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Abstract

This work aims at the exposition of two different results we have obtained in
Functional Data Analysis. The first is a variable selection method in Func-
tional Regression which is an adaptation of the well known Lasso technique.
The second is a brand new Random Walk test for Functional Time Series.
Being the results afferent to different areas of Functional Data Analysis, as
well as of general Statistics, the introduction will be divided in three parts.
Firstly we expose the fundamentals of Functional Data Analysis. Then we
will recall some variable selection methods in ordinary Linear Regression.
Finally we will review some basics of Time Series analysis and briefly review
some existing Random Walk tests. These introductory sections will moti-
vate our research putting it in a general framework. Since Functional Data
Analysis can be seen as a data reduction method we will talk incidentally of
Big Data and we will provide some comments on the current definition of it.
All results of our research are supported by extensive computer simulations
and in general, all of FDA is based on extensive computer deployment so
some attention will be given to software and computation methods. The
Lasso has been used in Functional Regression before this work, our contri-
bution is twofold, we provide a reduction of Lasso in Functional Regression
from a functional optimization problem to a numerical one via algebraic
manipulations, no sampling is required. Then, we augment the Lasso with
a post hoc analysis method which helps deciding which regressors have to
be dropped, we called this augmented strategy The Shaked Lasso. About
testing if a Functional Autoregressive Process can be considered a Random
Walk, our proposed test, as far as we could establish, is the first one in
literature.
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Abstract in Spanish
En esta tesis se abordan dos problemas relacionados con el análisis de datos
funcionales. El primero consiste en selección de variables en un problema
de regresión con respuesta funcional adaptando la técnica conocida como
Lasso. El segundo problema pretende abrir una línea nueva de investigación
proponiendo un test para contrastar si una serie temporal funcional puede
ser considerada como un camino aleatorio.

Como los resultados que se muestran en esta tesis están relacionados con
áreas diferentes del análisis de datos funcionales y de la estadística en
general, la Introducción está dividida en tres partes. En primer lugar, se
exponen los fundamentos del análisis de datos funcionales. En la segunda
sección se revisan algunos métodos de selección de variables en regresión
lineal y por último, se recopilan brevemente las bases de series temporales
así como los contrastes de hipótesis que se han utilizado en la literatura
para contrastar caminos aleatorios. Estas secciones introductorias ayudan
a motivar las aportaciones de la tesis encuadrándolas en su entorno de inves-
tigación. Además, ya que el análisis de datos funcionales se puede ver como
un método de reducción de la dimensión de los datos, se incluirán algunos
comentarios sobre Big Data y sus definiciones.

Todos los resultados de nuestra investigación están soportados por un
extenso trabajo de simulación y, puesto que en los métodos estadísticos
aplicados a datos funcionales es esencial la parte de computación, se ha
prestado especial atención a todos los aspectos relacionados con el soft-
ware y la modelización. El procedimiento Lasso de selección de variables
se ha aplicado anteriormente en la literatura de regresión funcional pero no a
los modelos que se analizan en la tesis. Las contribuciones en este aspecto son
dos: por una parte se proporciona un método de selección de variables Lasso
para un problema de regresión con respuesta funcional convirtiendo un prob-
lema de optimización funcional a un problema de optimización numérica
vía manipulaciones algebraicas y sin necesidad de remuestreo. Después de
ejecutar el problema de optimización, como segunda contribución se pro-
pone un análisis de las soluciones para decidir los regresores que deben
ser eliminados. Este segundo análisis se ha denominado “The Shaked Lasso”
porque se basa en alterar un parámetro del proceso de optimización para
observar cómo se “mueven” las soluciones. Respecto al segundo capítulo
de contribuciones de la tesis, se propone un contraste de hipótesis para
testear si un proceso autoregresivo funcional se puede considerar como un
camino aleatorio. Hasta lo que nosotros conocemos en la literatura en este
campo, es el primer test de este tipo que se propone en la literatura.
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Chapter 1
Introduction

1.1 Functional data

What is Functional Data? Or citing [Cuevas, 2014] “Do really exist such
things as functional data”. This is not a frivolous question because all
of data, which are measurements of some kind, come in discrete form as
sequences of numbers. On the other side, Mathematics trained us to work
with objects whose empirical existence in quite questionable, consider com-
plex numbers, do they exist? Does π exist? In the end, to the scientist
it is irrelevant if these things empirically exist in strict sense, completely
mirroring their mathematical definition. The important thing is that they
work, in the sense that they provide a reasonable model, give insight or
extend our degree of understanding and dominance on the world of Nature.
To the mathematician, conditio sine qua non for the acceptance of a new
object, is that it should interact well with other mathematical structures,
so the question of existence is irrelevant, if I can define it and it does not
rise contradictions it exists. Then, even if Functional Data, as complex
numbers, they do not probably exist in a strict practical sense, the cen-
tral question is, what can we make with them? Are they useful?

The first motivation for Functional Data is that data we are dealing with are
often continuous in nature. Consider for example temperatures T at some
time ti in a certain location. It is apparent that T (t) is a continuous function,
at least for the range of variations we often consider of interest. Then, if we
model temperature with a continuous function, not only we are sticking to
the natural continuity of the observable, we are also simplifying the problem
because assuming continuity we know that T (ti) carries information about
all the T (tj) when tj is near enough to ti.

A second motivation for Functional Data is economy of thought and manip-
ulation. Consider again the case of temperatures, if you watch at them
minute by minute you will need to carry around thousands of values of
which only a few are really relevant. If you model them as a function, fit at
the desired level of precision, you will be able to move around an algebraic
formula which is usually a couple of lines long. Moreover, seeing your data
as formulas you can apply all the powerful tools of Calculus: differentiation,
integrals, differential equations, which have been the heart of science since
the time of Euler.
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A clarification is in order. When we talk about Functional Data, we often
imply the functions are continuous and possibly smooth enough. That is,
they are in the domain of Calculus operations. Indeed, each sequence of
(ti, T (ti)) defines a function1.1 but, if there is no reasonably compact repre-
sentation for those couples and perhaps also continuity is lost, then it is hard
to imagine how seeing the data set as a function could improve the situation.

There are other data sets which we can not suppose continuous tout court ,
think of stock prices, they can jump, continuity is not really granted, and
for sure differentiability is lost. Well, in this cases we know Functional Data
does not fit the true nature of data set but, if we can approximate the data
well enough with smooth functions, then we are still in business.

In this introduction we will illustrate briefly how to convert a data set into
a function and incidentally, we will review some of the difficulties arising
when working with modern large datasets. After that, we will review the
fundamentals of classic regression theory and time series analysis. Our aim
is to arrive at a compact description of the Lasso technique in multivariate
regression and Random Walk test in autoregressive processes of order one.

1.1.1 Modern data are often Big Data

The development of Functional Data Analysis has been prompted by the
large amount of data made available by modern automatic data collection
tools and the revolutionary simplification in information exchange due to the
Internet. Let’s make an example, suppose we are interested in temperatures
and, for example, we want to establish if temperatures are increasing with
time, the classic highly debated Global Warming issue. Faced with such a
problem, a scientist of the past would probably had to take measurements
by himself, look at some thermometers, write down results and collect them
for a considerable amount of time. Or, if more lucky, he should had to
dig into thick and dusty volumes in a library, as Sir Ronald Fisher did in
Rothamsted. A scientist of our days instead, can set up a cheap computer to
take measurements of temperature every second automatically, in different
parts of the World, and receive all the results in his office, for example by
email. Then, he may put this data in a public repository on the Web so that
other scientists could study them.

Figure 1.1 shows the very different kind of datasets the two scientists could
have worked on. Part [a] shows monthly data temperatures in Oxford1.2,
taken in 1853. Each data point was elaborated by a person, probably
someone used to manage data, and stored in a paper archive. Part [b] shows
hourly data temperature in Oakland1.3 (California) taken in 2013. Data

1.1. Supposing ti are all different.
1.2. Data available at http://www.metoffice.gov.uk/
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was written by a machine, and stored electronically in a way that a far
user could access it easily and instantaneously, as we did.

Figure 1.1. Data from the past and the present. Figure [a] shows monthly average
temperatures in Oxford (England) in 1853. Figure [b] shows hourly temperatures in
each day, for a year, in Oakland (California) in 2013.

Last figure speaks by itself, the amount of data we have in present days is
overwhelming. But it is not only that. Observing closely part [b] we can see
there is something wired. There are approximately 8760 hours in a year, so
how is it possible that there are about ten thousands observations in that
plot? The answer will come in next section.

1.1.2 Modern Big and Dirty Data

Even the simple name Big Data is subject of debate in these days, many
people is trying to open new business opportunities out of it and that does
not simplify the understanding of the real thing going on. According to
Chapter 20 of [Topi and Tucker, 2014] Big Data can be characterized by a
few items1.4.

1. [Big Data] It is too large to fit into ordinary [consumer] hardware
storage devices.

2. It is too large to be manipulated in reasonable time by generic data-
base software.

3. It is often generated automatically by machines.

4. It has not been designed to be friendly, nor to be used by a specific
purpose, often it has not been designed at all.

1.3. Data available at http://www.wunderground.com/
1.4. I make some modification to the original work phrasing.

1.1 Functional data 13



5. A large part of it can be near to worthless. Interesting parts need to
be dug out.

To be more direct, Big Data is not only about quantity, it is about quality.
This kind of data has not be taken for a specific closed purpose in mind,
and they are not filtered by the mind of a trained data professional. They
come from automatic machine loggers, video cameras, microphones, Web
logs, geo tagging and so on. Their format is the one in which the computer
programmers was more comfortable in.

Statistics is the science of drawing significant conclusions from data. Data is
supposed to be scarce, but of good quality. In Big Data the amount of infor-
mation is so large that there is no interest in considering confidence intervals
for whatever estimator but, the data can be tremendously biased. Let’s
consider an example, it is fashionable these days to do sentiment analysis
about some brand or product. Well, there are so many tweets around the
problem is not to establish if it is higher the proportion of satisfied or unsat-
isfied customers, that will be direct. The point is, who is talking about your
product? Are these tweet representative of the population humor? Or better
again, is the twitting people your target future customer? We see no way to
answer these question if not to perform a well designed survey with a few
but quality data and an attentive analysis. Massive data, is not better in
principle than small and quality data, the case of the “The Literary Digest ”
forecasting Landon v.s. Roosevelt election1.5 is paradigmatic in this sense.
Another case, very recent, is the Google failure at forecasting flu1.6.

Data in Fig.1.1[b] is in some sense an example of Big Data, not because of
size, it is only one Megabyte, but we had to dig it from the Web and parse
it, probably nobody has checked it till today and it does not correspond to
its online description strictly. All temperatures are usually taken at minute
53 of every hour. But, there are some days in which the computer logged
also at other minutes. We ignore the reason behind it but that is what we
have. In conclusion, this dataset is rich, but scarcely reliable.

Further, in this work the reader will see analyzed datasets that were never
studied in literature. Getting this data to work was not a negligible effort.
These are the main difficulties we encountered in analyzing real modern
datasets which can be present, in all or in part, in most of all Big Data
sources. These nuisances are probably familiar to everybody who has worked
with data but, if with a small dataset you can spot these problems by sight
and correct them immediately by hand, when the dataset is large, you can
not. You must instruct a computer to scan for problems and also, eventually,
to correct them. For this reason, Big Data analysis requires competence in

1.5. http://www.math.upenn.edu/~deturck/m170/wk4/lecture/case1.html
1.6. http://www.forbes.com/sites/stevensalzberg/2014/03/23/why-google-flu-is-a-
failure/
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Statistics and in Computer Science. Here follows a brief list of difficulties
related to the study of many large dataset.

• Non Systematic. In figure Fig.1.1.[b] we expected 8760 items but
we had more. Data was taken at minute 53 of every hour, but some-
times also in other minutes. This data is non systematic, in the “docu-
mentation” it is said to be hourly temperature but sometimes it is not.

• Non Tabular. We expect data to come as nice tables, in .csv format
or, in the industry mostly as Excel files or from a database. Well,
this is not always the case, if you are going to study something new
expect to fight to have it in a pretty tabular format. Data forOakland
temperatures for example was taken from many web pages, it had
to be cleaned from residual HTML code and properly joined. There
are also more extreme cases, a dataset about car accidents that will
be studied in detail in Chapter 2, we did not have any number to
crunch, only plots, on thousands of papers, documented in German
language, like the ones in the next picture.

Figure 1.2. Velocity and acceleration plots of a car after a low speed crash with
another vehicle.

We had to go back from the plot to a table of (x, y) coordinates, it
was a long lengthy job to complete.

• Inconsistent. When more then one person work to fill the same
dataset, if they are not precisely directed, there will be many incon-
sistencies. One for all, one employee will decide to encode empty data
as “NC”, another will write “unknown”, and other will leave a white
space.

• Duplicate. Data often comes with double entries. Data about Oak-
land temperatures contained only one double entry. Dataset about
Bitcoins and stock prices, to be seen in Chapter 3, contained hun-
dreds of double lines. If dataset was compiled by hands in general,
expect doubles and if by a poorly programmed machine, expect thou-
sands.

1.1 Functional data 15



• Typos. People make mistakes. Sometimes instead of 1000.34 you
will find 10034 or 100; 43. Instead of blue you will find bleu. Many
times this mistakes will break your analysis path, you will find them
and correct them. But there are cases in which finding the mistake is
more difficult. Consider a car weight, the true value to put in would
have been 1240 Kg but the operator mistakenly wrote 1420 Kg, it is
a simple transposition, it is still a reasonable value, it will not break
the analysis path but the error it introduced can be significant.

If you saw this weight associated to a Fiat Punto maybe you could
guess there is something wrong. But, in Big Data, you will never
read all the data, so you will not find this kind of mistakes unless you
teach your computer to recognize non plausible lines, which is not a
trivial task.

• Missing Data. In another dataset about car accidents with 1400
car crashes and 250 variables we faced the condition expressed by the
next picture. A little red square represents a missing data. We just
ignore variable columns where missing data is more than 80%. What
to do with columns where around 20% of measures are missing?

Figure 1.3. This is an illustrative version of a data table, every small
red square is a missing data.

• Internationalization. This is a source of extreme frustration, char-
acters that are not part of the English alphabet are encoded in
different ways across operating systems and often, also across dif-
ferent programs on the same system. I warmly suggest to rewrite all
the dataset in ASCII characters before starting the analysis. Remove
every accent, every non English letter has to be replaced, write all
numbers following the U.S. system that is, use dots to separate dec-
imals, not commas. Finally, change every white character1.7 in strings
with a “-”, we don’t read white characters, but the computer does.

1.7. Space, Tab, Newline etc.
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• Badly Documented. Or not documented at all. This is unfor-
tunately a cancer of our epoch, probably diffused by the modern com-
puter Graphical User Interfaces and the slides culture. You don’t have
a manual forWindows orOSX, you just try to click stuff and prey you
will get what you want. If you ask for a manual you will get a Power
Point presentation. If the dataset is small you can reverse engineer
most of the data sets, you can build your half invented manual with
your personal understanding of all columns. Now imagine a dataset
with some hundreds columns, you need a good motivation to guess
a manual for that.

1.1.3 Meeting functional data

Functional Data is data that can be seen as functions. The last statement
is trivial and almost meaningless. Every set of N measurements xi taken at
times ti can be seen as a function f̂ , indeed f̂ is defined simply saying that
f̂(ti) = xi and undefined for every t∈/ {t1, ..., tN}. This is not what we are
looking for. It will be clear from the following examples that we are looking
for a regular function, possibly a smooth function with just a few jumps.
Indeed, it must be more profitable to work with f̂ than with the sequence
{(ti,xi)}i.
Next figures show how the two dataset of Oxford and Oakland temperature
can be seen as functions.

Figure 1.4. Oxford and Oakland yearly temperatures as functions.

It must be noted that the two transposition to function are, in a way,
completely different. In the case of Oxford , our hypothesis of continuity
of temperature function is giving us more data respect to what we really
have, we are implicitly augmenting the dataset. In the case of Oakland
instead, the continuity of temperature act as a data reduction restriction.
Of the two, the most perilous is the first case. Indeed, if we cut infor-
mation we know what we have removed, if we add data on the other side,
all of our analysis is standing on our preliminary hypothesis.

1.1 Functional data 17



1.1.4 From data to functions. Smoothing.

Data, once is cleaned and well prepared, always come in form of tables. In
this section we see how to transform tables into functions.

One of the ways to express a set of points as a function is to choose a function
basis φ1, φ2, ... and then compute a finite linear combination of (φi)i such
that the approximation to the original points is considered good enough.

More precisely, given a sequence of observations taken at time ti and written
as y(ti) we have to choose a basis functions {φi}i∈I, a natural number K
and a set of coefficients {ci}i∈{1,...,K} such that,

{
x(t)=

∑
k=1
K ckφk(t)

x(ti)≈ yi.
(1.1)

The most popular basis functions are Fourier and BSplines. The first is
the best choice when data exhibits a periodic behavior. The second is more
flexible and is to be preferred when there is not periodicity or when the
function becomes more volatile in a certain parts of its domain.

The approximation symbol “≈” is very important. We are not much inter-
ested in a perfect fit to the yi, every yi can come with a measure error or
also, more importantly, our model is not expected to provide a perfect match
to any observation since it is impossible to take into account all variables
affecting an empirical quantity. Every model is finite and, by its nature,
every realistic prediction will come with an error.

How do we say that x(t) is a good approximation? There is not a close
absolute way to answer this question but there are a few general principles.
The model should be parsimonious, that is it should use as few variables as
possible. Then, in case of functional data where the simplifying power comes
from regularity, the functions should be as smooth as possible. The eye of
the modeler(s) and his knowledge of the nature of the data is the final judge
in deciding how much smoothness is desirable, how much is appropriate and
how much is an unacceptable oversimplification.

One way to determine the function x(t) is by minimizing the sum of the
squared distances between the function and the raw data, this is called
Least Squares Smoothing.

{ĉk}k∈1...K : = Argmin
{ck}k∈1...K

∑
i=1

N

(yi−
∑
k=1

K

ckφk(ti))
2 (1.2)
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From the computational point of view this is a simple quadratic optimization
problem without constraints and it is known to have a unique solution.

This problem can be also seen as a regression problem, so, once rewritten
in an appropriate matricial form, the solution can be found by the classic
expression (X ′ X)−1 X ′ Y , even if this writing is more fit to theoretical
development than to direct calculations.

The smoothness of our approximating function x(t) in this case is deter-
mined only by the type of basis functions we chose and the number K of
basis functions.

Sometimes it is desirable to have a finer control over the smoothness of
x(t). In these cases, we can augment the previous expression (1.2) with a
penalization term Π(x(t)) and a tuning parameter λ, the resulting technique
is called Roughness Penalty Smoothing.

⎧⎪⎨
⎪⎩
x(t) =

∑
k=1
K ckφk(t)

ĉ = Argmin
c∈RK

∑
i=1
N

(yi−x(ti))2+λ ·Π(x(t)) (1.3)

A common choice for the functional Π is Π(x(t)) :=
∫
D
(ẍ(t))2 dt where D

is x domain. This last choice of Π penalizes the total curliness of x(t), more
we increase the value of λ, the more the resulting x(t) will tend to have
maxima and minima flattened out.

There are many other possible choices of Π, for example we could be inter-
ested in penalizing curliness only in a subset of the domain S ⊂E. Or, we
could set Π(x(t)) :=

∫
D
|ẍ(t)| d t. Or also penalize with two separate func-

tionals Π1 and Π2, we have a lot of freedom here. However, the important
point to emphasize is that whatever will be the choice ofΠ, we have to make
sure the resulting optimization problem in (1.3) is solvable, possibly the
solution should be unique, and be sure some algorithms have been invented
to find it.

1.1.5 The Functional Data Toolbox

1.1.5.1 Sample Statistics

„Man muß jederzeit an Stelle von „Punkte, Geraden, Ebenen“ „Tische,
Stühle, Bierseidel“ sagen können“ 1.8
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D.Hilbert

Once we transformed data into functions we want to perform our statistical
analysis on the functional objects. The two cornerstones of Statistics are for
the mean and the variance. In our new world where data are functions,
how do we define them? Given the functions x1(t)...xN(t), It turns out that
the sample mean and the sample variance are defined in the usual way

X̄(t)=
1
N

∑
i=1

N

xi(t) , (1.4)

VarX=
1

N − 1
∑
i=1

N

(xi(t)− x̄(t))2 . (1.5)

What about the mean and the variance? Hic sunt dracones . Whilst the
definition the two sample statistics is trivial, the correspondent popula-
tion statistics are not. The books that most helped in popularizing FDA,
[Ramsay and Silverman, 2005] and [Ferraty and Vieu, 2006], do not even
mention this problem. We will not deal with theoretical topics in this thesis
so we just point the reader toward two books that seems the most appro-
priate to fill the gap, [Grenander, 1981] and [Ash and Gardner, 1975].

Leaving aside the problem of population statistics we move on defining the
[sample] covariance as

covX(t1, t2)=
1

N − 1
∑
i=1

N

(xi(t1)− x̄(t1)) · (xi(t2)− x̄(t2)). (1.6)

We observe explicitly that this quantity corresponds to the autocovariance
of Time Series analysis. There is a link between FDA and Time Series that
will be stressed at the end of the introduction.

The [sample] cross covariance between the functional random variablesX
and Y is

covX,Y (t1, t2)=
1

N − 1
∑
i=1

N

(xi(t1)− x̄(t1)) · (yi(t2)− ȳ(t2)). (1.7)

1.8. One must be to say “tables, chairs, beer-mugs” each time in place of “points,
lines, planes”. An interesting discussion about this quote can be found at
http://goo.gl/eBpahm.
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From the formulas it is easy to see the intended meaning of the two defin-
itions. The covariance between functional data is intended as the classical
covariance between two points in time of the same functional random vari-
able. The cross covariance instead is the classical covariance between two
points in time of two different functional random variables. So, a functional
random variable is considered as a collection of ideally infinite, but practi-
cally finite, univariate random variables, in conclusion, a functional random
variable, according to the way we are manipulating it, is a stochastic
process. A time series is also a stochastic process, but often required to be
discrete and stationary, we will see more about this in Section 1.3.

