−k+cwm−1
MP

rev(tk−m),rev(−k+tm−1)
.

Before we prove the proposition, we give a technical lemma regarding the positions

in the matrix coefficients of Dm(λ, P ) of the blocks associated with the index tuples that

characterize Dm(λ, P ) as an FPR.

Given an index tuple t of the form (twh
,wh, cwh

, rev(twh
)) as in Theorem 6.11, where

0 ≥ h < k, and a matrix assignment X for t, we have Mt(X) = In(k−h−1) ⊗ B, where

B � Mn(h+1)(F). Similarly, if t′ := (twh
, cwh

, rev(twh
)) and X ′ is a matrix assignment

for t′, then Mt′(X
′) = In(k−h) ⊗ C, where C � Mnh(F). Here we study the positions in
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B and C of the blocks in the matrix assignments for t and t′, respectively. This justifies the

following notation.

Let t be an index tuple of nonnegative integers and letX be a matrix assignment for t. We

denote by Ms
t (X), or simply MP,s

t if X is the trivial matrix assignment for t associated with

a matrix polynomial P (λ) of degree k as in (1.1), the submatrix of Mt(X) corresponding to

the block-rows and block-columns indexed by }s : k| .
LEMMA 7.7. Let P (λ) be a matrix polynomial of degree k as in (1.1) and 0 ≥ h < k.

Let wh be the admissible tuple associated with h, cwh
be the symmetric complement of wh,

and th be the maximal tuple in canonical form for h. Let X be a matrix assignment for th.
The following conditions hold:

1. The block-positions in Mk−h
th

(X)MP,k−h
wh,cwh

Mk−h
rev(th)

(rev(X)) corresponding to the

indices in (wh, cwh
) are (i, i), with i � }1 : 	h+1

2 {| , and (i, i+ 1), (i+ 1, i), with
i � }1 : 	h2 {| .

2. The block-positions in Mk−h+1
th

(X)MP,k−h+1
cwh

Mk−h+1
rev(th)

(rev(X)) corresponding to

the indices in cwh
are (i, i), with i � }1 : 	h2 {| .

3. If the block-position in Mk−h
th

(X)MP,k−h
wh,cwh

Mk−h
rev(th)

(rev(X)) or in

Mk−h+1
th

(X)MP,k−h+1
cwh

Mk−h+1
rev(th)

(rev(X)) corresponding to an index in th is (i, j),
then i > j and the block-position corresponding to the same index in rev(th) is
(j, i).

4. If the block-position in Mk−h
th

(X)MP,k−h
wh,cwh

Mk−h
rev(th)

(rev(X)) corresponding to an

index in th is (i, j), then the position in Mk−h+1
th

(X)MP,k−h+1
cwh

Mk−h+1
rev(th)

(rev(X))

corresponding to the same index is (i 1, j).
Proof. Here we prove the case when h is even, that is, wh is an admissible tuple of index

0. The case h odd can be proven similarly. We will denote by ∪ the trivial matrix assignment

for (w, cw) associated with P (λ) and by Z any n±n block in ∪ . Denote by Yl, l = 0 : h 2,
the block in X corresponding to the position l+1 in the string (0 : h 2) of th (and therefore,

the block assigned to the position in the subtuple (rev(0 : h 2)) of rev(th) where the

same index occurs). Recall that th is of the form (6.2) with ai = 0 for all i. Consider the

following matrix assignments for subtuples of th: Y = (Y0, . . . , Yh−2) and X̄ such that

X = (Y, X̄). Also consider the following block-matrices: Y ′ =
]
Yh−2 ××× Y1

⌊
and

Y ′′ =
]
Yh−3 ××× Y1

⌊
.

The proof is by induction on h. If h = 0, we have wh = (0) and cwh
and th empty. In

this case the claim holds trivially. Let h = 2. Then wh = (1 : 2, 0), cwh
= (1) and th = (0).

By direct multiplication, we get

Mk−2
(0) (Y0)M

P,k−2
(1:2,0),1)M

k−2
(0) (Y0) =

⎤⎦ Z Z Y0

Z Z 0
Y0 0 0

⎣⎢ ,

Mk−1
(0) (Y0)M

P,k−1
(1) Mk−1

(0) (Y0) =

]
Z Y0

Y0 0

⌊
which implies the result. Assume that h ∼ 4. Let sh := (th,wh, cwh

, rev(th)). Note that

sh ⊂ s′h := ((0 : h 2, h 1 : h), sh−2, (h 1, rev(0 : h 2))).

