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NON-ORIENTABLE LAGRANGIAN COBORDISMS

BETWEEN LEGENDRIAN KNOTS

ORSOLA CAPOVILLA-SEARLE AND LISA TRAYNOR

Abstract. In the symplectization of standard contact 3-space, R×R3,
it is known that an orientable Lagrangian cobordism between a Leg-
endrian knot and itself, also known as an orientable Lagrangian endo-
cobordism for the Legendrian knot, must have genus 0. We show that
any Legendrian knot has a non-orientable Lagrangian endocobordism,
and that the cross-cap genus of such a non-orientable Lagrangian en-
docobordism must be a positive multiple of 4. The more restrictive
exact, non-orientable Lagrangian endocobordisms do not exist for any
exactly fillable Legendrian knot but do exist for any stabilized Legen-
drian knot. Moreover, the relation defined by exact, non-orientable La-
grangian cobordism on the set of stabilized Legendrian knots is symmet-
ric and defines an equivalence relation, a contrast to the non-symmetric
relation defined by orientable Lagrangian cobordisms.

1. Introduction

Smooth cobordisms are a common object of study in topology. Motivated
by ideas in symplectic field theory, [21], Lagrangian cobordisms that are
cylindrical over Legendrian submanifolds outside a compact set have been
an active area of research interest. Throughout this paper, we will study
Lagrangian cobordisms in the symplectization of the standard contact R3,
namely the symplectic manifold (R×R3, d(etα)) where α = dz−ydx, that co-
incide with the cylinders R×Λ+ (respectively, R×Λ−) when the R-coordinate
is sufficiently positive (respectively, negative). Our focus will be on non-
orientable Lagrangian cobordisms between Legendrian knots Λ+ and Λ−
and non-orientable Lagrangian endocobordisms, which are non-orientable
Lagrangian cobordisms with Λ+ = Λ−.

Smooth endocobordisms in R×R3 without the Lagrangian condition are
abundant: for any smooth knot K ⊂ R3, and an arbitrary j ≥ 0, there is
a smooth 2-dimensional orientable submanifold M of genus j such that M
agrees with the cylinder R×K when the R coordinate lies outside an interval
[T−, T+]; the analogous statement holds for non-orientable M and cross-cap
genus1 when j > 0. For any Legendrian knot Λ, it is easy to construct
an orientable Lagrangian endocobordism of genus 0, namely the trivial La-
grangian cylinder R × Λ. In fact, with the added Lagrangian condition,
orientable Lagrangian endocobordisms must be concordances:

1the number of real projective planes in a connected sum decomposition
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2 O. CAPOVILLA-SEARLE AND L. TRAYNOR

Theorem (Chantraine, [8]). For any Legendrian knot Λ, any orientable,
Lagrangian endocobordism for Λ must have genus 0.

Non-orientable Lagrangian endocobordisms also exist and have topologi-
cal restrictions:

Theorem 1.1. For an arbitrary Legendrian knot Λ, there exists a non-
orientable Lagrangian endocobordism for Λ of cross-cap genus g if and only
if g ∈ 4Z+.

Theorem 1.1 is proved in Theorem 3.2 and Theorem 3.3. The fact that
the cross-cap genus of a non-orientable Lagrangian endocobordism must be
a positive multiple of 4 follows from a result of Audin about the obstruction
to the Euler characteristic for closed, Lagrangian submanifolds in R4, [1]. It
is easy to construct immersed Lagrangian endocobordisms; the existence of
the desired embedded endocobordisms follows from Lagrangian surgery, as
developed, for example, by Polterovich in [38].

Of special interest are Lagrangian cobordisms that satisfy an additional
“exactness” condition. Exactness is known to be quite restrictive: by a
foundational result of Gromov, [30], there are no closed, exact Lagrangian
submanifolds in R2n with its standard symplectic structure. The non-closed
trivial Lagrangian cylinder R × Λ is exact, and Section 2 describes some
general methods to construct exact Lagrangian cobordisms. In contrast to
Theorem 1.1, there are some Legendrians that do not admit exact, non-
orientable Lagrangian endocobordisms:

Theorem 1.2. There does not exist an exact, non-orientable Lagrangian
endocobordism for any Legendrian knot Λ that is exactly orientably or non-
orientably fillable.

A Legendrian knot Λ is exactly fillable if there exists an exact Lagrangian
cobordism that is cylindrical over Λ at the positive end and does not inter-
sect {T−} × R3, for T− � 0; precise definitions can be found in Section 2.
Theorem 1.2 is proved in Section 4; it follows from the Seidel Isomorphism
(Theorem 4.1), which relates the topology of a filling to the linearized con-
tact cohomology of the Legendrian at the positive end. Theorem 1.2 implies
that on the set of Legendrian knots in R3 that are exactly fillable, orientably
or not, the relation defined by exact, non-orientable Lagrangian cobordism
is anti-reflexive and anti-symmetric; see Corollary 4.2. Figure 6 gives some
particular examples of Legendrians that are exactly fillable and thus do not
admit exact, non-orientable Lagrangian endocobordisms. Many of these ex-
amples are maximal tb Legendrian representatives of twist or torus knots.
In fact, using the classification results of Etnyre and Honda, [25], and of
Etnyre, Ng, and Vértesi, [26], we show:

Corollary 1.3. Let K be the smooth knot type of either a twist knot or a
positive torus knot or a negative torus knot of the form T (−p, 2k), for p odd
and p > 2k > 0. Then any maximal tb Legendrian representative of K does
not have an exact, non-orientable Lagrangian endocobordism.
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Figure 1. The max tb Legendrian representative of m(819).

