
XV WORKSHOP OF PHYSICAL AGENTS, JUNE 2014, LEÓN (SPAIN) 1

A General-Purpose Architecture to
Control Mobile Robots

Luis J. Manso1, Luis V. Calderita1, Pablo Bustos1, Javier Garcı́a2, Moisés
Martı́nez2, Fernando Fernández2, Adrián Romero-Garcés3, and Antonio Bandera3

Abstract—Complex robotic tasks require the
coordination of a considerable amount of skills.
This is generally achieved generating and ex-
ecuting action plans that fulfill the precon-
ditions of the given objective. These tasks
can be highly dynamic, since the appearance
of new objects or unexpected situations is a
constant during the plan execution. In this
context, robot control systems require the ca-
pability of managing a suitable world model
(creating, removing or retyping dynamically
objects as a result of the plan execution), and
the capability of monitoring and replanning
when unexpected situations are detected. In
this paper we introduce a general-purpose
architecture for autonomous mobile robots
providing these features. The architecture al-
lows to generate planning applications since
it integrates planning, re-planning, monitoring
and learning capabilities, and, at the same
time, manages a consistent graph-like world
model. Finally, we present some preliminary
results of the deployment of such architecture
in an advertisement promoting robot domain.

Index Terms—cognitive architectures, au-
tonomous robots, planning

I. INTRODUCTION

Generally, the process of developing fully-
functional robot control architectures re-
quires expertise on techniques from several

1Luis J. Manso , Luis Calderita, and P. Bus-
tos are with Computer and Communication Tech-
nology Department, Universidad de Extremadura, Av.
de la Universidad sn, 10071, Cáceres, Extremadura.
lmanso@unex.es

2J. Garcı́a, Moisés Martńez and Fernando Fernández
are with Computer Science Department, Universidad
Carlos III de Madrid, Av. de la Universidad 30, 28911,
Leganés, Madrid, Spain.

3Adrián Romero-Garcés and Antonio Bandera are
with Electronic Technology Department, Universidad de
Málaga, Av. Cervantes 2, 29071, Málaga, Spain.

fields (e.g., planning, controllers, learning),
and the careful definition of the software
architecture. However, in most of such ap-
plications, specifically tailored software had
to be developed for the domain at hand,
which usually lacks generality and reuse
possibilities. Having a domain-independent
architecture would reduce the requirement
of expert knowledge and –derived from the
code reuse– programming errors and the
overall implementation time. However, the
implementation of a general-purpose archi-
tecture is not trivial. It must provide the nec-
essary technologies to support the require-
ments needed by all the robotic domains
that such implementation is going to be used
with.

One of the most relevant requirements of
these architectures is the ability to provide
a world model structure valid for multiple
robotic domains. Such structure must sup-
port metric and symbolic properties and the
ability to be used for planning, monitor-
ing and learning purposes. It should also
be dynamic, in the sense that the world
model should support including, removing
and modifying the elements in it. Other
relevant requirement is to provide a long-
term deliberative reasoning module based
on Automated Planning [1], [2]. Automated
planning is a problem-solving task that con-
sists of obtaining a plan (set of instanti-
ated actions), given a domain model (set of
actions) and a problem (initial state and a
set of goals). The plan execution transforms
the initial state into a state where all goals
are achieved. Such deliberative reasoning is
being increasingly used in robotic systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30316976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 XV WORKSHOP OF PHYSICAL AGENTS, JUNE 2014, LEÓN (SPAIN)

because it employs some form of forward
projection (reasoning in depth about goals,
preconditions, resources, and timing con-
straints) and provide reasonable responses in
situations unforeseen by the designer [3], [4].
Building a reactive system can be a complex
and time-consuming endeavor because of the
need to pre-code all of the behaviors of
the system for all foreseeable circumstances.
However, deliberative reasoning often fail to
guarantee a timely response in uncertainty
or unexpected situations. Thus, a final re-
quirement of the architecture is the ability to
monitor the correct plan execution, resolving
unexpected situations by re-planning, and to
learn planning knowledge from the experi-
ence to reduce the response time in future
unexpected situations. In this way, the archi-
tecture combines the deliberative reasoning
and a more reactive one (learned from the de-
liberative) by exploiting the benefits of both
kinds of methods: reasonable responses in
unexpected situations and timely responses.
In this paper we describe a general-purpose
architecture to control robotic systems pro-
viding all these features.

There has been some previous work to
design generic architectures. Examples can
be found in space and robotics aplications
of platforms as MAPGEN [5], PRS [6], or
APSI [7]. However these architectures has
been developed for specific problems and
techniques as time-line based planning, hi-
erarchical planning, or reactive controllers.