1.1.5.2 Functional PCA

Functional Principal Component (FPCA) is a cornerstone of Functional
Data Analysis as it is in multivariate Statistics. In the multivariate case,
there are many equivalent ways to define the principal components of a data
matrix X, where xi, j ∈X are observations of the same variable in column
j. We will use the next one that is totally opaque on the meaning of the
operation but is very compact and permits an immediate extension to the
Functional context.

If Vp,p is the covariance (or correlation) matrix of the data matrix Xn,p

then there are at most p different eigenvalues/eigenvectors for V ,

V ξj= ρj ξj .

The first q principal components are the first q couples (ρi,ξi) having the
largest ρi.

PCA

We can now define FPCA from PCA. We suppose the data has been cen-
tered, this is done, for example, to simplify the next expression. From a
previus definition we get the [empirical] [auto] covariance function is

v(s, t) =
1

N − 1
∑
i=1

N

xi(s)xi(t) . (1.8)

And we define the [empirical] covariance operator V as

V ξ=

∫
D

v(s, t) ξ(t) d t . (1.9)
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The firstK [empirical] functional principal components will be the functions
ξ(t) such that

V ξ= ρ ξ . (1.10)

Since such a relation will be generally satisfied for many ξ, then we say
the first principal component is the one with largest ρ, the second the one
associated to the second largest ρ, and so on.

A good and far more detailed description of the process is given in
[Ramsay and Silverman, 2005, Ch.8]. Two ways to compute the solution
of expression in Equation.1.10 are given in the same book at Section 8.4.
Principal Components is a deep topic, an interesting book fully dedicated
to it is [Jolliffe, 2002]. A recent overview of Functional PCA can be found in
[Ferraty and Romain, 2011, ch.8, “Principal Component Analysis for Func-
tional Data”, Peter Hall ].

1.1.6 The Multiple Nature of Functional Data

Functional Data is a recent research field, many things still have not been
strictly codified. Suppose you have two datasets (ti, v(ti)) and (ti, w(ti))
which you want to consider as functional, that is, as two functions v(t) and
w(t).

Now, there are at least three real representations for your ideal functions
v(t) and w(t).

1. The raw representation: (ti, v(ti)), (ti, w(ti)).

2. the function representation:
∑

k=1
K cv,k φk(t),

∑
k=1
K cw,k φk(t).

3. The Fourier representation: (cv,1, ... cv,K), (cw,1, ... cw,K).

The choice of one over another is not indifferent. Consider you want to
compute the distance between your two data functions. And suppose the
distance you have in your mind is the distance L2, d(v, w) :=

∫
D
(v(t) −

w(t))2 d t. How do you compute it?

The first approach you may think of is to use a Computer Algebra System
(CAS), like for example Mathematica , Maple or Maxima, apply directly the
representation (2) and then use the definition of L2 distance. This way is
for sure straight and correct but has a drawback, in general it is slow.

The second way is to use representation (3) and compute d̂(v, w) :=∑
k=1
K

(cv,k − cw,k)
2. This is fast, it is easy but one must remind that

it is true in general that d̂(u, v) = d(u, v) only if the basis {φi(t)}i is
orthonormal. If the basis is not orthonormal, like BSpline, ad hoc correc-
tions to the formula are needed.

22 Introduction



Somebody may want to compute the distance as d̂(u, v) =
∑

i=1
N (v(ti) −

w(ti))
2. That is, computing the distance directly on the observed values

coming as data. This is the easiest possible way of doing things but it is not
optimal because it sums also the noise coming with the data. The smoothing
part is usually taken to transport the data to the world of functions, but
also to separate the data from noise.

Finally, if the ti grids for v and w do not correspond, or the basis {φi(t)}i
is not orthonormal, one can use first representation (2) then choose a new
sampling grid T1 ... TM, compute two new sequences (Ti, v(Ti)), (Ti, w(Ti)),
and finally say d̂=

∑
i=1
M (v(ti)−w(ti))2. The only trouble with this method

is that the choice of new grid (Ti)i becomes just another nuisance parameter
we have to guard against. In some way we should be confident that our
results do not depend much on our arbitrary choices of analysis. A first
choice here is the appropriate basis functions and the second one is the grid
(Ti)i.

1.1.7 Functional Data and Computers

Even if the theory of Statistics on the space of functions can be carried out
with only pencil and paper, the applied part requires so many computations
that the use of a computer is necessary. This is the main reason why it
flourished only in the last decades.

There are two ways to compute with Functional Data, with a Computer
Algebra System (CAS), like Mathematica , Maple, Maxima that permits to
manipulate directly functional objects, as represented in point (2) of section
1.1.6. Or, we can use representation (1) and (3) and this can be done with
basically every general purpose programming language like R, Matlab or
C . In this thesis functions have beeen programmed in both ways, with
Mathematica and R.

Using Mathematica it is easy to see what is going on, and there is a lot of
freedom because each problem can be reduced quite easily to an optimization
problem in its analytical form, the program solves it without asking too
many hints and sometimes1.9 solves it correctly. There are two drawbacks,
everything has to be coded from the ground up so, for example, if you want
to use a basis function then you have to know something about that basis
function, not just its name. Secondly, computations are slow because they
are made on abstract objects represented as trees.

1.9. Unfortunately Mathematica (release 10) Minimize command, is very limited in
power. It is often necessary to transport the optimization problem to Maple or Matlab
to get a reasonable solution.
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Using R there is a completely different perspective. The community
of statisticians developed two packages to deal with functional data,
“fda” documented in [Ramsay et al., 2009] and “fda.usc” , documented in
[Febrero-Bande and Oviedo de la Fuente, 2012], I worked only with “fda”
package. Many common techniques like smoothing, plotting, FPCA, simple
regression etc. are implemented and ready to use as procedures. The
user has little to do besides feed in the correct arguments. But, all the
computation are opaque to the user and considering the current status
of the documentation1.10 the only way to understand what your com-
puter is doing is to jump between the books [Ramsay et al., 2009] and
[Ramsay and Silverman, 2005], read the R fda help and also read the code
examples ..., a painful experience. Until what you want to do is implemented
in a library and you can find an understandable example to copy, you will
be very satisfied with R, if what you want to do is new, or unusual, you are
going to have some bad days with R, the language is baroque, good for inter-
active computations but awkward for programming. There lacks a decent
hash table data structure, object orientation is not available through “dot
notation”, nested lists are not natural, matrix operations need to be escaped
and finally, the central data structure is the Data Frame which is good
for representing a data table but inadequate for basically everything else
(see [Ihaka and Lang, 2008] and [Ihaka, 2010] for further considerations).

1.2 Linear Regression

“All models are wrong but some are useful”

George Box

Regression is a method to find the relation between an output variableY and
some input variables Xi that is, to find a function f such that Y = f(X1, ...,
Xp). Often the output variable is called response variable and the input vari-
ables can be named regressors, predictor variables or features , we will use
these terms indifferently. When there is more than one predictor the problem
is called more specifically multivariate regression . The variables Y and Xi

can be qualitative or quantitative but in our discussion we will see only
the case in which all the variables are quantitative and real numbers. The
purpose of our introduction is to motivate a variable selection method, that
is a way to select which Xi are most influential in the relation f and which
ones can be discarded. Many books can be of help in filling the necessary
large gaps we left in this introduction. In particular, [Wasserman, 2003] for
a short overview, [Chatterjee and Hadi, 2006] and [Weisberg, 1985] for an

1.10. Few complex mathematical software are documented in detail, the only excep-
tion known to me is Maple which has an excellent manual. Just give it a look here
http://www.maplesoft.com/support/help/.
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in depth treatment of regression in practice, for a theoretical point of view
(there is no one single real data set) see [Seber and Lee, 2003] and finally,
for a machine learning point of view [James et al., 2013] which contains R
code for examples or the more advanced and deep [Hastie et al., 2009].

Our variables Y and Xi in practice always come as numerical tables and it
is convenient to represent them in matricial form as

Y =

⎛
⎜⎜⎝

y1
y2
...
yn

⎞
⎟⎟⎠, X =

⎛
⎜⎜⎜⎝

1 x1,1 x1,2 ... x1,p
1 x2,1 x2,2 ... x2,p
... ... ... ... ...
1 xn,1 xn,2 ... xn,p

⎞
⎟⎟⎟⎠, (1.11)

where n is the number of observations and p is the number of regressors.
The ones column is a handy way to insert also the intercept parameter β0
in our computations.

The relation f between Xi and Y can be in principle any kind of function
but we will focus only on one special family, the linear functions . Even if
restricting the relation to linearity may seem a strong restriction, it has some
important benefits.

1.Analytically Easy. Linear relations are the easiest to manipulate
symbolically and they are very well understood theoretically.

2.Understandable. Proportionality is our way to express qualita-
tively all relations which are not cyclical. “More I eat, more I get fat”,
“more I study, more I will learn’, “more a country is rich, more the
mortality rate will be low”. All these statements are false in general,
but locally, on small domains, these relations hold. Linearity is the
first and simplest kind of relation we are able to perceive, perhaps,
besides easiness, it is because often we can experience phenomena
only on a small scale of variation.

3. Computationally Efficient. Linear computations can be reduced
to matrix algebra which is extremely efficient from the computational
point of view.

4. Locally Universal. Even if the real function f describing a phe-
nomenon is not linear, if it is smooth then it is locally linear. So, in
a first local approximation a linear relation is still valuable.

5. Effective. The linear models have proven to be at the heart of each
discipline, from Physics, to Biology to Finance.

Assuming linearity1.11, the relationf can be written as

Yi= β0+β1Xi,1+ ...+ βpXi,p , for i in 1, ..., n. (1.12)
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The main task in linear regression is to find an estimation of β0, β1, ..., βp
such that the relation in (1.12) be fulfilled in the best way possible. We will
denote such estimates es β0̂, β1̂, ..., β̂p or with some other kind of hats over
the betas if comparing different estimators. We will see in the next sections
the most common ways to find the β̂i.

1.2.1 Simple Least Squares

This method is quite old and still the core of many modern methods. It was
developed by the needs of astronomy and geodesy in the eighteeth century
when open crucial problem where, for example, to determine the path to
follow when sailing in open sea, and the orbits of planets. The first clean
exposition of the method is contended between Legendre and Gauss. In 1801
Gauss was able to predict the position of the asteroid Ceres after it had
disappeared from sight following his orbit around the Sun1.12. Stated as an
optimization problem the method is written as

β̂0··· β̂p : = Argmin
β0···βp

(∑
i=1

N

(yi− (β0+ β1xi,1+ ···+ βpxi,p)

)
2

(1.13)

so, the quantities β̂i are defined in such a way that the sum of squared
errors in approximating Y with Xβ is as small as possible. The minimized
quantity is called RSS (Residual Sum of Squares). It must be observed
that we can find the minimum of it with standard multivariable calculus
ideas see [Adams, 2003, pg.255], this explains its early origin. It is also
straightforward to prove that βî can be computed with a direct matrix
multiplication; in matrix form RSS is Argminβ ‖Y −Xβ‖2.We will not enter
into details but the following results are of remarkable importance.

1. The solution of the optimization problem can be computed as

β̂=
(
X
′
X

)−1X ′
Y . (1.14)

2. Saying Ŷ :=Xβ̂, the least square approximation of Y , we can state
that Ŷ is the projection of Y on the linear space generated by the
columns of X , that is the projection on the regressors world.

1.11. Linearity is more general than the single expression I’m giving here, see for example
[Seber and Lee, 2003, pg.4-5].

1.12. See the interesting material at this Web page,
http://www.math.rutgers.edu/~cherlin/History/Papers1999/weiss.html
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3. A measure of fit of our linear model to the data can be obtained
by the coefficient of determination (R2) which is defined simply as
R2 :=Cor

(
Y , Ŷ

)
2 and has a clear geometric interpretation. Moreover

R2 can be written as

R2=1−
∑

i

(
Yi− Ŷi

)
2∑

i (Yi− Ȳ )2
=1− RSS∑

i (Yi− Ȳ )2
, (1.15)

which can be interpreted in another important way, we can see R2

as a function of variability of the “predictions” respect to the vari-
ability of the data to predict, see [Seber and Lee, 2003, pg.111] or
[Chatterjee and Hadi, 2006, pg.61].

4. R2 increases always with the number of variables so it is not a good
candidate to compare models with different numbers of regressors. In
the practice of multivariate regression, the adjusted -R2 is the most
popular substitute for R2; we will see it in the next section because
it depends on additional hypotheses. Another possibility is to replace
the R2 with the estimated residual variance S2

S2 :=
RSS
n− p∗

,

which though is not as practical as R2 because it is unbounded from
the top. In the last equation, p∗ is used instead of p to remind that
also the constant has to be counted so, if we have p regressors, as in
our design matrix (1.11) then p∗ = p + 1, see [Seber and Lee, 2003,
pg.400].

How to do variable selection in this scenario? There are at least two ways
we can consider but of course variants of both are possible.

1.2.1.1 The Empirical Variable Selection

1. Standardize column Y and all regressors Xi.

2. Perform a Least Squares and find the estimated values β̂i. Also, take
note of the fit of your model when there are all variable by S2, cross
validation or others methods.

3. From all β̂i, with i � 1, consider equal to zero the ones that are
considerably smaller than the others. Drop from the matrix X the
column corresponding to the small valued beta-hats.

4. Perform another Least Squares on Y and the new X and compare
the fit of the new model with the one obtained at step (2).

Method.1 - Empirical
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This method is simply a truncation, as we truncate decimal digits in a
number because we consider them too small to be interesting, here we trun-
cate variables which gave small contribute, in magnitude, to the explanation
of Y . It is for sure appealing to scientists because they know the in-field
meaning and value of the variables they are cutting down. Since we are
comparing magnitudes of objects potentially on very different scales the
standardization is fundamental.

1.2.1.2 APM variable selection

1. Having available p data columns, the number of all possible models
we can build by inclusion/exclusion of some regressors are

∑
i=0

p (
p
i

)
=2p .

2. For each of the 2p models we compute a measure of fit by S2, cross-
validation or other methods and select the model providing the best fit.

Method.2 - APM

APMmeans All Possible Models . It is a simple solution but very impractical,
with only 20 variables we should check approximately one million models,
see [Seber and Lee, 2003, pg.392].

1.2.2 Classic Multivariate Regression

If we augment our hypothesis about our model, we can strengthen a lot our
methodology for model fitting and variable selection. Indeed, basically all
classical regression analysis is not based on (1.12) but on

Yi= β0+β1Xi,1+ ...+ βpXi,p+εi (1.16)

where εi are usually assumed to be independent identically distributed
random variables, with εi∼N (0, σ2).

Requiring εi to be i.i.d. E(εi) = 0 and homoskedastic (with equal variance
Var(εi)=σ2), we can draw this results:

1. β̂ is an unbiased estimator for β, E
(
β̂
)
= β and its variance is

Var
(
β̂
)
=σ2(X ′X)−1.
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2. Between all unbiased estimators of β which are a linear function
of the data, the least square estimator β̂ is the one with minimum
variance. β̂ is said to be the BLUE estimator for β (Best Linear
Unbiased Estimator), see [Seber and Lee, 2003, pg.42].

3. An unbiased estimator for σ is σ̂ := RSS
n− p− 1 .

If we add the hypothesis of errors normality εi∼N(0, σ2), we can
get more results which are important for hypothesis testing. In the
following, we will use this notation for compactness C := (X ′X)−1

and cij :=Ci, j .

4. The distribution of the vector β̂ is multivariate normal, β̂ ∼ N(β,
σ2C). The marginals β̂i are Normal, β̂i∼N (βi, σ

2cii).

5. We know the distribution of the variance estimator, σ̂2∼ χ
n−p−1
2 .

6. β̂ and σ̂2 are independent random variables.

7. If it is true that E
(
β̂j

)
= βj the random variable U defined as

U :=
β̂j − βj

s.e.
(
β̂j

)

is distributed as a Student t distribution, U ∼ tn−p−1 .

8. If it is true that there is a linear relation between the parameters
βj expressed in matrix notation as AX= β where A∈Mq,p then the
random variable W defined as

W :=
(RSSH −RSS)/ q
RSS/(n− p)

is distributed as F , W ∼Fq,n−p. RSSH is simply the RSS computed
under the null hypothesis H: AX = c which is easily achieved com-
puting β̂

˙ as

β̂
˙
:=

⎧⎨
⎩

Argmin
β

‖Y −Xβ‖2

s.t. AX= c
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and then RSSH :=
∥∥∥Y −Xβ̂˙∥∥∥2. A matrix version of this computation

con be found in [Seber and Lee, 2003, sec.4.3].

9. It can now be defined the most popular measure of fit in multivariate
liner regression, the adjusted -R2

Radj
2 := 1− (1−R2) n

n− p− 1 (1.17)

which takes into account that R2 always increases adding regressors
and rescales it appropriately, see [Seber and Lee, 2003, sec.4.4].

10. We have available now also other measures of fit for our model which
take into account the increasing number of regressors.

a)Mallows Cp.

b)AIC. Akaike Information Criterion.

c) BIC. Bayesian Information Criterion.

They all depend on the likelihood or on σ̂2. They will not be used
in what follows; their definition, in a few words, can be found in
[Wasserman, 2003, sec.13.6].

Now that we have set by hypothesis the distribution of errors εi and assumed
that they are Normal with zero mean and fixed variance our toolbox is much
better. Indeed a t-test , from point (7), permits us to test directly if one single
βj is zero. The F-test , from point (8), permits us to test if a whole block of
{βj}j∈J is zero without doing a multiple testing on each single βj. Then,
results at points (10) and (9) let us compare the fit of models with different
number of variables without using cross validation.

1.2.2.1 Stepwise regression

1. We start with a model with only β0.
2. We add to the model one single regressor, the one which increases

most the scores respect to Radj
2 (or other fit criterion as BIC, AIC

etc.).
3. We repeat step (2) until adding a new regressor does not improve

the score. At that point we have selected one possible best regressors
set according to the chosen fit (score) criterion.

Method.3 - Forward Stepwise Regression
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1. We start with the full model, all regressors are included.
2. We remove one single regressor, the one which improves most the
Radj
2 (or BIC, AIC, etc.).

3. We repeat step (2), removing each time one regressor until removing
every possible regressor does not improve Radj

2 . At that point,
we have selected one possible best regressors set according to the
chosen fit criterion.

Method.4 - Backward Stepwise Regression

We must observe that each stepwise regression is a big improvement in com-
putation cost respect to APM; indeed, in the worst scenario, the algorithm
requires p! simple steps where APM required always 2p simple steps. On the
other side though, stepwise regression offers a greedy solution, which steps
through local optimal models but does not guarantees to arrive at the best
possible regressors set.

1.2.3 Penalized Regression and Lasso

Lasso as defined in [Tibshirani, 1996], also known as basis pursuit in signal
processing [Chen et al., 1998], is one of the ways to do penalized regression.
It is the method we will extend to functional regression and it developed
from Ridge Regression, which will be described briefly in the next section.
The idea is to penalize the βj magnitudes in the optimization phase in
such a way that some of them will be shrunken automatically to zero. The
estimators are defined by

β̃ :=ArgMin
β

∑
i=1

N
⎛
⎝yi− β0−

∑
j=1

p

βjxi, j

⎞
⎠2+λ

∑
j=1

p

|βj |. (1.18)

Or equivalently, this can be seen as a constraint optimization problem which,
by Lagrange multipliers method, can be written as

β̃ :=

⎧⎪⎨
⎪⎩

Argmin
β

∑
i=1
N (

yi− β0−
∑

j=1
p βjxi, j

)
2

s.t.
∑

j=1
p |βj |� μ.

(1.19)

It is clear that, if μ→+∞ (or λ→ 0+) then Lasso estimated β̃ corresponds
to Least Squares β̂. When μ decreases under a certain threshold value that
depends on the problem there will be not enough freedom for βi to obtain
the values L.S. would assign them; when this happens Lasso will sacrifice
those βj which are less influential on RSS.
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Since the method penalizes the magnitude of all βj together, they need to be
comparable, on the same scale, so it is necessary to standardize all regressors
before starting the optimization process. To have a consistent view of the
performance of Lasso across different problems we suggest to standardize
also the response variable Y . In order to make more clear the usefulness of
standardization let’s consider an example. Suppose your regressors are GDP
(Gross Domestic Product) and the Gini coefficient of some countries and
the response variable is Male expected life at birth . The order of magnitude
of GDP can be around 1015, Gini about 101 and the expected life about 101.
Then, to have a reasonable linear influence on life expectancy the βGDP will
be a tiny number and the βGini will be on the order of 100. Consequently, in
choosing μ, its smallest variation will influence βGDP but it will be irrelevant
to βGini since it is usually defined with two decimal digits. If you standardize
also Y , then you are sure that across all problems βi≈0.01 is a small number
and βi≈ 1 is a large one.

The choice of μ is done by cross validation, once the value μ̃ giving the
minimum prediction error is found, thus the Lasso estimators are completely
defined by

β̂lasso :=

⎧⎪⎨
⎪⎩

ArgMin
β

∑
i=1
N (

yi− β0−
∑

j=1
p βjxi, j

)
2

s.t.
∑

j=1
p |βj |� μ̃.

It must be observed that Lasso provides a quasi-continuous shrinkage of the
parameters, the amount of continuity is determined by number of parame-
ters μi we try in cross validation, a (positive) side effect of this shrinkage
is that some parameters go to zero, the special geometry of the l1 con-
straint makes, in some sense, zero an attractor for small coefficients. In
forward/backward stepwise selection , for example, this is not true, a variable
is either in or out of the model. Another important difference between Lasso
and stepwise selection is that computation cost is not so much strongly
growing with the number of regressors p. On the other side, the choice of the
grid values for μ in order to find a minimum in the cross validation error can
be problematic and the computational cost grows linearly with the number
of grid points for μ.

