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Abstract: A rehabilitation therapy usually derives from 
general goals set by the medical expert, who requests the pa-
tient to attend sessions during a certain time period in order to 
help him regaining mobility, strength and/or flexibility. The 
therapist must transform these general goals manually into a set 
of exercises distributed over different rehabilitation sessions that 
compose the com-plete therapy plan, taking into account the 
patient clin-ical conditions and a predetermined session and 
ther-apy time. This becomes a hard task and might lead to rigid 
schedules which not always accomplish the de-sired 
achievement level of therapeutic objectives estab-lished by the 
physician and could have a negative im-pact on the patients’ 
engagement in the therapy. Classi-cal and Hierarchical Task 
Network planning approaches have been used in this paper to 
compare the modelling and results of both domain formulations 
for the auto-matic generation of therapy plans for patients 
suffering obstetric brachial plexus palsy, in response to a given 
set of therapeutic objectives.

Introduction
Clinical Decision Support Systems (CDSS) have been de-
veloped in the last decades to facilitate many tasks of physi-
cians, like helping them in implementing Clinical Practice
Guidelines (CPGs) through ad-hoc computer-interpretable
models (Peleg 2013). In some cases, it might happen that
the protocol to treat a patient condition is not so clear, and
the procedure to design the treatment pathway depends di-
rectly on a set of expected therapeutic objectives that the
patient should achieve. In this case, guidelines can only give
high-level recommendations on what combination of thera-
pies to establish for a patient condition, but it still may re-
quire higher effort for the physician to deal with the con-
figuration of the most appropriate combination of steps to
maximize the expected outcome, for example according to a
standard scale. This is the case of rehabilitation therapies for
obstetric brachial plexus palsy (OBPP), the condition where
this paper is scoped. OBPP is a serious injury that causes a
loss of movement or weakness of the affected upper-limb. It
is caused when the collection of nerves around the shoul-
der are damaged during the birth. In order to design the
OBPP rehabilitation stage in the Virgen del Rocı́o Univer-

sity Hospital (Seville, Spain)1, a set of therapeutic objec-
tives is established after the anamnesis stage, according to
the evaluated conditions of the patient. Taking these objec-
tives into consideration, sequential, time-limited sessions of
exercises that aim to achieve those goals have to be designed
by the medical experts. The patients will carry out the re-
habilitation sessions with periodic evaluations to check if
they are progressing and achieving the expected outcome.
Their progress along the therapy is measured using the Goal
Attainment Scale (GAS) (Turner-Stokes 2009). In this sce-
nario, physicians need to design combinations of exercises
that contribute in a quantitatively measureable way to one
or several therapeutic objectives, that might conflict among
them, and that might have time, order, intensity or difficulty
constraints in order to be selected.

This paper proposes to model the design of rehabilita-
tion therapies by means of Automated Planning, which pro-
vides an automatic method to support physicians in the de-
sign of these sessions. After their clinical feasibility valida-
tion, the generated therapy plan could be projected into a
programmable humanoid robotic platform that will serve as
training assistant to patients, as expected in the THERAPIST
project (Calderita et al. 2013). To achieve this goal, three
main steps have been performed and described in this
manuscript. Firstly, a domain analysis and specification have
been performed with the help of physicians and therapists
at Virgen del Rocı́o Hospital, as described in the following
section. Then, we have studied how to formalize the domain
with two different automated planning approaches: classi-
cal STRIPS planning and Hierarchical Task Network (HTN)
Planning (Ghallab, Nau, and Traverso 2004; Erol, Hendler,
and Nau 1994). Finally, we have performed an initial em-
pirical, qualitative evaluation of such models with concrete
planners to check their capabilities, including an extended
discussion to highlight their strengths and weaknesses.

Related Work
There has been some work in the automatic generation of
therapy plans or treatments. (Ahmed et al. 2010) present
a system for the automatic generation of treatments in can-
cer patients. The system is concerned with the correct se-
lection of the geometry and intensity of the irradiation to
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produce the best dose distribution. In (Morignot et al. 2010)
authors use also Automated Planning for generating sce-
narios helping handicapped people. In (Fdez-Olivares et
al. 2011; González-Ferrer et al. 2013) authors used a plan-
ning algorithm able to generate oncology treatment plans,
and transforming Asbru computer-interpretable guidelines
of the Hodgkin disease protocol, which include temporal
constraints difficult to schedule manually by physicians.
(Schimmelpfeng, Helber, and Kasper 2012) present a mixed-
integer linear programming (MILP) approach to determine
appointments for patients of rehab hospitals. However, they
do not plan the specific exercises within each session to
achieve some predetermined goals according to the require-
ments of the patient as detailed in our work.