However, stabilized Legendrian knots do admit exact, non-orientable La-
grangian endocobordisms: a Legendrian knot is said to be stabilized if, after
Legendrian isotopy, a strand contains a zig-zag as shown in Figure 4.

Theorem 1.4. For any stabilized Legendrian knot Λ and any k ∈ Z+, there
exists an exact, non-orientable Lagrangian endocobordism for Λ of cross-cap
genus 4k.

Some Legendrian knots are neither exactly fillable nor stabilized. Thus,
a natural question is:

Question 1.5. If a Legendrian knot is not exactly fillable and is not stabi-
lized, does it have an exact, non-orientable Lagrangian endocobordism? In
particular, does the unique Legendrian representative of m(819) = T (−4, 3)
with maximal tb whose front projection is shown in Figure 1 have an exact,
non-orientable Lagrangian endocobordism?

A description of how the Legendrian knot can be recovered from the front
projection is given in Subsection 2.1. The max tb version of m(819) is not
exactly fillable since the upper bound on the tb invariant for all Legendrian
representatives of m(819) given by the Kauffman polynomial is not sharp;
see Section 6 for more details. In response to Question 1.5, Chantraine,
Dimitroglou Rizell, Ghiggini, and Golovko, [10, Corollary 12.3], proved an
extension of Theorem 1.2 that shows an exact, non-orientable, Lagrangian
endocobordism does not exist for an orientable Legendrian that admits an
augmentation or, more generally, for an orientable Legendrian whose char-
acteristic algebra admits a finite-dimensional representation. The max tb
Legendrian representative of m(819) = T (−4, 3) does not have an augmen-
tation, but by results of Sivek, [46, Corollary 3.5], the characteristic algebra
of this Legendrian does have a 2-dimensional representation. Thus the an-
swer to Question 1.5 is no; see Section 6 for additional questions.

Given the existence of exact, non-orientable Lagrangian endocobordisms
for a stabilized Legendrian, it is natural to ask: What Legendrian knots
can appear as a “slice” of such an endocobordism? The parallel question
for orientable Lagrangian endocobordisms has been studied in [9, 4, 13].
The non-orientable version of this question is closely tied to the question of
whether or not non-orientable Lagrangian cobordisms define an equivalence
relation on the set of Legendrian knots. By a result of Chantraine, [8], it is
known that the relation defined on the set of Legendrian knots by orientable
Lagrangian cobordism is not an equivalence relation since symmetry fails. In
fact, the relation defined on the set of stabilized Legendrian knots by exact,



4 O. CAPOVILLA-SEARLE AND L. TRAYNOR

non-orientable Lagrangian cobordism is symmetric: see Theorem 5.2. In
addition, this relation is transitive by “stacking” (Lemma 2.2) and reflexive
by Theorem 1.4. Thus we get:

Theorem 1.6. On the set of stabilized Legendrian knots, the relation defined
by exact, non-orientable Lagrangian cobordism is an equivalence relation.
Moreover, all stabilized Legendrian knots are equivalent with respect to this
relation.

Acknowledgements. We thank Baptiste Chantraine, Richard Hind, and
Josh Sabloff for stimulating discussions. We also thank Georgios Dim-
itroglou Rizell and Tobias Ekholm for helpful comments. We are also grate-
ful to the referee for numerous comments and suggestions that made the ex-
position better. Both authors thank the Andrew W. Mellon Foundation for
supporting the first author with a Mellon-Mays Undergraduate Fellowship;
this paper grew out of her thesis project, [7]. Traynor gratefully acknowl-
edges the hospitality of the Institute for Advanced Study in Princeton and
support at IAS from The Fund for Mathematics during a portion of this
work.

2. Background

In this section, we give some basic background on Legendrian and La-
grangian submanifolds.

2.1. Contact Manifolds and Legendrian Submanifolds. Below is some
basic background on contact manifolds and Legendrian knots. More infor-
mation can be found, for example, in [23] and [24].

A contact manifold (Y, ξ) is an odd-dimensional manifold together with
a contact structure, which consists of a maximally non-integrable field of
tangent hyperplanes. The standard contact structure on R3 is the field
ξp = kerα0(p), for α0(x, y, z) = dz − ydx. A Legendrian link Λ is a
submanifold of R3 diffeomorphic to a disjoint union of circles such that
for all p ∈ Λ, we have TpΛ ⊂ ξp; if, in addition, Λ is connected, Λ is a
Legendrian knot. It is common to examine Legendrian links from their
xz-projections, known as their front projections. A Legendrian link will
generically have an immersed front projection with semi-cubical cusps, no
vertical tangents, and no self-tangencies; any such projection can be uniquely
lifted to a Legendrian link using y = dz/dx.

Two Legendrian links Λ0 and Λ1 are equivalent Legendrian links if
there exists a 1-parameter family of Legendrian links Λt, t ∈ [0, 1], joining Λ0

and Λ1. In fact, Legendrian links Λ0,Λ1 are equivalent if and only if their
front projections are equivalent by planar isotopies that do not introduce
vertical tangents and the Legendrian Reidemeister moves as shown in
Figure 2.
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Figure 2. The three Legendrian Reidemeister moves. There
is another type 1 move obtained by flipping the planar figure
about a horizontal line, and there are three additional type 2
moves obtained by flipping the planar figure about a vertical,
a horizontal, and both a vertical and horizontal line.