Moreover, if σ is the allowed permutation transforms sh into s′h, then σ(X,∪ , rev(X)) has

the form

(Y, Z, Z, X̄, Z, . . . , Z, rev(X̄), Z, rev(Y )),
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where each block Z is the trivial matrix assignment, associated with P (λ), for the index in

s′h in the corresponding position. Let

Mk−h+2
sh−2

:= Mk−h+2
th−2

(X̄)MP,k−h+2
wh−2,cwh−2

Mk−h+2
rev(th−2)

(rev(X̄)) =

]
A B
C Mk−h+3

sh−2

⌊

where A, B, C are n ± n blocks. Then, the product MP,k−h
h−1:h (I2n ⊗Mk−h+2

sh−2
)MP,k−h

h−1 has

the form⎤⎥⎥⎦
Z In 0 0
Z 0 In 0
In 0 0 0
0 0 0 In(h−2)

⎣∑∑⎢
⎤⎥⎥⎦

In 0 0 0
0 In 0 0
0 0 A B
0 0 C Mk−h+3

sh−2

⎣∑∑⎢
⎤⎥⎥⎦

In 0 0 0
0 Z In 0
0 In 0 0
0 0 0 In(h−2)

⎣∑∑⎢

=

⎤⎥⎥⎦
Z Z In 0
Z A 0 B
In 0 0 0
0 C 0 Mk−h+3

sh−2

⎣∑∑⎢ .

This implies that

Mk−h
sh

:= Mk−h
th

(X)MP,k−h
wh,cwh

Mk−h
rev(th)

(rev(X))

= Mk−h
0:h−2(Y )MP,k−h

h−1:h (I2n ⊗Mk−h+2
sh−2

)MP,k−h
h−1 Mk−h

rev(0:h−2)(rev(Y )).

has the form⎤⎥⎥⎦
In 0 0 0
0 In 0 0
0 0 (Y ′)B In(h−2)

0 0 Y0 0

⎣∑∑⎢
⎤⎥⎥⎦

Z Z In 0
Z A 0 B
In 0 0 0
0 C 0 Mk−h+3

sh−2

⎣∑∑⎢
⎤⎥⎥⎦

In 0 0 0
0 In 0 0
0 0 Y ′ Y0

0 0 In(h−2) 0

⎣∑∑⎢

=

⎤⎥⎥⎦
Z Z Y ′ Y0

Z A B 0
(Y ′)B C Mk−h+3

sh−2
0

Y0 0 0 0

⎣∑∑⎢ .

By the inductive hypothesis, the first claim follows.

Let ph := (th, cwh
, rev(th)). Note that

ph ⊂ p′h := ((0 : h 2, h 1),ph−2, rev(0 : h 2)).

Moreover, if μ is the allowed permutation that transforms ph into p′h then μ(X, ∪̄ , rev(X)),
where ∪̄ is the trivial matrix assignment for cwh

associated with P (λ), has the form

(Y, Z, X̄, Z, . . . , Z, rev(X̄), rev(Y )),

where each block Z is the trivial matrix assignment, associated with P (λ), for the index in

p′h in the corresponding position. Let

Mk−h+3
ph−2

:= Mk−h+3
th−2

(X̄)MP,k−h+3
cwh−2

Mk−h+3
rev(th−2)

(rev(X̄)) =

]
D E
F Mk−h+4

ph−2

⌊
,
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where D, E, F are n± n blocks. The product MP,k−h+1
h−1 (I2n⊗Mk−h+3

ph−2
) is a matrix of the

form⎤⎥⎥⎦
Z In 0 0
In 0 0 0
0 0 In 0
0 0 0 In(h−3)

⎣∑∑⎢
⎤⎥⎥⎦

In 0 0 0
0 In 0 0
0 0 D E
0 0 F Mk−h+4

ph−2

⎣∑∑⎢ =

⎤⎥⎥⎦
Z In 0 0
In 0 0 0
0 0 D E
0 0 F Mk−h+4

ph−2

⎣∑∑⎢ .