Domain Analysis and Specification
There are three main actors involved in the therapeutic pro-
tocol: the therapist, the medical expert and the patient. The
therapy plan is composed of sessions, each one composed of
different exercises. The medical expert determines the num-
ber of sessions of the therapy and some constraints to pre-
vent the training of certain groups of exercises depending on
the patient profile. This expert also decides which general
therapeutic objectives, out of five, should be trained during a
rehabilitation therapy: bimanual, fine unimanual, coarse uni-
manual activities, arm positioning or hand positioning activ-
ities.

The main goal of the therapist is to help the patient to per-
form the rehabilitation sessions while evaluating the patient
evolution. When planning a therapy session, the therapist se-
lects the exercises which, according to his experience, are
better to fulfill the therapeutic objectives in a fixed amount
of time. The hospital that participates in our project follows
general guidelines of the available exercises categorized ac-
cording to affected body sites, where each group trains a
certain patient capability. The therapist is also free to use
his creativity to improvise new exercises in order to better
accomplish the goals imposed by the medical expert. A rea-
sonable session might be organized as follows: the initial
exercises serve as warming up, the most intense exercises
are performed in the central part of the session and the final
exercises as cool-down phase.

The evolution of the patient is evaluated using the GAS
scale (Turner-Stokes 2009). Depending on the results, the
medical expert can change some therapy features, for exam-
ple removing a therapeutic objective or adding another one.
This system has little flexibility because it does not allow
to reduce or increase the priority of the objectives by some
degree. The selected exercises in a session depend greatly
in the intuition of the therapist. These exercises could not
be the most appropriate to achieve the therapeutic objectives
and, at the end of the therapy, some of these objectives could
not be completely fulfilled, putting at risk the rehabilitation
success.

Having different exercises for each therapeutic objective
is convenient because using an assorted exercise set may en-
rich the therapy quality. However, selecting the adequate ex-
ercises according to the therapeutic objectives, observing the
patient profile constraints and assuring the variability of the

sessions, is a time-consuming task for therapists. It causes
that the therapist often do not care about finding the suitable
set of exercises, so the trained sessions are usually repeti-
tive. This may reduce the engagement of the patient in the
therapy.

Model, Constraints and Requirements
Finding a plan of exercises for each session while taking
into account all the requirements set by the medical expert
is a search task which can be solved with Automated Plan-
ning. A database with exercises of different characteristics is
available for the system to be developed. This database pro-
vides metrics to guarantee that the planned therapy fulfills all
the requirements of the medical expert. To increase the flex-
ibility when selecting exercises, the therapeutic objectives
variables are graded with four adequacy values, {0,1,2,3},
as used in the mentioned GAS scale. These values will con-
tribute to reach the therapeutic objectives cumulative levels
(TOCL) established for a session. The system will provide
the planned sessions to the therapist, that only needs to vali-
date them. Of course, he can ultimately decide to change any
exercise, if he considers it as not appropriate.

Next we show the constraints and requirements followed
to plan the exercises that will be included in the rehabilita-
tion sessions.

Goals
• Total number of sessions.
• Minimum and maximum duration of each session.
• The defined TOCL thresholds.

Exercise characteristics
• Duration (in minutes).
• Adequacy level for each therapeutic objective.
• Intensity value is associated to the average heart rate while

performing the exercise.
• Difficulty for a certain patient to perform the exercise.

This variable could be updated by the therapist after each
session, if needed.

• Each exercise belongs to a group of exercises. These
groups are related to the capabilities that patients need to
perform the exercise, possibly restricted by their clinical
conditions.
The next constraints are considered in order to guarantee

the medical requirements and the variability of the sessions:

Basic constraints
• Each session must have three phases in the following or-

der: warm-up, training and cool-down.
• The duration of each phase and each session must be in-

side a predefined range.

Variability constraints
• The repetition of a certain exercise in the same session is

not allowed.
• The exercise distribution should be assorted throughout

the sessions.

2



Patient-related constraints
• Avoiding a certain group (e.g elbow flexion) or a set of

exercises (e.g. those too much intense or difficult) could
be required because of patient conditions.

• Select certain types of exercises. For instance, if the pa-
tient suffers “Upper Erb OBPP”, recommend only exer-
cises for shoulder abduction, external rotation of shoulder
and elbow flexion; if he suffers “Extended Erb OBP”, add
wrist flexion as well.