The remainder of the paper is organized
as follows. Section II presents a detailed
description of the proposed architecture. Sec-
tion III presents the learning technique to
learn plan-based policies. Section IV de-
scribes the general control flow of the ar-
chitecture. Lastly, Section V provides some
preliminary results in the deployment of the
architecture in a mobile robot, and Sec-
tion VI presents the conclusions and further
research.

II. THE ARCHITECTURE

The architecture is depicted in Figure 1
and it is composed of three main elements:
a) a high level module for planning, moni-
toring, and learning (composed by the mod-
ules within the red rectangle labeled as PE-
LEA), b) an executive in charge of redi-
recting the plans from the planning module
to the corresponding low-level modules and
managing the representation of the world
(composed by the elements within the blue
rectangle labeled as Executive), and c) a set
of domain-dependent modules which are in
charge of performing the necessary physical
and perceptual actions (the green rectangle
labeled as Domain-dependent modules). The
behavior of the domain-dependent modules
(the ones that actually make the robot move
and perceive its environment) is defined by
the plan provided by the planner and the
current world model, which is shared and
cooperatively built by all the modules.

For planning, the robot uses PELEA
(Planning and LEarning Architecture [8]),
whose monitoring capabilities allows the
system to decide if re-planning is necessary.
The executive is in charge of retrieving the
optimal action from PELEA, redirecting the
actions to the low-level modules, and veri-
fying that the representation of the world is
consistent.

To enable representing symbolic and met-
ric properties simultaneously the architecture
works with a hybrid model, implemented as
a graph of symbols which can be attributed
with metric properties (see Figure 2). In the
robot, these symbols represent the different
elements that the robot needs to work with
(i.e., the different locations, the humans de-
tected and their classification information,
the panel, the robot, and its battery). The
edges represent relationships between the
symbols in the model. These edges are la-
beled depending on the nature of the re-
lationship. Finally, depending on the type
of each symbol, they are attributed with
metric properties (e.g., locations have x y z

MANSO ET AL.: A GENERAL-PURPOSE ARCHITECTURE TO CONTROL MOBILE ROBOTS 3

Fig. 1. Diagram of the software architecture proposed.

coordinates, the battery of the robot has a
charge level). One of the advantages of this
kind of hybrid representation is that it can
be automatically converted to PDDL (stan-
dard representation language for planning
domains [9]) by ignoring the metric prop-
erties, translating symbols to PDDL objects
and links to PDDL predicates. If a metric
property must be taken into account in the
planning domain it can be translated to a
symbol (of changing type depending on the
value of the property) or to a predicate (in
this case the value would be encoded in the
label of the edge). More information regard-
ing this kind of models and their advantages
can be found in [10].

As a whole, the architecture works as an
event-driven loop in which:

1) the executive asks PELEA for the op-
timal action (given the current world
model and goal) and activates the
domain-dependent modules according
to the action

2) at some point a domain-dependent
module executes an action or detects
an unexpected event, and notifies the
executive by proposing a change in
the world model (including informa-
tion about the event)

3) the executive verifies the change and, if
valid, broadcasts the new world model
to the rest of the modules (re-starting
the loop).

Fig. 2. Graphical representation of the initial model
that the robot is given when started. It contains a symbol
for the robot, its battery, its status, and four symbol
pairs, one for each reference location (each symbol pair
represents the location itself and an additional symbol
used to specify the specific type of the location). When
a human is detected the model is extended by including
new symbols.

A. Planning, monitoring and learning

This section describes the planning, mon-
itoring and learning system: PELEA 1. It
integrates planning, execution, monitoring,
re-planning, and learning. As shown in Fig-
ure 1, PELEA is composed of four sub-
modules that exchange a set of items during
the execution steps. The main items that we
have used are: state, abstracted high-level
state (i.e., current world information); tuples
meta-state,action, learning examples to be

1The PELEA architecture described here is an in-
stantiation of the original version [8], where only some
modules are used.

4 XV WORKSHOP OF PHYSICAL AGENTS, JUNE 2014, LEÓN (SPAIN)

used by the learning component to acquire
knowledge for future planning episodes; do-
main, definition of the model for high-level
planning; problem, composed of the initial
state and a set of goals to achieve; plan,
a set of ordered actions resulting from the
high-level planning process; action, a single
piece of the plan. Now, each module of the
architecture will be described.