Figure 1.5 shows how parameters are shrunken by Lasso and Ridge Regres-
sion on decreasing the value of μ. Lasso corresponds to the figure on the
top. Starting from the right side of the plot the value of μ is very large
so the estimated parameters β̂i are not affected by it and they keep their
regular Least Square values. But when μ goes small and they can’t keep
their original value a choice must be made on how to shrink. We see that
Ridge compress the parameters but can’t put them straight to zero. Lasso
instead tends to go directly to zero.
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Figure 1.5. The figure on the top represents the parameter shrinkage performedwith
Lasso, the one on the bottom the shrinkage performedwithRidge. The only difference

is that in the first plot the constraint is
∑ |βi|� μ, in the second

∑
βi
2

√
� μ.
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Why does Lasso work? Figure 1.6 gives an explanation. It is a representation
of a constraint regression with two regressors where one is fake. The green
area is the constraint, on the left there is Lasso, l1 constraint |β1|+ |β2|� μ
and on the right Ridge, l2 constraint β12+ β2

2� μ2. The red ellipses are level
curves of the RSS,

∑
i (yi − β0− β1 xi,1− β2 xi,2)

2. The constrained mini-
mization has a solution when the red curves touch the green area. It is clear
that with an l1 constraint there is a good probability that the intersection
will happen on a corner of the green area, but a corner is exactly a point
in which one of the betas is zero. In higher dimensions this is more difficult
to visualize but, under some regularity assumptions, it has been found that
Lasso finds the correct model with high probability, see [Hastie et al., 2009,
sec.3.8.5] for a brief discussion and a list of references.

Figure 1.6. On the left a pictorial representation of Lasso constraint and solu-
tion, on the right Ridge.

1.2.4 Other methods

In many situations the regressors are highly correlated, so it makes sense to
transform them in a convenient way, PCR1.13 and PLS 1.14 follow this path.
It must be reminded though that in this way we are not any more selecting
on the original variables set.

1.13. Principal Component Regression.

1.14. Partial Last Squares.
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PCR. Principal Component Regression . It is a simple Least Squares regres-
sion applied after a Principal Component. First, we standardize the regres-
sors columns Xi, then we apply a principal component analysis and find
a set of new (columns) regressors {Zi}i=1···M, with M � p. Finally we
apply regression on the Zi. It is apparent that least squares can only select
at most M variables. If M = p, PCR reduces to Least Squares.

PLS. [Wold, 1975] Partial Least Squares . It is a method more involved than
PCR but still based on iterative linear transformations and orthogonaliza-
tions of the original columns-regressors Xi. The main difference respect to
PCR is that also the response variable Y enters into the transformation
process. As in PCR there is a maximum number of directions M to choose,
if M = p, that is if not choice is made and same number of variable as is the
original dataset is kept, then PLS solution is equivalent to Least Squares.

LAR. [Efron et al., 2004] Least Angle Regression. It is a method which
gives results similar to Lasso but its computation is totally different, itera-
tive and similar to stepwise regression, a brief introduction can be found in
[Hastie et al., 2009, pg.73].

Ridge Regression. [Hoerl and Kennard, 1970] This is a penalization
method which precedes Lasso, the only difference is that the penalization
on βi is in norm L2 instead of L1. Its associated optimization problem is

β̂j
ridge :=ArgMin

β

∑
i=1

N
⎛
⎝yi− β0−

∑
j=1

p

βjxi, j

⎞
⎠2+λ

∑
j=1

p

βj
2 . (1.20)

Respect to Lasso the advantage of Ridge is that estimators are a linear
functions of Y and can be written as

β̂ridge=(X ′X +λI)−1X ′Y . (1.21)

The disadvantage of the norm L2 is that small β̂j
ridge do not tend to go to

zero as directly as β̂j
lasso do.

Elastic Networks. [Zou and Hastie, 2005] It is a combination of Ridge
and Lasso, its nature is apparent from the penalization term in which the
parameter α permits to tune L1 and L2 penalty

β̂elast :=ArgMin
β

∑
i=1

N
⎛
⎝ yi− β0−

∑
j=1

p

βjxi, j

⎞
⎠
2

+λ
∑
j=1

p

(α|β
∣∣+(1−α)βj2 ) . (1.22)
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The Dantzig Selector. [Candes and Tao, 2007]. Instead of minimizing the
RSS, it minimizes the maximum absolute value of its gradient, the penal-
ization term is equal to Lasso

β̂dan :=

⎧⎨
⎩

ArgMin
β

‖X ′(Y −Xβ)‖∞
s.t. ‖β‖1� t.

(1.23)

The good thing about this method is that it is a linear programming opti-
mization problem, for that it was named in memory of George Dantzig.
Unfortunately this method performs equally or worst than Lasso in predic-
tions and gives extremely erratic betas on changing the values of constraint
term t, see [Meinshausen et al., 2007].

After this review of the methods and problems related to variable selection
in multivariate regression we change completely topic in the next section
and give a short reminder of the basics of time series analysis.

1.3 Time Series

Our aim in this section is to give a minimal overview of linear processes,
especially the AR(1) process and Random Walks . This material will make
clear what the problem is and why it was interesting to translate it to the
Functional Data context.

1.3.1 Stationary and Autoregressive Processes

A time series is a stochastic process {xt}1.15 where t is thought as a
moment in time and, for the classical theory as developed exposed in
[Box and Jenkins, 1970] or [Fuller, 1976], t is an integer number. Time series
has its own terminology, we must introduce some amount of it to talk
even of the most basic. In what follow I will adapt the material from
[Shumway et al., 2000].

Definition 1.1. The autocovariance function is defined as covariance
at two temporal points.

γ(s, t)= cov(xs, xt)=E ((xs− μs) (xt− μt)) . (1.24)

1.15. Here {xt} is a family of random variables indexed by t, it could be written as {Xt}
to emphasize its stochastic nature but the first way of writing is more popular in time
series literature.
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Definition 1.2. The autocorrelation function is defined as

ρ(s, t) =
γ(s, t)

γ(s, s) γ(t, t)
√ . (1.25)

Now let’s take into account a fundamental point of time series. Often, we
observe a time series only once, there are no repetitions. Think of the GDP
of a country or of the inflation index for a currency, there are no repetitions,
they will happen only once in history. Therefore, we should ask ourselves
what sense to give to the just defined autocovariance structure. If we can
observe xs and xt only once, simply, the autocovariance function makes no
sense at all.

So, to work around this challenging condition we make a powerful assump-
tion, we suppose that the series of xt is extremely redundant, in particular,
if we observe a block (xt1, ..., xtk) then we move to the future (or to the
past) and observe (xt1+Q, ..., xtk+Q) these two blocks should be ruled by
same distribution. This assumption will be called stationarity and it is the
central idea in the classic theory of time series analysis.

Definition 1.3. A time series is strictly stationary if

P (xt1≤ c1, ..., xtk≤ ck) =P (xt1+h≤ c1, ..., xtk+h≤ ck) (1.26)

for all time shifts h∈Z.

Strict stationarity is a great simplification but still, too difficult to check
to be useful in practice. So the theory developed in a more straightforward
direction, in some sense, limiting the ideas appearing in strict stationarity
to the the first two moments, expectation and variance.

Definition 1.4. A stochastic process with finite variance is a weakly sta-
tionary time series if

1. The mean μt is finite and constant, μt1= μt2 for all choices of t1, t2.

2. The autocovariance γ(s, t) depends on s and t only through their
difference |t − s|. Or equivalently, if there exists a function g such
that γ(s, t)= g(|t− s|).

Result 1.5. In a weakly stationary process the Var(xt) is constant in time.
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Definition 1.6. A stochastic process xt is said to be a Gaussian process
if, for every n and for every collection of points {t1, t2, ... tn} the random
vector x=(xt1, ..., xtn) follows a Multivariate Normal distribution.

Result 1.7. If a Gaussian process is weakly stationary then it is also strictly
stationary.

Definition 1.8. From now until the end of the section we will call a weakly
stationary process as stationary process.

Definition 1.9. A process {xt} is called white noise if

1. xt and xs are uncorrelated, for all t and s, t=/ s.

2. E(xt)= 0 for all t.

3. Var(xt)=σ2 for all t.

We will denote the white noise process with {wt}.

Figure 1.7. Representation of a white noise process. On the right only points
(t, wt) are drawn. On the left, each point (t, wt) is joined to is successor (t+ 1,

wt+1) by a straight line. This is the cheapest way to build a continuous process
from discrete observations.

Result 1.10. A white noise process {wt} is a stationary process.

Definition 1.11. A process is called a random walk if

xn+1=xn+wn (1.27)
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If we set x0= p and Var(wt)=σ2 then E(xn)= p for all n , Var(xn)=nσ2

and γ(s, t) =min (s, t) ·σ2. So a random walk is not stationary.

Result 1.12. The random walk process is not stationary.

Figure 1.8. On the right a realization of a RandomWalk process. On the left
the process is made continuous joining every successive points with a line, see
comments on Figure 1.7.

Figure 1.9. On the left, 4 realizations of the same RandomWalk process where
wi ∼ N(0, 1) for i = 1...1000. On the right, two Random Walk realizations
as in the left figure and their trended associate: xi+1 = k ∗ i + xi + wi where
k= {−0.07,0.07}.

Definition 1.13. A process is called autoregressive of order one, and
denoted as AR(1) if

xt= φxt−1+wt . (1.28)

Result 1.14. An AR(1) process is stationary if |φ|<1. A random walk is
a special case of an AR(1) process.

1.3 Time Series 39



Figure 1.10. An AR(1) process (xt+1 = φ xt + wt) changing the value of φ,
φ∈ [0, 1]. When φ goes toward zero the process tends to become a White Noise,
when φ goes toward one the process tends to become a RandomWalk.

Definition 1.15. A process is called moving average of order q and
denoted as MA(q) if

xt= θ1wt−1+ θ2wt−2+ ...+ θqwt−q

Result 1.16. An MA(q) process is always stationary, for every choice of
θ1, ... , θq.

Observation 1.17. If in a process realization we can see a trend then it
is improbable it will be stationary indeed its mean seems to be non constant.

Observation 1.18. If in a process we can see seasonality it means that
we can find a period T such that xt≈xt+T and xs≈xs+T where xt=/ xs. It is
improbable that a process with seasonality will be stationary because it seems
not to have a fixed mean.
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Observation 1.19. If in a process we can see there is not constant vari-
ability then it is improbable it will be stationary because the variance of the
process should be constant in time.

Observation 1.20. The last three observations use the word “improbable”
because sometimes randomness can deceive us and build structures that we
think are deterministic. For example, a random walk has no deterministic
trend but, if by chance the realizations of its white noise come out in large
majority to be larger than zero we may see a deterministic trend that is only
outward. We will see an example of this in a next section.

1.3.2 Random Walk tests, an Overview

Since we are interested in Random Walks, we are considering only tests on
AR(1) processes, in the general context of ARIMA the same topic is named
unit root test.

Now our AR(1) process is such that

xt= φxt−1+ εt , (1.29)

where are εt are i.i.d. random variables distributed as N(0, σ2).

Given n observations1.16 x1, ... xn, the least squares estimator of φ is

φ̂=(
∑
t=1

n

xt−12 )−1
∑
t=1

n

xtxt−1 . (1.30)

Method 1, [Box and Jenkins, 1970]. Under this method, we assume the
model is a random walk, that is we suppose φ=1 (H0:φ=1) and we compute
the residuals as et=xt−xt−1. Then compute the Box-Pierce statistic QK

QK=n
∑
k=1

K

rk
2

rk=(
∑
t=1

n

et−12 )−1
∑

t=k+1

n

et et−k .

Under the null hypothesis H0: φ=1, QK is approximately distributed as χ2

with K degrees of freedom.

1.16. If necessary, consider x0=0.
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Method 2, [Dickey and Fuller, 1979]. This is probably the most cited
Random Walk test. Given that the likelihood ratio statistic for H0: φ =
1 is a function of

τ̂ =(φ̂− 1)Se−1(
∑
t=2

n

xt−12 )1/2 (1.31)

where

Se
2=(n− 2)−1

∑
t=2

n

(xt− φ̂ xt−1)2, (1.32)

the authors established the limiting distribution of φ̂n and τ̂n under the
assumption than |φ|=1. By Montecarlo simulation they show their test is
more powerful than Box-Jenkins. I include below the same table appearing
in their article.

Table 1.1. Shows the power the Dickey-Fuller proposed test with statistics ρ and
τ against QK. The statistics ρμ and τμ refer to a version of the test which accepts
as input a series with trend. The letter ρ is what we are calling φ in this section.

42 Introduction



Method 3, [Dickey et al., 1984]. A seasonal time series can’t be a sta-
tionary process because the mean is not constant. To overcome this issue
the authors adapt the statistics φ̂ and τ̂ to the equation

xt= φxt−d+ εt (1.33)

where d is the lag corresponding to the seasonality of interest.

Method 4, [Phillips and Perron, 1988]. Their work relaxes the hypothesis
of εt error being Normal and i.i.d. Moreover, their test manages also the
case of random walks with drift and trend.

Method 5, [Ferretti and Romo, 1996]. The authors provide a Bootstrap
based test for unit root. Through Montecarlo simulation they conclude the
test is better than the alternatives in small samples. The test is not bound
to Normality of εi.

In the last decades the research moved to many different directions, some of
them are listed below.

1. Test the presence of unit root in more and more rich ARIMA models.

2. Test unit roots in presence of shocks.

3. Test in unit roots in panel data.

4. Consider the case of εi with fat tails.

1.3.3 Random walks, Applications and Curiosities

It may appear that a Random Walk is a very narrow and special topic
with a catchy name but far from being of general interest. This is not
the case. In the present section we report the curious historical birth of
the expression “random walk” and some intriguing application of Random
Walks to Economics. The interested reader could see [Feller, 1957, ch.3] for
a different but still simple view on the subject from a different perspective
and more examples of application ranging from The Ballot Theorem to the
Arcsine Law .

1.3.3.1 Etymology of “Random Walk” and the drunken man

We owe credit for the introduction of the term random walk to Karl Pearson
[Hughes, 1996]. He wrote a letter the the Journal Nature which appeared
on the issue 27 July 1905 saying:
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The problem of the random walk

Can any of you readers refer me to a work wherein I should find
a solution of the following problem, or failing the knowledge
of any existing solution provide me with an original one? I
should be extremely grateful for aid in the matter.

A man starts from a point O and walks l yards in a straight
line; he then turns through any angle whatever and walks
in another l yards in a second straight line. He repeats this
process n times. I require the probability that after n of these
stretches he is at a distance between r and r + δ r from his
starting point O.

Karl Pearson

The Gables, East IIsley, Berks

One week later, on 3 August 1905, on Nature was published the reply by
Lord Rayleigh:

This problem, proposed by Prof. Karl Pearson in the current
number of NATURE, is the same as that of the composition
of n iso-periodic vibrations of unit amplitude and of phases
distributed at random, considered in Phil. Mag. x, p.73, 1880;
xlvii, p 246, 1899; (’Scientific Papers’, i.,p. 491, iv., p.370).

If n be very great, the probability sought is

2
n
e−r

2/n r d r.

Probably methods similar to those employed in the papers
referred to would avail for the development of an approximate
expression applicable when n is only moderately great.

RAYLEIGH

Terling Place, July 29.

Then there is the reply of Pearson, which I will report only in part:

... I ought have known it, but my reading of late years has
drifted into other channels, and one does not expect to find
the first stage in biometric problem provided in a memoir on
sound. From the purely mathematical point of view it would
still be very interesting to have a solution for n comparatively
small.
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... The lesson of Lord Rayleigh’s solution is that in open
country the most probable place of finding a drunken man
who is at all capable of keeping on his feet is somewhere near
his starting point.

KARL PEARSON

Pearson’s interest in the problem of Random Walk arose from an attempt to
model random migrations, with the particular case of mosquitoes invading
cleared jungle regions.

1.3.3.2 Random Walks in Economics

Can we distinguish something that grows because of randomness from some-
thing that grows because there is a fixed law behind it? Look at next picture,
one series is a Random Walk, the other is an AR(1) process added to a deter-
ministic positive trend. In one the growth is “true”, caused by a discernible
force, in the other is just an illusion, the whim of a stochastic process.

The red line is a Random Walk, the blue is an AR(1) with drift, formally
xt = 0.035 + 0.8 ∗ xt−1 + et. The ei were i.i.d from a N(0, 1) for both the
series. These data were simulated. I crafted the two processes to look similar.
But what happens in real life, when we have a time series realization and
we don’t know its generating mechanism? Can we distinguish a trend from
randomness?

Economists strive to build models to predict our GDP growth, unemploy-
ment level, demand in the house market, cost of electrical energy and a
lot of other parameters that directly influence our day by day life. All of
these quantities are apparent time series. Economists also know from the
beginning that their model will never be totally precise, there are too many
factors to take into account that they can not control. But, it is largely
supposed that in our econometric models there are two different parts, a
static, deterministic part that we can understand and partially control, and
also a random part which is out of our reach.
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The article [Nelson and Plosser, 1982] shocked this assumption. The authors
analyzed 14 historic econometric series1.17 from the beginning of 1900 to
1970 and compared them with the RandomWalk. Their conclusion was that,
it could not be rejected that these series were Random Walk. This fact is of
the utmost importance because if a series grows because of a random walk
instead of being a random fluctuation around a deterministic trend, it means
it can change direction at any time, and we have no power to influence it
because it is totally randomness driven.

A contemporary article by [Meese and Rogoff, 1983] raised another very
interesting issue. Analyzing U.S. dollar exchange rates1.18 the authors found
that in out of the sample predictions, a Random Walk with drift performs
as well as the most reliable econometric model. The two authors were both
at the Federal Reserve Board when they wrote the paper so, they were
comparing Random Walk not to some obscure model with nice analytical
properties but with the one in use by U.S. government to make predic-
tions. Indeed, the paper was a revision of a previous one they submitted
in 1981 to the International Monetary Fund.

So let’s conclude our introduction with a provocation, if you were an investor
and you could see the following plots about two popular NASDAQ compa-
nies. Would you buy their shares looking at the plots? Do you think they
are Random Walks? Beware, if they are Random Walks, your investment is
as grounded as flipping a coin.

Figure 1.11. NASDAQ stock prices for Google and Amazon, from 1-July to 23-
October 2014. Data were bought from eoddata.com.

1.17. Real GNP, Nominal GNP, Real per capita GNP, Industrial production, Employ-
ment, Unemployment rate, GNP deflator, Consumer prices, Wages, Real Wages, Money
stock, Velocity, Bond yield, Common stock prices.
1.18. dollar/pound, dollar/mark, dollar/yen and “trade-weighted-dollar”.
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1.4 Structure of the Thesis

The purpose of this introduction was to make accessible and to motivate
the material in the next chapters. What we have seen until now applies to
classical discrete dataset, from here on we radically change perspective, data
will be no more merely a set of numbers but it will be a set of functions. It
is of course all in the hypotheses, data are still coming as discrete tables,
but we aggregate them properly and see them as functions.

In Chapter 2 we will extend the Lasso to Functional Regression, indeed
in the case we study the response variable is no more a number but a
function. Our way to solve the resulting functional problem does not depend
on sampling, data for us remain functions, till the solution of the problem.
After that, we will improve the Lasso to take care of a special condition
arising in Functional Regression which can not be easily appreciated in the
multivariate case. We called the resulting post hoc technique the Shaked
Lasso.

In Chapter 3 we will introduce a Random Walk test for Functional Autore-
gressive Processes of order One. We saw in a classical autoregressive
processes of order one the current state is represented by a number xt,
the nearest future state by another number xt+1 and they are related by
Equation 1.28. In the functional case the current and the nearest future
state are both functions and, as far as we could establish, our work is the
first one to test the Random Walk hypothesis under this condition.

In Chapter 4 we will stress some conclusions of our research and point out
some possible directions for future work. Finally, in the Appendix can be
found the detailed results of our simulations.
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Chapter 2

The Shaken Functional Lasso
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2.1 Introduction

In this chapter we describe a variable selection method for functional regres-
sion that we call The Shaken Functional Lasso (for short Shaken Lasso
or also SLasso). The development of the method was motivated by the
following problem we had at hand. Given a set of car accidents in which
one car is standing still and the other runs it over, we know the speed of
the two cars just before and after the impact and their respective length,
weight, height and width. We want to establish which factors are important
in modeling the speed of the struck car just after the impact . This practical
problem and its implications will be discussed in detail in Section.2.4. In
the following we will give an overview of the variable selection problem in
Functional Regression, then we will introduce our computation methodology
for the Functional Lasso and our post hoc decision strategy to improve the
Lasso which we call the Shaked Lasso. An extensive simulation study to
support the method validity presented in Section.2.3.

We have seen in Section 1.2 the fundamentals of classic Linear Regression
and many ways to perform variable selection. In the functional case, there
are three different types of linear regression, depending on where the func-
tional objects are located: in the response, in the regressor(s) or in both
terms.

1) Yi(t)=

∫
ψ(t, s)Xi(s) ds+ εi(t) (Fully Functional Model)

2) Yi=

∫
ψ(s)Xi(s) ds+ εi (ScalarResponseModel)

3) Yi(t)= ψ(t)xi+ εi(t) (Functional ResponseModel)

An introduction to the three kind functional regression is available
in [Ramsay and Silverman, 2005, ch.12-16], a recent compact
review can be found in [Horváth and Kokoszka, 2012, ch.8] and in
[Ferraty and Romain, 2011, ch.1-2]. The three kinds of regression rise dif-
ferent problems and require different treatment. We will consider here only
the case of Functional Response and Scalar Regressors.

The case of Scalar Regressors and Functional Response is, in some sense,
more troublesome than others because it requires to control a function by a
set of scalar valued regressors that are lower dimensional, less informative,
objects. The error terms εi are in this context functions εi(t) and therefore
we can not apply familiar distributional properties. Finally, the results of
our models will be functions. To understand if they are interesting we have
to compare them with other output functions, that is, we have to compare
plots.
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We are going to study models with several variables, of type

Yi(t) = β0(t)+ β1(t)Xi,1+ ···+ βJ(t)Xi,J + ε
i
(t) i=1...I . (2.1)

Our objective is to establish which of the βi(t) are useful and which can
be considered null. Equivalently, we want to establish which regressor Xi

influence Yi(t) and which ones do not. We will call an influential Xi as
active/useful regressor and its associated βi(t) an active (or useful , or non
null) coefficient. We would like to discard as many regressors as possible
because a smaller model is easier to interpret than a large one and also,
because reducing the number of variables in general reduces the variance of
the estimator and prevents overfitting.