• Within a session, limit the cumulative intensity or diffi-
culty to a given value.

With this information, the automated planner can find a
suitable therapy plan if there are enough exercises in the
database. In case that the available exercises are not enough,
the automated planner will ask the therapist that it needs to
learn a new exercise with a suggested value for some charac-
teristics. For example, in a session plan, the planner can sug-
gest the execution (and learning) of a new exercise with ade-
quate level of 2 for bimanual activities. The planner assumes
that the learnt exercise is performed by the patient and uses
the minimum estimated values to compute the calculations
for the plan. When the therapist stores the new exercise in
the database, it can have higher adequacy levels for the ther-
apeutic objectives, guaranteeing that the plan will continue
being valid. In future sessions, the previously learnt exer-
cises can be reused, minimizing the need of further learning
actions and helping the therapist to fill the database with a
set of useful exercises. After a session, the therapist can up-
date the difficulty values of the exercises for a patient, if
needed. The medical expert can also modify the goals with
the results of the GAS scale evaluation. This updates can
cause a replanning of the remaining sessions, if the previ-
ously planned therapy is no longer valid.

Methods
We propose the use of Automated Planning techniques
(Ghallab, Nau, and Traverso 2004) to plan the exercises
that will belong to each session. Automated Planning is an
Artificial Intelligence (AI) technique that is used to find
a plan of actions while respecting the model constraints.
We have tested two different paradigms: classical STRIPS
planning and Hierarchical Task Network (HTN) planning.
In classical planning, given a model composed of an ini-
tial state, possible actions that have preconditions to be ful-
filled, effects over the state and a set of goals that have
to be accomplished in the final state, a planner is able
to generate valid plans of actions to achieve the speci-
fied goals. HTN Planning (Erol, Hendler, and Nau 1994;
Nau et al. 2003) is based a hierarchy of composed tasks and
primitive actions. Composed tasks are high-level tasks that
can be decomposed using methods that have to fulfill a pre-
condition to be selected and applied, while primitive actions
are modelled as in classical planning.

In order to check the viability and to measure the suitabil-
ity and performance of each automated planning paradigm,
two different knowledge engineers of our group addressed
the presented problem using two concrete AI planners: Cost-
based Planner (CBP) (Fuentetaja, Borrajo, and López 2010)

for the classical paradigm and JSHOP2 (Nau et al. 2003) for
the hierarchical one. Subsequent meetings with other group
experts were carried out to discuss modelling approaches
and results. We describe next these two models.

Classical Planning
The proposed domain for this planning model is based
mainly in fluents and action costs, introduced in PDDL
2.1 (Fox and Long 2003). These requirements have yet a
lack of support from many of the most current planners, but
in this domain they are specially useful to operate directly
with the quantitative values of the therapeutic objectives.
CBP planner supports these characteristics and its search
method is guided by a selection of actions extracted from
a relaxed planning graph. Also, they are useful to control
the session length, add specific variability restrictions and to
establish a dynamic preference for certain actions. The most
important design criterion that we followed in the classical
model is that each individual session has to fulfill always
the therapeutic objectives while observing the time duration
constrains. A secondary criterion consists in forcing the vari-
ability among the therapy sessions to avoid monotony and
improve the treatment engagement. This domain also has the
possibility to “plan the learning” of new exercises with some
suggested attributes to be executed in a session if there are
not enough exercises in the database. This learning mech-
anism is explained in more detail in a later subsection. To
clarify the further explanation, we show a plan for just one
session in Figure 1. A full therapy plan will have every ses-
sion planned, addressing all the dependencies among them.

0: (SESSION-START)
1: (WARMUP-PHASE)
2: (WARMUP-DATABASE-EXERCISE E0)
3: (TRAINING-PHASE)
4: (TRAINING-DATABASE-EXERCISE E11)
5: (TRAINING-DATABASE-EXERCISE E12)
6: (TRAINING-DATABASE-EXERCISE E10)
7: (TRAINING-DATABASE-EXERCISE E9)
8: (LEARN-TRAINING-EXERCISE O_SPATIAL_HAND A_MEDIUM

D_LONG I_INTENSE)
9: (COOLDOWN-PHASE)
10: (COOLDOWN-DATABASE-EXERCISE E15)
11: (SESSION-END)

Figure 1: Output plan for one session.

