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THE SPECTRAL ESTIMATION OF SIMULTANEOUS EQUATION 
SYSTEMS WITH LAGGED ENDOGENOUS VARIABLES 

Rv ANTONI EsPASA 1 AND J. DENIS SARGAN 

I . INTRODUCTION 

Spectral estimators for the structural parameters of the simultaneous equations 
model with a general stationary structure (GSS) for the disturbances have been 
proposed by Hannan and Terrell [7] and further work has been done by one of 
the present authors [1]. In this paper we extend the mentioned spectral method 
(Specfiml) to be the estimation of a model containing Jagged endogenous variables 
and we compare its asymptotic properties with those of time domain methods. 
The plan of the paper is as follows: in Section 2 we set up the notation and as-
sumptions used later. In Section 3 we discuss alternative likelihood functions 
and their first order conditions and a three stage least squares (3SLS) approxima-
tion is proposed. Section 4 discusses the asymptotic properties. Section 5 
illustrates the computation of the estimators and in Section 6 we show that as the 
order of the autoregressive (AR) error process, assumed in an autoregressive full 
information maximum likelihood estimation, tends to infinity, the asymptotic 
variance matrix (A VM) for that case tends to the A VM of the Specfiml estimators. 

2. ASSUMPTIONS AND NOTATION 

The notation used in this paper follows closely that used in Espasa [1], and 
to facilitate reading we list here some of the terminology. 

We use small letters to represent scalars and small letters underlined by tilde 
for column vectors; the transposition sign (') is used to denote a row vector. 
Matrices will be represented by capital letters. The exceptions to these rules will 
be made clear in the text. 

The Kronecker product between two matrices A and B is defined as A®B 
= (auB). Vec is an operator that transforms a matrix into a vector obtained by 
putting the columns of the matrix one below the other. We use A for the com-
plex conjugate and A* for the transpose of the complex conjugate of the matrix 
A. 

For the derivation of the spectral estimators it is useful to transform the model 
by a unitary transformation and we do this by applying the matrix 

• The first author, now working at the Banco de Espai\a, Madrid, Spain, wishes to acknowl-
edge financial help from the British Council and Fundaci6n Juan March. 
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Q = {}r-[exp (2nijt{T)] }. j, t = 0, ... , T-1 

where T is the number of observations, to it. Using 

2nj 
wi = ----r-

the rows of Q can be written as 

j = 0, 1, .. . , T- I 

q'(w i) = t,/r[exp Uwr 0) exp (iwi · l) ... exp (iwj(T - !))] }· 

For Twe use 

T= 2Mm, 

and for the ease of exposition we assume m is odd. Then thew/scan be grouped 
into 2M sets the h1h of which consists of m adjacent w/s clustered around 

nh J,,, = 0 + M, h = 0, ... , 2M - I 

and we call Q{).,,) the submatrix from Q corresponding to the h 1h set. Note that 
for the zero set the Q(J..0) matrix is obtained taking the (m - l)/2 last rows and the 
(m+l)/2 first rows of Q. The assumption of the same m in each set is by no 
means crucial and can be easily relaxed. 

Suppose X is a T x k matrix ofT observations on k, variables, then the Fourier 
transform of X at the frequency wi is 

!..Vx(w) = q_'(wj)X. 

The matrix of Fourier transforms corresponding to the h1h set is given by 

and the matrix corresponding to the all 2M sets is given by 

Wx = QX. 

Then the smoothed or average periodogram is 

Note that IxCA-<2M-hJ)=IxP-1,)*. The crossperiodogram between two sets of 
variables Yand Z is defined in a similar way.2 

The spectral density matrices are denoted by F(A.) with the appropriate variable 

• Note that this gives a definition of the spectral density matrix which is the conjugate of that 
used by most authors, notably Hannan [4]. Our convention leads to a more natural form for 
expressions such as (6) or (17) below, and has no effect on the real fom1 of the likelihood func-
tion or the likelihood estimates. 
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suffixes, in a way similar to the periodogram. 
The model, the parameters of which we want to estimate, can be expressed as 

{I) 

or using 

(2) 

and 

(3) 

as 

(4) 

X = [YY1 ... Y,Z] = [YJ'lZ] = [Yzt] 

AX' = U' 

where Y is the (T x p) observation matrix of the endogenous variables, ~' is the 
Y matrix lagged s periods, Z is a (T x k) observation matrix of the exogenous 
variables, U is the matrix of unknown disturbances and A the coefficient matrix. 

For the vector error process {u,} we assume this to be a purely non-deterministic 
process with a finite variance, which can be represented as 

A(O) =I, 

00 

and that L j i! A(j)l! < oo, 
j;Q 

where the .§1 - 1 are i. i. d., random error vectors of dimension p with zero mean 
and non-singular covariance matrix G. IIA(j)ll is a suitable matrix norm. 

The spectral density of u1 is of the form 

Fu(J,) = 2~ [~A(j)e-ilA]G[~A(j)e-iJ).]*, J J 

and we require that 

detFu(l) > 0, AE [-n, n]. 

For the asymptotic theory presented below we need consistent estimators of 
F uU-) and for that purpose we require that T and M tend to infinity and also 
M 2/T-+0. The asymptotic theory involved here can be presented heuristically 
in the following way. We assume that the spectra of the disturbances can be 
divided in 2M bands between [ -n, n] such that for each band F u(A.) is constant. 
Then we let first T tend to infinity and then we allow M to tend to infinity. As 
T tends to infinity, the number of parameters in the likelihood initially remains 
finite, but when we also allow M to tend to infinity, the block diagonal matrix 

· Fu(A.0 ) 

Fu = 

3



           
       

converges to the spectral form of the covariance matrix of the {y,} process. 
With these assumptions, if all the predetermined variables in the model were 

exogenous we could require that they permit general harmonic analysis, and the 
asymptotic properties of the Specfiml estimator could be derived on the same 
basis as Hannan & Terrell [7] . But when the model contains lagged endogenous 
variables, we require the following further assumptions : 

AssUMPTION I. The AR process involving the dependent variables is stable, 
i. c., the roots of 

det {B0 + B10 + ... + 8,.0'} = 0 

lie outside the unit circle. 