Thus, the product

Mk−h+1
ph

:= Mk−h+1
th

(X)MP,k−h+1
cwh

Mk−h+1
rev(th)

(rev(X))

= Mk−h+1
0:h−2 (Y )MP,k−h+1

h−1 (I2n ⊗Mk−h+3
ph−2

)Mk−h+1
rev(0:h−2)(rev(Y ))

is a matrix of the form⎤⎥⎥⎦
In 0 0 0
0 Yh−2 In 0

0 (Y
′′
)B 0 In(h−3)

0 Y0 0 0

⎣∑∑⎢
⎤⎥⎥⎦

Z In 0 0
In 0 0 0
0 0 D E
0 0 F Mk−h+4

ph−2

⎣∑∑⎢
⎤⎥⎥⎦

In 0 0 0

0 Yh−2 Y
′′

Y0

0 In 0 0
0 0 In(h−3) 0

⎣∑∑⎢

=

⎤⎥⎥⎦
Z Yh−2 Y

′′
Y0

Yh−2 D E 0

(Y
′′
)B F Mk−h+4

ph−2
0

Y0 0 0 0

⎣∑∑⎢
By the inductive hypothesis, the second claim follows.

The last two claims also follow by applying the induction hypothesis and by taking into

account that the blocks in the matrices Mk−h
sh

and Mk−h+1
ph

corresponding to the indices in

the subtuple (0 : h 2) of tw appear in the first block-column.

From Lemma 7.7 a corresponding result can be obtained for negative tuples of the form

k+(th,wh, cwh
, rev(th)) by noting that M−k+sh(X) = RMsh(X)R and M−k+ph

(X ′) =
RMph

(X ′)R, where sh and ph are as in the proof of Lemma 7.7, X and X ′ are matrix as-

signments for sh and ph, respectively, and

R :=

⎤⎥⎦ 0 . . . In
... . .

. ...
In . . . 0

⎣∑⎢ . (7.5)

Proof of Proposition 2.2: Next we show that, for a fixed m � }1 : k| , the pencils in the

vector space Fm(P ), obtained from αDm(λ, P ), are of the form

LP (k m, tk−m, k+ tm−1,Y ,Z) + (α 1)LP (k m, tk−m, k+ tm−1, 0, 0), (7.6)

where α � F and Y and Z denote arbitrary matrix assignments for tk−m and k + tm−1,

respectively, proving the claim. Note that it is enough to show that the blocks in the coefficient

matrices of Dm(λ, P ) that are replaced by arbitrary matrices (as described in Definition 2.1)

correspond to the indices in tk−m and k + tm−1, and that the blocks corresponding to the

same index in tk−m and rev(tk−m) (resp. k + tm−1 and k + rev(tm−1)) are the same.

Using the notation in Section 2, we have Dm(λ, P ) = λXm Xm−1, where Xm =
diag(Lm(P ), Uk−m(P )) and Xm−1 = diag(Lm−1(P ), Uk−m+1(P )). Note that C11 :=
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Lm(P ) and C22 := Uk−m(P ) are m±m and (k m)± (k m) block-matrices, respec-

tively; also, D11 := Lm−1(P ) and D22 := Uk−m+1(P ) are (m 1)± (m 1) and (k
m+1)± (k m+1) block-matrices, respectively. By Theorem 5.3, D11 contains the blocks

in the matrix assignment for the tuple k+(tm−1, cwm−1 , rev(tm−1)) and D22 contains the

blocks in the matrix assignment for the tuple (tk−m,wk−m, cwk−m
, rev(tk−m)). Similarly,

C11 contains the blocks in the matrix assignment for the tuple k + (tm−1,wm−1, cwm−1 ,
rev(tm−1)) and C22 contains the blocks in the matrix assignment for the tuple (tk−m, cwk−m

,
rev(tk−m)).

Taking into account the form of the matrices Xm and Xm−1, it follows that the not

identically zero blocks in D22 are located in Xm−1 in the positions given by the set

S1 = }(m 1 + i,m 1 + j), i = 1 : k m+ 1, j = 1 : k m+ 2 i| ,

while the not identically zero blocks in C22 are located in Xm in the positions given by the

set

S2 = }(m+ i,m+ j), i = 1 : k m, j = 1 : k m+ 1 i| .

Note that S1 can also be expressed as the union of the two sets}
(m 1 + i,m 1 + i), i = 1 :

⌉
k m+ 1

2

{[
and

}(m 1+i,m 1+j), (m 1+j,m 1+i), i = 2 : k m+1, j = 1 : min}i 1, k m+2 i| | .

In item 1 of Lemma 7.7 we claim that the nonzero blocks in D22 corresponding to the indices

in the tuple (wk−m, cwk−m
) are located in Xm−1 in the positions given by the set

S′1 =

}
(m 1 + i,m+ i), (m+ i,m 1 + i), i = 1 :

⌉
k m

2

{[
�
}
(m 1 + i,m 1 + i), i = 1 :

⌉
k m+ 1

2

{[
.