Planning Problem
Goals The medical expert is in charge of determining the
characteristics of the therapy. Firstly, he decides the total
number of sessions and the minimum and maximum dura-
tions of each phase. This data is stored in the initialization
part of the PDDL problem to serve as a common background
for all sessions. There are other two important tasks for this
expert: choose restrictions depending on the patient’s profile
and determine the amount of training for each therapeutic
objective in each session. These are done using PDDL goals.

There is a fluent for each therapeutic objective to accu-
mulate all the corresponding adequacy values of the planned
exercises in a session. These can be defined as the amount
of training for a certain therapeutic objective (the aforemen-
tioned TOCL values). An objective will be achieved if it is
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trained enough, so it is sufficient to assign a goal with a
lower threshold for each objective to be trained. As an ex-
ample, for a 30 minutes session:
(>= (TOCL t_bimanual) 15)
(>= (TOCL t_unimanual_fine) 7)
(>= (TOCL t_spatial_arm) 7)

Numeric goals in PDDL permit a great flexibility to con-
figure the range of desired values for each fluent at the end
of each session. It could be also possible to establish an up-
per limit for each objective (less or equal condition) or even
avoid the training of a certain objective (equals to zero), but
this has less medical sense because these values are just a
form to represent the priority of the therapeutic objectives
and they do not need to be directly related with the intensity
of the exercises, for which there is a different fluent.

Exercise Database The database contains all the stored
exercises. It is fully managed by the therapist, adding ex-
ercises when the system suggests it with learning actions or
when the therapist finds it convenient. This information ob-
serves all the characteristics of the exercises mentioned in
previous sections. The difficulty value of each exercise is
stored in the patient’s profile, but to simplify we consider
that they are loaded in the PDDL problem file before the
planning task. To assure the variability constraints, there are
two additional fluents representing the session number and
the position of the exercise in the the last session where it
appeared. Each exercise has a predicate to be able to appear
in the warm-up, training or cool-down phase.

The system assumes that the information of the database
is coherent, so the therapist has to be sure that the exercises
are correct when he adds them. For example, warm-up ex-
ercises should not be too intense. With these considerations,
the session plan will start with soft intensity, followed by
an intense training phase and ending with softer exercises
again. Below there is an example of a generic therapeutic
exercise (e7) modelled in PDDL:
(e_phase e7 p_training)
(e_group e7 g_arm_independence)
(= (e_last_session e7) 2)
(= (e_last_position e7) 4)
(= (e_intensity e7) 48)
(= (e_difficulty e7) 39)
(= (e_duration e7) 4)
(= (e_adequacy e7 t_bimanual) 0)
(= (e_adequacy e7 t_unimanual_fine) 3)
(= (e_adequacy e7 t_unimanual_coarse) 0)
(= (e_adequacy e7 t_spatial_arm) 1)
(= (e_adequacy e7 t_spatial_hand) 0)

Planning Domain
Actions All actions are strongly based in fluents, having
numeric preconditions and action costs. There are two stan-
dard action types: to control the session flow and to add ex-
ercises from the database.

Flow control actions allow moving among warming up,
training and cooling down phases or determining the start
and end of a session. When the minimum time for a phase
has been reached, it is possible to move to the next phase or
to finish the session.

The basic way to add exercises to a session is through ac-
tions which select them from the database. They check that
there is available time in the current phase and constraints
like the maximum cumulative intensity. Only exercises for

the current phase can be selected. To assure variability there
are two restrictions modelled as preconditions in the PDDL
domain:

• The exercise cannot be used in the last three sessions.

• In the training phase, an exercise cannot be trained in the
same position as in the last session in which it appeared.2

Learning Exercises Learning actions helps the therapist
to add new useful exercises to the database as the system
is being used. When the system has difficulties to find a
valid plan, it can ask the therapist to provide a new exercise
to continue planning. Our hypothesis states that the bigger
the database is, the less new learnings will be needed. It is
preferable to use exercises in the database instead of learn-
ing new ones, but is not necessary to explore all the possible
combinations before trying a learning action. This has been
controlled using a higher action cost. The planner tries to
minimize the total cost of the plan, so learning actions tend
to be used few times.

To increase variability, the action cost will be higher when
the new exercise allows reaching the problem goals faster. In
this way, longer and less adequate exercises are preferred for
the main target.