AssUMPTION 2. The vector process {z,} of exogenous variables is stationary to 
the fourth order with absolutely continuous spectra and 

I oo 
Fz(A.) = -2- :L Gz( -r) exp ( -i-r}.), 

7r -oo 

where F z(A.) is the spectral density matrix of the variables in Z, and 

G ( .) I ' I ~ ' z r = tm -T-- £..... £; 1Zr+n 
T-oo · 1=1 

r = 0, 1, ... 

Also 

"' :L UIIIGz(r)ll < w, 

del F z(A.) > 0 

and {;,} also has a fourth cumulant function that satisfies 

"-L L L IKe,j,k,,(O, 't· !z, !3)1 < 00 
r1 r 2 r 3 =-oo 

and 

Gz(O) is non-singular. 

AssUMPTION 3. lim T/M4 --->0. 
These extra conditions are probably unnecessarily strong, but we do not pursue 

here their relaxation. 

AssuMPTION 4. The model is identified. For the problem of identification 
we refer to Sargan [12] and Hannan [5], but basically what we mean by identified 
is the order of the AR process is known, the model has enough well behaved 
exogenous variables and the coefficients of which A is comprised are subject to 
suitable set of zero and standardizing restrictions. We also require that con-
ditions closely allied to the control theory concept of controllability be satisfied. 
A sufficient set of conditions allied to one set of such conditions given by Hannan 
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[5] is that the matrix (Br: T) is of full rank p. In addition the usual econometric 
conditions for the identification of the structural form from the reduced form must 
be satisfied. For simplicity we assume that there are no identities in the model. 

3. ALTERNATIVE LIKELIHOOD FUNCTIONS 

Arguing as in Espasa [ 1] we l:lin write the log likelihood function corresponding 
to model (1) as 

(5) L[Vec( Y' )] m 
--"---;o;T~ = L = c - -- :L. log det FuU'h) 2T 11 

and using 

{6) 

the concentrated likelihood can be expressed as 

{7) Le = c 1 +log ldet B0 l - ;} ~log det luP·h) . 

Now writing 

(8) 

and 

(8a) P' = (fl': I) 
we can deduce first order conditions for the Specfiml estimators of the form 

(9) 

Throughout this article a suffix u attached to square brackets means that (i) 
in the case of a vec, only those elements which correspond to unconstrained 
coefficients in vec A are to be considered, (ii) in the case of a square matrix, only 
those rows and columns which correspond to unconstrained elements of vec A 
are to be retained; the other rows and columns are deleted. 

If r=O, (i.e. there are no lagged endogenous variables), it was shown by Espasa 
[I] that this is a form from which the asymptotic distribution of the estimates can 
be derived, and that the asymptotic variance of the unconstrained elements of 
JTvec (A - A) can be estimated by 

( 10) [ 2~ ~ P lzt zt ( - J..h)P' ® l{i 1(J..h) I'· 
This leads to the suggested 3SLS estimator given by 

( 11) 
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where A is the Spectral 3SLS (Spec 3SLS) estimator based on consistent esti-
mators of F0() .. h) and P. 

However, if r#O 
(a) (9) does not provide a suitable basis for discussing the asymptotic dis-

tribution of the estimators; 
(b) (10) does not provide a consistent estimate of the asymptotic variance 

matrix; 
(c) (11) does not give an A asymptotically equivalent to A. 

To do this we use an alternative form of the likelihood function . 
Writing 

(12) 

we have that 

(13) 

and the contribution of the residual term (see Hannan [ 4, ( 493)] is negligible. 
Now assuming that the spectra of the errors are constant within bands, assum-

ing continuity and using Assumption 3, L can be replaced by 

(14) 

where 

(15) 

(16) 

{17) 

m m ·· L 1 = c- 2T :ElogdetF0 {A.h) - 2T :Etr {Fii1(A.,,) I0 (J,,,)} 
h h 

m + r :E logldetB(J,,, ) I ,, 

Iu(J..h) = A(A.Jlxx(A.,)A*(A.h), 

X= (YZ) and 

A(A.h) = [B(A.h); r] 

To reconcile L 1 with L we need to justify the substitution of I0 (A1,) by I 0 (11,) 

and the different expression for the Jacobian contribution. The first point can 
be justified by using an argument similar to that employed in Hannan [4, (492-
495)], by putting our smoothed estimator for the spectra (the average periodogram, 
FFT in Hannan's terminology) in terms of the sample covariances and a Jag 
window (Hannan [4, (275- 76)]. And the second point is justified in the appendix 
of Espasa [2]. 

Concentrating as before, but now using 

(18) 

we have 

(19) 1 1 .. 
Le = ce + ?M I; log det B{).11) - 4M- I; log det lu(A1,) • 

~ ,, h 
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Now, if we call 

(20) 

we can differentiate L. with respect to any element of p, and we get 

(21) 

Now we write 

(22) 

and define 

(23) 

Then noting that 

(24) 

where 

(25) B+ = (B0 , B1, .. • , B,), 

we can after some manipulation write 

(26) ~~; = - 21-~ tr (fu'(J,II)A(J.~r)lxzCJ,,,) P'().h) ~~;) . 