Estimating the parameters βj(t) can be done in principle by Least Squares,

β̂0... β̂J := Argmin
β0(t)...βj(t)

∑
i=1

I
∥∥∥∥∥∥Yi(t)− β0(t)−

∑
j=1

J

βj(t)Xi, j

∥∥∥∥∥∥
2

, (2.2)

βi(t) are constrained to some functions space we will describe later. After
estimation, we want to establish which β̂j(t) to consider zero. Looking back
the methods we have seen in 1.2 we face now some difficulties which make
many of them not directly available.

1. Empirical Variable Selection. It is more difficult now to establish
if a parameter βj is “small” because here βj is a function βj(t). Thus,
it can be small for a large part of the domain, and then not so small
in the remaining part.

2.APM. It is still available if coupled with cross validation as a mea-
sure of performance of each single model. The problem is that it is
very inefficient in general.

3. Classical Methods. Based on Student t or F distribution are not
available because they require εi to be Normal, in our case not only
εi is non Normal, it is a function.

4. Forward/Backward Stepwise. Being based usually on Radj
2 , BIC,

or AIC to compare each model to the one at the next step they can
not be used directly without assuming normality, or other distribu-
tional properties of εi.

5. Based on Principal Components. These methods are in principle
available because we can use FPCA as defined in 1.1.5.2, but they
have a drawback: they mix all the regressors making the interpreta-
tion difficult.
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As we have see in the previous list, the fact that εi are functions is the
major cause of difficulties but there is a way to cut off the problem of the
functional error and it is to consider our Functional Regression pointwise
as an (infinite) sequence of scalar regressions, let’s call this strategy the
the pointwise loophole. In such a way, provided the εj(t) be realization
of Gaussian process, we can assume Normality for εj(ti) at all times ti.
This method is followed in [Ramsay and Silverman, 2005, ch.12-13] but, as
the authors recognize in Section.13.5.3, it should be handled with care.
The method is indeed powerful and has the great benefit of reducing the
problem to known methodologies but, on the other side, each test is made
independently on every time point ti and this contrast with our idea that
data are coming from smooth functions, which implies the {εj(ti)}i can
not be independent. Under the shadow cast by this contradiction, we tried
to look for a different solution and, more in general, to work always on
functions. After we smooth a dataset, we work with the function basis
coefficients, we don’t go back to point by point arguments.

A solution based on Confidence Intervals. The first idea we tried was
to establish a 90% (or 95%) confidence band for each βi(t) and then, if the
confidence band contains always zero (the X-axis) we should consider the
parameter βi(t) zero. To get a confidence band, first of all we replicate the
estimation of βi(t) via Bootstrap and then, we consider as 90% confidence
interval the MinMax band of the 90% deepest curves in the set. The depth
function we use is the one defined in [López-Pintado and Romo, 2009]. A
result of the process can be seen in Fig.2.1, the part in green is the MinMax
band of the 90% deepest curves. Details on the model and the plot can be
found in Appendix B.1.

Figure 2.1. A 90% confidence band for a parameter βi.
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This approach, even if pictorially impressive, was opening more questions
than providing answers. Indeed, as it can be seen from Fig.2.1, it can happen
that the 90% confidence band will envelop the X-axis without containing
it fully. We speculated about considering the parameter null if it contains
the X-axis 90% percent of the time. That idea was not further investigated
because, if the peak at t≈ 0.1 becomes high enough, we should discard the
hypothesis of null βi(t) in any case. In conclusion, we thought to abandon
the method in favor of something more robust and possibly giving a direct
answer to a simple question: “Can we discard the βi(t) parameter?”.

At this stage Lasso came into play. It was chosen because its working does
not depend upon the distribution of εi. Starting from its definition in mul-
tivariate regression

β̄0
(λ)

... β̄J
(λ)

=Argmin
β0...βJ

∑
i=1

I
⎛
⎝Yi−

∑
j=0

J

βjXi, j

⎞
⎠
2

+λ ·
∑
j=1

J

|βj |, (2.3)

we adapt it to our case of functional regression and the optimization problem
becomes

{β̄j(λ)(t)}j= Argmin
β0(t)...βJ(t)

∑
i=1

I ∫
a

b

⎛
⎝Yi(t)−

∑
j=0

J

βj(t)Xi, j

⎞
⎠
2

d t+λ ·
∑
j=1

J

|| βj(t)||1 (2.4)

Then, as usual, changing λ we find the value λ̄ that minimizes the cross
validation error and finally call β̄j the Lasso estimators for βj ( β̄j =

d
β̄j
(λ̄)

for all j ).

The {β0(t), ..., βJ(t)} live in some function space to be chosen and for us
it will be the linear combinations of BSpline basis function. The 1-norm
is defined, as usual, as || βj(t)||1=d

∫
a

b |βj(t)| dt. The last addend in (2.4)
involves the integration of absolute values, therefore obtaining a direct ana-
lytic solution of the optimization problem is not trivial. In Section.2.2 we will
see how to replace the penalization term

∑
j=1
J || βj(t)||1 with

∑
j,k |bj,k |

where bj,k are the coordinates of βj(t) respect to some functional BSpline
basis functions B. All of the problem will be reduced to an optimization on
scalar values by algebraic transformations, without sampling, this is the first
original contribution of our work.

The Lasso, or L1 regularization, has been already approached in Func-
tional Regression during the last years, even if not performed in the same
way we are doing here. In [Matsui and Konishi, 2011] it is applied for vari-
able selection to a functional regression with functional predictors and
scalar response using Gaussian basis functions. In [Hong and Lian, 2011],
the Lasso method is applied to a functional regression with functional pre-
dictors and functional response. In this case βj are scalars and functions
are sampled on arbitrary grids to reduce the problem to a numerical solv-
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able one. In [Zhao et al., 2012] the response is scalar, there is only one
functional variable to estimate, the basis is Wavelet and Lasso is used to
set to zero as many coefficients as possible in the Wavelet basis.

Lasso, in general, performs well even in Functional Regression but it is
not immune to the situation illustrated in Fig.2.1. That is, it happens fre-
quently that it shrinks βi(t) to zero almost everywhere, except for some
isolated parts of the domain. In these cases we do what we call “shake
the Lasso”. Basically, we move a bit the parameter λ from its optimal2.1

value λ̄ and observe the change in shape of the estimated βi(t). Under this
variation, parameters associated to active/inactive regressors tend to have
a characteristic behaviour which makes them recognizable. We will see in
Section.2.3.0.6 that this behaviour permits us to solve systematically many
of the uncertain cases left open by Functional Lasso. This is the second
original contribution of our work and will be called in the next section Rule
2 . This name emphasizes the fact that it can be applied after the Functional
Lasso.

2.2 Methodology

Problem (2.4) is a functional problem that could be difficult or very tedious
to solve analytically. To be able to compute numerically the β̄j

(λ)(t) we
choose a basis function B = {φ0(t), ..., φK(t)} and express all functions
in (2.4) as a linear combination of the basis. For example, the response
variables become Yi(t) =

∑
k=0
K ai,k φk(t) and beta parameters become

βj(t)=
∑

k=0
K bj,k φk(t). It has to be stressed that coefficients ai,k are known

real numbers because Yi(t) are known functions. On the contrary, bj,k are
unknown reals since βj(t) are unknown functional parameters to be esti-
mated. We will estimate the values bj,k solving the following optimization

problem and denote the estimates as b̄j,k
(λ).

{b̄j,k(λ)}j,k =Argmin
bj,k

∑
i=1

I ∫
a

b

⎛
⎝∑
k=0

K

ai,kφk(t)−
∑
j=0

J

(
∑
k=0

K

bj,k φk(t))Xi, j

⎞
⎠
2

d t+

+λ ·
∑
j=1

J ∫
a

b
∣∣∣∣∣
∑
k=0

K

bj,k φk(t)

∣∣∣∣∣ d t.
(2.5)

The first part of the optimization function, the sum of integrals of a square,
reduces algebraically to a quadratic form on variables bj,k but the remaining
part can not be easily simplified without further informations. To overcome
this difficulty we resort to a BSpline property, citing DeBoor “B-Spline coef-
ficients model the function they represent.” , see [De Boor, 2001], Example
IX.2. The property is illustrated by an example in Fig. 2.2. If we suppose
we are using a cubic spline with knots {t0, t1, ... tn} on the domain [a, b]

2.1. Optimal value of λ, in the sense that it minimizes the cross validation error.
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where2.2 t0= t1= t2= t3=0 and tn= tn−1= tn−2= tn−3=1. For all other ti
we set Δ := ti+1− ti then, for each j

∫
a

b
∣∣∣∣∣
∑
k=0

K

bj,k φk(t)

∣∣∣∣∣ d t =|| βj(t)||1=
∫
a

b

|βj(t)| d t

≈
∑
i=3

n−4
|βj(ti)| ·Δ (Riemann Integral)

≈Δ ·
∑
k=1

K−2
|bj,k | ≤Δ ·

∑
k

|bj,k | (BSplines Property).

(2.6)

The Δ value can be removed because it would only rescale λ (see Eq. 2.5 ).
We finally get the objective function:

{b̄j,k(λ)}=Argmin
bj,k

(
Quadratic(bj,k) +λ ·

∑
j,k

|bj,k |
)
. (2.7)

Fixing λ � 0 we can easily compute (2.7) because it is now a numerical
convex optimization problem for which there are specialized solvers as CVX
[Grant and Boyd, 2011, Grant and Boyd, 2008]. The problem being convex
ensures solutions b̄j,k

(λ) to be unique2.3.

Figure 2.2. A function f(x) = 2 + x + Sin(10 · x) in [0, 1] has been plotted in blue,
it has been sampled in 101 points xi = i · 0.01 for i = 0, ..., 100 and finally fitted by an
order 3 BSplines with 17 knots K= {0, 0, 0, 0, 0.1, 0.2, ..., 0.8, 0.9, 1, 1, 1, 1}. The initial
and final repeating values are needed for f(x) non periodicity. The BSpline functions
basis is composed of 13 elements {β0(t), ..., β12(t)}, in that basis f(x) is represented as∑

i=0
12 bi βi(t). The red points have coordinates {(0.1 · (i− 1), bi)}i=1 ...11 and lay all tight

around the function graph. We could include extreme basis coefficients by averaging.

2.2. These cumbersome conditions are necessary to get a proper behaviour from the
BSpline on the domain borders {0, 1}.
2.3. Actually, strict convexity would ensure uniqueness of the point of minimum.
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Till now we have shown how to get a numerical solution to the Functional
Lasso when basis functions are BSpline. Our proposed method for variable
selection is composed of two steps, the first one is basically the Lasso, the
second is a graphical criterion that might be applied when Lasso fails to give
a secure answer. Being the criterion of graphic nature it is best introduced
by examples than by abstract statements. In this section we will show two
examples. The first one illustrates and motivates all of the test practice.
The second example explores what happens in the very special case when
no variable is null.

2.2.0.3 First Example

A data set is made of 30 functional observations built as follows:

s1. Generate 6 regressors as 6 vectors of 30 random values: Xi, j∼N(0, 5
√

),
i=1 ... 30, j=1 ... 6.2.4

s2. Define three functions βj(t), t∈ [0, 1], j=0, 1, 2 as

⎧⎪⎨
⎪⎩
β0= 30 t (1− t)3/2
β1= 10 (t− 0.6)2+1
β2=S i n (4π t)− 2.

(2.8)

s3. Define 30 error functions εi(t) in t ∈ [0, 1] by generating 101 random
points Pk and then joining them continuously with a linear interpo-
lation. Pk := (xk, yk), xk :=

1

100 k, yk∼Normal(0, σ = 0.8) for k = 0,

1, ..., 100. The value σ=0.8 is arbitrary but appears to be reasonably
sized (see Figure 2.4).

s4. Generate 30 functional response variables as

yi(t) = β0(t)+ β1(t)Xi,1+ β2(t)Xi,2+ εi(t) i=1, ..., 30. (2.9)

s5. Get the discrete representation of the response variables as: Yi, j= yi(tj),
tj =

1

100 j, j = 0, 1, ..., 100. From this point on, consider cleared
the variables yi(t), we need them to denote other objects. For a
representation of yi(t) and Yi see Figure 2.3.

2.4. Normal distributions will be always written as N(μ, σ) in this chapter.
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Figure 2.3. Generation of an artificial data set Yi, j by known functional para-
meters {β0(t), β1(t), β2(t)}. The first plot, on the left, represents the set fi(t) =
β0(t) + β1(t) Xi,1 + β2(t) Xi,2, the second displays yi(t) = fi(t) + εi(t) and the
third one finally all Yi, j. It should not surprise too much that there is a line far
from the others, it happened that some of the Xi, j was large, it is X12,2≈−7.6,
it lays between 3 σ and 4 σ from the mean(Xi, j)=0. The probability of obtaining
always values smaller than 3σ for all the 180 Xi, j is approximately 60%,we were
on the other 40% side.

Figure 2.4. Initial parameters {βj(t)}j=0,1,2 and a realization of the error
function εi(t).

At this point we have a data set (Yi, j , Xi,1, Xi,2, Xi,3, Xi,4, Xi,5, Xi,6)
where i = 1 , ... , 30, j = 0 , ... , 100. We forget now we know how this data
has been generated. To improve readability we will use a vector notation to
denote the discrete response variables. Yi will be a vector of 101 elements
whose k-th element is Yi,k. We want to explain the response variable Yi

by mean of a functional linear regression model with functional response
and scalar covariates {Xi,1, Xi,2, Xi,3, Xi,4, Xi,5, Xi,6}. A well performing
method will recognize that useful regressors are only {Xi,1, Xi,2} and will
find the estimated parameters β̃0(t), β̃1(t), β̃2(t)2.5 to be close to the original
parameters β0(t), β1(t), β2(t).

As required to apply our functional regression we transform the response
variables Yi into functions. One way to do this is to fit eachYi with a func-
tion in some predefined functions space. The choice of the functions space

2.5. β̃j(t) denotes the estimation of a parameter βj(t) by somemethod left to determine.
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is in part arbitrary, [Ramsay and Silverman, 2005, Ch.3] presents some clas-
sical basis functions and some rules of thumb to choose between them. In
this case we choose order three BSpline basis functions with ten equally
spaced internal knots more three equal knots at points 0 and 1, beginning
and end of functions domain. The equal values at the ends are required to
reduce smoothness at the domain borders.

K= {0, 0, 0, 0, 0.1, 0.2, ..., 0.8, 0.9, 1, 1, 1, 1} (2.10)

The knots sequence has been chosen by trading off simplicity and effective-
ness. Other ways to place the knots are surely possible. A cross validation
could be used to determine, in some sense, the optimal number of knots,
but the amount of smoothness required for each case study remains largely
dependent on the eye of the modeler [Faraway, 1997]. Using the knots
sequence K we obtain a 13 element cubic BSpline basis functions B={φ0(t),
φ1(t), ... φ12(t)}, we compute them with Mathematica 8.0 BSplineBasis
built-in command. An introduction to symbolic BSplines manipulation with
Mathematica can be found in [Iglesias et al., 2007]. The analysis proceeds
as follows:

s6. We standardize2.6 all variables. Standardized regressors will be denoted
with XSj and computed naturally as:

XSj :=Standardize((X1,j,X2,j, ...X30,j)) , for j ∈{1, ..., 6}, (2.11)

response variables Yi are standardized all together as:

Standardize((Y1,0, ..., Y1,100, Y2,0, ..., Y2,100, ..., Y30,0, ..., Y30,100)), (2.12)

their standardized versions are denoted YSi.

s7. Fit each YSi to a function yi(t) in the function space determined by B
minimizing the squared error.

s8. Set XS0 to be a length 30, vector of ones and and define a linear model
Mi(t) to explain each of yi(t) as Mi(t) :=

∑
j=0
6 βj(t) ·XSi, j, XSi, j

is the i-th element in vector XSj.

s9. A solution in this context is an estimation of the βj(t) parameters giving
a best fit to the data. We find here two kinds of solutions and compare
them, the common least squares solution and the new functional lasso

2.6. Variables standardization is required also in the unfunctional Lasso. Since Lasso
drops parameters looking at their magnitudes, tomake a meaningful comparison between
parameters laying potentially on very different scales it is necessary to standardize them
all.
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solution, each of them will be denoted respectively as LS and FL.
Parameters that are LS solution will be denoted as β̂j(t), FL solution
will be denoted as β̄j(t).

{β̂j}j=0,...,6 := Argmin
{βj}j=0...6

∑
i=1

30 ∫
0

1

(yi(t)−Mi(t))2

{β̄j(λ)}j=0,...,6 := Argmin
{βj}j=0...6

∑
i=1

30 ∫
0

1

(yi(t)−Mi(t))2+λ ·
∑

j=1...6

|| βj(t)||1

(2.13)

s10. Observe explicitly that β̂j = β̄j
(0). We are going to reduce the sum

of integrals to a quadratic form in bj,k by means of Mathematica
computer algebra capabilities. Reduce

∑ || βj(t)||1 to
∑ |bj,k | as

illustrated in the previous section and solve the resulting uncon-
strained convex optimization problem

Argmin
bj,k

(
Quadratic(bj,k)+λ

∑
|bj,k |

)

by Matlab CVX package. The part that takes more time is the alge-
braic reduction of integrals, more or less half an hour with a mid-
range laptop, the optimization part is faster and takes around a
minute.

s11. We compute β̄j
(λ) for many values of λ and look for the value λ̄ that

minimizes the five-out cross validation error. Once found, we define
the FL parameters as β̄j(t) := β̄j

(λ̄) for j=0, ... , 6.

The estimated parameters computed by least squares (β̂j(t)) and by the
Functional Lasso (β̄j(t)) can be seen in Figure 2.5 and Figure 2.6. In Figure
2.5 there is a direct comparison between β̂j(t) (in dashed red stroke) and
β̄j(t) (in full black) for each j. It can be seen that Lasso shrinks all spurious
parameters {β3(t), ..., β6(t)} to zero while ordinary least squares keep them
fluctuating around the x-axis without annihilating them. It is exactly the
same thing that happens in ordinary multiple regression. The difference here
is that, instead of scalars, whole functional parameters are set to zero. It is
much easier to decide which is a useless regressor using Lasso solution. The
shape of estimated {β0, β1, β2} are similar to their original values for both
methods, only at domain borders there is a little discrepancy. The cross
validation is minimal for the Lasso solutions, we shrunk the parameters but
we actually improved the performance of the model. We must stress that
parameter selection in this case has been very easy since some of them have
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been completely shut down to zero. In general, it will not always be so clear,
therefore we set a formal rule to decide if a parameter has to be dropped
applying only the Functional Lasso.

Rule 1. Rule of magnitude. We consider a regressor variable Xj spu-
rious, or not effective, if its associated functional parameter is too small
in magnitude: max

t∈[0,1]
|βj(t)|≤ 0.01. This rule is a conservative extension to

the functional context of the one implicitly used in [Tibshirani, 1996]. It
makes sense only when variables are standardized or transformed to lay
near zero. Parameter 0.01 is arbitrary.

Figure 2.5. The first two plots starting from the top left corner show the cross
validation error as a function of λ, it can be seen it reaches aminimumat λ≈0.18.
The remaining plots compare the least square versus the Lasso estimation of all
parameters βj(t). Least squares estimations are drawn in dashed red lines, Lasso
in thick black. It is evident how lasso shrunk to zero all the spurious parameters
β3(t), ..., β6(t).

In Figure 2.6 the parameter shrinkage process is shown. We change the
penalization term λ in the interval [0, 0.02] and observe how parameters
do change. It is manifest that spurious parameters change a lot. On the
contrary, effective parameters remain almost unvaried. In this case we know
in advance which parameter should be dropped but, in general, this could
be a useful explorative technique to decide if a parameter has to be retained
or dropped. If, increasing λ, some parameters change far more than others
then these parameters are likely spurious parameters.
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Rule 2. Rule of inertia.When the Functional Lasso shrinks a set of
parameters near to zero but not enough to make them satisfy Rule 1, then
we consider them candidate null . To establish if these parameters are to
be considered null we increase the penalization term λ. If on increasing λ
the candidate null parameters are the only ones to change shape and to
further shrink toward zero then we conclude they are definitely null.

The result synthesised in the last Rule of inertia has been observed during
experimentation with different linear models and error function realizations.
In this chapter it can be seen applied on the real data set, see Fig. 2.17, and in
about half of the systematic simulations described in Section 2.3, The Rule
of Inertia, is the distinguishing feature of the Shaken Functional Lasso.

Figure 2.6. Effect of the penalization term λ on the size and shape of functional
Lasso parameters β̄j(t). Here λ takes values in the arithmetic sequence from 0 to
0.02 with 0.002 step. As we can see the effective parameters {β0, β1, β2} are far
less sensitive to λ changes respect to spurious ones {β3, β4, β5, β6}. This can be
considered a valuable explorative tool when it is unsure if a parameter should be
discarded looking only at its magnitude.

Rule 2 is phenomenological, it has been discovered by experiments and by
now we don’t have a thoretical support for it. In any case, let’s consider
what we have. Rule 2 runs after Rule 1, so after the best parameters (λ̄,
{β̄i}i) have been determined according to L1 penalty and the cross valida-
tion score. Cross validation takes into account only predictive power, not
model parsimony. Increasing a bit the value λ respect to λ̄ we are willing to
sacrifice small quantum of predictive power in favour of model simplicity. If
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increasing λ all the change is on shrinking some parameters βi which were
already very small at λ̄ and only locally outside the zero band [−0.01, 0.01],
then, we conclude those parameter should be definitely set to zero. Indeed,
if all the increase in penalization discharge only on a few small parameters
we conclude they were locally non null not to fit a global behaviour of the
data, but a transient one. We have a strong evidence that those localized
humps were filled to fit some noise.

2.2.0.4 Second Example

What happens if there are not spurious regressors? Does Lasso try to drop
the useful ones? The answer is no. In case all parameters are useful, Lasso
selects all of them and reduces to the LS solution. An example can be given
using the same method of the previous simulation with a few changes.

• Define four functions βj(t), t∈ [0, 1], j=0, 1, 2, 3, as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β0= 30 t (1− t)3/2
β1= 10 (t− 0.6)2+1
β2= Sin (4π t)− 2
β3=Cos (4π t+ 0.5)+ 1.

(2.14)

• Generate 30 functional response variables depending on three regres-
sors,

yi(t)= β0(t)+ β1(t)Xi,1+β2(t)Xi,2+ β3(t)Xi,3+εi(t) i=1...30 (2.15)

• Reduce functions yi(t) to numerical observations Yi by sampling,
then standardize Yi and Xi, j regressors.