1) Monitoring Module: The Monitoring
module is the main module of PELEA. This
is responsible for checking (monitoring) the
plan progress during its execution. It is in
charge of interacting with the Execution
module by receiving a problem, a domain,
and a state returning the next high level
action to be executed. To do this, it uses the
Decision Support module for a high level
plan. Additionally, it is also in charge of
receiving the current world information from
the Execution module. When the Monitor-
ing module receives the new world state,
it will check the expected state against this
perceived world state, state. If some of the
monitored information do not fall within the
expected range, the Monitoring will have to
start another planning episode to compose a
new plan according to new state perceived.

2) Execution Module: The Execution
module is in charge of the interaction be-
tween PELEA and the environment. The
environment can be either a software simula-
tor (MDPSim), a hardware device (robot), a
software application, or a user. In this work,
the Execution module handles all the com-
munication with the Executive by an IDSL
Interface [11]. Particularly, it is responsible
for initiating the work of PELEA by receiv-
ing a particular domain and problem to be
solved and send the high-level actions to the
Executive.

3) Decision Support Module: This mod-
ule is in charge of receiving the domain and
problem from the Monitoring module and
returning a plan by the invocation of a high-
level planner. Additionally, when the Moni-
toring informs about a discrepancy between
the observed state and the expected planning

state, the Decision Support also will invoke
the high-level planner to update the plan to
the new state. This module can be configured
to use two different planners. First one is
used for planning originally when there is
no plan generated. Second one is used for re-
planning. In this work, Fast-Downward [12]
has been selected as planner and re-planner.

4) Learning module: It infers knowledge
from the experience gathered by the high-
level planner during the plan execution. The
knowledge can be used either to update the
domain planning model, to improve the plan-
ning process (for instance, learning heuris-
tics), or to reduce the action response time by
the learning of a plan-based policy as shown
below in this paper.

B. Executive

The executive is the central element of the
architecture but it is still simple and domain-
independent. It activates the different low-
level modules depending on the output of
the planner and verifies that the changes they
make to the current world model are valid.
The domain of the robot is described as a set
of graph rewriting rules equivalent to PDDL
actions (with the exception that these rules
can create and delete symbols). To enable
communication with the planning system,
the rules, the current world model and the
robot’s goal are transparently translated to
PDDL before providing them to the planning
system.

To ease the description and understanding
of the planning rules by users which are not
familiar with textual planning languages, the
planning rules of the architecture are graph
transformations which are specified graphi-
cally. Each rule is composed of two patterns,
the one on the left-hand side (LHS) and the
one on the right-hand side (RHS), and states
that the model of the robot can be modified
by substituting the LHS pattern with the one
on the RHS. Figure 3 provides an example
which describes that the robot can find new
objects and generate plans involving such

MANSO ET AL.: A GENERAL-PURPOSE ARCHITECTURE TO CONTROL MOBILE ROBOTS 5

action. When editing or visualizing a rule,
the graphical editor automatically highlights
in green those symbols that would be created
by the rules, in red those that would be
removed and, in gray, those symbols whose
type would be changed by the execution of
the rule.

Fig. 3. Example of a graph transformation rule used
to make the robot find new objects.

Besides asking PELEA for plans, the ex-
ecutive also verifies that the changes pro-
posed by the domain-dependent modules are
valid by posing the verification process as a
planning problem, where the initial world is
the current world and the goal is the new
model proposed. Modifications are consid-
ered valid if and only if the planner can find
a plan to get from the former to the later
world model. This verification is performed
as a planning process different of the main
planning process conducted by PELEA. The
objetive of PELEA is to provide a plan
to reach the specified robot’s goals (e.g.,
moving from a location A to a location B
avoiding obstacles), while the verification
planning process is used as a form of model
checking [13].

III. AUTOMATED PLAN-BASED POLICY
LEARNING

Since online planning and planning under
uncertainty are both unrealistic for large-
scale [14], we propose to follow an approach
based on CBR (Case Base Reasoning) tech-
niques to learn a plan-based policy, and, in
this way, reduce the response time of PELEA
when it faces unexpected situations. The
policy learned is a mapping from the tuple
< state, goal > to action, π : (S,G) → A.
In this way, the policy, π, can be seen as
an element that compiles a vast planning
experience, in such a way that the agents
can be used it to quickly make decisions.

Traditional approaches learn these policies
in a off-line way [15]: (i) sampling many
instances of the stochastic problem, each
instance being a challenging temporal and
metric planning problem; (ii) solving each
instance using a high-performing planner;
and (iii) applying a classifier to learn the
policy.