If the A matrix has only the usual zero or standardizing restrictions the first order 
conditions can be written 

(27) 

Now (27) can be used to derive an asymptotic error variance matrix and to suggest 
a suitable 3SLS approximation. Indeed we can immediately write down a Spec 
3SLS estimator of the form 

(28) 

or since 

A(J,h) w;CJ.J = A w;o.J + Ro, 

where R0 is asymptotically negligible, as 

(29) [ L vec lu 1().,)Al xzCJ.,,)P'(J.,,)]. = 0, ,, 
7



where Ju1(A.,,) and P().h) are any consistent estimators of Fij 1(A.h) and P(},h), 
for instance, computed from the results of an instrumental variable est~nator 
for A. If the 1 we obtain are different from those used to compute i 01(A.1,) 
and P(J,1,) by non-trivial amounts, then it will pay to iterate by estimating F01(J.1,) 
and P().h) using 1. 

4. THE ASYMPTOTIC PROPERTIES OF THE SPECFIML ESTIMATORS 

To obtain the asymptotic distribution of A we have that 

so that 

.,;;n [ - .. J = - -r~ L: (P(A.h) ® / (i 1(A.,,)) vec luz<Ah) . v2M ,, , 

Note that using (13) and the re~ults in Hannan [4, (chapter 7)], we have 

plim ?Ml_ [L: P(Ah)lzx(- J.,,) ® i;/(A.h)J 
r-~ - la " 

(31) = plim 2-k[. L: P(J..,,)Izz( - ;.,,)P*(J,,,) ® Iu' (}.,,)]. 
r~oo h u 

= [+·-(" P(J,)Fzz( - A.) P*( A.) ® Fij 1(}..)dA. J 
-1t J-n 11 

and if the model is identified and in view of Assumption 2, following .Hannan 
[ 4, (441)], this is non-singular since it is the integral of a positive definite Hermitian 
matrix. 

Now under the present assumptions and arguing on the lines of .Hannan [4, 
(492- 495)], we can asymptotically replace the R. H. S. matrix of (30) by 

(32) - {"' .: [ L:P(A.h)®F01(A.h)vecluz(A.,,) J , 
v2M h u 

which, by B atman's theorem (see Hannan [4, (442, 487-492)]), has an asymptotic 
multivariate normal distribution with variance matrix given by (31 ), so that 
.jT(1 - p) has an asymptotic multivariate normal distribution with zero mean and 
variance matrix given by the inverse of (31 ), and can be consistently estimated by 

(33) 

When r=O, this agrees with the previous result derived in Hannan and Terrell 
[7] and in Espasa [ I ] where it is shown that there ·is no loss in efticiency when 
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assuming a general stationary structure (G. S. S.) for the errors if they in fact 
follow a finite autoregressivc process. 

Note that (33) also gives an estimate of the asymptotic variance matrix of 
the errors in the estimators obtained by maximizing (5) and that leads us to 
the problems of computation that we treat in the next section. But if the spectral 
estimators were to be computed from the first order conditions, it would be 
simpler to use (9) rather than (27) and the dilferem;e is asymptotically negligible 
provided that Assumption I is satisfied. 

Note that the estimates obtained by maximizing Le have the same limitations 
as those obtained by maximizing L, i.e., we must have m> p(r + l) + k, (see Espasa 
[1]). Moreover, if we look at the similar conditions for the Spec 3SLS defined 
by (29), we require also that i ij1().h) is non-singular, which requires that p <m. 
We obviously require that the estimate of A, A, on which the estimate of P{).,) is 
based should lead to non-singular B().1,) for all h as required by Assumption 1, 
and also that the matrix 

should be non-singular. These cond itions will be satisfied with probability one 
as T ->oo, if the model is correctly specified. 

5. THE COMPUTATION OF TIIB SPECFIML ESTIMATORS 

In this section we explain the procedure for computing the spectral estimators 
of a simultaneous equations model, which is the basis fo r the Fortran program, 
Specfiml, written by the first author for the computations shown in the appendix. 
T he approach followed in the construction of the program is closely related to the 
one used in Hendry [8, 9] and consists of minimizing minus the likelihood 
function by means of a Powell [11] subroutine that calculates the minimum of a 
function without using derivatives. The standard errors of the estimators are 
obtained by a numerical calculation of the Hessian. Besides the estimators of the 
structural coefficients, their standard errors and t values, the Specfiml program 
also gives the cospectra, quadrature-spectra and coherency matrices at different 
frequency bands of the estimated disturbances and this output can also be ob-
tained with the initial values and at the different stages of the iteration process, 
if required. 

It was proved in the appendix of [2] that the estimates resulting from the maxi-
mization of L. defined in (19) are asymptotically equivalent to those obtained from 
the maximization of Le defined in (7). Since it is computationally simpler to 
obtain Le than L0 , the criterion function that we choose to minimize in the Specfiml 
program is 

I M ' f = - log det B0 + -T-- I: D1,m1, log det Al,rxCJ.,,)A 
/o=O 
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with B0 , A and X defined as in Section 2 and bh=l except that b0 = bM = l-
Obviously f is the same as the criterion function used by Espasa in [1] in the special 
case where there are no lagged endogenous variables. Also since the Hessians 
of Le and L., are asymptotically equivalent, the computation procedure in the 
Specfiml program gives, for large T and M, a consistent estimate of the asymptotic 
variance matrices, whether the model includes lagged values of the endogenous 
variables or not. 