Figure 3. Three different Legendrian unknots; the one with
maximal tb invariant of −1 and two others obtained by ±-
stabilizations.

Every knot has a Legendrian representative. In fact, every knot has an
infinite number of different Legendrian representatives. For example, Fig-
ure 3 shows three different oriented Legendrians that are all topologically
the unknot. These unknots can be distinguished by classical Legendrian
invariants: the Thurston-Bennequin number, tb, and the rotation number,
r. These invariants can easily be computed from a front projection; see, for
example, [5].

The two unknots in the second line of Figure 3 are obtained from the
one at the top by stabilization. In general, from an oriented Legendrian
Λ, one can obtain oriented Legendrians S±(Λ): the positive (negative)
stabilization, S+ (S−), is obtained by replacing a portion of a strand with
a strand that contains a down (up) zig-zag, as shown in Figure 4. This
stabilization procedure will not change the underlying smooth knot type but
will decrease the Thurston-Bennequin number by 1; adding an up (down)
zig-zag will decrease (increase) the rotation number by 1. It is possible
to move a zig-zag to any strand of a Legendrian knot, [28]. Bennequin
and Slice-Bennequin Inequalities (see, for example, [24]) show that for any
Legendrian representative Λ of a fixed smooth knot type K, tb(Λ) + |r(Λ)|
is bounded above. Because of such bounds, the set of oriented Legendrian
representatives of a fixed smooth knot type can be visualized by a “mountain
range” in the plane where each Legendrian representative Λ is recorded by a
vertex at coordinates (r(Λ), tb(Λ)); two vertices are connected by an edge if
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S+

S-

Figure 4. The positive (negative) stabilization of an ori-
ented knot is obtained by introducing a down (an up) zig-zag.

the corresponding Legendrians are related by stabilization. Many examples
of known and conjectured mountain ranges can be found in the Legendrian
knot atlas of Chongchitmate and Ng, [12].

2.2. Symplectic Manifolds, Lagrangian Submanifolds, and Lagrangian
Cobordisms. We will now discuss some basic concepts in symplectic ge-
ometry. Additional background can be found, for example, in [34].

A symplectic manifold (M,ω) is an even-dimensional manifold together
with a 2-form ω that is closed and non-degenerate; when ω is an exact 2-form,
(M,ω = dβ) is said to be an exact symplectic manifold. A basic example
of an exact symplectic manifold is (R4, ω0 = dx1 ∧ dy1 + dx2 ∧ dy2). The
cobordisms constructed in this paper live inside the symplectic manifold that
is constructed as the symplectization of (R3, ξ0 = kerα0), namely, R × R3

with symplectic form given by ω = d(etα0). In fact, there is an exact
symplectic diffeomorphism between the symplectization (R×R3, ω) and the
standard (R4, ω0), see for example [6].

A Lagrangian submanifold L of a 4-dimensional symplectic manifold
(M,ω) is a 2-dimensional submanifold so that ω|L = 0. When M is an exact
symplectic manifold, ω = dβ, β|L is necessarily a closed 1-form; when, in
addition, β|L is an exact 1-form, β|L = df , then L is said to be an exact
Lagrangian submanifold. It is easy to verify that the exactness of the
Lagrangian does not depend on the choice of β.

Remark 2.1. There is a (non-exact) Lagrangian torus in the standard sym-
plectic R4: this can be seen as the product of two embedded circles in each
of the (x1, y1) and (x2, y2) planes. By classical algebraic topology, it fol-
lows that the torus is the only compact, orientable surface that admits a
Lagrangian embedding into R4: a result of Whitney equates a signed count
of double points of an immersion to the Euler number of the normal bun-
dle, but for a Lagrangian submanifold, the normal and tangent bundles are
isomorphic, [3].

We turn our focus to non-compact Lagrangians that are cylindrical over
Legendrians.

Definition 2.1. Let Λ−,Λ+ be Legendrian links in R3.
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(1) A Lagrangian submanifold without boundary L ⊂ R × R3 is a La-
grangian cobordism from Λ+ to Λ− if it is of the form

L = ((−∞, T−]× Λ−) ∪ L ∪ ([T+,+∞)× Λ+) ,

for some T− < T+, where L ⊂ [T−, T+]×R3 is compact with bound-
ary ∂L = ({T−} × Λ−) ∪ ({T+} × Λ+).

(2) A Lagrangian cobordism from Λ+ to Λ− is orientable (resp., non-
orientable) if L is orientable (resp., non-orientable).

(3) A Lagrangian cobordism from Λ+ to Λ− is exact if L is exact,
namely etα0|L = df |L, and the primitive, f , is constant on the cylin-
drical ends: there exist constants C± such that

f |L∩((−∞,T−)×R3) = C−, f |L∩((T+,+∞)×R3) = C+.

A Legendrian knot Λ is (exactly) fillable if there exists an (exact) La-
grangian cobordism from Λ+ = Λ to Λ− = ∅.

An important property of Lagrangian cobordisms is that they can be
stacked/composed:

Lemma 2.2 (Stacking Cobordisms, [19]). If L12 is a Lagrangian cobordism
from Λ+ = Λ1 to Λ− = Λ2, and L23 is a Lagrangian cobordism from Λ+ = Λ2

to Λ− = Λ3, then there exists a Lagrangian cobordism L13 from Λ+ = Λ1 to
Λ− = Λ3. Furthermore, if L12 and L23 are exact, then there exists an exact
L13.