In this paper, we propose to learn such
policy in an on-line manner using a different
perspective with respect to the traditional
ones. We illustrate our approach through the
parent-child analogy, where a teacher takes
the role of the parent and the learner agent
takes the role of the child. At the beginning,
the child does not know much about the
world, hence, he/she needs to explore. While
learning, most of the situations are new
for him/her. In these unknown situations,
he/she prefers to take actions advised by the
parent. The child incorporates the parent’s
knowledge into his/her own knowledge about
the world. After a while, the child feels
comfortable about taking the actions learned
from the parent. The unknown situations are
become known situations. Translating this
analogy into the PELEA architecture (Fig-
ure 1), the parent (teacher) corresponds to
the Decission Support module which invokes
the corresponding high-level planner, and the
Learning module corresponds to the child.

A. Learning the Plan-based Policy
The policy π : (S,G) → A is repre-

sented as a Case Base, B = {c1, c2, . . . , cη}.
Every case ci consists of a pair state-goal
mi = (si, gi) and with the associated action
ai. Thus, ci = {mi, ai}, where the first ele-
ment represents the case’s problem part and
corresponds to the meta-state mi = (si, gi),
and the final element, ai, depicts the case
solution (i.e., the action expected when the
agent is in the state si and wants to reach
the goals gi).

When the Monitoring module from PE-
LEA receives a new meta-state, mq , requests
the learning module for an action. The learn-
ing module retrieves the nearest neighbor of

6 XV WORKSHOP OF PHYSICAL AGENTS, JUNE 2014, LEÓN (SPAIN)

mq in B, according to a given similarity
metric and then returns the associated action.
Traditionally, case-based approaches use a
density threshold, θ, in order to determine
when a new case should be added to the
memory. When the distance of the nearest
neighbor to mq is greater than θ, a new
case is added. In this sense, the parameter θ
defines the size of the classification region
for each case in B. If a new meta-state
mq is within the classification region of a
case ci, it is considered to be a known
state. However, if it receives a meta-state
mq where the distance to any state in B
is larger than θ, no case is retrieved. Con-
sequently, the action to be performed from
that state is unknown. In these cases, an
action is required to the high-level planner
(the teacher), and a new case is added to the
case base B. In such a way, starting with
an empty case-base, the learning algorithm
continuously increases its competence by
storing new experiences. Hence, the cases in
B describe the plan-base policy, π, of the
agent.

The online plan-based policy learning ap-
proach described here is similar in spirit to
Case-based planning approaches (CBP) [16],
[17]. In CBP, previously generated plans are
stored as cases in memory and can be reused
to solve similar planning problems in the
future. However, the storing of full plans has
two main drawbacks: a) the storing of long
plans or plan created in complex dynamic
environments can lead to increase memory
consumption and response times [18], and b)
in dynamic environments, with a high level
of re-planning situations, the plan stored is
rarely fully executed, only the first actions
before a new unexpected situation happens.

B. An ad-hoc similarity metric for planning

To compute the distance between two
meta-states, m1 and m2, let us assume
that there are n predicates in m1, m1 =
{p11, , . . . , p1n}, and m predicates in m2,
m2 = {p21, . . . , p2m}. For each predicate

p ∈ m1 and p /∈ m2 and viceversa,
the distance between the two meta-states,
d(m1,m2) is increased by 1. For each pred-
icate, p ∈ m1 and p ∈ m2, we com-
pute the distance between the set of literals,
P (m1), of predicate p ∈ m1, and the set
of literals, P (m2), of predicate p ∈ m2 as
d(m1,m2) +=

∑K
k=1 minp∈P (m2) d(p

1
k, p),

where K is |P (m1)|, and p1k returns the
literal kth from the set P (m1). Basically,
this equation computes for each literal p1k,
the minimal distance to every literals in
P (m2). Finally, the distance between two
literals of the same predicate is computed
comparing the arguments as d(p1l , p

2
h) =

1
J

∑J
j=1 δ(argj p

1
l , argj p

2
h), where J is the

number of arguments, argj p
1
l returns the jth

argument of literal p1l , argj p
2
h returns the

jth argument of literal p2h, and δ returns 0 if
both values are the same, and 1 if they are
different.

IV. GENERAL CONTROL FLOW

The general control flow of the architec-
ture is as follows:

1) Initially, the Executive composes the
domain and the problem translating
the starting world model and goals to
PDDL. The Executive sends to PELEA
the PDDL definitions of the domain
and the initial problem.

2) The Execution module of PELEA re-
ceives the high-level domain and prob-
lem, This is composed of an initial
state, a set of goals to achieve and a
set of objects. The Execution sends the
domain and problem to the Monitoring
module.