The program uses as input the values of the elements of the matrices I xxU·h), 
but minor modifications will allow it to use I xx(wj) or even Wx(wi) as input~. 
I xx(A.11) was produced by a separate program using a Fast fourier subroutine. 
!t was decided not to combine the two programs and use X as input, because in 
small samples the selection or the band-width may be crucial and some experi-
mentation with different sets or m1.'s values may be worthwhile. 1t would be a 
waste of time to recompu te Wx(wi) at each trial. 

The program calculates logdetiuO·h) = logdetAixx(i,1,)A' by means of a sub-
routine designed to invert Hermitian positive definite matrices using complex 
numbers. But since the determinant of an Hermitian matrix is real, the com-
putations of logdetiuV-11) could alternatively be based on real matrices. In 
fact, if we split I u(J.,,) into its real and imaginary parts so that 

I u(J..,,) = Ru(J,h) - iC(A.,,) , 

an alternative form of the criterion function involving real matrices only is 

f = - log det B0 + - T1 f D11 mJJ{ log det Ru(i .. 11) 
1•= 0 

Finally the concentrated likelihood could be put in terms of the observation 
matrix in a real formulation by noting that either, 

log det [AI xxV•h)A'] 

= log det rAA) ( :, 0 \(Q~(J.,,) 0 )(Q1() .. 11 ) 0 )(X OX )(AA:)}, 
X') 0 Q2(J,.,,) 0 Q2 (A.h) 0 

or, 

if h = 0 and M, 

= log det ( AX'I/I 1 (J,,,)XA' 

- AX'I/I2 () .. ,,)XA' 

AX' I/I 2XA'), 

AX' I/I 1XA' 

where Q1(.A.,,) and QiJ .. ,,) are defined from 

Q() .. h) Q '). ) 'Q ( ' --~ .. ~ _ .. = I ( •I• + l 2 AIJ) , -nm1, 

if h = !, .. . ,M- !, 
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and 

tpi(J..II) = Q!(J..II)QI(J,II) + Q2(J..II)QiJ..II) and 

tf' 2(}.,11) = Q2(},,,)Q I (J.,,) - Ql (?,h)Qz(J.It) · 

6. T HE ASYMPTOTIC VARIANCE MATRIX OF THE STRUCTURAL ESTI MATORS 
WHEN THB ERRORS FOLLOW AN AR PROCESS 

It is interesting to compare the asymptotic properties of the SpecfimJ estimators 
with the asymptotic properties of the Maximum Likelihood estimators when the 
errors follow a vector moving average process. 3 There is no difficulty in proving 
that the results obtained in Hannan and Nicholls [6] can be generalized here for 
the simultaneous model. 

Similar conclusions are obtained when comparing the Specfiml estimators with 
the maximum likelihood (ML) estimators if the errors follow an AR process. 
In order to prove this we devote this section to obtaining asymptotic variance 
matrix of the ML estimators in the AR case. 

The model considered here is the one set up in the previous sections, but now 
the errors are generated by a vector autoregressive model of the form 

We find it convenient to work with the reduced form, which we write 

(34) 

where nand ~~ are as defined in (3) and (8) respectively and 

(35) 

(36) 

Then we have 

!?, = B01 y, S,, = Bo1 RkBo. 

~? = B-1£,. 

Var{§1) = G and Var~?) = ao. 
To find the A VM of JT (A- A), where A is the time domain autoregressive 

ML estimator, we consider the first and second derivatives of the likelihood 
function. We can write the concentrated likelihood function as 

L, = - ~ Tlog det (EO' _EO), 

where EO' is a matrix formed with the column vectors ~? and we assume that the 

a See Nicholls [10] for the estimation of a simultaneous model with a vector moving average 
error process. 
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~? have been expressed as functions of some set of parameters p, eliminating the 
sk by using the equations 

(37) j = 1, .. . , ;:, 

where Vk is the matrix whose rows are p;_k, t = l, ... , Tand S0= -l. Then ~? 
is determined from '!lr-s using (35) and (37) and then is expressed as a function of 
A from (34) and (8). We assume that A depends upon the N parameters of the 
vector p. 

For the Hessian we have 

iJ2L, = - Ttr [-fJ- ({;0- 1) (Eo,.£.Eo )] 
o<f>.lJ</>,1 aq>,l ocf>, 

- Ttr[eo-t(Eo' iJ2£0 ) ] - Ttr[eo-t(0£0')(a£o)J. o</>,o</>9 ocf>, o</>, 
Note that the first two terms are O(J'f) since E0 ' in each occurs multiplied by 
z; when explicit expression for iJ£0/o</>, and iJ2E0fiJcf>,iJcf>1 are substituted, and 
so can be neglected compared with the last term which is O(T). Jn this term we 

must take account of the dependence in ~!0 

of s. on </>q-
Differentiating (37) we have q 

-f/! -.t (ZJ' Vk)S~ + t (V} Z k) (-~~- )' S~ - t (V} Vk) 0°~!, = 0. 
U'/' 11 k-0 k-0 U'l'n k - 1 'l'n 

Now f (ZJ Vk)SI, = ZJ £ 0 = O( ._jT ), k=O 
and so the first term is negligible. So now write 

v;v, .. .. .............. v:v, 
and 

K,= f v~zz( an )' s;. k=O i}cp n 

f V1zt( an)' s;. k=O ocf>, 
T hen we have 
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and 

so that 

(38) 

Now write 

and 

d£0' = o£0' - K'G- • ( v; l dA. [)A. q v+ . ' 
~'q 'l'q : 

V' 1 

_I fJ2L = _ tr [(E0'£) -•(~)'(8£0)] 
T o~,o~q o~q o~, 

+ tr {cEo' Eo)-• K~G;;~ v; l ± zr (an )' s .. } 
: s; O a~, 

v; 

= - tr {( Eo: £0 ) - ' 2: 2: [sk(j!!_X Zk' z; X}.!!_)' s~J} 
T k s i'J~9 T o~, . 