Planning Strategy
Classical planning has to deal with a major problem in this
domain. Plan only one session is somewhat relatively easy,
but a real therapy is composed of about 20 sessions. The first
approximation was to plan the full therapy, generating plans
which contain more than 250 actions. Planning multiple ses-
sions in one run causes a non-linear complexity increase be-
cause there are dependencies among them. The planner has
to do backtracking if the selected exercises for a session are
not valid. The problem appears when the planner goes back
further than needed, maybe many valid sessions, forcing to
replan these sessions again to find a valid alternative for a
later one. A smaller backtracking of just a few actions could
solve the situation allowing reordering of the exercises, se-
lecting others or planning the learning of a new one to con-
tinue onward.

We use a divide and conquer strategy to plan each session
individually taking into account the dependencies of one an-
other. In particular, the planner is called one time for each
session that we want to plan. Each time that the planner re-
turns a plan, it is parsed to determine all the database and
learnt exercises planned. For the next session, a new prob-
lem file is generated to update the predicates and functions
of the exercises of the last session planned, and add the new
learnt exercises to the database. Then, the planner is exe-
cuted again with the problem file for the next session. So for
each session, a PDDL problem file is generated with the new
exercises and updates of the database exercises. The exper-
iments showed that this strategy is much faster than plan-
ning all the sessions in one run, without affecting the quality

2For warm-up and cool-down phases the condition is not appli-
cable because a long exercise can reach by itself the minimum time
of the phase and cannot be reordered (e.g. in the warm-up phase,
such exercise will always appear in the first position).
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1 2 3 4 5 6 7 8
1 e0 e9 e11 e12 e10 e7 e15

2 e4 e2 e5 e6 L L L e13

3 e1 e3 e8 L L L L e16

4 L L L L L L e17

5 e0 e11 e12 e10 e9 L e15

6 e4 e2 e6 L19 e7 e5 L20 e13

7 e1 e3 L24 e8 L23 L22 e16

8 L25 L26 L30 L27 L28 L29 e17

9 e0 e12 e10 L31 e11 e9 e15
10 e4 e2 L19 L20 e6 e7 e13

11 e1 e3 L22 L23 L24 e8 e16

12 L L25 L26 L29 L30 L27 L28 e17

13 e0 e10 L21 e12 e9 e11 e15

14 e4 e2 e7 e6 L20 L19 e13

15 e1 e3 L24 e8 L22 L23 e16

16 L25 L27 L31 L26 e5 L29 L30 e17

17 e0 e11 e12 L28 e10 e9 e15

18 L32 e4 e2 L19 e6 L20 e7 e13

19 e1 e3 L22 L23 L24 e8 e16

20 L25 L26 e5 L29 L30 e17

Se
ss
io
n
s

Planned exercises

Table 1: Therapy plan with few exercises in the database.
An “e” or “L” with a number represents an exercise stored
in the database (initial or learnt, respectively). A single “L”
represents the learning and execution of a new exercise.

of the plans. The capacity to learn new exercises gives to
the sessions some locality properties that can be exploited to
avoid time-consuming backtracking among sessions.

Empirical Evaluation
We used the CBP automated planner (Fuentetaja, Borrajo,
and López 2010) because it was specially designed to work
with action costs, so its heuristics reduce the total number of
new learned actions. In Table 1 there is an example of a ther-
apy with 20 sessions. The database starts with a controlled
set of exercises: 5 warm-up, 8 training and 5 cool-down ex-
ercises.

In session 1, the planner only uses exercises from the
database because they are useful to reach the TOCL thresh-
olds. In sessions 2 and 3, it needs to learn due to variability
constraints. In session 4, almost all the exercises has been
used in the last three sessions, so it has to continue learning
new ones. In session 5, the planner can use the set of exer-
cises of session 1 again, but it varies the order of the training
phase because the exercises cannot appear in the same posi-
tion as the last time. In the following sessions, the learnt ex-
ercises are reused because they continue being useful to ful-
fill the goals, so more learning actions are not needed. Note
that the planned sessions are very different among them.

The new learnings in session 5 and 12 show that learn-
ing actions are not completely prohibited, so it is not needed
to explore all the combinations in the database before using
a learning action. Also, we only use the first plan returned
by CBP. This planner can improve the plans iteratively if it
has time, but the first plan returned is good enough to see
how the system works. With this configuration, the planning

time usually does not take more than five minutes. In the ini-
tial experimentation, we observed that the principal aspects
that increase planning time are the number of learned actions
needed and the TOCL thresholds.