3) Then, the loop is started:
a) Monitoring checks whether it

has achieved the goals. If so,
it finishes. If not, it sends a
request to the Learning Mod-
ule with the state and the goals
to be reached, mq = (sq, gq).
The Learning Module retrieves
from the base case B the case

MANSO ET AL.: A GENERAL-PURPOSE ARCHITECTURE TO CONTROL MOBILE ROBOTS 7

ci = {mi = (si, gi), ai} with
mini d(mq,mi):

i) If mini d(mq,mi) ≤ θ, the
Monitoring sends to the Ex-
ecutive the action ai.

ii) If mini d(mq,mi) > θ, the
Monitoring checks if exist an
on-going plan:

• If so, and the plan can be
continued, the Monitoring
sends the next action, a, of
the plan to the Execution.
If not, the Monitoring calls
to Decision Support mod-
ule for re-planning. Then,
Monitoring sends the first
action, a, of the new plan
to the Execution module.

• If not, the Monitoring calls
to Decision Support for
planning and sends the first
action, a, of the plan gener-
ated to the Execution mod-
ule.

• In any case, the Monitoring
sends to the Learning Mod-
ule the case c = {mq =
(sq, gq), a} which is added
to the case base, B, for
future planning episodes.

b) The Execution module sends to
the Executive the action received
from the Monitoring.

c) The Executive sends the action
to the corresponding domain-
dependent module.

d) The Executive waits until the ex-
ecution of the action has finished.
Then, the Executive verifies the
change model proposals and, if
valid, it updates the world model.

e) The Executive sends to PELEA
a new PDDL problem composed
of the current world state, and a
set of goals to achieve.

f) The Execution module of PELEA
receives the problem and sends

it to the Monitoring module and
return to a).

V. EXPERIMENTAL RESULTS

The architecture has been tested using a
promoting advertisement robot domain. In
such domain, a robot is able to anticipate the
person’s trajectory in a public environment,
and to provide product or service informa-
tion [19], [20], [21]. Next, we describe in de-
tail the domain, the graph grammar and some
of the graph-rewriting rules used. Later, we
provide experiments in the deployment of the
architecture using a real Nomad robot, and
finally, we test the learning capabilities of
PELEA using a simulator.

A. Domain description

In this domain the robot is located in
a specific location of a public environment
(e.g., shopping center, terminal airport) wait-
ing to detect a human (we refer to such
location as the start area). The objective of
the robot is to offer passers-by to approach
and interact with an advertising panel where
products are promoted. Since there are dif-
ferent products, targeted for a wide variety of
potential clients, the robot can select any per-
son as potential customer. When it chooses
a target, it moves from the start area to
intersect the person’s trajectory in order to
engage interaction. This movement is short
(3 meters maximum) and should allow the
robot wait for the persons in a static pose,
facing them and avoiding getting very close
(1.5 meters minimum). At this point, the
robot can say hello to the targets and avoid
to scare them even if they are not very used
to interact with an autonomous robot.

Once the interaction with the targets is
engaged, the robot classifies them into a
group (based on gender and age parameters)
and will choose a product topic to offer.
Product topics provide the robot a general
theme to speak with people and to invite
them to the panel area. While the robot tries
to convince passers-by to approach the panel

8 XV WORKSHOP OF PHYSICAL AGENTS, JUNE 2014, LEÓN (SPAIN)

the robot is always ready to say goodbye if
they show intention of leaving the conversa-
tion or if the presented product topic does
not seem to interest the selected person. On
the other hand, the robot must also check its
battery level to say goodbye and move to the
charging area if its level is under a minimum
value. The charging area is also close to the
panel.

If the person agrees on going with the
robot to the Panel area, the robot moves to
the panel area, and there, it says goodbye.
Then, it returns to the starting area and
waits until the panel is unattended to start
the whole process once again. As previously,
if the battery level is under a safe value,
the robot moves to the charging area to
recharge.

B. The graph grammar and graph-rewriting
rules

In addition to the first rule example, shown
in Fig. 3, this section provides two rules
used to demonstrate can rules be graphically
described. The first rule, shown in Fig. 4,
states that the robot can charge itself. The op-
erations made by the rules are highlighted by
the colors: in this case, the link between the
robot and its battery, labeled as ”discharged”
is changed to ”charged”. While the rest of
the model is left unchanged, the left-hand
side of the rule also specifies other elements
that must be found in the model in order to
be able to execute the rule: the robot must
be located in a position classified as a dock
station. No symbols are created, deleted or
modified by this rule, only edges.

The second rule, shown in Fig. 5, states
that the robot can forget a person. In this
case, there must be a detected person related
to two additional symbols (of type product-
Info and personInfo) which are deleted when
the rule is executed. The symbol of the robot
remains unchanged.

The previous rules are applied to the world
model whenever a domain-dependent mod-
ule requests a change model proposal, and

this one is a valid change. The Executive
sends the updated world model to PELEA
which return the following action according
to the current world situation.