Constructions of exact Lagrangian cobordisms are an active area of re-
search. In this paper, we will use the fact that there exist exact Lagrangian
cobordisms between Legendrians related by isotopy and certain surgeries.
The existence of exact Lagrangian cobordisms from isotopy is well-known,
see, for example, [22], [8], [19], and [6].

Lemma 2.3 (Exact Cobordisms from Isotopy). Suppose that Λ and Λ′ are
isotopic Legendrian links. Then there exists an exact, orientable Lagrangian
cobordism, in fact concordance, from Λ+ = Λ to Λ− = Λ′.

Remark 2.2. In general, the trace of a Legendrian isotopy is not a Lagrangian
cobordism. However it is possible to add a “correction term” so that it will
be Lagrangian. More precisely, let λt(u) = (x(t, u), y(t, u), z(t, u)), t ∈ R, be
a Legendrian isotopy such that ∂λ

∂t (t, u) has compact support with Imλt(u) =
Λ− for t ≤ −T and Imλt(u) = Λ+ for t ≥ T , and let

η(t, u) = α0

(
∂λ

∂t
(t, u)

)
.

Then Γ(t, u) = (t, x(t, u), y(t, u), z(t, u) + η(t, u)) is an exact Lagrangian im-
mersion. If η(t, u) is sufficiently small, which can be guaranteed by “slowing
down” the isotopy via a t-reparameterization, then Γ(t, u) is an exact La-
grangian embedding.
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Figure 5. Orientable and Non-Orientable Legendrian surgeries.

In addition, Legendrians Λ and Λ′ that differ by “surgery” can be con-
nected by an exact Lagrangian cobordism. In one of these surgery oper-
ations, a Legendrian 0-tangle, consisting of two strands with no crossings
and no cusp points, is replaced with a Legendrian ∞-tangle, consisting of
two strands that each have 1 cusp and no crossings; see Figure 5. When
the strands of the 0-tangle are oppositely oriented, this is an orientable
surgery; otherwise this is a non-orientable surgery. In addition, there
is another surgery operation that shows the maximal tb Legendrian repre-
sentative of the unknot, shown at the top of Figure 3, can be filled.

Lemma 2.4 (Exact Cobordisms from Surgery, [19, 15, 6]). (1) Suppose
that Λ+ and Λ− are Legendrian knots where Λ− is obtained from Λ+

by orientable (non-orientable) surgery, as shown in Figure 5. Then
there exists an exact, orientable (non-orientable) Lagrangian cobor-
dism from Λ+ to Λ−.

(2) Suppose Λ+ is the Legendrian unknot with tb equal to the maximum
value of −1. Then there exists an exact, orientable Lagrangian filling
of Λ+ by a disk.

Remark 2.3. By Lemmas 2.2, 2.3 and 2.4, to show there exists an exact
Lagrangian cobordism from Λ+ to Λ−, it suffices to show that there is a
string of Legendrian links (Λ+ = Λ0,Λ1, . . . ,Λn = Λ−), where each Λi+1 is
obtained from Λi by a single surgery, as shown in Figure 5, and Legendrian
isotopy. In the case where each surgery is orientable, the exact Lagrangian
cobordism will be orientable. If all surgeries are orientable and Λ± are both
knots, then the length, n, of this string must be even and will agree with
twice the genus of the Lagrangian cobordism; for more details, see [5]. If
there is at least one non-orientable surgery, the exact Lagrangian cobordism
will be non-orientable and the length of the string agrees with the cross-cap
genus of the Lagrangian cobordism. To construct an exact Lagrangian filling
of Λ+, it suffices to construct such a string to Λ− = U , where U is a trivial
link of maximal tb Legendrian unknots.
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3. Constructions of Non-orientable Lagrangian
Endocobordisms

In this section, we show that any Legendrian knot has a non-orientable
Lagrangian endocobordism with cross-cap genus an arbitrary multiple of 4.
We then show that it is not possible to get any other cross-cap genera.

The strategy to show existence is to first construct an immersed orientable
Lagrangian cobordism, and then apply “Lagrangian surgery” to modify it so
that it is embedded. The following description of Lagrangian surgery follows
Polterovich’s construction, [38]; see also work of Lalonde and Sikorav, [33].

To describe Lagrangian surgery precisely, we first need to explain the
“sign” of a double point. Suppose that x is a point of self-intersection of
a generic, immersed, oriented 2-dimensional submanifold L of R4. Then
sgn(x) ∈ {±1} will denote the sign of self-intersection of L at x: let
(v1, v2) and (w1, w2) be positively oriented bases of the transverse tangent
spaces at x, then

sgn(x) = +1 ⇐⇒ (v1, v2, w1, w2) is a positively oriented basis of R4,

and otherwise sgn(x) = −1.
By constructing a Lagrangian handle in a Darboux chart, it is possible to

remove double points of a Lagrangian immersion:

Lemma 3.1 (Lagrangian Surgery, [38]). Let Σ be a 2-dimensional manifold.
Suppose φ : Σ → R4 is a Lagrangian immersion, and U ⊂ R4 contains a
single transversal double point x of φ. Then there exists a 2-dimensional
manifold Σ′ and a Lagrangian immersion φ′ : Σ′ → R4 such that

(1) Imφ = Imφ′ on R4 − U ;
(2) φ′ has no double points in U .

Furthermore, let φ−1({x}) = {p1, p2} ⊂ Σ.