• Apply the Functional Lasso technique to the data set (Yi,Xi,1,Xi,2,
Xi,3) for i = 1, ... , 30. Observe this time we have exactly the same
regressors we used in the model. If the technique performs well it has
to recognize that all regressors are useful and rebuild the parameters
β0(t), ... , β3(t) as best as possible.

The cross validation error is represented in Figure 2.7. It is monotonically
increasing as λ increases and the minimum is at λ= 0. Then, the solution
reduces to least squares. βj(t) shapes are correctly estimated, as can be seen
in Figure 2.8. Their differences in scale are a consequence of standardization.
This result has occurred repeatedly in our experiments, so we conjecture the
result holds in general and spell it as a rule.
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Rule 3. Reduction to LS. In case there will be no regressors to drop
Lasso method will choose, as best λ, the value λ̄=0 and FL solution will
reduce to the LS solution.

Figure 2.7. Cross validation error for the data set with 3 active regressors. The
error is monotone increasing and has minimum in λ=0.

Figure 2.8. On the left there are original βj(t) parameters. On the right their
estimation β̂j(t) on standardized data.

2.3 Simulation Study

To consolidate our belief that the Shaken Functional Lasso is performing well
in selecting variables we carried out a set of more than forty simulations.
Each simulation ends with a graphical report similar to Fig.2.5 which needs
to be scrutinized by the statistician. Sometimes it is immediate to under-
stand which regressors to select, one needs to apply only Rule 1. In such
cases the regular Functional Lasso solves the problem. In other occasions
the choice is more complex because Rule 1 is violated in some subset of the
domain. In such cases, Rule 2 is helpful in forming a conclusive decision,
in other words here we apply the Shaken Lasso. Indeed, Rule 1 looks only
at the magnitude of the estimated β̂j(t) while Rule 2 takes into account the
fluctuations of β̂j(t) on changing the value of the penalization term λ.
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In Functional Regression, there are many details that could in principle
influence the final estimated β̂j. The basis functions, the number of basis
functions, for BSplines, the placement of knots, the stochastic nature of
the error term and its variance, the number of regressors, the number of
active regressors, the number of observations, the cross validation scheme,
... A choice must be made. We choose to maintain the simulation scheme
as in Section 2.2.0.3, from there a few characteristic values are modified,
in particular: the error nature, the error variance, the number of active
regressors and the values of βj(t). The following list details which changes
are made respect to the procedure decribed previously at points s1-s11.

m1. (change respect to previous point s1) The errors are not anymore
fixed White Noise on Normal(0, 0.08). We keep the White Noise
structure but the independent variable can be N(0, σ= 0.5), N(0,1),
N(0,2), N(0,3), Student t6 or t4. With this we will see if increasing the
noise and the frequency of extreme values affect the variable selection
procedure.

m2. (change to s1) The number of total regressors entering the regression is
kept fix to 6 but, the number of good/active regressors can be one of
{0, 2, 5, 6}. With this variations we establish if the method performs
well where (1) there is not a good variable to select, it is all noise (2)
some variables are good, some are not, the most frequent scenario (3)
only one variable can fit noise (4) all variables are good, in principle
there is nothing to shrink.

m3. (change in s2) When the good regressors are 2, they can be the ones
defined in s2 or also these⎧⎨

⎩
β0= Sin(2π t)
β1=3 t+ Sin(4π t+1)
β2= Sin(4π t)− 2

.

m4. When there are 5 good regressors then {β0, β1, β2} are defined as in
s1, the others are ⎧⎨

⎩
β3= Sin(2π t)
β4=3 t+ Sin(4π t+1)
β5= 10 |t− 0.5| − 3

.

m5. When there are 6 good regressors then all betas are equal to the one
defined in m4 and more, β6=4 Sinc(8π (t− 0.5)).

2.3.0.5 Simulations Diagram

All simulations are placed in the Appendix with a table summarizing the
steps peformed for the analysis, an useful overview of all of them can be
seen here in Figure 2.9. Each simulation has an identifier code that is an
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integer number between one and sixty, there are in total 41 simulations.
The leaves of the three in Figure 2.9 are the simulations codes, the names in
the middle of the trees describe the characteristic of each simulation. The
first level of the tree contains the codes “GR:0/6”, “GR:2/6”, etc. they mean
that on a total of 6 regressors, zero are good/active, 2 are active, etc. The
following level describes the error type which is always White Noise but
can be made with Normal(0, σ) or Student tν i.i.d random variables. Then,
if necessary the value of σ is specified. Finally, the code “β2” means that
instead of using βj(t) as defined in Section 2.2.0.3 point s2, we are using the
ones defined in Section 2.3 point m3. If two experiments are build with the
same charateristic values then they differ in the random seed. For example
experiments 14 and 18 differ only in the random seed which, as it can be
seen in the page of each experiment report in the Appendix, is 123 for case
14, and 1231 for case 18.

For example, in simulation coded “22” there are 0 active regressors and the
error is White Noise with N(0, σ = 0.5). Simulation number “19” is made
with 2 active regressors, the error is White Noise with N(0, σ =2) and the
beta set is the one defined in m3.

Figure 2.9. Diagram of all the simulations. “GR:x/6” is a shortcut for x-active
regressors on a total of 6 regressors. “wn(σ)” stands for Gaussian white noise
N(0, σ), with σ to be specified in the lower level of the tree. “wn(tν)” stands for
White Noise with iid Student tν random variables. “β2” means the true values of
βj(t) are the one defined in Section 2.3 at point m3.
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2.3.0.6 Simulations Analysis

The simulation produced four kinds of output. They are marked in dif-
ferent color in Figure.2.10. In green there are all cases in which the regular
Functional Lasso was enough to decide if all regressors are active or not. In
another way, we can say these cases can be decided using only Rule 1. For
example, case 2, β̂3, ..., β̂6 as shrunk fully to zero, and β̂1, β̂2 are always
outside the zero barrier [−0.01, 0.01], in all the domain, we concludeX3, ...,
X6 are non active without difficulty. Case 1 is a bit more difficult, this
time β̂3, ..., β̂6 are not complete zeros as before, but they are inside the zero
barrier in all the domain so, by Rule 1, they are null.

In yellow are marked all cases in which Rule 1 was not enough, some para-
meter β̂j was always near to zero, but escaping the [−0.01, 0.01] barrier in
some part of the domain. In these cases we shake the Lasso and apply Rule
2, we move the parameter λ and observe what happens to the estimated β̂j.
If the parameters β̂j that we are doubting to set to zero fluctuate visibly
more than the others then we conclude they are inactive parameters which
we can definitely set to zero. For example, case 20, here β̂3, ..., β̂6 are
inside [−0.01, 0.01] most of the time but not always, we suspect they are
associated to inactive regressors. To prove it, we shake the λ and see that
only these parameters fluctuate and they tend to enter [−0.01, 0.01] barrier
so, we conclude they are indeed associated to inactive regressors and they
are simply fitting noise. Observe that, in each case study, on the top of the
page it is specified how λ was pushed, in this case we moved from 0.05 to
0.08 by 0.01 steps.

In orange are marked two cases in which it is quite hard to doubt Lasso
found a good solution, the only remark here is that the cross validation error
is non smooth. In these occasions is better to change the cross validation
train/test set ratio in order to obtain continuity. It was not done because
we wanted to keep the analysis procedure uniform over all the experiments.

Finally, in red there is only one element, case 35, we suspect β̂6 could be
zero and we apply Rule 2. We see that increasing λ, β̂6 tends to enter the
[−0.01, 0.01] barrier but there is a problem, also β̂3, β̂2, β̂5, are starting to
fluctuate and these are very far from being null parameters. We could say
that the relative variation of β̂6 is far stronger than in the other parameters,
in any case, this experiment result is less clean than the others and can not
be considered solved after Rule 2.
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Figure 2.10. In green the cases that could be solved applying only Rule 1, that
is simply Lasso. In yellow the cases that to be decided needed the use of Rule 2,
that is the Shaked Lasso, in orange, cases with non smooth cross validation error,
in red finally a more difficult case.

Observing Figure 2.10 we see that the Shaked Lasso helped resolving more
then half of all the experiments which were closed with some degree of
ambiguity by the Lasso.

2.4 Case Study: Low Speed Car Accidents and
Whiplash Injury

In this section we are going to use the Shaken Functional Lasso to model
the velocity of an impacted car in a low speed accident. This study is part
of a larger project for the understanding and control of whiplash injury risk.

Whiplash injury is very common, its incidence is about 4 per 1000 persons.
It happens when sudden acceleration-deceleration forces are applied to the
neck and the upper trunk. The term “whiplash” was introduced in 1928.
Before, the injury was referred to as “railway spine” since the most frequent
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cause of it were train accidents. Nowadays, the most frequent cause are car
accidents. Victims are usually sitting in a car standing still when another
car hits it in the back. Whiplash injuries are usually not life threatening
but they are common, expensive and can give long term consequences. It
has been estimated that the U.S. annual economic cost related to whiplash
is $3.9 billion, including medical care, sick leave and lost work productivity.
Taking into account also litigation costs the number rises to $29 billion
[Eck and Hodges, 2001].

Whiplash risk is correlated with the impacted car speed variation and
its average acceleration [Kraft et al., 2011]. In the following we will try
to predict the impacted car speed function v(t). Half of the data base
we are using is publicly available, in raw form, at AGU 2.7 (Arbeitsgruppe
für Unfallmechanik). The other half comes from proprietary AXA2.8 doc-
umentation. AGU data contains high frequency speed and acceleration mea-
surements for a set of more than a hundred car accidents. For each car
in each crash we extracted some car characteristics from AXA documen-
tation resources as car weight, length, etc. A considerable amount of work
was needed to get the speed functions since they were originally just pic-
tures in pdf files.

From all the car accidents we selected a set of 25 that are particularly
homogeneous. In each selected accident there are two cars, A and B. Car B
is initially standing still. Car A is initially traveling at some known constant
low2.9 speed until it hits car B in its back. Cars A and B are perfectly
aligned: from the top view their symmetry axes lay on the same line. Car
B does not have the rear hook. For each car we have available the following
variables: initial speed (vi), weight (wei) , length (len), width (wid), height
(hei), and we know the speed, as a function of time, of car B after it has
been hit (v(B)(t)). Our aim is to model v(B)(t) for the first 0.2 seconds after
the impact.

The problem can be seen as functional linear regression. The response
variable v(B)(t) is functional and {vi, wei, len, wid , hei} are scalar regres-
sors. Instead of using directly these regressors, mechanic considerations
suggest we use their standardized differences {AviS, ΔweiS, ΔlenS, ΔwidS,
ΔheiS}. For example, ΔweiS is the standardized vector of differences in
weight between car B and A, ΔlenS is the standardized vector of length
differences and so on for all other variables. The only exception is AviS,
since Bvi is always zero, we only standardized car A speeds. Correlations
between regressors are shown in Table 2.1.

2.7. http://www.agu.ch

2.8. http://www.axa.es

2.9. Low speed here means a speed inferior to 30 Km/h.
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AviS ΔweiS ΔheiS ΔwidS ΔlenS
AviS 1.00 0.61 0.16 0.61 0.44
ΔweiS 0.61 1.00 0.16 0.87 0.81
ΔheiS 0.16 0.16 1.00 0.05 -0.23
ΔwidS 0.61 0.87 0.05 1.00 0.84
ΔlenS 0.44 0.81 -0.23 0.84 1.00

Table 2.1. Regressor correlations for the car speeds problem.

Each response variables vi
(B)

(t) is originally represented as a set of (x, y)
coordinates of varying length. We rescale the x coordinate to [0, 1] interval
and standardize respect to y. This means we standardize a curve speed
value respect to all 25 curve speed values. Then, we approximate each curve
points with a BSpline function minimizing the least square error. In Figure
2.11, plate (a) are represented the original car accelerations. In plate (b) car
velocities. Finally, in plate (c) the standardized BSplines smoothed veloci-
ties we will use in our functional regression. The BSpline basis is the same
used in the simulated data example, order 3 with equally spaced knots
sequence: K= {0,0, 0, 0, 0.1, 0.2, ..., 0.8, 0.9, 1,1,1,1}. The basis is chosen for
its simplicity.

Model 0. Using the procedure illustrated in the previous section we find
the best parameter estimation β̂0(t), ..., β̂5(t) for the linear model

vi(t) = β0(t)+ β1(t)AviS+β2(t)ΔweiS+ β3(t)ΔlenS+
β4(t)ΔwidS+ β5(t)ΔheiS+ εi(t) .

(2.16)

Compare two solutions, the ordinary one given by least squares (LS) with the
one provided by functional Lasso (FL). All solutions are obtained working
with an 11-out cross validation sample, almost half of the set. The first 11
curves of the set are left out and considered test set, see Figure 2.12 for
an illustration. The first FL solution we obtain is not practically useful
but interesting. Looking at Figure 2.13 we see that there is a minimum
in the cross validation error (λ≈ 0.82) but globally that minimum gives a
very small gain respect to larger values of λ. So, the prediction error is not
notably small compared to the one of a trivial model containing only β0(t).
In Figure 2.14 we can see parameters estimated by LS in dashed red and FL
in solid green. LS provided three large and fluctuating estimates, and two
small ones (ΔheiS and AviS). On the contrary, FL sets to zero all parameters
except ΔwidS. FL solution is already better respect to LS because it is more
compact, only one regressor has been selected and the cross validation error
is smaller. This solution is not very informative because the cross validation
error is very near to the one at λ → ∞ and last, but not least, the only
variable selected is ΔwidS, this clashes with our physical intuition.
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Figure 2.11. Acceleration and speed curves for car B, the struck car. Plate
(a) for accelerations, (b) for velocities and (c) for standardized and smoothed
velocities.

Figure 2.12. Cross validation “in” and “out” of the sample curves. Black curves
are used to estimatemodel parameters, red curves as the cross validation test set.
The outlier is “in”, it is in the train set, it is used to estimate parameters.
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Figure 2.13. Parameters of car speed problem with var Δw i d S estimated by
LS and FL. FL (green curves) annihilates all regressors estimated by LS (red
curves) excepted Δw i d S that is severely shrunk.

Figure 2.14. Parameters of car speed problem with var Δw i d S estimated by
LS and FL. FL (green curves) annihilates all regressors estimated by LS (red
curves) excepted Δw i d S that is severely shrunk.

Model 1. Looking at Table 2.1 it is easy to see what happened, ΔwidS is
highly correlated withΔweiS and ΔlenS. The weight, an expected dominant
variable in every dynamics problem has been shaded by another, linearly
correlated but much humbler. We prefer weight to be in our model respect to
width, so we annihilateΔwidS setting a constraint in the optimization phase:∑

k=0
12 |b5,k | ≤ 10-7. Then, we estimate again the LS and FL parameters.

From Figure 2.15 we observe at first how the cross validation error minimum
is now one order of magnitude deeper. The CV minimum at λ ≈ 0.50 is
better than LS (λ=0) and also better than the trivial model (λ→∞). Next,
observing Figure 2.16 we see that FL has dropped two variables, { ΔheiS,
ΔlenS } and shrunk the other two, {AviS, ΔweiS }. We can conclude that
FL solution is better than LS because it is simpler (it has fewer regressors)
and has stronger predictive power (smaller cross validation error). We may
suspect also AviS should be considered zero because it is zero in most of
the domain, to check this assumption we apply Rule 2, we Shake the Lasso
solution. The results can be seen in Fig.2.17, which shows all the history
of the parameters when moving λ from zero to λ ≈ 0.5. It is evident how
β̄3 and β̄5 change shape very fast and shrink to zero immediately where
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instead β̄1 and β̄2 oppose resistance to the shrinking and tend to maintain
their shape, indeed the gray lines are so near they seem a continuous surface.
In conclusion, we exclude that β1 and β2 could be zero.

Figure 2.15. Cross validation error for car accident problem, functional lasso
model without Δw i d S regressor.

Figure 2.16. Estimated parameters for car accident problem without regressor
ΔwidS. Red dashed curves are parameters estimated with least squares, green
ones are estimated with functional lasso.

Figure 2.17. Parameters shape and size changes increasing λ from 0 to 0.5
for the car accident problem without variable width. Color codes as used in the
previous plots.
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We can conclude that only two variables can’t be discarded if we take into
account all the data we have accumulated, the speed and weight of the two
cars. This is in agreement with the classical mechanics notion of momentum
and the law of conservation of mechanical energy. The estimated parameters
in Figure 2.16 display also that car A velocity has an influence in time only
between 0.2 and 0.4 (standardized time units) while Δwei is influential for
a much larger time period. The sign of AviS should not cause confusion, if
that variable would have been standardized as all others we would have had
std(Bvi − Avi) = std(−Avi) = −AviS so the function would have appeared
reversed and ultimately, more appealing to intuition. The large outlying
value is for a crash where car A was 650Kg heavier than car B. Consider an
average a car in Spain weights approximately 1250 Kg, a figure computed on
1200 whiplash accident cases closed by AXA in 2011. The two small outliers
have different characterizations. The one in which vB(t) decays in the right
part of the plot is for two cars with very similar weight (Δwei=21Kg), the
other is a case in which car B is far heavier than car A (588 Kg more). This
confirms (or implies) the parameters analysis in Figure 2.16, ΔweiS has a
durable impact, in time, on vB(t).

2.5 Conclusions

In this chapter we have presented a new method for variable selection in
functional regression with functional response and scalar regressors. The
method is an extension post hoc to the well known Lasso technique to the
functional case. We applied the SFL (Shaken Functional Lasso) to artificial
datasets as well as to a new real dataset. The results are very promising.
On the artificial data sets the SFL procedure closed all doubts about which
regressors should be dropped, FL alone gave a clean answer only to about
37% of the cases. The functional parameters estimated with FL have often
isolated non null humps that prevent to discard the parameter at first sight,
SFL helps in deciding which humps are fitting real data, and which are filled
with noise. Two phenomenological rules are defined to help a general process
of variable selection, Rule of magnitude , which is basically the standard
Lasso decision formula and Rule of inertia , that is the Shaken Lasso step.

As a real data set benchmark we studied low speed car accidents, a fre-
quent whiplash injury cause. We related the speed function of the struck
car to the initial difference in speed between the two cars, their weight,
their height, their width and length. Studying a set of 25 accidents we
can conclude that the only two variables can be considered significant, the
weight difference and the pre-impact speed difference. The weight difference
has a more durable and more incisive effect respect to the speed difference
in determining the stroke car speed function. The preponderance of the
mass respect to the speed can be maybe explained by the fact that we are
observing only low speed car accidents.
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The choice of BSpline basis gives many benefits. In functional data analysis
we suppose our data consists of noisy samples from some underlying, inac-
cessible functions. With BSplines we can roughly control these functions
variability, in their domain, while defining the knots sequence. They allow
the description of non periodic functions. BSpline coefficients approxi-
mate the fitted function values and this permitted us to approximate each
||βj(t)||1 with

∑
k bj,k that is, to solve a Lasso on functional objects by

a Lasso on scalars without sampling. Lastly, BSpline basis functions are
not orthogonal, this at first seems a negative characteristic but it is what
gives our estimators interpretability. Indeed, if many coefficients of a func-
tional object go to zero, then they tend to pull to zero all their neighbors,
that is all other coefficients of the same object.
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Chapter 3

A Random Walk Test
for Functional Time Series

3.1 Introduction

The transposition of Time Series techniques to the Functional Data context
is motivated by the same arguments as FDA in general: continuous nature
of the data, dimension reduction and, it is hoped, improvement in the pre-
dictive power of the model. Anyway, in Time Series, FDA can bring some
notable simplification in the models, we will show it with an example. Sup-
pose you are going to model the daily electricity consumption in a county,
the classic way to do it is to join a deterministic trend with a more or less
complex stochastic model, for example an ARIMA. One of the main difficul-
ties is that there are many important periodic factors to take into account
occurring in a year, for example all weekends but also special occasions as
Christmas, Easter and summer holidays. Every one of these special events
has to be separately taken into account and this make the model complex
and loaded with exceptions. One of the desiderata in using a Functional
Model is that it could be able to cope automatically with many of the
recurring periodic events. Indeed, if we model electricity consumption as a
function that cover one full year, the year-2 will take into account at least
what happened in the previous year, year-1, where all of the holidays and
weekends were already present so, in principle, we would not need to adjust
for many of the seasonalities. One exception to this scheme are moving
holidays, like Easter, that would need still manual correction.

The last ten years have seen a lot of advances in Functional Time Series
and Functional Autoregressive processes, both in theory and in applica-
tions. For example, [Horváth et al., 2010] proposed a method to check
if the model can be considered constant in time, [Battaglia, 2005] pro-
posed a method to identify outliers, [Kokoszka and Reimherr, 2013] a
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method to establish the order of an autoregressive process. In applica-
tions, [Damon and Guillas, 2002] used functional autoregressive process
for Ozone forecasting, [Besse et al., 2000] to forecast ocean temperatures,
[Guillas et al., 2011] to forecast the seabed evolution and maintain navi-
gability channels. As of today, [Bosq, 2000] is the de facto reference for the
theoretical aspects of Functional Autoregressive Processes while the recent
[Horváth and Kokoszka, 2012] collects many recent results and is directed
to the researcher as well as to the practitioner in FDA.

In this chapter, we present a Random Walk test for Functional Autore-
gressive Processes. As always in Functional Data, the first impulse is to
start by looking at what was done in the past to solve the unfunctional
problem. We have seen in Section.1.3.2 some methods to test the Random
Walk hypothesis, but all of them, in one way or another, try to estimate the
value ρ in Xn+1 = ρ Xn+εn+1. We choose not to follow this direct approach
in the functional context because here the ruling equation is Xn+1(t) =
ΨXn(t) + εn+1(t) and the available estimator for Ψ converges very slowly
and in an unexpected3.1 way, see [Horváth and Kokoszka, 2012, pg.240],
[Kokoszka and Zhang, 2010].