HTN Planning
The automatic generation of therapies is a problem that can
also be managed in a hierarchical way, where the top of
the pyramid contains a task representing the whole therapy,
which is divided into sessions and each session comprises a
set of exercises, as shown in Figure 2. The session structure
is given by the hierarchical and order relationships repre-
sented in the HTN decomposition. This approach aims to
provide an easily extendible and configurable model, where
human expert knowledge can be included at any time.

  

  

    

generate-therapy 

generate-session new 
therapy 

new 
session 

finish 
therapy 

  finish 
session generate-exercises 

fill-warmup-exercises fill-training-exercises fill-cooldown-exercises 

  add 
exercise 

learn 
exercise 

    add 
exercise 

learn 
exercise     add 

exercise 
learn

exercise 

Figure 2: Hierarchical Task Network model schema.

Planning Problem
Goals As shown in Figure 2, the goal of the Hierarchical
Task Network is the root level of the tree (generate-therapy).
This general task comprises three arguments: number of ses-
sions to plan, duration interval for each session and patient
identifier. This task can be refined using the HTN decompo-
sition methods until a set of primitive actions completes the
plan, which should reach the TOCLs. These TOCLs are also
modelled as numeric predicates in the problem description.
Furthermore, with the aim to parametrize the search (time
and possible exercises in a phase or session), a set of predi-
cates is also included.

Exercise Database The exercise database has been mod-
elled similarly to how it has been described for the classical
planning approach. The only difference is purely technical
due to the representation language of the HTN planner used
for evaluation, described later.

Planning Domain
The HTN planning domain is organized as shown in Fig-
ure 2, where a set of exercises is generated for a number
of sessions. This behaviour is modelled as a recursive task
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(generate-session) which receives the current session num-
ber and the total number of sessions as parameters. This cur-
rent session number (?csn) is used as identifier by the plan-
ning domain and increased to generate new sessions.
(:method (generate-session ?csn ?tsn)
;main
((call <= ?csn ?tsn))

((!new-session ?csn ?tsn)
(generate-exercises ?csn)
(generate-session (call + ?csn 1) ?tsn))

;stop
((call > ?csn ?tsn))

nil
)

Each session is divided into three phases modelled as
lower-level tasks: warm-up phase, training phase and cool-
down phase. The system must distinguish which exercises
are appropriate for each phase depending on its features, and
decides if learning a new exercise is required during plan-
ning time.

Axioms Axioms allow to infer new predicates from the
evaluation of a logical expression (abductive inference).
We have defined axioms to control the time intervals of
phases and to manage which exercises are more appropri-
ate for that phase according to the parameters specified in
the planning problem. For example, (cooldown-time) and
(cooldown-exercise) in Figure 3 are calls to axioms.

Each session begins and ends with less intense and dif-
ficult exercises and the middle of the session consists of
greater intensity and difficulty exercises. The expectation
for each session (comprising three phases) is that the values
of intensity and difficulty follow a Gaussian distribution, as
shown later in the empirical evaluation (see Figure 4). Us-
ing axioms throughout the planning domain simplifies the
modelling process of this requirement.

Tasks and Methods Methods are used to refine compound
tasks into lower-level tasks or primitive actions. These meth-
ods have a precondition that needs to be fulfilled in order to
be applied. In our model, we have used five tasks:

1. (generate-therapy) has a unique method with empty pre-
condition that uses a total-order decomposition to call the
lower-level task (generate-session).

2. (generate-session) is modelled as a recursive task that has
a method to call lower-level task (generate-exercises) and
a “nil” method that stops when the number of sessions
required is reached.

3. (generate-exercises) has a unique method with empty pre-
condition that calls a total-ordered sequence of lower-
level tasks (one for each phase).

4. (fill-phase-exercises) are modelled with three methods.
The first one checks a) that the current time is within
the phase time interval, b) that the exercise is suitable for
the phase and c) that the exercise selected has not been
already included in the ongoing generated session plan.
Figure 3 shows a high-level description of how the (fill-
cooldown-exercises) task has been modelled. The first
method uses a “sort-by” function that drives the planner
in the order in which the variable bindings will be evalu-
ated for the method precondition. This “sort-by” function
calculates an heuristic value (?ht), modelled as follows:

htex =

nobjectives∑
i=1

(
1

di
2 + 1

− extimes used

numsessions
) (1)

where di, for each therapeutic objective i, is the distance
(a minus operation) between the current cumulative level
(if the exercise would be included) to the desired TOCL
for the planned session. So, the function rewards exercises
whose contribution minimizes the distance to the frontier
solution. The last part of the equation penalizes the num-
ber of times an exercise has been previously used.
The second method is applied when all the possible exer-
cises have been already included in a session, so there is
no available exercises to add. In this case a new exercise
needs to be acquired (“learn” action) from the therapist.
Exercises will be added taking into account the heuris-
tic and recursive calls to (fill-cooldown-exercises) and it
will be carried out till the preconditions fails. In this last
case, the third method precondition is evaluated (TOCL
reached within the maximum session time specified); if it
is fulfilled, the plan is valid. Otherwise the planner will do
backtracking to check other exercise sets, until this condi-
tion is reached.