(V' V) Gvv (-r) = plim kT k 

Gvzt (<) = plim( VJ,TZ!) 

Gztzt(<) =plim( 21~Z1). 

Then we have 

(39) ~~q = tr{oo-t kto.t[ sk(g~JGztzt(k- s)(g~J's;J} 
- tr {G0- 1KqGv~<'lKn}, 

where 
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(an)' , l ~Gv:/(1 - k) ol/>
1 

Sk 

Gvv(O)G,,(I ) ··· Gvv(r - I) _, ·. 

. . . 
Gvv( - r + l) ···· ··Gvv(O) 

Now we consider the case where the order of the AR process is r+ , but we 
mistakenly assume in estimation that the order is r> r+, and in particular we 
consider the limit of ~~q as r-HX> with s ... s ~ r+ remaining constant and S.=O, 
s>r+. 

First we note that increasing i' in general increases the A VM. 
Since the first term in ~~~~ is independent of i', given S.= 0, s > r+, we consider 

only the second term and if we have that minus the second term is increasing in i', 
then the A VM (Q<t>) will also be increasing. 

More formally write Q~ for the A VM corresponding to autoregressive order 
r, then if and only if 

we have 
(Q~+l)-1 ~ (Q~)-1 

and then for an arbitrary constant vector~ we have 

~'[(Q~+ l)-l]Q: ~ ~'[(Q~)-1]~. 

Now write 
N oii 

L1 = L: rxP ::>A. 
p=1 v..,P 

and 

Lf , = t Gvz1 (r - k) Lf ' Sk 
k=O 

i' L: Gvzt (r - k - l) Lf' SI. 
k=O 

; 
L: Gvzt (I - k) Lf' Sk 

k=O 

Then 
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and if this increases with i', then so does the A VM, but now it is clear that 

Ll(,+t)Gv~<,+oLI<r+ I) :::: LI~Gv~mLI; 

by using the partitioned inverse of Gv• <r+ IJ· The condition for s trict inequality 
is rather complex, so that we now concentrate on the limit as i'-+oo. 

The first term in (39) is relatively simple to express in spectral terms as 

(40) 2~ ( vec g~,)'[~:,(Fzt zt (J,) ® FvH- 2) )d?. }ec(~~J. 
where F 2 t 2 t (}.) is the matrix spectral density corresponding to G2 t 2 t (r), and 
writing F vv(A.) as the spectral density matrix corresponding to Gvv(t). 
This, of course, equals the usual formula for the AVM when r=O (i.e. no lagged 
endogenous variables). 

Now, for the second term of (39), it can be shown that as i' .-. oo it can be written 
as 

( vec ( g~J )'):,. (F2 t v(A)Fv~(2)Fvzt (i,)) ® Fvv(- A) d}, ( vec( g~,)) . 

Thus compactly we can write 

~~'I = ( vec ( Jg,,) )'):,,[F2 t 2 t (?.) - F2 t v(2 )FvH2)Fvzt (J,)] 

® FvH- A) dJ. ( vec ( %{/-;)) 
and that 

{( oii )'(" _ Q<b = vec op J-n[F2t 2t (A) - Fzt v(2)Fvn?.)Fvzt (J,)] 

(an)l-1 ® FvH- }.)dA vec N:. j , 

where vec ~~ is the (pkt x n) matrix whose j'1' row is 0~. (vec IJ)', and kt , the - ) 

number of predetermined variables, equals (pr+ k). 
Now F zv(2) = 0, and the elements of Fit 2 t (J,) - F vzt (2)F;;W,)F vzt (.A.) only 

differ from F 2 t 2 t (),) when both row and column correspond to lagged endogenous 
variables. 

Making use of the reduced fo rm equation (34) it follows that the whole asymp-
totic variance matrix can now be written 
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This is perfectly general for the case when the reduced form matrix n is a 
general function of a set of parameters p. Now consider the standard simultane-
ous equation case, where 

Then 

{( fJA )'(" _1 _ 1 ( fJA )} - 1 
Q<P = vec op J-, [Fxz(A.)Fzz(J,)Fzx(J.) ® Fuu( - A.)]dJ, vec op , 

where ( vec ~~) is (p2(r + 1 + k) x n) matrix defined in an analogous way as vec 

an op above. 

If the restrictions are linear, or zero-one restrictions, then we can simply replace 

vec ( ~; ) by S, which, in the latter case, is a selection matrix. 

Finally, noting that 

F xz(A.)F:zHJ,)F zx(A.) = P( - A.)F zz(J,)P*( - A.), 

where P(J.) was defined in (23), it is clear that the resulting A VM is the one derived 
in Section 4 for the Specfiml estimators. 

7. GENERAL COMMENT 

The last section makes it clear how much we depend, when we generalize the 
stochastic process generating the errors on our structural equations, on the 
assumption that there is a set of exogenous variables, completely incoherent 
with the errors on the equations which we are estimating. This is worrying, 
because there is a serious problem of inadequate sample size in the estimation 
of these spectral estimators, so that only relatively small models can be estimated, 
as discussed in Espasa [1]. In highly aggregate models, the aggregative variables 
which may be treated as exogenous should usually more properly be considered 
endogenous, and the resulting inconsistencies may be serious. Ignoring the in-
adequate sample size problem, the set of variables, which it may be really ap-
propriate to consider exogenous, may behave like a set of trends or dummy 
variables which lead to estimates of the model coefficients with large standard 
errors. Of course, the same will be true if general ARMA models are used in 
the time domain with high order moving average and/or autoregressive equations. 
But in this context it seems a natural procedure to reduce the order of the stochas-
tic processes by using the usual type of significance test, and in doing so, we end 
up with an acceptable explanation of the data, in which the error generation 
stochastic processes have been simplified, in effect allocating as much as possible 
of the explanation of the behavior of the observed data to the structural equation 
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model. The econometnc1an would agree that this may be a rather arbitrary 
procedure, and would judge the value of the result largely on a priori judgements 
of the economic acceptability of the model. A comparison with the Specfiml 
estimates of the model would certainly throw light on the limitations of the 
ARMA pretesting estimates. 