In the functional context, the model corresponding to the AR(1) seen in
sec.1.3.1 is Functional Autoregressive Process of order one, denoted for short
as FAR(1) and defined by

Xn+1(t)=Ψ(Xn)(t)+ εn+1(t), (3.1)

where Xi have mean zero. In the general setting of [Bosq, 2000], Xi(t) are
functions in an Hilbert space, Ψ is a bounded linear operator from H to H
and εn(t) are H-white noise. In this work we will restrict our attention to the
framework most used in applications, as in [Horváth and Kokoszka, 2012].
H will be L2[0,1], the space of functions in [0,1] which are square integrable
according to Lebesgue. The scalar product is the common <f , g> :=

∫
0

1
f g.

εi(t) are i.i.d. with E(εi(t)) = 0 and E (|| εi(t)||2) <∞ for all i. For Ψ, we
consider only integral operators of type

Ψ(f)(t)=

∫
0

1

ψ(t, s) f(s) d s, (3.2)

which are always linear and bounded if the kernel function ψ(t, s) is con-
tinuous. It might be useful to consider this operator as an integral average
of f respect to a set of functions ψt. These operators are not too restrictive
on what we can express, on the contrary, they are quite general. Indeed,

3.1. The estimator depends on principal components but increasing the number of prin-
cipal components reduces the performance of the estimator.
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quoting from [Gohberg et al., 1990, ch.7], they are like an universal model
for Hilbert-Schmidt3.2 operators because for each operator A:H→H there
exists a unitary operator U such that U A U−1 is an integral operator as
Eq.3.2.

We want to check if the dataset X1, ..., Xn, which we suppose was generated
by a process as Eq.3.1, can be considered a Random Walk. The idea is to
compare the covariance of the original data set {Xi}i with the covariance of
the same dataset resampled under the null hypothesis that Ψ is the Identity
operator.

In details, we start with a functional data set X1(t), ..., Xn(t) and com-
pute its first p ≤ n − 1 Empirical Functional Principal Components .
The EFPC are eigenfunctions and eigenvalues of the empirical covari-
ance operator and they will be denoted with with ( ξ̂i, λ̂i)i=1..p, see
[Ramsay and Silverman, 2005, ch.8]. It is known that, under mild condi-
tions, when n goes to infinity, λ̂i converges to λi, the eigenvalues of the
populational covariance operator, see [Horváth and Kokoszka, 2012, pg.31],
[Bosq, 2000, sec.4.2], [Dauxois et al., 1982].

The Schmidt Norm of an Hilbert-Schmidt operator A can be computed as

||A||S2 =
∑
j=1

∞
||Aφj ||2 , (3.3)

where φ1, φ2, ... is an orthonormal basis, see [Gohberg et al., 1990, pg.141-
143]. In our case A is the covariance operator KΨ and choosing as ortho-
normal basis its eigenfunctions given by PCA: ξ1, ξ2, ..., we get

||KΨ||S2 =
∑
j=1

∞
||KΨ ξj ||2=

∑
j=1

∞
||λi ξj ||2=

∑
i=1

∞
λi
2. (3.4)

In applications we will use λ̂i as estimator for λi so we will actually compute

||KΨ||S
2
but, using the aforementioned result of convergence and the conti-

nuity of the norm, for large values of n, ||KΨ||S
2
converges to ||KΨ||S2 .

Under the null hypothesis that the FAR(1) process is a Random Walk we
can estimate its innovations as

ε̂n+1(t) :=Xn+1(t)−Xn(t). (3.5)

3.2. An operator A on an Hilbert space is an Hilbert-Schmidt operator if it is linear,
continuous and such that

∑
i=1
∞ ||Aφi||2<∞ for an orthonormal basis φ1, φ2, ... . There

are also other equivalent definitions, see [Gohberg et al., 1990], pg.140.
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Resampling ε̂n(t) and applying again the null hypothesisH0 we can compute
B Bootstrap copies of the observations set {Xi(t)}i as

Xn+1
b,∗ (t) :=Xn

b,∗(t)+ εn+1
b,∗ (t), for b in 1 ... B. (3.6)

For each set of resampled observations {Xi
b,∗(t)}i we compute the estimated

Schmidt norm of its covariance (||KId ||S
b,∗
)2 through principal components

as done before. Then, build its empirical distribution E . Finally, we compute
||KΨ||S

2
for the original data set and reject the null hypothesis that Ψ is Id

if E(||KΨ||S
2
) is smaller than some predefined threshold α.

From the Bootstrap structure and the statistic involved it is apparent the
nature of the test is {

H0: Ψ= I d
H1: ||Ψ||< 1.

(3.7)

Indeed, if Ψ has norm one then there will be no reduction on the impact of
all old innovations εj≤i+1 onXi, soXi could grow very fast and consequently
also the covariance matrix and its eigenvalues, just as in the case of Ψ= I d.
This condition makes Ψ and Id indistinguishable to our test.

Further in this chapter, Section 2 contains a detailed description of how to
apply the test in practice. In Section 3 the Montecarlo simulation scheme,
Section 4 a brief guide on how to read the simulation results and an analysis
of them. Section 5 shows two applications to real datasets, we check for
Random Walk the series of yearly electricity consumption in France and
diary prices of Bitcoin. It also clarifies the procedure given in section 2 and
can be red just after it by the reader most interested in the test deployment.
In Section 6 there are the conclusions and finally in the Appendix are col-
lected the simulation results.

3.2 Test Procedure on a Real Dataset

Suppose our dataset comes as a matrix Mn,m where data to be considered
functions are the columns c1, ..., cm. We take for granted here that data are
already aligned and equispaced, techniques to make a dataset in this form
are discussed in [Ramsay and Silverman, 2005].

Before starting the Random Walk test, by our understanding of the real
phenomenon underlying the data, we check if there is a structure that can
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be considered deterministic and remove it applying a proper transformation.
Bosq suggests to remove trend but not seasonality, if the seasonality com-
ponent can be modeled through a FAR(1), see [Bosq, 2000, pg.152, 240].

Perhaps, to appreciate the importance of the previous step, the following
imaginary experiment can be of help. Suppose, you are studying the daily
phone calls functions in the Italian mobile telephone network. It is well
known to all Italian people, that on New Year’s Eve night the mobile network
collapses, and it becomes difficult to send the important “Happy new year!”
messages. This will happen every year, it is a deterministic structure and you
need to remove it because the FAR(1) model has no way to get it straight
since it looks only at what happened on the night before, that is on the
not so special night of December 30. On the contrary, suppose now you are
studying the yearly phone calls functions. In this case you should not, in
principle, adjust for New Year’s Eve because the previous year also contains
it.

To apply the Random Walk test the following steps must be performed.

1. Smooth the dataset fitting each column c1 ... cm to a base of your pref-
erence. We used BSpline and Fourier. The number of basis functions
is largely to be selected depending on the nature of the problem but
a good starting point could be n

√
. At the end of this step we will

have the set of functional observations X1(t), ... , Xm(t).

2. Choose a number of principal components you want to use for your
analysis. We suggest to start with p=3 and adjust it ex post if nec-
essary. There are classical ways of selecting the number of principal
components based for example on the scree plot or on the explained
variance but, according to our simulations, the power of the test is
concentrated only on the first eigenvalue. Using p>1 is instrumental
in showing if the sequence of eigenvalues displays a continuous decay,
which is characteristic of ordinary FAR(1) processes. Or a sudden
extreme drop after the first eigenvalue, which is a characteristic of
a Random Walk. A graphical representation of this phenomenon is
presented in the Applications section.

3. Find the Empirical Functional Principal Components of your dataset
and their associated eigenvalues λ̂1 ... λ̂p, then compute the estimated

(squared) Schmidt Norm ||KΨ||S
2 ← ∑

i=1
p

λ̂i
2. It is important to

observe that we compute the EFPC always on the centered dataset, in
this case it is {Xi|Xi=Xi− X̄ for i=1 ... r} . If you use R with fda
package for your computations, this can be achieved automatically
setting the parameter centerfns=TRUE in function pca.fd .

4. Resample the dataset under the null hypothesisH0 that Ψ= Id. First
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compute the estimated innovations,

ε̂i+1(t)←Xi+1(t)−Xi(t) for i=2 ... m

Center the ε̂i+1(t) subtracting their common mean and find the
resampled observations,

{
X1
b,∗(t)←Mean(X1(t), ..., Xm(t))

Xi+1
b,∗ (t)←Xi

b,∗(t)+ ε̂i+1
b,∗ (t) for i=2 ... m

Compute the associated Schmidt norm (||KΨ||s
b,∗
)2 as in step (3).

Some observations about the choice of the mean as first bootstrapped
observations will be given at the end of the procedure.

5. Repeat step (4) for the necessary amount of iterations until you get

B estimations of (||KΨ||s
b,∗
)2 . We usually start with B = 200. Find

the empirical distributions E of all the (||KΨ||s
b,∗
)2 . Set p-value←

E(||KΨ||s
2
). Traditionally reject H0 if p-value <0.05, or some other

threshold of your choice.

6. Toggle the number of basis functions, principal components and
Bootstrap replications to make sure results are stable.

The initial bootstrapped observation X1
∗,b is a free variable in this problem

because we can estimate only m− 1 innovations. We choose to set it to X̄
following this heuristic. If we want the Bootstrap to replicate something
we have to give it a chance to do it right, the best chance to start seems to
be the middle of the original dataset. Other possibilities are reasonable but
were not tested, for example one could start the simulation picking randomly
one Xi, or the median. A graphical comparison of the initial dataset and
some Bootstrap replications can give some hints about the suitability of the
selected starting point criterion.

3.3 Simulation Methodology

In this section we will describe in detail the simulation procedure. It has
been implemented in the programming language R and it uses the external
package fda which is presented in [Ramsay et al., 2009]. Steps in which fda
function library is central will be denoted with (fda).

There are a number of global numerical parameters that control the simu-
lation, they are summarized in the next table for ease of reference.
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n.obs Number of functional observations. X1(t) ... Xn.obs(t).
n.pt Number of raw (x, y) coordinates describing each function Xi(t).
n.basis Number of basis functions used to represent each Xi(t).
n.pc Number of functional principal components to consider.
n.boot Number of bootstrap replications.

sd Raw indicator of error function magnitude. It appears in the
simulation of Brownian Motion and Brownian Bridge .

3.3.1 Simulate and Test a FAR(1) process

1. Define an operator Ψ of type (3.2) providing a kernel function ψ(s, t).

2. Multiply the kernel function by a constant C to be able to see how
the test performs with kernels that have same algebraic structure but
different size.

3. Compute constant ĈId such that the following relation3.3 is satisfied

||Ψ||S2 =
∫ ∫

U

ĈId
2
ψ2(t, s)dt ds=1. (3.8)

4. Set the random number generator to a fixed value to provide repro-
ducible results.

5. Define a vector of constants that will multiplyCId and vary the kernel
size.

kset← (0.5, 0.7, 0.8, 0.9, 0.95, 0.99, 1.0) (3.9)

6. For each value K in kset repeat what follows 100 times and store the
final result.

a. Create an initial FAR(1) data set with X0(t) = f0(t) and
Xi+1(t) = Ψ(Xi(t)) + εi+1(t). f0 is set initially to f0(t) =

(x2+1)+S i n (8πx). There are no special reasons to choose
this function, but error functions parameters were selected
to have a reasonable order of magnitude compared to it, the
precise signal to noise ratio in general depends on applica-
tions. The error functions εi(t) can be independent trajectories
of Brownian Bridge (BB) or Brownian Motion (BM). They
are generated from a cumulative sum of 100 Normal inde-
pendent random variables with μ = 0 and σ to be set to
sd. A detailed discussion can be found in [Iacus, 2009, sec.1.6,
1.8]. We use ten different kernel functions ψ(s, t), some of

3.3. It holds that, ‖Ψ‖S2 =
∫ ∫

U
ψ2(s, t) dsdt, see [Gohberg et al., 1990, pg.143].
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them appear in literature like the the Gaussian , Wiener and
Parabolic kernels in [Gabrys et al., 2010].

b. (fda) Following a common rule of thumb we create a BSpline
or Fourier functions basis with number of elementsn.basis←
� n.pt
√ � and fit all the Xi(t) to the new functions space.

c. (fda) Perform a principal component analysis on the func-
tional data set, extract the eigenvalues λ̂1 ... λ̂p corresponding
to the first n.pc empirical principal components and set
||KΨ||S

2←∑
i=1
n.pc λ̂i

2.

d. Compute the estimated residuals ε̂i(t) under H0 and center
them subtracting their common mean,

ε̂i+1(t)←Xi+1(t)−Xi(t). (3.10)

e. Create n.boot copies of the data data set {Xi(t)}i, each time
resampling the residuals with the following rule

Xi+1
b,∗ (t)←Xi

b,∗(t)+ ε̂i+1
b,∗ (t). (3.11)

The parameter b is the bootstrap index and varies in
1 , ... ,n.boot.

f. (fda) For each family of bootstrapped observations compute
the first n.pc empirical principal components, with their

respective eigenvalues and set
(
‖KId‖S

b,∗)2←∑
i=1
p

(λ̂i
b,∗
)2 .

g. Build the empirical distribution function of the
(
‖KId‖S

b,∗)2
values and name it E .

h. The p-value associated to the current experiment will be

E(||KΨ||S
2
) . We reject H0 that is, we reject that Ψ is the

Identity operator if p-value<0.05.

7. In the results tables we read the rejection rate for eachK, the number
of experiments in which H0 was rejected divided by 100.

3.4 Simulations Analysis and Results

All experiments results are in tabular format and all tables can be found in
the Appendix. The table following this paragraph (Table 4.1) is a reference

82 A Random Walk Test for Functional Time Series



to all of the simulation results. In the first column it tells the code of the
experiment, a unique identifier by which it is possible to find the appropriate
table in the Appendix. In the second, it tells if Ψ was a constant, if not, it
reports the formula for its kernel ψ(s, t). “N ” tells the number of Montecarlo
replications used to estimate the power of the test and base specifies if we
are using the BSpline or Fourier basis. Columns n.boot, n.pc and sd have
the same meaning previously defined.

code Ψ N n.boot n.pc base sd
b1 constant 100 200 1 S 0.5
b2 constant 100 200 1 S 0.05
b4 constant 100 1000 1 S 0.5
b5 constant 100 1000 1 S 0.05
b7 constant 100 200 3 S 0.5
b8 constant 100 200 3 S 0.05
b10 constant 100 200 1 F 0.5
b11 constant 100 200 1 F 0.05
k1b1 e−(s

2+t2) 100 200 1 S 0.5
k1b2 e−(s

2+t2) 100 200 1 S 0.05
k1b7 e−(s

2+t2) 100 200 3 S 0.5
k2b1 e(s

2+t2) 100 200 1 S 0.5
k2b2 e(s

2+t2) 100 200 1 S 0.05
k3b1 min(s, t) 100 200 1 S 0.5
k3b2 min(s, t) 100 200 1 S 0.05
k4b1 (t− 1

2
)2+(s− 1

2
)2 100 200 1 S 0.5

k4b2 (t− 1

2
)2+(s− 1

2
)2 100 200 1 S 0.05

k5b1 (t+
1

2
)2+(s+

1

2
)2 100 200 1 S 0.5

k5b2 (t+
1

2
)2+(s+

1

2
)2 100 200 1 S 0.05

k6b1 S i n (2π t+ s) 100 200 1 S 0.5
k7b1 S i n (2π s+ t) 100 200 1 S 0.5
k8b1 S i n (2π s)S i n (2π t) 100 200 1 S 0.5
k9b1 |S i n (2π s)S i n (2π t)| 100 200 1 S 0.5
k10b1 S i n (8π s)S i n (8π t) 100 200 1 S 0.5

Table 3.1. Experiments reference.

Suppose we are interested in simulations with a Gaussian Kernel , so
choosing, for example, the experiment k1b2 , here is what we will find in
the Appendix. In the first column it is stated if error is of type Brow-
nian Motion or Brownian Bridge . In the second the sample size, that is
the number of simulated functional observations X1 ... Xn entering the
test. The third column tells Cid was multiplied by 0.5, and the remaining
tell Cid was multiplied by 0.7, 0.8, etc.
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Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 0.98 0.86 0.75 0.64

100 1 1 1 1 0.9 0.64
200 1 1 1 1 1 0.75
500 1 1 1 1 1 0.87

bb 50 1 0.96 0.9 0.64 0.36 0.2
100 1 1 1 0.92 0.68 0.33
200 1 1 1 1 0.95 0.36
500 1 1 1 1 1 0.67

Table 3.2. Tabular output corresponding to experiment k1b2.

It will be noticed that in this table there is not K = 1.00 multiplying CId,
the last value is 0.99. This was made on purpose to stress that when ||Ψ||=1
(||Ψ||S is the best estimator of ||Ψ|| we have) our test has no chances to
determine if Ψ= I d.

3.4.1 Analysis

There are very different kinds of operators in the simulation from which
different results are expected. Experiments with code b1, b2, ..., b11 all
have a constant operator and are a special case to see how the algorithm
performs when H0 is true, when Ψ = Id. Operator kernels in experiments
k1X, k2X, k3X, k4X, k9X are all positive and symmetric. The remaining
kernels in experiments k6X, k7X, k8X, k10X are not positive on the whole
domain [0, 1]× [0, 1].
We observe that the power of the test is much higher when there are non
positive kernels. In all corresponding tables the power of the test is very
high, even with a small sample size. This fact is easy to explain intuitively, a
fixed sign kernel is, generally speaking, more similar to the identity operator
than a non fixed sign operator.

All experiments with constant operator and positive definite kernels display
a similar triangular structure in the power distribution. Power of the test
increases increasing the sample size, and decreases when the kernel Schmidt
norm goes near to one. The performance increasing with the sample size
is what we expect from every statistical test, in general, more information
is available, more the decision task is simplified. The identity operator has
uniform3.4 norm one. The Schmidt norm is an estimator from the top of
the uniform norm. When the Schmidt norm of the kernel is forced by mul-

3.4. The uniform norm for an operator A is defined as || A||L := s u p
||x||≤1

|| A x||, it is
proved that ||A||L≤ ||A||S, that is, the Schmidt norm dominates the uniform norm, see
[Bosq, 2000] pg.34-35
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tiplicative constant to go near one then the operator is forced to become,
from the point of view of the norm, similar to the identity. Consequently,
becoming the operator more similar to Id, it becomes more difficult for the
test to discriminate between them.

There is an operator that is positive definite but gets power much higher
then the other ones. It is the Wiener kernel, k3X. Its power is as high as
the one associated to non-positive kernels. Probably the reason for this
anomaly is that the kernel ψ(s, t) of the Wiener process is just the covariance
of Brownian Motion, which is the model for our innovations.

Changing the error term from Brownian Bridge to Brownian motion had
little influence on the power. Also changing the size of the error, from sd=0.5
to sd= 0.05 had not visible impact.

Comparing k1b7-k1b1 and b1-b8, we do not see an important change in
performance changing the number of principal components. Comparing b1-
b10 and b2-b11, we do not observe important changes in power passing
to Fourier basis. Comparing b1-b4 and b2-b5 again display not important
changes, so also increasing the number of bootstrap resamples does not seem
to increase much the power of the test.

3.5 Applications

3.5.1 Electrical energy consumption in France

We analyze France electrical energy consumption from the beginning of 1996
to the end of 2012. The dataset is available from RTE France one the Web3.5.
As stated by the provider, data covers power consumption in metropolitan
France area, except Corsica. It includes losses on the network but it does
not take into account power withdrawn by hydroelectric installations. Paper
by [Cho et al., 2013] uses our same dataset and provides supplementary
informations about energy consumption and factors influencing it.

Electricity consumption is observed every 30 minutes. Following
[Cho et al., 2013] we study the series of weekly average consumption. We
apply a logarithm transformation to cope with the apparent increase in
variance and remove the trend which was estimated with a LOESS using
R default parameters. The original dataset and its appearance after each

3.5. http://clients.rte-france.com
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transformation is shown in Fig.3.1

After the transformations we are working with a 52x16 matrix, on columns
we have years, on rows weeks. Each column of the matrix is transformed
(smoothed) into a functional object in [0,1] using a BSpline basis with 
 52

√ �
basis functions, knots are distributed equidistantly between zero and one,
included. Applying our test for unit root with n.pc ←3, and n.boot ←200
we get p-value zero. The estimated ||KΨ||S

2
is 8.0 · 10−7 and the quartiles

for
(
‖KId‖S

b,∗)2
are 1.7 · 10−6, 1.6 · 10−5, 2.7 · 10−5, 5.3 · 10−5, 1.09 · 10−3.

Changing the number of principal components, doubling the number of basis
functions and doubling the bootstrap replications did not affect the result
significantly. The two plots in Fig.3.2 show that, besides the Schmidt norm,
there is a significant difference in the structure of the estimated eigenvalues
of KΨ and KId. The first ones decrease smoothly in magnitudes. For the
random walk instead the first eigenvalues dominates all the others.

Figure 3.1. These plots represent electrical power consumption inFrance. [a] All
yearly consumption’s are plotted together. [b] Historic plot of energy consump-
tion, from 1996 to 2012. [c] Log is applied to previous plot with LOESS trend
function superimposed. [d] The trend is removed from the previous.
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Figure 3.2. The two plots show the estimated eigenvalues of KΨ on the right,
and the bootstrapped estimated eigenvalues of KId on the left.

3.5.2 Bitcoin daily prices

Bitcoin is a virtual currency introduced by [Nakamoto, 2008]. Bitcoins are
traded twenty-four hours per day, all days of the year, prices are known to
have large variability and suffered a burst on beginning of 2014 after a period
of explosive growth. In the recent paper by [Kristoufek, 2013], it was shown
that the series of average daily prices between 1-May-2011 and 30-June-2013
is non stationary. The paper provides some introductory information about
the Bitcoin currency to which the interested reader may refer.

We follow [Kristoufek, 2013] using the same dataset3.6 and the same tem-
poral window for our investigations. But, instead of using daily average
prices, we will consider the much more detailed series of daily prices, where
each day is seen as a functional observation Xi(t).

The Bitcoin prices we have are the ones processed at Mt.Gox , once the
largest currency trading center. They are available for free on the Internet.
The number of trades in Mt.Gox during the considered time period is
extremely variable. For six days there were no transactions at all, these
days were removed from our analysis. Excluding zeros, the minimum number
of transactions per day was 373, the maximum 66293, the other deciles:
2042, 2722, 3448, 4255, 5000, 5994, 7322, 9483, 13736.