Primitive Actions We use dummy actions to delimit start
and end of sessions and therapy (see Figure 2). The action to
add an exercise updates the current session time (adding the
exercise duration) and the current cumulative level for the
therapeutic objectives in that session. It also updates the sta-
tus of the exercise to “used” and the counter of times used.
At the time of writing this paper, the “learn” action estab-
lishes fixed values for the exercise attributes. Improving this
behaviour is subject of future work.

;; Receives the session number 

(:method (fill-cooldown-exercises ?csn) 

(:sort-by ?ht > 

((e-target1 ?e ?et1)  

(current-acc t1 ?csn ?ct1a)

(baseline t1 ?t1bl) 

 ...  

(assign ?d1 (call - ?t1bl (call + ?et1 ?ct1a))) 

  ... 

 (assign ?h1 (call / 1 (call + (call * ?d1 ?d1) 1))) 

  ... 

 (e-used ?e ?n-used) (t-session-number ?tsn) 

(assign ?ht (call - (call + ?h1 ... ?h5) (call / ?n-used ?tsn))) 

 ... 

(cooldown-time ?cst ?minST ?maxST)  

(cooldown-exercise ?e ?minST ?maxST)

(not (used ?e ?csn)))) 

((!add-ex ?e cool-down) 

(fill-cooldown-exercises ?csn)) 

 

 (forall (?e) ((exercise ?e)) (used ?e ?csn)) 

 ((!learn)) 
 

((current-session-time ?csn ?cst) 

 (session-max-time ?csn ?maxST)  

 (call <= ?cst ?maxST) 

 (current-acc t1 ?csn ?ct1a) (TOCL t1 ?t1bl) (call >= ?ct1a ?t1bl) 

  ... 

((!finish-session ?csn))) 

Precondition 1 

Actions and task calls 

Precondition 3 

Actions and task calls 

2

M
et

ho
d 

1 
M

et
ho

d 
3 

Task definition 

M
et

ho
d 

2 

Actions and task calls 

Precondition 2 

Figure 3: JSHOP2 code for the task to include a set of exer-
cises in the cool-down phase of a session.
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Planning Strategy
Our hypothesis states that a well modelled hierarchical rep-
resentation of the domain knowledge, along with parameters
to drive the search appropriately, could generate successful
solutions with a improved quality. In other words, we look
for a parametrized design to provide a flexible configura-
tion to the physicians. Moreover, in order to reflect the med-
ical criteria in the resulting plan, the heuristic function is in
charge of the exercises selection. As explained before, this
function is also used to penalize the most repetitive exercises
reducing the heuristic value, but this does not avoid the oc-
currence of the same exercise throughout sessions. That is
why we consider the variability as soft constraint.

The HTN approach can search towards reaching general
therapeutic objectives that imply interactions among ses-
sions. These interactions can occur due to a) the exercise
distribution of previous ongoing planned sessions that could
affect to future ones, b) the TOCLs of subsequent sessions
can be updated by the plan of earlier sessions and c) chas-
ing possible distributions (eg. time, intensity, TOCLs) for
the whole therapy predefined by physicians. This is the mo-
tivation to propose a recursive model in order to generate
multiple sessions. The HTN approach preserves the capabil-
ity of backtracking through past sessions without mediation
of an external program.

Empirical Evaluation
We have used the SHOP2 HTN language (Nau et al. 2003)
for modelling the planning domain and JSHOP23 to test the
plan generation. The SHOP2 language is provided with a
great expressiveness that allows axiomatic inference, sym-
bolic and numerical computation, call to external programs
and use of conditional quantifiers, to name some features.