In the case of variables which are generated by a stochastic model outside the 
economic model which is being estimated, a time domain approach may be ad-
vantageous, if it is assumed that the errors on the two models are incoherent, 
and that there are rather long lags in the effect of economic variables on the 
variables generated by the outside model. In this case there will be no harm in 
the time domain in treating the outside variables as exogenous, provided the in-
ternal errors stochastic model is correctly specified. Of course, if the combined 
model is sufficiently stable and the outside lags are sufficiently long, the treatment 
of the outside variables as exogenous in spectral methods would lead to only small 
inconsistencies. An alternative treatment when using spectral methods would 
be to develop methods of estimating an incomplete set of equations. Thus 
equations of the form (29) can be used, dropping the requirement that there are 
as many equations as current endogenous variables, and using for Z any set of 
suitable instrumental variables (i.e., variables which are exogenous from the point 
of view of the combined model generating both inside and outside variables). 

P'() .. 11) can be replaced by I zz(J,,,)- 1 I zxU1,), and the asymptotic error variance 
matrix estimated as 

As a special case we can consider similarly the estimation of a single equation. 

Banco de Espaiia, Madrid, Spain 
London School of Economics, United Kingdom 

APPENDIX 

The Application of the Spectral Estimation Method 
We first apply the Specfiml method to the following artificial model: 

Y2r = b1Y1t + b2Z21 + b3Z3r + U2r· 

The data 1 have been generated with 

b 1 = 0.5, a1 = a2 = a 3 = b 2 = b 3 = - 1.0 

• We are graleful to D. Hendry for supplying the data. 
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z2r = 0.5z2cr- l) + u4, 

Z3r = Ust 

and 

11 1 is i. i. d . N(O, ay} ar = 0.09 

u 2 is If N(O, o"i} ai = a5 = 1.0 

u 3 is " N(O, aS) a3 = 0.36 

u 4 is " N(O, ai) C1~ = 0.75 

u 5 is " N(O, a3) 

and u 1, u 2 , u3 , u4 and u 5 are independently distributed. 
With 58 observations we have estimated the model by Ordinary Least Squares 

(OLS), Full Information Maximum Likelihood (FIML) and Specfiml. ln the 
last case we have distinguished eight frequency bands between 0 and 2n and we 
have done the estimation using all the frequency bands and also for each of the 
bands separately. The results are in Table I . Note that the model is recursive 
and all the estimation methods are efficient. 

From these results we have that the Specfiml method has produced very sensible 
estimates of the parameters and of their standard errors. A !so looking at the con-
fidence intervals for the estimated spectra of the residuals from Specfiml, the 
white noise hypothesis is not rejected. ft is interesting to note that, applying the 
Specfiml method to each of the five different frequency bands, we see that the re-
sults for the frequency band around zero are the ones which dominate the estima-
tion results for all bands. T his is not surprising given the way in which we have 
generated the system. Also note that, except for the band around zero, the 
DH's (see table l) in the single frequency estimation are smaller than the cor-
responding ones in the over-all frequency estimation, only at the expense of a high 
coherency. 

We now apply the Specfiml method to a four-equation wages-earnings-prices 
inflation model. This model is a slight variant of one model derived and discussed 
in Espasa [3]. The data, referring to U.K., is quarterly and the sample period 
goes from .1950(2)-1971(1), i.e. 84 observations. We have distinguished four 
frequency bands centered around - n/2, 0, n/2 and n. Even with 2M=4 the 
number of periodogram ordinates (mh), for the frequency band around n/2 is 
less than the number of variables (NV) in the model. In Espasa [1] it is shown 
that under certain general conditions m11 must be equal to or greater than NV. 
One of those conditions is that each exogenous variable appears at least in two 
equations and this is not the case for the present model. Nevertheless, the results 
that we have obtained do not suggest a badly behaving likelihood function . 

The results are in Table 2 and comparing with the ones reported in Espasa [3] 
we have that the Specfiml estimates agree quite well with the FIML estimates. 

18



           
       

T
A

B
LE

 1
 

a,
 

I a
, 

I a
, 

I b
, 

I b
, 
T
b
.
l

lsf
:q
.T

;~
~'e

q.l
 

L 
I 

I ~
~t

a~
~s

) 
I 

' 
' 

I 
O

.L
.S

. 

F
IM

L
 

Sp
ec

fu
nl

 
(a

ll 
ba

nd
s)

 

Sp
ec

fim
l 

(in
di

vi
du

al
 b

an
ds

) 
h=

O
 

h=
i 

h=
2 

h=
3 

lr=
4 

-
.8

3 
I -

.9
4

 
1-

1.
16

 
(.2

66
6)

 
(.

18
34

) 
(.1

8)
 

-
.5

49
,-

1.
00

3
,-

1.
02

3 
(.0

32
9)

 
(.0

58
) 

(.0
61

) 

-
.8

29
 

(.2
57

) 

I -
.8

34
 

1 
(.2

68
) 

-
.8

86
 

(.2
94

) 

-
.9

37
 ,

-1
.1

6 
(.1

77
) 

(.
17

4)
 

-
.4

77
 

(.0
85

) 
-.