(1) If p1, p2 are in disjoint components of Σ, then Σ′ is obtained from Σ
by a connect sum operation.

(2) If p1, p2 are in the same component of Σ, then
(a) if Σ is not orientable, Σ′ = Σ#K(= Σ#T ),
(b) if Σ is orientable, then Σ′ = Σ#T , when sgn(x) = +1, and

Σ′ = Σ#K, when sgn(x) = −1,
where K denotes the Klein bottle and T denotes the torus.

We now have the necessary background to show the existence of a non-
orientable Lagrangian endocobordism for any Legendrian knot:

Theorem 3.2. For any Legendrian knot Λ and any k ∈ Z+, there exists a
non-orientable Lagrangian endocobordism for Λ of cross-cap genus 4k.

Proof. For an arbitrary Legendrian knot Λ, begin with a cylindrical La-
grangian cobordism, L = R×Λ in R×R3, which is a space that is symplec-
tically equivalent to the standard R4. As explained in Remark 2.1, there
exists an embedded Lagrangian torus, T , such that T ∩ L = ∅. After a
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suitable shift and perturbation, we can assume that L and T intersect at
exactly two points, x1 and x2 where sgn(x1) = +1 and sgn(x2) = −1. By
Lemma 2.4, Lagrangian surgery at x1 results in the connected, oriented,
immersed Lagrangian diffeomorphic to (R× S1)#T with a double point at
x2 of index −1; a second Lagrangian surgery at x2 results in an embedded,
non-orientable Lagrangian cobordism diffeomorphic to (R×S1)#T#K, and
thus of cross-cap genus 4. Stacking these endocobordisms, using Lemma 2.2,
produces an embedded, non-orientable Lagrangian cobordism of cross-cap
genus 4k, for any k ∈ Z+. �

In fact, the possible cross-cap genera that appear in Theorem 3.2 are all
that can exist:

Theorem 3.3. Any non-orientable Lagrangian endocobordism in R × R3

must have cross-cap genus 4k, for some k ∈ Z+.

This cross-cap genus restriction is closely tied to Euler characteristic ob-
structions for compact, non-orientable submanifolds that admit Lagrangian
embeddings in (R4, ω0), or equivalently in (R× R3, d(etα)):

Lemma 3.4 (Audin, [1]). Any compact, non-orientable Lagrangian sub-
manifold of R× R3 has an Euler characteristic divisible by 4.

This result can be seen as an extension, to the non-orientable setting, of
a formula of Whitney that relates the number of double points of a smooth
immersion to the Euler number of the normal bundle of the immersion; see
[1, 3].

Remark 3.1. Lemma 3.4 implies that any compact, non-orientable, La-
grangian submanifold L in R×R3 has cross-cap genus 2+4j, for some j ≥ 0.
There are explicit constructions of compact, non-orientable Lagrangian sub-
manifolds of cross-cap genus 2 + 4j, for all j > 0, [29, 2]. It has been shown
that there is no embedded, Lagrangian Klein bottle (j = 0), [35, 44].

To utilize the cross-cap genus restrictions for compact Lagrangians, we
will employ the following lemma, which shows that for any Lagrangian endo-
cobordism, it is possible to construct a compact, non-orientable Lagrangian
submanifold into which we can glue the compact portion of a Lagrangian
endocobordism.

Lemma 3.5. For any Legendrian knot Λ ⊂ R3, any open set D ⊂ R3

containing Λ, and any T ∈ R+, there exists a compact, non-orientable La-
grangian submanifold L in R× R3 such that

L ∩ ([−T, T ]×D) = [−T, T ]× Λ.

Proof. The strategy will be to construct a Lagrangian torus with double
points, thought of as two finite cylinders with top and bottom circles identi-
fied, and then apply Lagrangian surgery to remove the double points. As a
first step, we construct (non-disjoint) Lagrangian embeddings of two cylin-
ders via Legendrian isotopies, Lemma 2.3. Namely, start with two disjoint
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copies of Λ: Λ in D and a translated version Λ′ ⊂ R3−D. Now, for t ∈ [0, U ],
consider Legendrian isotopies Λt of Λ and Λ′t of Λ′ that satisfy the following
conditions: Λt = Λ, for t ∈ [0, U ]; Λ′t = Λ′, for t ∈ [0, T ], and for t ∈ [T,U ],
Λ′t is a Legendrian isotopy of Λ′ such that Λ′t = Λ, for t near U . By repeating
an analogous procedure for t ∈ [−U, 0], we can obtain a smooth immersion
of the torus into [−U,U ]×R3. The arguments used to prove Lemma 2.3 (see
Remark 2.2) show that for U−T sufficiently large, the trace of these isotopies
can be perturbed to two non-disjoint embedded Lagrangian cylinders that
do not have any intersection points in [−T, T ]×R3, and a direct calculation
shows that each double point with t ∈ [T,U ] can be paired up with a double
point with t ∈ [−U,−T ] of opposite sign. Then by applying Lagrangian
surgery, Lemma 3.1, at each double point we get a compact, non-orientable
Lagrangian submanifold L in R× R3 with the desired properties. �

We are now ready to prove the cross-cap genus restriction for arbitrary
non-orientable, Lagrangian endocobordisms:

Proof of Theorem 3.3. Let C be a non-orientable Lagrangian endocobor-
dism. Suppose C ⊂ R ×D and C agrees with a standard cylinder outside
[−T, T ]×R3. By Lemma 3.5, there is a compact, non-orientable Lagrangian
submanifold L in R× R3 so that

L ∩ ([−T, T ]×D) = [−T, T ]× Λ.