In order to evaluate the behaviour of the hierarchical do-
main, a set of 72 exercises are included in the planning prob-
lem. This experiment has been carried out with the follow-
ing configuration: 30 sessions to generate, 25-30 minutes per
session, 20% of the total session time is assigned to each
warm-up and cool-down phases and the remainder 60% is
for training phase. The established intervals to consider an
exercise as a candidate for each phase are: warm-up intensity
[0-30], warm-up difficulty [0-20], training intensity [30-50],
training difficulty [30-50], cool-down intensity [0-20] and
cool-down difficulty [0-30]. It is assumed that an exercise
could be considered as warm-up and cool-down according to
their values. The effects of the exercise distribution is shown
in Figure 4, where an approximate Gaussian distribution of
the intensity and difficulty within the phases is achieved.

Discussion and Conclusions
To conclude this manuscript we have created a qualitative
comparison of the two approaches that highlight the main
topics addressed. Table 2 represents a summary of this com-
parison. Some further take-home messages are described
next. Firstly, this work provides an original model based on
numeric values of a new kind of problem which is useful

3It uses a planning compilation technique to synthesize domain-
dependent planners from SHOP2 domain descriptions.
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Figure 4: Represents the average values of the intensity
and difficulty for 30 generated sessions. Along the differ-
ent phases (warm-up, training and cool-down), the achieved
progress is represented by these Gaussian distributions.

to compare capabilities and behaviour among different au-
tomated planners. Secondly, we think that more flexibility
for the user seems to be available in the HTN model, where
more complex expert knowledge could be represented eas-
ily, however costs and preferences used in classical planning
are very suitable for this problem. Third, with regard to how
to achieve variability while trying to fulfil our requirements,
we noted that the sort-by function used in JSHOP2 needs to
arrange and order many bindings before the task decomposi-
tion is applied, which may affect its performance. This could
possibly be improved by modelling the heuristic function
using a java comparator function, as offered by JSHOP2.
Fourth, the divide and conquer strategy used in the classi-
cal approach eliminates the backtracking to previous ses-
sions to improve the planning time. On the other hand, the
HTN model can generate plans using backtracking among
sessions to solve their interactions. Finally, CBP does not
use heuristics for fluents, which could be very helpful for
this domain to reduce the planning time. OPTIC (Benton,
Coles, and Coles 2012) provides this kind of heuristics, so
it could be a future option to explore. With regard to tem-
poral constraints, if more complex ones would be needed,
the temporal representation provided by PDDL2.1 could be
handled through planners like OPTIC (Benton, Coles, and
Coles 2012) or the HTN planner SIADEX (Castillo et al.
2006). In the case of HTN, it would be interesting to explore
new preference-based planning approaches.

To sum up, we have presented two ways to reach plans
driven by general therapeutic objectives modelled numeri-
cally. We plan to do a better quantitative comparison in terms
of performance, addressing the issues previously discussed.
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Constraints, Requirements Classical Planning HTN Planning
Assuring Variability

• Avoids repeating exercises in the same session.
• Avoids repeating an exercise in the last three sessions.
• In the training phase, an exercise cannot be planned in the same

position than in the last occurrence.

• Avoids repeating exercises in the same session.
• Heuristic sort-by function penalized for exercises that occur re-

peatedly.

Phase Selection PDDL predicate relating each exercise to its corresponding phase. Axioms limiting the exercise selection whose minimum and maxi-
mum duration, intensity and difficulty can be defined by physicians
for each phase.

Phase Time Intervals It is parametrized through the minimum and maximum duration for
each phase, which is assigned by the medical expert.

Time is parametrized through axioms according to accumulated
percentage of total time for each phase (eg. 0.2, 0.7, 1.0).

Learning new exercise Suggests which attribute values should have a new learnt exercise,
preferring exercises which can improve the session variability.

It does not suggest the minimum values yet, but it is already mod-
elled as a new HTN method that can add new exercises during plan-
ning time.

Achieving Goals
• The automated planner has to achieve the TOCL thresholds

which are the goals established in the planning problem, while
observing all the constraints set by the physician.

• Minimizes the total cost of the plan, where learning a new exer-
cise has more cost than use one from the database.

• Total-order hierarchical network expressing the three phases.
TOCLs and expected session time should be reached, otherwise
backtracking occurs to find a suitable exercise set.

• Driving exercise selection through a sort-by function (see de-
scription above).

Planning Multiple Sessions Divide and conquer strategy which calls the planner one time per
session, improving planification time without affecting the quality
of the plan thanks to the learning actions.

HTN Planning is done as usual in one run, doing backtracking when
exercise sets dont reach expected goals.

Table 2: Qualitative comparison of Classical and HTN approaches for the presented problem.
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