91
9 

(.
11

0)
 

-
.9

40
 

(.
11

0)
 

-.
84

4
,-

1.
13

7
1 

-
.4

8
4

,-
.9

1
6

 1 1
-.

93
9 

(.1
95

) 
(.

16
9)

 
(.0

94
) 

(;1
16

) 
(.1

23
) 

-
. 5

67
l-

1.
37

6 
-

.4
83

1
-

.9
79

,-
1.

00
7

1 
(.2

52
) 

(.3
91

) 
(.1

66
) 

(.1
\7

) 
(.1

62
) 

-
.1

84
1-1

.4
0 

I -
.8

48
 I 

-.
75

2 
1-

1.
46

 
1-

1.
33

 
(.9

9)
 

(.4
5)

 
(.5

6)
 

(.1
66

) 
(.3

4)
 

(.2
8)

 

.2
6 

,-
1.

85
 

,-
1.

10
 

,-
1.

47
 

,-
2.

35
 

,-
1.

86
 

(1
.2

9)
 

(.5
6)

 
(.3

0)
 

(1
4.

8)
 

(7
.5

2)
 

(4
.5

9)
 

-1
.2

6 
,

-
.5

4 
,-

1.
30

 
,

-
.1

23
,

-.
6

4
 
,
-

.6
6 

(1
.1

4)
 

(.4
0)

 
(.2

9)
 

(.3
7)

 
(.3

3)
 

(.5
1)

 

-
.6

3 
1

-.
6

4
 

1-
1.

15
 

I 
.8

4 
I -

.1
2 

I 
.6

7 
(1

.3
0)

 
(.4

6)
 

(.3
3)

 
(2

.9
9)

 
(1

.9
2)

 
(3

.6
2)

 

.6
38

 
.8

78
 

i 

-
I.

 I 
I 

-
1.

18
4 

1 

I I 
: 

: 
D

T=
 -

17
5.

69
 

P
H

I=
 -

3.
02

92
 

D
H

 
=

-
31

.0
96

 D
H

0
=

-
29

.71
 

P
H

/0
=

 -
.5

36
1 

'(/ 
'~~

 .2
46

3 
'(/ 

0 
= 

.2
46

1 

D
H

 
= 

-
41

.9
96

 
D

H
, =

 -
3

6
.5

3 
P

H
/I

 =
-.

72
41

 
'(/ 

=
.5

58
 

'(;'
, 

=
.0

98
 

D
H

 
= 

-
42

.5
4

1 
D

H
,,=

 -
35

.5
3 

P
H

/2
=

 -
.7

33
4 

'(/ 
=c

.9
85

 
'C

z 
=

.2
82

 

D
H

 
=

-
39

.7
6 

D
H

3 
=

-
37

.9
3 

P
H

/3
=

-.
68

56
 

'(/ 
=

.5
18

 
'6'

, 
=

.0
1\

 

D
H

 
= 

-
38

.7
2 

D
H

,=
 -

-3
6.

00
 

P
H

/4
=

 -
.6

67
5 

'(/ 
=

.9
72

 
I '(

;', 
=

.1
o 

I 
I 

I 
I 

I 
I 

I 
I 

-
~
-
-
~
-

Th
e 

va
lu

es
 in

 b
ra

ck
et

s 
ar

e 
es

tim
at

ed
 s

ta
nd

ar
d 

er
ro

rs
 n

ot
 c

or
re

ct
ed

 f
or

 d
eg

re
es

 o
f f

re
ed

om
 e

xc
ep

t i
n 

O
.L

.S
. 

L:
 

m
in

us
 th

e 
K

er
ne

l o
f t

he
 li

ke
lih

oo
d 

fu
nc

tio
n 

di
vi

de
d 

by
 th

e 
nu

m
be

r o
f o

bs
er

va
tio

ns
. 

'(;'
: 

es
tim

at
ed

 c
oh

er
en

ce
 b

et
w

ee
n 

th
e 

es
tim

at
ed

 r
es

id
ua

ls
 o

f t
he

 tw
o 

eq
ua

tio
ns

. 
D

H
=

m
n 

lo
g 

de
t l

uU
A)

; 
D

T=
 L

.D
H

h;
 

P
H

I=
 -

lo
g 

de
t 

B+
 1/

T 
D

T
 (t

hi
s 

va
lu

e 
ca

n 
be

 c
om

pa
re

d 
w

ith
 L

 b
y 

ad
di

ng
 (P

/2
) 

lo
g 

(2
rr)

 t
o 

P
H

 I,
 

h 
P

 is
 t

he
 n

um
be

r o
f e

qu
at

io
ns

 in
 t

he
 s

ys
te

m
). 