Thus, the positions in Xm−1 occupied by the blocks corresponding to the indices in (tk−m,
rev(tk−m)) are given by S1√S′1. Bearing in mind the item 2 of Lemma 7.7, similar obser-

vations can be done for C22. Taking now into account items 3 and 4 of Lemma 7.7, we get

that the matrices obtained from C22 and D22 by replacing some blocks by arbitrary matrices,

as indicated in Definition 2.1, coincide with the corresponding matrices in the pencil (7.6),

for some assignment Y . Because of the comment after Lemma 7.7, similar results can be

obtained for D11 and C11.

Proof of Theorem 2.2: Since by Proposition 7.6, Fm(P ) is a Single-EDL(P ) subspace,

taking into account Theorem 7.2, Fm(P ) is a vector space of the claimed dimension, proving

the first claim in the theorem. Note that the tuples tk−m and tm−1 have lengths
⌋
(k−m)2

4

and
⌋
(m−1)2

4 , respectively.

Now we show the second claim, that is, a pencil in Fm(P ) satisfying the four conditions

in Theorem 2.2 is a strong linearization of P (λ). We first observe that the blocks correspond-

ing to the indices 0 in the tuple tk−m must lie among the positions occupied by the matrix
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A0 in the matrix coefficients Xm and Xm−1 of Dm(λ, P ). Lemma 7.7 below gives the po-

sitions occupied by the block A0 corresponding to the 0 indices in (wk−m, cwk−m
). Items

3 and 4 of this lemma tell us that the index 0 in tk−m and the same index in rev(tk−m) oc-

cupy symmetric positions. Thus, we conclude that the blocks corresponding to the indices 0

in tk−m lie in Xm in positions (m+ i, k i+1), (k i+1,m+ i, ), i =
⌉
k−m
2

(
+1 : k m,

and lie in Xm−1 in positions (m+ i, k i), (k i,m+ i), i =
⌉
k−m
2

(
+ 1 : k m. Sim-

ilarly, it can be seen that the positions in Xm−1 and Xm of the blocks corresponding to the

indices k in k+ tm−1 are those to which the blocks Ci,m−i, i = 1 :
⌋
m−1
2

⌈
, are assigned

according to Definition 2.1. Now, because of Theorem 5.5, the second claim in Theorem 2.2

follows. Note that, if α ∅= 0, the pencil in (7.6) is a nonzero multiple of a GFPR.

8. Conclusions and future work. In this paper, we extend the family of Fiedler pen-

cils with repetition (FPR) associated with a matrix polynomial P (λ) as in (1.1), which was

introduced in [32], to a much larger family of pencils that we call the generalized Fiedler

pencils with repetition (GFPR) and we give sufficient conditions for a GFPR to be a strong

linearization of P (λ). Additionally, we identify a subfamily of block-symmetric GFPR which

generates a vector space EDL(P ) that we call the extended DL(P ) since the k-dimensional

DL(P ), introduced and studied in [17, 22], is one of its subspaces. We construct numerous

subspaces of EDL(P ), called Single-EDL(P ) subspaces, with the property that almost all of

their elements are strong linearizations of P (λ). In particular, the largest dimension of such

subspaces is d(k, n) =
⌋
(k−1)2

4 n2+1, which is much larger than the dimension of DL(P ).

If P (λ) is regular or singular with odd degree, there always exist Single-EDL(P ) spaces with

the property that almost all of its pencils are strong linearizations of P (λ), in stark contrast

with the situation for DL(P ) in which no pencil is a linearization of P (λ) when P (λ) is sin-

gular. We are presently studying in [5] strong linearizations contained in the Single-EDL(P )
subspaces that preserve the sign characteristic of P (λ) when it is Hermitian and has real

eigenvalues [14]. Another line of future research is to study how to construct from the pencils

in the Single-EDL(P ) subspaces of strong linearizations that are palindromic, alternating, or

skew-symmetric when P (λ) has any of these structures. Moreover, it is still an open ques-

tion to compute the dimension of EDL(P ), as well as to establish if it contains subspaces of

(almost all) strong linearizations with dimension larger than d(k, n).
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[9] F. DE TERÁN, F. M. DOPICO, AND D. S. MACKEY, Linearizations of singular matrix polynomials and the
recovery of minimal indices, Electron. J. Linear Algebra, 18 (2009), pp. 371-402.



Large vector spaces of block-symmetric strong linearizations 35
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