C. Nomad experiments
The software architecture was

implemented using the RoboComp
framework [22] and has been tested
on a Nomad 200 mobile robot from
Nomadic [23]. Additionally, we have set
a Windows Kinect on the top of the
turret which supports movement, voice,
and gesture recognition. PELEA uses
Fastdownward [12] as the high-level planner
for plan and replan when necessary. In
this domain, we use three main domain-
dependent modules: navigation, used to
implement navigation actions; person, in
charge of detecting, tracking and modeling
the humans the robot interacts with;
and conversational, used to understand
and generate speech according to the
interaction context. These domain-dependent
modules are also developed as RoboComp
components [22].

Figure 6 shows highlights of a video se-
quence in which the Nomad is performing
the use case described in Section V-A. The
first frame shows the Nomad robot in the
start position, the potential consumer in front
of the robot, and the panel. In this point,
PELEA generates a plan and the robot exe-
cutes the first two high-level actions: search-
Person and detectPerson. Once the potential
consumer is correctly detected, the robot
moves to the person. We can see this in the
second frame of Figure 6 by the execution
of the high-level action goToPerson. In the
third frame, the robot is at social distance,
and begins the interaction with the person.
The robot greets the person (sayHello), and
classifies it to establish the genre and an
age range (classifyPerson). According to this
classification, the robot chooses a product
(chooseProduct), offers this product and cap-
tures the person interest (capturePersonAt-
tention). In the last frame, the person is

MANSO ET AL.: A GENERAL-PURPOSE ARCHITECTURE TO CONTROL MOBILE ROBOTS 9

Fig. 4. Example rule used to charge the robot. It modifies the edge linking the robot and its battery from
”discharged” to ”charged”.

Fig. 5. Example rule used to forget a person. It removes the symbol of a person and two additional symbols
which are related to the person.

interested and the robot drive it to the panel
by the execution of the high-level action
goToPanel.

D. Learning experiments
Next we provide additional experiments

to validate the planning, re-planning and
learning capabilities of PELEA. In these
experiments, we have used the simulator
MDPSim [24] to simulate the execution of
plans (i.e., MDPSim replaces the Executive
and the domain-dependent modules from the
architecture in Figure 1). To simulate fail-
ures, we provide a probabilistic version of
the domain in PPDDL to MDPSim, where
actions can generate unexpected states with
different probabilities. For each action there
is a probability of 10 − 20% the robot runs
out of battery, and a probability of 10−20%
the robot looses the person. Furthermore,
there is a probability of 30% the person is
not interested in the product or service. Ad-
ditional probabilities have been introduced to
simulate unexpected states. The experiments
are conducted on an Intel Dual-Core PC with
2 GB RAM and 2.4 GHz clock speed. In
these first experiments, the learning module
is disabled (i.e., PELEA always invokes the
Decision Support to generate the initial plan

and for re-planning unexpected situations).
Figure 7 shows the response times of PELEA
for five different planning processes.

Fig. 7. Response times of PELEA for five different
planning processes.

For each planning process, the x-axis
shows ten consecutive action requests, and
for each action request, the y-axis shows the
time taken by PELEA to send the action
to MDPSim. For each planning process, the
first action request implies PELEA have to
re-plan (or generate the initial plan). For the
subsequents action requests there are two
possibilities. If MDPSim sends to PELEA a
valid state (Section General Control Flow),
PELEA sends to MDPSim the next action

10 XV WORKSHOP OF PHYSICAL AGENTS, JUNE 2014, LEÓN (SPAIN)

Fig. 6. Highlights of a video sequence with the Nomad and a potential consumer performing the basic use case.
The PDDL actions performed are depicted below each frame.

of the plan without re-planning (in these
cases, the mean response time is around 259
ms). Otherwise, PELEA replans and sends
to MDPSim the first action of the new plan
generated (the mean response time when re-
planning is around 828 ms).

Next we enable the learning module of
PELEA to validate the plan-based policy is
correctly learned, and to measure the im-
provement of the response time using this
policy in unexpected situations. Figure 8
shows five different planning processes and,
for each one, the response times of the
first fifteen action requests which require re-
planning. In these experiments the θ is fixed
to θ = 0. At the beginning of the planning
processes with an empty case-base B, the re-
planning is performed in most of the cases
by the Decision Support module. In these
cases, the mean response time of PELEA

is around 828 ms. As the learning process
continues, new cases are added to B and
the plan-based policy is learned. At around
the requests 8-10, practically all steps are
performed using the plan-based policy and
Decision Support is rarely used. In these
cases, the mean response time of PELEA is
around 325 ms.