19



           
       

TABLE 2 
T ilE SPECTRAL ESTIMATION OF THE INFLATION MODEL, FOR THE OVER-ALL AND 

INDIVIDUAL FREQUENCY BANDS 

Wage Equation 
Specfiml Estimates Using: 

Variable All Frequency I Frequency Band I Frequency Band I Frequency Band 
Bands Around Zero Around rr/2 Around 11: 

JU -.023 - .016 -.003 - .005 
(1.71) (1.49) (.74) (.95) 

RW_t -.37 - .10 - 1.03 - .25 
(2.09) (.56) (1.74) (6.87) 

RKt .29 .12 .75 .18 
(2.12) (.62) (1.53) (6.99) 

SP-1 .01 .001 .012 .001 
(2.92) (.37) (4.25) (.47) 

Tl - .0032 - .0019 - .0026 .002 
(4.96) (16.68) (.66) (.29) 

T12 .00003 .00003 .00003 .00002 
(4.19) (4.78) (.23) (.15) 

JW_t .18 .34 .04 - 1.52 
(1.34) ( 1.97) (.15) (12.54) 

JW-2 - .53 .22 -.53 - 1.10 
(4.03) (.40) (4.67) (3.52) 

JW_a .23 -- .45 .06 -.20 
(2.32) (1.67) (.29) (.83) 

RW_ a - .44 .27 -.65 .035 
(2.99) (1.73) (2.90) (.47) 

R E_ a .35 .17 .38 - .07 
(3. 79) (.89) (1.94) ( 1.56) 

----~--~-·-----~-------- - ---- - ------·-- ---- --·-- - - ------ --

Earnings Equation 

Variable 

-------.--------~--=-- ·---·--·-~-c----~--------

Specfiml Estimates Using: 
I-A;-;lc;-1-;o;F,--re-q-ue_n_c~y---,-1 ;=:F-re-q-ue_n_c_y--;;B:a--ri--d;-~--Frequency Band -~-Frequency Band -

Bands Around Zero Around rr /2 Around 11: 

JW .86 .74 3.06 .30 
(4.62) (3.75) (3.10) (1.27) 

.82 .28 .09 1.60 
(3.79) (1.83) (.13) (4.42) 
- .67 -.23 - 1.38 - 1.82 
(3.80) (1 .84) (2.50) (15.24) 

T1 .0022 .0009 .014 .011 
(4.00) (2.25) (2.93) (5.53) 
- .53 - .16 2.10 .61 
(3.81) (.69) (1.54) (3.18) 

JW_4 - .42 -.21 .50 -.47 
(3.78) (.94) (.86) (2.81) 

(P -t -P-4) .35 .09 - .48 .08 
(4.30) (1.09) (1.20) (.67) 

~--S-P --;;--~---'----('-:0_7~-~--------~~~~~ --l ____ (_t :~~J-~----- --- (:~~~--
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TABLE 2 
(Continued) 

Price Equation 
Specfiml Estmates Using; 

Variable All Frequency I Frequency Band \Frequency Band I Frequency Bind-
Bands Around Zero Around rr/2 Around rr 

dE .24 .58 -.06 .55 
(1.53) (2.11) (.28) (2.48) 

RL1 .47 .17 .80 1.68 
(4.20) ( 1.83) (1.85) (5.77) 

(PM-1 - P-1) .11 .05 .04 - .11 
(5.54) (2.84) (.57) (1.06) 

T -.004 - .004 -.009 - .007 
(5.16) (6.31) (1.92) (2.03) 

RLa .15 .43 .47 - .62 
(2.35) (3.05) (2.10) (2.86) 

(P_J - P-4) - .19 -.03 -. 16 - .51 
(2.36) (.25) ( 1.13) (1.82) 

Unemployment Equation 
Specfiml Estimates Using: 

Variable --AITFrequency--~ Frequency- Band-~ Frequency -Band-~ FrequencyBand--
Bands Around Zero Around rr /2 Around rr 

---=~ .-37 ____ -------=--------:34 ____ --- - =------:-ss ______ _ f:\8 __ _ 
(7.45) (6.57) (6.20) (3.28) 

GDP - 3.9 - 4.2 - 2.7 -1.8 

T 
(6.13) (6.08) (2.57) (1.44) 

.032 .034 .025 .004 
(6.51) (6.39) (3.63) (.37) 

PHI - 20.235 - 6.40 - 8.62 - 7.39 
DHo - 514.17 - 537.77 
DH1 - 678.70 - 724.21 
DHz - 506.88 - 620.46 
mo 24 24 
mr 16 16 
1172 24 24 
Description of the data: 

All the data have been previously deseasonalized by a multiple regression 
with a constant and three quarterly dummies (i. e., the periodogram ordinates 
for wi,j= O, T/4, T/2 and 3 T/4 have been omitted for all the variables). 

All the variables except GPD are expressed in index numbers based on aver-
age 1948 = 100. All variables enter the equations in logs. 

If X is a variable in the system 
11X= X - LX, where Lis the back operator 
x_j = LiX 

W official weekly wage-rate index 
E weekly earnings per employee in employment 

RW= W - P 
RE= E- P 

P consumers' price deftator 
PM official import price index 
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GDP real GDP 

TABLE 2 
(Continued) 

U index number of total unemployment 
SP number of industrial stoppages in all industries except coal mining 

T trend variable, 1949(2) = 1, .. . , 1971(1) = 88 
Tl trend variable, 1950(2) = .. ·= 1958(4) = 0, 1959(1) = 1, .. . , 1971(1) = 49 

Notes: Values in brackets are asymptotic t values, not corrected for degrees 
of freedom. 
See Table 1 for definition of PHi, DH h, ... . 

This, perhaps, is not surprising, since for that model a first order A R process for 
the errors is rejected according to results in Espasa [3]. 

Looking at the results from individual bands estimation we have that the esti-
mates of some coefficients are significantly different for different bands. This can 
be due to the fact that the model has been designed without distinguishing be-
tween slowly-changing and rapidly-changing situations in the sample period, or 
it can be reflecting that the time unit used and the restrictions imposed are a bad 
approximation of the underlying differential system. In any case it seems that 
the estimation of a model by individual bands can be a useful instrument to 
detect misspecifications that cannot be easily observed from time domain methods. 
From our results here, these misspecifications are more likely to occur on the dy-
namic elements of an aggregate model. 
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