Let L′ be the Lagrangian submanifold obtained by removing the standard
cylindrical portion of L in [−T, T ]×D and replacing it with C∩([−T, T ]×R3).
Then L′ will be a compact, non-orientable Lagrangian submanifold whose
cross-cap genus, k(L′), differs from the cross-cap genus of L, k(L), by the
cross-cap genus of C, k(C): k(L′) = k(L) + k(C). By Lemma 3.4, there
exist j, j′ ∈ Z+ so that k(L) = 2 + 4j and k(L′) = 2 + 4j′. Thus we find
that the cross-cap genus of C, k(C), must be divisible by 4. �

Remark 3.2. For exact Lagrangian cobordisms that are constructed from
isotopy and surgery, Lemmas 2.3 and 2.4, it is possible to show that the
cross-cap genus must be a multiple of 4 by an alternate argument that relies
on a careful analysis of the possible changes to tb(Λ) under surgery; [7].

4. Obstructions to Exact Non-Orientable Lagrangian
Endocobordisms

We will now begin to focus on exact, non-orientable Lagrangian cobor-
disms. In this section, we will prove Theorem 1.2, which states that any Leg-
endrian knot that is exactly fillable does not have an exact non-orientable
Lagrangian endocobordism. The proof of this theorem will involve apply-
ing the Seidel Isomorphism, which relates the topology of a filling to the
linearized Legendrian contact cohomology of the Legendrian at the positive
end. We will then apply Theorem 1.2 and give examples of maximal tb
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Legendrian knots that do not have exact, non-orientable Lagrangian endo-
cobordisms.

We begin with a brief description of Legendrian contact homology; ad-
ditional background information can be found, for example, in [24]. Leg-
endrian contact homology is a Floer-type invariant of a Legendrian sub-
manifold that lies within Eliashberg, Givental, and Hofer’s Symplectic Field
Theory framework; [20, 21, 11]. It is possible to associate to a Legendrian
submanifold Λ ⊂ R3 the stable, tame isomorphism class of an associative
differential graded algebra (DGA), (A(Λ), ∂). The algebra is freely gener-
ated by the so-called Reeb chords of Λ, and is graded using a Maslov in-
dex. The differential comes from counting pseudo-holomorphic curves in the
symplectization of R3; for our interests, we will always use Z/2 coefficients.
Legendrian contact homology, namely the homology of (A(Λ), ∂), is a
Legendrian isotopy invariant. Legendrian contact homology has been de-
fined for Legendrian in contact manifolds other than R3; see, for example,
[18], [40].

In general, it is difficult to extract information directly from the Legen-
drian contact homology. An important computational technique arises from
the existence of augmentations of the DGA. An augmentation ε of A(Λ)
is a differential algebra homomorphism ε : (A(Λ), ∂) → (Z2, 0); a graded
augmentation is an augmentation such that ε is supported on elements
of degree 0. Not all Legendrians have an augmentation; for any Legen-
drian Λ, there are only a finite number of augmentations. Given a graded
augmentation ε, one can linearize (A(Λ), ∂) to a finite dimensional differen-
tial graded complex (A(Λ), ∂ε) and obtain linearized contact homology,
denoted LCH∗(Λ, ε;Z/2), and its dual linearized contact cohomology,
LCH∗(Λ, ε;Z/2). The set of all linearized (co)homology groups with respect
to all possible graded augmentations is an invariant of Λ. If the augmenta-
tion is ungraded, one can still examine the rank of the non-graded linearized
(co)homology, dimLCH(Λ, ε;Z/2), and obtain as an invariant of Λ the set
of ranks of this total linearized (co)homology for all possible augmentations.
Ungraded linearized (co)homology is not an effective invariant: of the many
examples of Legendrian knots in the Legendrian knot atlas of Chongchitmate
and Ng, [12], that have the same classical invariants yet can be distinguished
through graded linearized homology, none can be distinguished by examin-
ing ungraded homology. However, ungraded (co)homology will be useful in
arguments below.

Ekholm, [16], has shown that an exact Lagrangian filling, F , of a Legen-
drian submanifold Λ ⊂ R3 induces an augmentation εF of (A(Λ), ∂). When
this filling has Maslov class 0, the augmentation will be graded. Informally,
Maslov 0 means that along each loop in the filling, the corresponding loop
of Lagrangian tangent planes is trivial in the Lagrangian Grassmannian.

The following result of Seidel will play a central role in showing obstruc-
tions to exact, non-orientable Lagrangian endocobordisms. A proof of this
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result was sketched by Ekholm in [17] and given in detail in Dimitroglou-
Rizell, [14]; a parallel result using generating family homology is given in
[42].

Theorem 4.1 (Seidel Isomorphism, [17], [14], [19]). Let Λ ⊂ R2n+1 be an
n-dimensional Legendrian submanifold with an exact Lagrangian filling F ;
let εF denote the augmentation induced by the filling. Then

dimH(F ;Z/2) = dimLCH(Λ, εF ;Z/2).

If the filling F of the n-dimensional Legendrian has Maslov class 0, then a
graded version of the above equality holds:

dimHn−∗(F ;Z/2) = dimLCH∗(Λ, εF ;Z/2).