Therefore, the response time of the plan-
based policy learned is slighly higher than
the response time of PELEA with the learn-
ing module disabled when no re-planning is
required (around 65 ms higher). However, as
shown in Figure 8, the response time when
re-planning is considerable reduced from 828
ms to around 325 ms.

VI. CONCLUSIONS

In this paper we have introduced a
general-purpose software architecture to con-

MANSO ET AL.: A GENERAL-PURPOSE ARCHITECTURE TO CONTROL MOBILE ROBOTS 11

Fig. 8. Response times of the plan-based policy
learned.

trol mobile robots. We successfully tested
it as a robot control system in a Nomad
robot using a promoting advertisement robot
domain. However, the proposed architecture
could be easily adapted to other robotic tasks
by changing the domain-dependent modules,
and the graph grammar. The graph grammar
and the graph-rewriting rules let us effi-
ciently represent dynamic environments, and
create and destroy new objects (capabilities
which are not present even in the newest
extensions of PDDL). Additional experi-
ments showed the planning, re-planning and
learning capabilities of PELEA. The experi-
ments with the learning capabilities disabled
demonstre that, when no re-planning is re-
quired, PELEA’s response times remain in a
proper range for a correct social interaction.
However, the response times increase when
PELEA re-plans, which can be a nuisance for
a person waiting for an answer. To mitigate
this problem, we have proposed learn a plan-
based policy from the experience gathered in
on-line executions of the high-level planner.
The experiments with the learning module
enabled demonstrate PELEA correctly learns
a plan-based policy in which response times
remain in a proper range for both expected
or unexpected situations. Learning the plan-
based policy in an on-line way provides two
main benefits over the off-line learning [15]:
a) the plan-based policy is built progressively
using the experience gathered in real execu-

tions, and b) avoids storing rare cases in the
case base which are not used later in real
executions. It is important to note that the
benefits of the learning capabilities of PE-
LEA shown in Section V-D result in a lower
response time of the global architecture, and
this lower response time is essential for a
more suitable social interaction between the
robot and the user.

As future work, we consider the deploy-
ment of the architecture in different robot
domains, and exhaustive testing processes in
both simulated and real environments.

ACKNOWLEDGMENT

This paper has been partially supported
by the Spanish Ministerio de Economı́a
y Competitividad TIN2012-TIN2012-38079
and FEDER funds, and by the Innterconecta
Programme 2011 project ITC-20111030
ADAPTA.

REFERENCES

[1] C. Elsaesser and M. G. Slack, “Integrating de-
liberative planning in a robot architecture,” in
NASA CONFERENCE PUBLICATION, pp. 782–
782, NASA, 1994.

[2] C. McGann, F. Py, K. Rajan, and A. Olaya, “In-
tegrated Planning and Execution for Robotic Ex-
ploration,” in Intnl. Workshop on Hybrid Control
of Autonomous Systems, in IJCAI09, (Pasadena,
California), 2009.

[3] R. A. Brooks, “Integrated systems based on be-
haviors,” Stanford University, vol. 2, pp. 46–50,
1991.

[4] J. Blythe and W. S. Reilly, “Integrating reactive
and deliberative planning in a household robot,”
in In Proceedings of the aaai Fall Symposium on
Instantiating Real-World Agents, pp. 6–13, 1993.

[5] M. Ai-Chang, J. L. Bresina, L. Charest, A. Chase,
and J. C. jung Hsu, “Mapgen: Mixed-initiative
planning and scheduling for the mars exploration
rover mission,” IEEE Intelligent Systems, vol. 19,
no. 1, pp. 8–12, 2004.

[6] M. P. Georgeff and A. L. Lansky, “Reactive rea-
soning and planning,” in Proceedings of the Sixth
National Conference on Artificial Intelligence -
Volume 2, AAAI’87, pp. 677–682, AAAI Press,
1987.

[7] A. Cesta, G. Cortellessa, S. Fratini, and A. Oddi,
“Developing an end-to-end planning application
from a timeline representation framework,” in
IAAI (K. Z. Haigh and N. Rychtyckyj, eds.),
AAAI, 2009.

12 XV WORKSHOP OF PHYSICAL AGENTS, JUNE 2014, LEÓN (SPAIN)

[8] E. Quintero, V. Alcázar, D. Borrajo, J. Fernández-
Olivares, F. Fernández, A. G. Olaya, C. Guzmán,
E. Onaindia, and D. Prior, “Autonomous mo-
bile robot control and learning with the pelea
architecture.,” in Automated Action Planning for
Autonomous Mobile Robots, 2011.

[9] M. Ghallab, A. Howe, C. Knoblock, D. Mc-
dermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins, “PDDL—The Planning Domain Def-
inition Language,” 1998.