The series of trade prices was passed to logarithm and detrended. Fig.3.3
illustrates the dataset at each step. Then, the dataset was divided in day
blocks. For each daily data, a linear interpolating function with domain
in [0, 1] was built. Each function was sampled in 2000 equidistant points

3.6. File mtgoxUSD.csv at http://api.bitcoincharts.com/v1/csv/
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from zero to one creating a matrix of 2000x786 elements where each column
corresponds to a day. The data matrix was converted to a set of functional
observations respect to a BSpline basis with 
 2000

√ � basis function, knots
were equispaced between zero and one. We applied our test for unit root
setting n.pc ←3 and n.boot ←200. The resulting p-value was 0.63, the

estimated ||KΨ||S
2

is 0.43 and the quartiles for
(
‖KId‖S

b,∗)2
are 0.011, 0.14,

0.30, 0.62, 14.29. The null hypothesis can not be rejected. Moreover, com-
paring the structure of eigenvalues in Fig.3.4 we see they are similar, the
first eigenvalue dominates all the others and also, the magnitude of the first
eigenvalue for KΨ is approximately the median of the bootstrapped eigen-
values of KId. Increasing the number of principal components and doubling
the number of basis functions did not affect the p-value significantly.

Figure 3.3. The original dataset is represented in the top left pane, Bitcoin
trading price in U.S. dollars. On the top-right, the series after applying the
logarithm with a dashed line superimposed for the trend. On the bottom, the the
data after logarithm transform and removal of the trend.
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Figure 3.4. Plot of KΨ eigenvalues and the boxplots of bootstrapped KId
eigenvalues.

3.6 Conclusions

Using ||KΨ||S
2

as test statistic associated with our Bootstrap scheme has
given very good results in the numerical simulations. Comparing our power
results to the ones previously found for AR(1) in [Ferretti and Romo, 1996]
we see they are surprisingly high. The comparison is not completely correct
because we are working on a different framework but there is no other
Random Walk test on FAR(1) against which we could compare.

It has emerged from our investigations that a Random Walk tends to have
a first large eigenvalue that dominates all the following ones. Indeed, this
feature can be of help in deciding if to reject the null hypothesis in cases in
which the p-value would be near to the rejection region. Or also, in cases
in which the p-value alone would give a result in sharp contrast with our
intuition about the problem.

Applying the test to the two real data sets has given the results we were
expecting from visual inspection. Yearly innovations in France electrical
energy consumption can not be considered a Random Walk. On the other
side, it is not rejected that Bitcoin daily prices could be a random walk.
It was necessary to apply the common tools of time series analysis before
entering the test: remove the trend and adjust for variance. Indeed, a FAR(1)
process defined according to equations (3.1) and (3.2) has not enough ana-
lytical freedom to cope with this conditions which are not of local nature,
but global external factors.

As all simulations in functional data, there are many parameters that could
be tuned: the choice of the basis, the number of basis functions, the number
points in the real data set and their relative distance, the errors, their depen-
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dence structure, the data smoothing, the empirical distribution smoothing
and so on. We tried to stick to the most widespread choices, the most
common errors types and operators, and the most popular initial analysis
setups. There are large possibilities for further experimentation and, of
course, for a desirable theoretical development in support of the numer-
ical evidence.
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Chapter 4
Conclusions and Future Work
In this work we have presented two different methods for the analysis of
Functional Data. This first one is variable selection method in Functional
Regression, the second is Random Walk test for Functional Autoregressive
Processes of order one.

The problem of variable selection in Regression is, and will be, probably
for long time a central topic in Statistics. In this work we adapted the cel-
ebrated Lasso technique to Functional Regression with functional response
and scalar regressors. The computations are reduced to a numerical opti-
mization problem without sampling on functional objects, only by algebraic
transformation on the BSpline representation of the functional datum. After
the Functional Lasso is applied, it may not be clear if some of regressors
have to be dropped. In that case we run a second analysis phase that we
call “shake the Lasso”, which is based on varying the penalization term
λ respect to the optimal value λ̄ and observe the elasticity of estimated
parameters βi(t). The Shaken Lasso is graphical technique, we ran it over
more that forty simulated problems and we see it gives consistently good
results and improves the decision in almost 40% of the simple Functional
Lasso outputs.

The second result we have presented is a Random Walk test for Functional
Autoregressive processes of order one. As far as we know, this is the first
test of this kind, there is nothing in literature about testing the Random
Walk condition for a Functional Autoregressive Process. Our test is based
on the Bootstrap, comparing the covariance structure of the data with the
one bootstrapped under the null hypothesis. An extensive simulation set
has shown the method to be reliable and powerful.

Leaving aside the desirable theoretical grounding for our results and the
many possible simulations we could add to the ones we presented, there
are many directions in which we could push the research forward in both
the Shaken Functional Lasso and the Random Walk test for Functional
Autoregressive processes. It is first of all of some interest to establish if we
can “shake” with profit also the multivariate Lasso. That is, to establish if
the same method we use to check if a parameter is null in the functional
case can be used in the unfunctional case. We did some experiments about
it but we still are at a preliminary stage.
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The Lasso is based on penalized Least Squares solutions, and Least Squares
solutions are sensitive to outliers. Is there away to make a Robust Functional
Lasso? We have done some preliminary experiments in this sense but still
we have not reached a firm method to robustify the Functional Lasso.

About applications, we remember that the car accident dataset we used in
Chapter 2 was containing only 25 observations some of which were visibly
outliers. The amount of information we had was at the minimum limit to
reach some interesting conclusions, taking into account also that a part of the
data had to be used for cross validation. It would be interesting to have more
observations to perform a confirmatory study on our preliminary results. We
think it will be much easier in the future to have the kind of data we used
because insurance companies in U.S. and Europe are moving toward having
black box installed on cars, as it is compulsory today for airplanes.

About the Random Walk test for Functional Autoregressive Processes a
natural future work we are considering is to apply the test systematically
to stock prices and to other econometry time series. That is, to perform a
research similar to [Nelson and Plosser, 1982] but considering modern high
frequency data which can be often fruitfully described as functional data.
It would be also interesting to extend the Random Walk test to Functional
Autoregressive processes of order higher than one.

From a more general and philosophical standpoint, it is opinion of the author
that Functional Data Analysis should relay on stronger hypothesis if we
want our tests on functional data to be strong as much as their unfunctional
correspondent. The current point of view is instead well summarized by
[Valderrama, 2007], which I cite: “... when we concern to functional data
analysis (FDA) we mean that there are not any hypothesis on the probability
distribution of the stochastic processes underlying the data, but only sample
information”. For me this has to change, as the key of the development in
unfunctional regression is the reasonable assumption that εi are normally
distributed, an analogy has to be developed for the functional case. My best
guess is that the way to go is to express the error as Stochastic Differential
Equation. The commonly used Brownian Motion and Brownian bridge are
inadequate to express an error, who would use a Random Walk as an error
in the unfunctional case?

In conclusion, If I will have the opportunity to work on functional data in
the future I will try to parallel the beautiful theory of unfunctional regression
with normal errors in the functional case. Where normal errors need to be
substituted with something appropriate. If the hypotheses will be precise
and strict, the test output will be clear. If the hypotheses are vague, the test
output will be vague. If there are not hypotheses, if there is not a proba-
bilistic framework, then there is nothing to test, and Statistics dissolves into
Data Science.
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Appendix A

A.1 FAR(1) Simulations

Error n 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.91 0.62 0.27 0.18 0.06 0.03

100 1 1 0.98 0.68 0.3 0.16 0.05
200 1 1 1 1 0.69 0.14 0.04
500 1 1 1 1 1 0.35 0.05

bb 50 1 0.97 0.78 0.37 0.17 0.06 0.05
100 1 1 0.99 0.84 0.51 0.15 0.06
200 1 1 1 0.99 0.89 0.23 0.06
500 1 1 1 1 1 0.46 0.03

b1

Error n 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.93 0.61 0.3 0.26 0.16 0.11

100 1 1 0.98 0.71 0.31 0.18 0.08
200 1 1 1 1 0.63 0.16 0.06
500 1 1 1 1 1 0.33 0.08

bb 50 1 0.92 0.58 0.31 0.2 0.49 0.34
100 1 1 1 0.76 0.33 0.24 0.13
200 1 1 1 1 0.87 0.23 0.13
500 1 1 1 1 1 0.43 0.05

b2

Error n 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.93 0.59 0.22 0.07 0.02 0.05

100 1 1 0.99 0.68 0.3 0.04 0.09
200 1 1 1 0.99 0.63 0.15 0.06
500 1 1 1 1 1 0.29 0.05

bb 50 1 0.98 0.85 0.37 0.28 0.04 0.05
100 1 1 1 0.86 0.44 0.13 0.06
200 1 1 1 1 0.88 0.11 0.09
500 1 1 1 1 1 0.46 0.02

b4

99



Error n 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.87 0.57 0.24 0.12 0.13 0.13

100 1 1 0.99 0.64 0.3 0.11 0.15
200 1 1 1 0.99 0.63 0.14 0.08
500 1 1 1 1 1 0.28 0.06

bb 50 1 0.96 0.62 0.17 0.23 0.34 0.31
100 1 1 1 0.78 0.37 0.23 0.16
200 1 1 1 1 0.84 0.25 0.11
500 1 1 1 1 1 0.44 0.03

b5

Error n 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.96 0.73 0.35 0.2 0.06 0.03

100 1 1 0.98 0.72 0.35 0.17 0.05
200 1 1 1 1 0.76 0.14 0.04
500 1 1 1 1 1 0.42 0.06

bb 50 1 0.99 0.83 0.46 0.21 0.07 0.05
100 1 1 1 0.95 0.56 0.17 0.04
200 1 1 1 1 0.92 0.25 0.06
500 1 1 1 1 1 0.51 0.03

b7

Error n 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.96 0.69 0.35 0.27 0.16 0.1

100 1 1 0.99 0.76 0.39 0.2 0.06
200 1 1 1 1 0.72 0.18 0.07
500 1 1 1 1 1 0.37 0.08

bb 50 1 0.97 0.75 0.39 0.25 0.53 0.35
100 1 1 1 0.8 0.41 0.25 0.13
200 1 1 1 1 0.93 0.23 0.13
500 1 1 1 1 1 0.52 0.05

b8

100



Error n 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.91 0.64 0.27 0.17 0.06 0.03

100 1 1 0.98 0.66 0.3 0.16 0.05
200 1 1 1 1 0.69 0.14 0.04
500 1 1 1 1 1 0.35 0.05

bb 50 1 0.98 0.78 0.38 0.18 0.09 0.06
100 1 1 0.99 0.84 0.52 0.15 0.06
200 1 1 1 0.99 0.89 0.22 0.06
500 1 1 1 1 1 0.47 0.03

b10

Error n 0.5 0.7 0.8 0.9 0.95 0.99 1.00
bm 50 1 0.93 0.63 0.31 0.26 0.16 0.11

100 1 1 0.98 0.71 0.31 0.18 0.09
200 1 1 1 1 0.62 0.16 0.07
500 1 1 1 1 1 0.34 0.08

bb 50 1 0.92 0.59 0.31 0.19 0.51 0.36
100 1 1 1 0.76 0.34 0.24 0.13
200 1 1 1 1 0.89 0.24 0.13
500 1 1 1 1 1 0.46 0.04

b11

Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 0.88 0.72 0.5

100 1 1 1 0.99 0.94 0.63
200 1 1 1 1 1 0.75
500 1 1 1 1 1 0.89

bb 50 1 0.95 0.9 0.65 0.36 0.19
100 1 1 1 0.91 0.69 0.33
200 1 1 1 1 0.95 0.35
500 1 1 1 1 1 0.66

k1b1
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Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 0.98 0.86 0.75 0.64

100 1 1 1 1 0.9 0.64
200 1 1 1 1 1 0.75
500 1 1 1 1 1 0.87

bb 50 1 0.96 0.9 0.64 0.36 0.2
100 1 1 1 0.92 0.68 0.33
200 1 1 1 1 0.95 0.36
500 1 1 1 1 1 0.67

k1b2

Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 0.92 0.78 0.54

100 1 1 1 1 0.97 0.7
200 1 1 1 1 1 0.83
500 1 1 1 1 1 0.94

bb 50 1 0.96 0.94 0.74 0.43 0.2
100 1 1 1 0.97 0.74 0.4
200 1 1 1 1 0.97 0.43
500 1 1 1 1 1 0.72

k1b7

Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 0.93 0.88 0.59 0.4 0.22

100 1 1 1 0.88 0.6 0.28
200 1 1 1 1 0.93 0.42
500 1 1 1 1 1 0.6

bb 50 1 0.97 0.98 0.83 0.53 0.37
100 1 1 1 0.99 0.84 0.46
200 1 1 1 1 0.97 0.55
500 1 1 1 1 1 0.8

k2b1
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Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 0.97 0.81 0.57 0.44 0.31

100 1 1 1 0.86 0.6 0.35
200 1 1 1 0.99 0.92 0.41
500 1 1 1 1 1 0.58

bb 50 1 0.98 0.98 0.82 0.53 0.37
100 1 1 1 0.99 0.83 0.47
200 1 1 1 1 0.97 0.54
500 1 1 1 1 1 0.8

k2b2

Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 1 1 1

100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

bb 50 1 1 1 1 1 1
100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

k3b1

Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 1 1 1

100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

bb 50 1 1 1 1 1 1
100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

k3b2
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Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 0.9 0.72 0.48

100 1 1 1 1 0.97 0.66
200 1 1 1 1 1 0.87
500 1 1 1 1 1 0.98

bb 50 1 1 1 0.95 0.83 0.69
100 1 1 1 1 1 0.81
200 1 1 1 1 1 0.96
500 1 1 1 1 1 0.99

k4b1

Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 0.98 0.87 0.78 0.67

100 1 1 1 1 0.91 0.63
200 1 1 1 1 1 0.83
500 1 1 1 1 1 0.96

bb 50 1 1 1 0.96 0.84 0.68
100 1 1 1 1 1 0.79
200 1 1 1 1 1 0.96
500 1 1 1 1 1 1

k4b2

Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 0.93 0.88 0.6 0.42 0.21

100 1 1 1 0.87 0.6 0.27
200 1 1 1 1 0.92 0.41
500 1 1 1 1 1 0.6

bb 50 1 0.97 0.93 0.73 0.44 0.26
100 1 1 1 0.97 0.75 0.39
200 1 1 1 1 0.96 0.47
500 1 1 1 1 1 0.74

k5b1

104



Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 0.96 0.82 0.56 0.45 0.32

100 1 1 1 0.84 0.61 0.34
200 1 1 1 0.99 0.91 0.39
500 1 1 1 1 1 0.6

bb 50 1 0.97 0.91 0.72 0.44 0.27
100 1 1 1 0.97 0.78 0.41
200 1 1 1 1 0.96 0.46
500 1 1 1 1 1 0.74

k5b2

Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 1 1 1

100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

bb 50 1 1 1 1 1 1
100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

k6b1

Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 1 1 1

100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

bb 50 1 1 1 1 1 1
100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

k7b1
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Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 1 1 0.98

100 1 1 1 1 1 0.99
200 1 1 1 1 1 1
500 1 1 1 1 1 1

bb 50 1 1 1 1 1 1
100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

k8b1

Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 0.99 0.82 0.67 0.42

100 1 1 1 0.99 0.91 0.49
200 1 1 1 1 1 0.66
500 1 1 1 1 1 0.81

bb 50 1 0.96 0.95 0.75 0.45 0.24
100 1 1 1 0.97 0.77 0.42
200 1 1 1 1 0.97 0.46
500 1 1 1 1 1 0.71

k9b1

Error n 0.5 0.7 0.8 0.9 0.95 0.99
bm 50 1 1 1 1 1 1

100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

bb 50 1 1 1 1 1 1
100 1 1 1 1 1 1
200 1 1 1 1 1 1
500 1 1 1 1 1 1

k10b1
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Appendix B

B.1 Details about the Confidence Band Plot

Given three functions with domain in [0, 1]

⎧⎪⎨
⎪⎩
β0(t)= 30 t (1− t)3/2
β1(t)= 3 sin(t)
β2(t)= 5 cos(t)

, (B.1)

we define a set of 30 observations as Yi(t)= β0(t)+ β1(t)Xi,1+ β2(t)Xi,2+
εi(t), whereXi are random vectors of length 30 such thatXi, j∼Uniform(−1,
1) and every εi(t) is the linear interpolation of a sequence of 100 iid random
variables distributed as a Normal(0, 0.5). After that, knowing Yi(t), X1, X2

and another spurious regressors X3 build as the previous Xi, we fit by Least
Squares the linear model

Yi(t)= β0(t)+ β1(t)Xi,1+ β2(t)Xi,2+ β3(t)Xi,3 ,

and find the estimated
{
β̂0(t), β̂1(t), β̂2(t), β̂3(t)

}
. We expect to find that

β̂i(t) ≈ βi(t) for i = 0...2 and β̂3(t) ≈ 0. We are interested in proving that
β3(t) = 0. In Figure B.1 we can see all the β̂i(t), β3(t) is the smallest green
line. In Figure B.2 we can see 200 bootstrap replications β̂3

∗
(t) obtained

resampling the residuals εi(t). Figure B.3 is a obtained by selecting the setD
of the 90% most deep curves from Figure B.2 and then drawing the MinMax
band, which is, for every ti, the interval [min (f(ti)),max (f(ti))]f∈D.
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Figure B.1. Figure B.2.

Figure B.3.

B.2 Shaken Lasso Simulations

The experimental results about the Shaken Lasso are collected in a high
definition color “pdf” file which is available at: https://db.tt/0FK2bnVW . In
some versions of this document the results are included in a final addendum
at the very end.

All experiment results are displayed one per page in a standardized format.
For each experiment, on the top of each page are reported the number
of regressors that have to be recognized as useful, the error type and its
magnitude, the random seed and the minimum found for the cross validation
error. When Rule 2 is used, it is said how much λ has been moved from the
minimum position.

The following table collects some comments for the interpretation of each
experiment. At the beginning the comments will be extensive, then they will
become more terse since there are only four possible kinds of outputs and
interpretations.
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Case Comments

1 Solved with Rule 1. Functional Lasso is enough to decide which
regressors to choose. The estimated parameters β3, ..., β6 correspond
to regressors to discard. There are two estimations, Least Squares
in dashed red lines and Lasso in black. Lasso estimators for β3, ...,
β6 are always inside the [−0.01, 0.01] barrier so we can conclude
they must be considered null. We observe also that β1 and β2 shape
correspond exactly to initial parameters in the first plot on the top
left part.

2 Solved with Rule 1. in this case Lasso estimators for β3, ..., β6 are
shrunk very near to zero, well inside the [−0.01, 0.01] barrier.

3 Solved with Rule 1.
4 Solved with Rule 1.
5 Solved with Rule 1 and Rule 2. In this case Rule 1 is sufficient

to decide β5 is null, but not sufficient to decide with certainty if
{β3, β4, β6} are also null. Indeed, Lasso estimators for regressors
β3, β4, β5 escape the [−0.01, 0.01] barrier. In this case we shake the
Lasso solution increasing a bit the penalization term λ, from 0.07
to {0.08, 0.09, 0.1}. For each of these new values of λ there are new
estimators for each of the βi. These new estimators are drawn in
dashed black lines and they are visible only if they do not overlap
exactly to previous estimators. We observe that dashed black lines
are visible only in β3, β4, β6 plots and also, that the dashed lines tend
to enter, the [−0.01, 0.01] barrier. We conclude that these betas are
to be considered null because on increasing a bit the penalization
term, all the effect concentrate on their annihilation leaving the
other parameters unchanged.

6 Solved with Rule 1 and Rule 2.
7 Solved with Rule 1 and Rule 2.
8 Solved with Rule 1.
9 Solved with Rule 1 and Rule 2.
10 Solved with Rule 1 and Rule 2.
11 Solved with Rule 1 and Rule 2.
12 Solved with Rule 1 and Rule 2.
13 Solved with Rule 1.
14 Solved with Rule 1 and Rule 2.
15 Solved with Rule 1 and Rule 2.
16 Solved with Rule 1 and Rule 2.
17 Solved with Rule 1 and Rule 2.
18 Solved with Rule 1 and Rule 2.
19 Solved with Rule 1 and Rule 2.
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20 Solved with Rule 1 and Rule 2.
21 Solved with Rule 1.
22 Solved with Rule 1. In this case the cross validation error is not

smooth. In a single analysis situation it would be desirable to tune
the cross validation train and test set and the λ values grid in such
a way that the cross validation error has a minimum on a smooth
function.

23 Solved with Rule 1.
24 Solved with Rule 1 and Rule 2. In this case the use of Rule 2 is really

only a reinforcement, Rule 1 alone gave quite a direct answer and
β6 simply touched the [−0.01, 0.01] barrier.

25 Solved with Rule 1 and Rule 2.
26 Solved with Rule 1 and Rule 2.
27 Solved with Rule 1 and Rule 2.
28 Solved with Rule 1. see comments on case 22.
29 Solved with Rule 1. see comments on case 22.
31 Solved with Rule 1.
32 Solved with Rule 1 and Rule 2.
33 Solved with Rule 1.
34 Solved with Rule 1 and Rule 2.
35 Not solved by Rule 1 and Rule 2. Applying Rule 1 we think only

β6 could be null. We apply Rule 2, β6 shrinks but even large para-
meters do so. The problem is most apparent in β3, that parameter
is large, very far from the [−0.01, 0.01] barrier, it is not expected
to be null so it is not expected to shrink. Instead we can see the
dashed lines in it. Moreover, the dashed lines are visible also in β2
and β3. We conclude the method is not helpful in this case because
we expect by Rule 1 that only parameter β6 could be zero, so we
expect that on increasing the penalization term λ a bit the shrinking
should affect only β6. This does not happen.