The ungraded version of the Seidel Isomorphism will be used to prove
that any Legendrian Λ that is exactly fillable does not have an exact, non-
orientable Lagrangian endocobordism:

Proof of Theorem 1.2. For a contradiction, suppose that there is a Leg-
endrian knot Λ that has an exact Lagrangian filling and an exact non-
orientable Lagrangian endocobordism. Then by stacking the endocobor-
disms, Lemma 2.2, it follows that Λ has an infinite number of topologically
distinct exact, non-orientable Lagrangian fillings. Each of these exact La-
grangian fillings induces an augmentation. Since there are only a finite
number of possible augmentations, there must exist two topologically dis-
tinct fillings that induce the same augmentation. However, this gives a
contradiction to the Seidel Isomorphism, Theorem 4.1. �

Theorem 1.2 implies that on the set of Legendrian knots in R3 that are ex-
actly fillable, orientably or not, the relation defined by exact, non-orientable
Lagrangian cobordism is anti-reflexive. Thus, by stacking, Lemma 2.2, we
immediately also see:

Corollary 4.2. On the set of Legendrian knots in R3 that are exactly fillable,
orientably or not, the relation ∼ defined by exact, non-orientable Lagrangian
cobordism is anti-symmetric: Λ1 ∼ Λ2 =⇒ Λ2 6∼ Λ1.

We now apply Theorem 1.2 to give examples of Legendrians that do
not have exact, non-orientable Lagrangian endocobordisms. Hayden and
Sabloff, [31], showed that every positive knot type has a Legendrian repre-
sentative that has an exact, orientable Lagrangian filling. Combining this
with Theorem 1.2, immediately gives:

Corollary 4.3 ([31]). Each positive knot has a Legendrian representative
that does not have an exact, non-orientable Lagrangian endocobordism.

There is work in progress to show that every +-adequate knot has a Legen-
drian representative with an exact filling, [43].

Many maximal tb representatives of low crossing knots have fillings, ori-
entable or not. Figure 6 illustrates some Legendrians that can be verified to
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 6. Examples of Legendrians that do not have ex-
act, non-orientable Lagrangian endocobordisms: maximal tb
representatives of (a) m(31) = T (3, 2) = K−2, (b) 31 =
T (−3, 2) = K1, (c) 41 = K2 = K−3, (d) 51 = T (−5, 2),
(e) m(51) = T (5, 2), (f) 62, and (g) m(62). The red lines
indicate points for surgeries.

m

Figure 7. The smooth twist knot Km; the box contains m
right-handed half twists if m ≥ 0, and |m| left-handed twists
if m < 0. Notice that K0 and K−1 are unknots.

have exact, Lagrangian fillings: see Remark 2.3. Many of the examples in
Figure 6 are Legendrian representatives of twist knots, Km, or torus knots,
T (p, q). Using Theorem 1.2 together with classification results of Etnyre and
Honda, [25], and of Etnyre, Ng, and Vértesi, [26], we show that all maximal
tb representatives of twist knots, positive torus knots, and negative torus
knots of the form T (−p, 2k), p > 2k > 0, do not have exact, non-orientable
Lagrangian endocobordisms:

Proof of Corollary 1.3. By Theorem 1.2, to show the non-existence of an
exact, non-orientable Lagrangian endocobordism, it suffices to show the ex-
istence of an exact Lagrangian filling.

First consider the case where Λ is a maximal tb representative of a twist
knot, whose form is shown in Figure 7. Etnyre, Ng, and Vértesi, have
classified all Legendrian twist knots, [26]: every maximal tb Legendrian
representative of Km, for m ≤ −2, is Legendrian isotopic to one of the
form in Figure 8, and every maximal tb Legendrian representative of Km,
for m ≥ 1, is Legendrian isotopic to one of the form in Figure 9. For a
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m+2

(a) (b) (c)

Figure 8. Any maximal tb Legendrian representative of a
negative twist knot, Km with m ≤ −2, is Legendrian isotopic
to a Legendrian of the form (a) with the box containing |m+
2| half twists, where each half twist has form S as shown in
(b) or form Z as shown in (c). Two surgeries produces a max
tb Legendrian unknot.

( a ) ( b )

m

Figure 9. Any maximal tb Legendrian representative of a
positive twist knot, Km with m ≥ 1, is Legendrian isotopic
to a Legendrian in the form of (a), where the box contains
m half twists of form X as shown in (b).

m

( a ) ( b )

Figure 10. An inductive argument shows that every max
tb representative of a positive twist knot has an exact La-
grangian filling.

max tb representative of a negative twist knot, Figure 8 illustrates the two
surgeries that show the existence of an exact Lagrangian filling. For a max tb
Legendrian representative of a positive twist knot, the existence of an exact
filling can be shown by an induction argument: Figure 10 (a), indicates the
surgery point when m = 1; for all m ≥ 1, a maximal tb representative of
Km+1 can be reduced to a maximal tb representative of Km by one surgery
as indicated in Figure 10 (b).

Next consider maximal tb Legendrian representatives of a torus knot, a
knot that can be smoothly isotoped so that it lies on the surface of an
unknotted torus in R3. Every torus knot can be specified by a pair (p, q)
of coprime integers: we will use the convention that the (p, q)-torus knot,
T (p, q), winds p times around a meridional curve of the torus and q times
in the longitudinal direction. In fact, T (p, q) is equivalent to T (q, p) and to



16 O. CAPOVILLA-SEARLE AND L. TRAYNOR

Figure 11. Surgeries that result in an exact filling of the
maximal tb representative of the positive torus knot T (5, 3).