[10] L. J. Manso, Perception as Stochastic Sampling
on Dynamic Graph Spaces. PhD thesis, Cáceres
Polytechnic School, University of Extremadura,
2013.

[11] A. Romero-Garcés, L. Manso, M. A. Gutierrez,
R. Cintas, and P. Bustos, “Improving the lifecy-
cle of robotics components using domain-specific
languages,” CoRR, 2013.

[12] M. Helmert, “The fast downward planning sys-
tem,” Journal of Artificial Intelligence Research,
vol. 26, pp. 191–246, 2006.

[13] PDDL Planning Problems And GROOVE Graph
Transformations: Combining Two Worlds With A
Translator, vol. 17, University of Twente, 2012.

[14] J. Garcia, J. E. Florez, A. Torralba, D. Borrajo,
C. Linares Lopez, A. Garcia-Olaya, and J. Saenz,
“Combining linear programming and automated
planning to solve intermodal transportation prob-
lems,” European Journal of Operational Research
(EJOR), vol. 227, pp. 216–226, 2013.

[15] M. Fox, D. Long, and D. Magazzeni, “Plan-based
policy-learning for autonomous feature tracking,”
in ICAPS (L. McCluskey, B. Williams, J. R. Silva,
and B. Bonet, eds.), AAAI, 2012.

[16] M. M. Veloso, H. Munoz-Avila, and R. Bergmann,
“General-purpose case-based planning: Methods
and systems,” AI Communications, vol. 9, no. 3,
pp. 128–137, 1996. Also in Kunstliche Intelligenz,
1:22-28, 1996, in German (with reversed order of
the authors).

[17] L. Spalzzi, “A survey on case-based planning,”
Artif. Intell. Rev., vol. 16, pp. 3–36, Sept. 2001.

[18] J. Schmitt, M. Roth, R. Kiefhaber, F. Kluge,

and T. Ungerer, “Concept of a reflex manager
to enhance the planner component of an au-
tonomic/organic system,” in Proceedings of the
8th International Conference on Autonomic and
Trusted Computing, ATC’11, (Berlin, Heidelberg),
pp. 19–30, Springer-Verlag, 2011.

[19] T. Kanda, D. F. Glas, M. Shiomi, H. Ishiguro, and
N. Hagita, “Who will be the customer?: A social
robot that anticipates people’s behavior from their
trajectories,” in Proceedings of the 10th Inter-
national Conference on Ubiquitous Computing,
UbiComp ’08, (New York, NY, USA), pp. 380–
389, ACM, 2008.

[20] T. Kanda, M. Shiomi, Z. Miyashita, H. Ishiguro,
and N. Hagita, “An affective guide robot in a shop-
ping mall,” in Proceedings of the 4th ACM/IEEE
International Conference on Human Robot Inter-
action, HRI ’09, (New York, NY, USA), pp. 173–
180, ACM, 2009.

[21] H.-M. Gross, H. Boehme, C. Schroeter,
S. Mueller, A. Koenig, E. Einhorn, C. Martin,
M. Merten, and A. Bley, “Toomas: Interactive
shopping guide robots in everyday use - final
implementation and experiences from long-term
field trials,” in Proceedings of the 2009 IEEE/RSJ
International Conference on Intelligent Robots
and Systems, IROS’09, (Piscataway, NJ, USA),
pp. 2005–2012, IEEE Press, 2009.

[22] L. J. Manso, P. Bachiller, P. Bustos, P. Núñez,
R. Cintas, and L. Calderita, “RoboComp: a Tool-
based Robotics Framework,” in Int. Conf. on
Simulation, Modeling and Programming for Au-
tonomous Robots (SIMPAR), pp. 251–262, 2010.

[23] A. Chopra, M. Obsniuk, and M. R. Jenkin, “The
nomad 200 and the nomad superscout: Reverse
engineered and resurrected,” 2013 International
Conference on Computer and Robot Vision, vol. 0,
p. 55, 2006.

[24] H. L. S. Younes, M. L. Littman, D. Weissman,
and J. Asmuth, “The first probabilistic track of
the international planning competition,” J. Artif.

Int. Res., vol. 24, pp. 851–887, Dec. 2005.

	Introduction
	The Architecture
	Planning, monitoring and learning
	Monitoring Module
	Execution Module
	Decision Support Module
	Learning module

	Executive

	Automated Plan-based Policy Learning
	Learning the Plan-based Policy
	An ad-hoc similarity metric for planning

	General Control Flow
	Experimental results
	Domain description
	The graph grammar and graph-rewriting rules
	Nomad experiments
	Learning experiments

	Conclusions
	References