36 Solved with Rule 1 and Rule 2.
37 Solved with Rule 1 and Rule 2.
46 Solved with Rule 1. No regressors is to be dropped, βi are all very

far from the the [−0.01, 0.01] rejection barrier.
51 Solved with Rule 1 and Rule 2.
52 Solved with Rule 1 and Rule 2.
53 Solved with Rule 1 and Rule 2.
56 Solved with Rule 1 and Rule 2.
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Addendum

Shaken Lasso

Simulations



Case 1 

0.2 0.4 0.6 0.8 1.0

�2

2

4

Starting Β values

0.2 0.4 0.6 0.8 1.0

�20

�10

10

20

Signal and noise

0.2 0.4 0.6 0.8

�4

�3

�2

�1

1

2

3
Final Y shapes

0.01 0.02 0.03 0.04 0.05
Λ

0.0015

0.0020

0.0025

CV�err

0.005 0.010 0.015 0.020
Λ

0.00110
0.00112
0.00114
0.00116
0.00118
0.00120
0.00122
0.00124

CV�err

0.2 0.4 0.6 0.8

�0.4

�0.2

0.2

Β
�
0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Β
�
1

0.2 0.4 0.6 0.8 1.0

�0.7
�0.6
�0.5
�0.4
�0.3
�0.2
�0.1

Β
�
2

0.2 0.4 0.6 0.8

�0.010

�0.005

0.005

0.010

Β
�
3

0.2 0.4 0.6 0.8 1.0

�0.010

�0.005

0.005

0.010

0.015
Β
�
4

0.2 0.4 0.6 0.8 1.0

�0.02

�0.01

0.01

0.02

Β
�
5

0.2 0.4 0.6 0.8

�0.010

�0.005

0.005

0.010

0.015
Β
�
6



Case 2.

0.2 0.4 0.6 0.8 1.0

�2

2

4

Starting Β values

0.2 0.4 0.6 0.8 1.0

�20

�10

10

20

30

Signal and noise

0.2 0.4 0.6 0.8

�3

�2

�1

1

2

3

4
Final Y shapes

0.05 0.10 0.15 0.20 0.25 0.30
Λ

0.005

0.010

0.015

0.020

CV�err

0.02 0.04 0.06 0.08 0.10
Λ

0.0030

0.0035

0.0040

0.0045
CV�err

0.2 0.4 0.6 0.8

�0.4

�0.3

�0.2

�0.1

0.1

0.2

Β
�
0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Β
�
1

0.2 0.4 0.6 0.8 1.0

�0.8

�0.6

�0.4

�0.2

Β
�
2

0.2 0.4 0.6 0.8

�0.03

�0.02

�0.01

0.01

0.02

Β
�
3

0.2 0.4 0.6 0.8 1.0

�0.01

0.01

0.02

0.03
Β
�
4

0.2 0.4 0.6 0.8 1.0

�0.05
�0.04
�0.03
�0.02
�0.01

0.01
0.02

Β
�
5

0.2 0.4 0.6 0.8
�0.02

0.02

0.04

0.06

Β
�
6



Case 3.

0.2 0.4 0.6 0.8 1.0

�2

2

4

Starting Β values

0.2 0.4 0.6 0.8 1.0

�20

�10

10

20
Signal and noise

0.2 0.4 0.6 0.8

�3
�2
�1

1
2
3

Final Y shapes

0.01 0.02 0.03 0.04 0.05
Λ

0.0008
0.0010
0.0012
0.0014
0.0016
0.0018
CV�err

0.005 0.010 0.015 0.020
Λ

0.00070

0.00075

0.00080

CV�err

0.2 0.4 0.6 0.8

�0.3

�0.2

�0.1

0.1

0.2

0.3
Β
�
0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5
Β
�
1

0.2 0.4 0.6 0.8 1.0

�0.8

�0.6

�0.4

�0.2

Β
�
2

0.2 0.4 0.6 0.8

�0.010

�0.005

0.005

0.010
Β
�
3

0.2 0.4 0.6 0.8 1.0

�0.015

�0.010

�0.005

0.005

0.010
Β
�
4

0.2 0.4 0.6 0.8 1.0

�0.015

�0.010

�0.005

0.005

0.010

0.015
Β
�
5

0.2 0.4 0.6 0.8

�0.010

�0.005

0.005

0.010

0.015
Β
�
6



Case 4. 

0.2 0.4 0.6 0.8 1.0

�2

2

4

Starting Β values

0.2 0.4 0.6 0.8 1.0

�20

�10

10

20

Signal and noise

0.2 0.4 0.6 0.8

�3

�2

�1

1

2

3
Final Y shapes

0.01 0.02 0.03 0.04 0.05
Λ

0.0024

0.0026

0.0028

0.0030

0.0032
CV�err

0.024 0.026 0.028 0.030
Λ

0.002250
0.002252
0.002254
0.002256
0.002258
0.002260
0.002262

CV�err

0.2 0.4 0.6 0.8

�0.4

�0.2

0.2

0.4
Β
�
0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5
Β
�
1

0.2 0.4 0.6 0.8 1.0

�0.6

�0.4

�0.2

Β
�
2

0.2 0.4 0.6 0.8

�0.03

�0.02

�0.01

0.01

0.02

Β
�
3

0.2 0.4 0.6 0.8 1.0

�0.015
�0.010
�0.005

0.005
0.010
0.015
0.020

Β
�
4

0.2 0.4 0.6 0.8 1.0

�0.03
�0.02
�0.01

0.01
0.02
0.03
0.04

Β
�
5

0.2 0.4 0.6 0.8

�0.04
�0.03
�0.02
�0.01

0.01
0.02
0.03

Β
�
6



Case 5 

0.2 0.4 0.6 0.8 1.0

�2

2

4

Starting Β values

0.2 0.4 0.6 0.8 1.0

�20

�10

10

20

Signal and noise

0.2 0.4 0.6 0.8

�3

�2

�1

1

2

3
Final Y shapes

0.05 0.10 0.15 0.20 0.25 0.30
Λ

0.020

0.022

0.024

0.026
CV�err

0.04 0.06 0.08 0.10 0.12
Λ

0.0182
0.0184
0.0186
0.0188
0.0190
0.0192

CV�err

0.2 0.4 0.6 0.8

�0.4

�0.2

0.2

Β
�
0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5
Β
�
1

0.2 0.4 0.6 0.8 1.0

�0.7
�0.6
�0.5
�0.4
�0.3
�0.2
�0.1

Β
�
2

0.2 0.4 0.6 0.8

�0.10

�0.05

0.05

Β
�
3

0.2 0.4 0.6 0.8 1.0

�0.04

�0.02

0.02

0.04

0.06
Β
�
4

0.2 0.4 0.6 0.8 1.0

�0.05

0.05

0.10

Β
�
5

0.2 0.4 0.6 0.8

�0.10

�0.05

0.05

0.10
Β
�
6



Case 6. 

0.2 0.4 0.6 0.8 1.0

�2

2

4

Starting Β values

0.2 0.4 0.6 0.8 1.0

�20

�10

10

20

Signal and noise

0.2 0.4 0.6 0.8

�3

�2

�1

1

2

3
Final Y shapes

0.05 0.10 0.15 0.20 0.25 0.30
Λ

0.010

0.012

0.014

0.016

CV�err

0.02 0.04 0.06 0.08 0.10
Λ

0.0090
0.0095
0.0100
0.0105
0.0110
0.0115
0.0120

CV�err

0.2 0.4 0.6 0.8

�0.4

�0.2

0.2

0.4
Β
�
0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5
Β
�
1

0.2 0.4 0.6 0.8 1.0

�0.6

�0.4

�0.2

Β
�
2

0.2 0.4 0.6 0.8

�0.06

�0.04

�0.02

0.02

0.04
Β
�
3

0.2 0.4 0.6 0.8 1.0

�0.03
�0.02
�0.01

0.01
0.02
0.03
0.04

Β
�
4

0.2 0.4 0.6 0.8 1.0

�0.04

�0.02

0.02

0.04

0.06

0.08
Β
�
5

0.2 0.4 0.6 0.8

�0.06
�0.04
�0.02

0.02
0.04
0.06

Β
�
6



Case 7 

0.2 0.4 0.6 0.8 1.0

�2

2

4

Starting Β values

0.2 0.4 0.6 0.8 1.0

�20

�10

10

20

30

40
Signal and noise

0.2 0.4 0.6 0.8

�2

2

4

Final Y shapes

0.05 0.10 0.15 0.20 0.25 0.30
Λ

0.01
0.02
0.03
0.04
0.05
0.06
CV�err

0.02 0.04 0.06 0.08
Λ

0.0075
0.0080
0.0085
0.0090
0.0095

CV�err

0.2 0.4 0.6 0.8

�0.4
�0.3
�0.2
�0.1

0.1
0.2
0.3

Β
�
0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Β
�
1

0.2 0.4 0.6 0.8 1.0

�0.8

�0.6

�0.4

�0.2

Β
�
2

0.2 0.4 0.6 0.8

�0.04

�0.02

0.02

0.04

Β
�
3

0.2 0.4 0.6 0.8 1.0

�0.02

�0.01

0.01

0.02

Β
�
4

0.2 0.4 0.6 0.8 1.0

�0.02

�0.01

0.01

0.02

Β
�
5

0.2 0.4 0.6 0.8

�0.04

�0.02

0.02

0.04
Β
�
6



Case 8. 

0.2 0.4 0.6 0.8 1.0

�2

2

4

Starting Β values

0.2 0.4 0.6 0.8 1.0

�20

�10

10

20

30

Signal and noise

0.2 0.4 0.6 0.8

�3

�2

�1

1

2

3

4
Final Y shapes

0.02 0.04 0.06 0.08 0.10
Λ

0.0030

0.0035

0.0040

0.0045
CV�err

0.01 0.02 0.03 0.04 0.05
Λ

0.0028

0.0029

0.0030

0.0031

CV�err

0.2 0.4 0.6 0.8

�0.3

�0.2

�0.1

0.1

0.2

Β
�
0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Β
�
1

0.2 0.4 0.6 0.8 1.0

�0.8

�0.6

�0.4

�0.2

Β
�
2

0.2 0.4 0.6 0.8

�0.03

�0.02

�0.01

0.01

0.02

Β
�
3

0.2 0.4 0.6 0.8 1.0

�0.01

0.01

0.02

0.03
Β
�
4

0.2 0.4 0.6 0.8 1.0

�0.05
�0.04
�0.03
�0.02
�0.01

0.01
0.02

Β
�
5

0.2 0.4 0.6 0.8
�0.02

0.02

0.04

0.06

Β
�
6



Case 9 
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Case 14.
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Case 16.

0.2 0.4 0.6 0.8 1.0

�3

�2

�1

1

2

3

Starting Β values

0.2 0.4 0.6 0.8 1.0

�10

10

20

Signal and noise

0.2 0.4 0.6 0.8

�3

�2

�1

1

2

3

4
Final Y shapes

0.05 0.10 0.15 0.20 0.25 0.30
Λ

0.012

0.014

0.016

0.018

CV�err

0.02 0.04 0.06 0.08 0.10
Λ

0.012

0.013

0.014

0.015

CV�err

0.2 0.4 0.6 0.8

�0.2

�0.1

0.1

0.2

Β
�
0

0.2 0.4 0.6 0.8 1.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Β
�
1

0.2 0.4 0.6 0.8 1.0

�0.8

�0.6

�0.4

�0.2

Β
�
2

0.2 0.4 0.6 0.8

�0.08

�0.06

�0.04

�0.02

0.02

0.04

Β
�
3

0.2 0.4 0.6 0.8 1.0

�0.02

0.02

0.04

Β
�
4

0.2 0.4 0.6 0.8 1.0

�0.05

0.05

Β
�
5

0.2 0.4 0.6 0.8

�0.05

0.05

Β
�
6



Case 17.

Out[234]=

0.2 0.4 0.6 0.8 1.0

�3

�2

�1

1

2

3

Starting Β values

0.2 0.4 0.6 0.8 1.0

�10

10

20
Signal and noise

0.2 0.4 0.6 0.8

�3

�2

�1

1

2

3
Final Y shapes

0.05 0.10 0.15 0.20
Λ

0.015

0.020

0.025

0.030

CV�err

0.01 0.02 0.03 0.04 0.05 0.06
Λ

0.0095

0.0100

0.0105

0.0110

CV�err

0.2 0.4 0.6 0.8

�0.20
�0.15
�0.10
�0.05
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0.10
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Β
�
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0.5
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�
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Case 18.

0.2 0.4 0.6 0.8 1.0

�3

�2

�1

1

2

3

Starting Β values

0.2 0.4 0.6 0.8 1.0
�10

10

20

30
Signal and noise

0.2 0.4 0.6 0.8

�2

2

4

Final Y shapes

0.05 0.10 0.15 0.20
Λ

0.006

0.008

0.010

0.012

CV�err

0.01 0.02 0.03 0.04
Λ

0.0037

0.0038

0.0039

0.0040

0.0041

CV�err

0.2 0.4 0.6 0.8
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0.2
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�0.03
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�0.04
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Case 19.

0.2 0.4 0.6 0.8 1.0

�3

�2

�1

1

2

3

Starting Β values

0.2 0.4 0.6 0.8 1.0

�10

10

20

Signal and noise

0.2 0.4 0.6 0.8

�3

�2

�1

1

2

3

4
Final Y shapes

0.05 0.10 0.15 0.20 0.25 0.30
Λ

0.012

0.014

0.016

0.018

CV�err

0.02 0.04 0.06 0.08 0.10
Λ

0.012

0.013

0.014

0.015

CV�err

0.2 0.4 0.6 0.8

�0.2

�0.1

0.1

0.2

Β
�
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0.2
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0.6
0.8
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Case 20.

0.2 0.4 0.6 0.8 1.0

�3

�2

�1

1

2

3

Starting Β values

0.2 0.4 0.6 0.8 1.0
�10

10

20

30
Signal and noise

0.2 0.4 0.6 0.8

�2

2

4

Final Y shapes

0.05 0.10 0.15 0.20
Λ

0.028
0.029
0.030
0.031
0.032
0.033
0.034

CV�err

0.02 0.04 0.06 0.08
Λ

0.028

0.029

0.030

0.031
CV�err

0.2 0.4 0.6 0.8

�0.1

0.1

0.2

Β
�
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Case 21.

0.2 0.4 0.6 0.8 1.0

�5

5

Starting Β values

0.2 0.4 0.6 0.8 1.0

�5

5

Signal and noise

0.2 0.4 0.6 0.8

�1.5

�1.0

�0.5

0.5

1.0

1.5
Final Y shapes

0.02 0.03 0.04 0.05
Λ

0.00092

0.00094

0.00096

0.00098

CV�err

0.030 0.035 0.040 0.045
Λ

0.000904

0.000906

0.000908

0.000910

0.000912

CV�err

0.2 0.4 0.6 0.8

�1.5

�1.0

�0.5

0.5

1.0

1.5
Β
�
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�0.010

�0.005
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0.010
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�0.01
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0.02

0.03
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�0.01
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�0.010

�0.005
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Case 22.

0.2 0.4 0.6 0.8 1.0

�5

5

Starting Β values

0.2 0.4 0.6 0.8 1.0

�5

5

Signal and noise

0.2 0.4 0.6 0.8

�1.5

�1.0

�0.5

0.5

1.0

1.5
Final Y shapes

1 2 3 4 5
Λ

0.0009133
0.0009134
0.0009135
0.0009136
0.0009137
0.0009138

CV�err

0.5 1.0 1.5
Λ

0.00091330
0.00091335
0.00091340
0.00091345
0.00091350

CV�err

0.2 0.4 0.6 0.8

�1.5

�1.0

�0.5

0.5

1.0

1.5
Β
�
0

0.2 0.4 0.6 0.8 1.0

�0.010

�0.005

0.005

0.010

Β
�
1

0.2 0.4 0.6 0.8 1.0
�0.01

0.01

0.02

0.03

Β
�
2

0.2 0.4 0.6 0.8

�0.02

�0.01

0.01

Β
�
3

0.2 0.4 0.6 0.8 1.0

�0.010

�0.005

0.005

0.010

Β
�
4

0.2 0.4 0.6 0.8 1.0

�0.02

�0.01

0.01

0.02

Β
�
5

0.2 0.4 0.6 0.8

�0.02

�0.01

0.01
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�
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Case 23.

0.2 0.4 0.6 0.8 1.0

�5

5

Starting Β values

0.2 0.4 0.6 0.8 1.0

�5

5

Signal and noise

0.2 0.4 0.6 0.8

�1.5

�1.0

�0.5

0.5

1.0

1.5
Final Y shapes

0.01 0.02 0.03 0.04 0.05
Λ

0.00108

0.00110

0.00112

0.00114

CV�err

0.012 0.014 0.016 0.018
Λ

0.001070

0.001075

CV�err

0.2 0.4 0.6 0.8

�1.5

�1.0

�0.5

0.5

1.0

1.5
Β
�
0

0.2 0.4 0.6 0.8 1.0

�0.015

�0.010

�0.005

0.005

0.010

0.015

Β
�
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0.2 0.4 0.6 0.8 1.0

�0.010

�0.005
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0.015

Β
�
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0.2 0.4 0.6 0.8
�0.01

0.01

0.02

0.03

Β
�
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0.2 0.4 0.6 0.8 1.0

�0.010

�0.005

0.005

0.010

0.015
Β
�
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�0.015
�0.010
�0.005

0.005
0.010
0.015
0.020

Β
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0.2 0.4 0.6 0.8

�0.010

�0.005
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Case 24.

0.2 0.4 0.6 0.8 1.0

�5

5

Starting Β values

0.2 0.4 0.6 0.8 1.0

�5

5

Signal and noise

0.2 0.4 0.6 0.8

�1.5

�1.0

�0.5

0.5

1.0

1.5

Final Y shapes

0.05 0.10 0.15 0.20
Λ

0.0036

0.0037

0.0038

0.0039

CV�err

0.05 0.06 0.07 0.08 0.09
Λ

0.00358

0.00360

0.00362

0.00364

0.00366

CV�err

0.2 0.4 0.6 0.8

�1.0

�0.5
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1.0

1.5
Β
�
0

0.2 0.4 0.6 0.8 1.0

�0.02

�0.01

0.01

0.02
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0.02

0.04

0.06
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�0.04

�0.02

0.02

Β
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�0.02

�0.01

0.01

0.02
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�0.04

�0.02
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0.04
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�0.04
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Case 25.

0.2 0.4 0.6 0.8 1.0

�5

5

Starting Β values

0.2 0.4 0.6 0.8 1.0

�5

5

Signal and noise

0.2 0.4 0.6 0.8

�2

�1

1

2

Final Y shapes

0.1 0.2 0.3 0.4 0.5
Λ

0.0265
0.0270
0.0275
0.0280
0.0285
0.0290

CV�err

0.16 0.18 0.20 0.22 0.24
Λ

0.02625
0.02630
0.02635
0.02640
0.02645
0.02650
0.02655

CV�err

0.2 0.4 0.6 0.8

�1.0

�0.5

0.5

1.0

Β
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�0.06
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�0.05
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Β
�
6



Case 26.

0.2 0.4 0.6 0.8 1.0

�5

5

Starting Β values

0.2 0.4 0.6 0.8 1.0

�5

5

Signal and noise

0.2 0.4 0.6 0.8 1.0

�2

�1

1

2
Final Y shapes

0.05 0.10 0.15 0.20 0.25 0.30
Λ

0.0135

0.0140

0.0145

0.0150

0.0155

CV�err

0.10 0.15 0.20
Λ

0.0135

0.0140

0.0145

CV�err

0.2 0.4 0.6 0.8 1.0

�1.0

�0.5

0.5

1.0

Β
�
0

0.2 0.4 0.6 0.8 1.0

�0.15

�0.10

�0.05
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0.10

Β
�
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0.2 0.4 0.6 0.8 1.0

�0.04

�0.02
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0.04

0.06
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�0.03
�0.02
�0.01
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Case 27.

0.2 0.4 0.6 0.8 1.0

�5

5

Starting Β values

0.2 0.4 0.6 0.8 1.0

�5

5

Signal and noise

0.2 0.4 0.6 0.8

�2

�1

1

2
Final Y shapes

0.05 0.10 0.15 0.20
Λ

0.0110

0.0112

0.0114

0.0116

0.0118

CV�err

0.02 0.04 0.06 0.08
Λ

0.0112
0.0114
0.0116
0.0118
0.0120
0.0122

CV�err

0.2 0.4 0.6 0.8

�1.0

�0.5

0.5

1.0
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�0.06

�0.04
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Case 28.

0.2 0.4 0.6 0.8 1.0

�5

5

Starting Β values

0.2 0.4 0.6 0.8 1.0

�5

5

Signal and noise

0.2 0.4 0.6 0.8

�1.5
�1.0
�0.5

0.5
1.0
1.5
2.0

Final Y shapes

0.5 1.0 1.5 2.0
Λ

0.0041214
0.0041216
0.0041218
0.0041220
0.0041222
0.0041224
0.0041226

CV�err

0.9 1.0 1.1 1.2 1.3 1.4 1.5
Λ

0.0041213
0.0041214
0.0041215
0.0041216
0.0041217
0.0041218

CV�err

0.2 0.4 0.6 0.8

�1.5

�1.0

�0.5

0.5

1.0

1.5
Β
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0.03
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Case 29.

0.2 0.4 0.6 0.8 1.0

�5

5

Starting Β values

0.2 0.4 0.6 0.8 1.0

�5

5

Signal and noise

0.2 0.4 0.6 0.8

�2

�1

1

2

Final Y shapes

0.5 1.0 1.5 2.0
Λ

0.0151065
0.0151070
0.0151075
0.0151080
0.0151085

CV�err

0.5 0.6 0.7 0.8
Λ

0.0151062

0.0151064

0.0151066

0.0151068

CV�err

0.2 0.4 0.6 0.8

�1.0

�0.5
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1.0

Β
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0.2 0.4 0.6 0.8 1.0
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0.04
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Case 31.

0.2 0.4 0.6 0.8 1.0

�2

2

4

Starting Β values

0.2 0.4 0.6 0.8 1.0

�20

�10

10

20

30
Signal and noise

0.2 0.4 0.6 0.8

�3

�2

�1

1

2

3
Final Y shapes

0.005 0.010 0.015
Λ

0.0008
0.0009
0.0010
0.0011
0.0012

CV�err

0.001 0.002 0.003 0.004
Λ

0.000690

0.000695

0.000700

0.000705

0.000710

CV�err

0.2 0.4 0.6 0.8

�0.4

�0.2

0.2

0.4
Β
�
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0.2
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0.8
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Β
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Case 32.

0.2 0.4 0.6 0.8 1.0

�2

2

4

Starting Β values

0.2 0.4 0.6 0.8 1.0

�20

�10

10

20

30
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