}

e

n1B
n B2

B=

Figure 12. The general form of a maximal tb representative
of a negative torus knot T (−p, 2k), with p > 2k > 0, with
k = 2 and |p| = (1 +n1 +n2)2k+ e; the indicated k surgeries
produce a Legendrian trivial link of maximal tb unknots.

T (−p,−q). We will always assume that |p| > q ≥ 2, since we are interested
in non-trivial torus knots.

Etnyre and Honda, [25], showed there is a unique maximal tb represen-
tative of a positive torus knot, T (p, q) with p > 0. The surgeries used in
[5, Theorem 4.2] show that this maximal representative is exactly fillable.
Figure 11 illustrates the orientable surgeries for the (5, 3)-torus knot; in this
sequence of surgeries, one begins with surgeries on the innermost strands,
and then performs a Legendrian isotopy so that it is possible to do a surgery
on the next set of innermost strands.

Lastly consider the case where Λ is topologically a negative torus knot,
T (−p, 2k) with p > 2k > 0. In this case, Etnyre and Honda have shown
that the number of different maximal tb Legendrian representations depends
on the divisibility of p by 2k: if |p| = m2k + e, 0 < e < 2k, there are
m non-oriented Legendrian representatives of T (−p, 2k) with maximal tb.
These different representatives with maximal tb are obtained by writing
m = 1 + n1 + n2, where n1, n2 ≥ 0, and then Λ(n1,n2) is constructed using
the form shown in Figure 12 with n1 and n2 copies of the tangle B inserted
as indicated; this figure also shows k surgeries that guarantee the existence
of an exact Lagrangian filling. �

Some comments on obstructions to exact fillings are discussed in Section 6.
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( a ) ( b )

Figure 13. It is possible to construct exact non-orientable
Lagrangian cobordisms between (a) Λ+ = Λ and S−S+(Λ),
(b) Λ+ = S−S+(Λ) and Λ− = S+(Λ) or Λ− = S−(Λ).

5. Constructions of Exact, Non-orientable Lagrangian
Cobordisms

In this section, we will construct an exact, non-orientable Lagrangian en-
docobordism of cross-cap genus 4 for any stabilized Legendrian knot, and
a non-orientable Lagrangian cobordism between any two stabilized Legen-
drian knots. All these exact Lagrangian cobordisms are constructed through
isotopy and surgery, see Remark 2.3.

Central to these constructions will be the following lemma, which says
that one can always introduce a pair of “oppositely oriented” zig-zags to
Λ+, and if one has a pair of oppositely oriented zig-zags in Λ+, then one can
remove either element of this pair; see Figure 13. One needs to be careful
when discussing orientations for the ends of a non-orientable Lagrangian
cobordism: given an orientation on Λ+, there is no canonical orientation for
Λ−. However, although an orientation is needed on Λ to distinguish between
S+(Λ) and S−(Λ), S−S+(Λ) is a well-defined operation on unoriented knots.

Lemma 5.1. Let Λ be a Legendrian knot. Then there exists an exact, non-
orientable Lagrangian cobordism:

(1) of cross-cap genus 2 between Λ+ = Λ and Λ− = S−S+(Λ);
(2) of cross-cap genus 1 between Λ+ = S−S+(Λ) and Λ− = S+(Λ) or

Λ− = S−(Λ).

Proof. The strategy will be to construct the desired exact, non-orientable
Lagrangian cobordism via Legendrian isotopy and surgeries that are per-
formed locally, near the site of the stabilizations. Figure 14 illustrates the
isotopy and surgeries, the second of which is non-orientable, that imply the
existence of a cross-cap genus 2 Lagrangian cobordism between Λ+ = Λ
and Λ− = S−S+(Λ). Figure 15 illustrates the isotopy and surgery that
imply the existence of a cross-cap genus 1 Lagrangian cobordism between
Λ+ = S−S+(Λ) and Λ− = S+(Λ), when the original strand is oriented from
right to left, or Λ− = S−(Λ), when the original strand is oriented from left
to right. �

5.1. Exact, Non-Orientable Lagrangian Endocobordisms. In The-
orem 1.2, it was shown that Legendrians that are exactly fillable do not



18 O. CAPOVILLA-SEARLE AND L. TRAYNOR

Figure 14. By applying an orientable and a non-orientable
surgery, any strand can have a pair of oppositely oriented
zig-zags introduced.

Figure 15. In the presence of oppositely oriented zig-zags,
via one non-orientable surgery, one of the zig-zags can be
removed.

have exact, non-orientable Lagrangian endocobordisms. However exact,
non-orientable Lagrangian endocobordisms do exist for stabilized knots:

Proof of Theorem 1.4. First consider the case where Λ is the negative sta-

bilization of a Legendrian: Λ = S−(Λ̂). Then by Lemma 5.1, there exists an
exact, non-orientable Lagrangian cobordism:

(1) of cross-cap genus 2 between Λ and S−S+(Λ);
(2) of cross-cap genus 1 between S−S+(Λ) and S+(Λ);

(3) of cross-cap genus 1 between S+(Λ) = S+(S−(Λ̂)) and S−(Λ̂) = Λ.

Stacking these cobordisms results in an exact, non-orientable Lagrangian
endocobordism of cross-cap genus 4. Additional stacking results in arbitrary
multiples of cross-cap genus 4.

An analogous argument proves the case where Λ is the positive stabiliza-

tion of a Legendrian: Λ = S+(Λ̂). �

5.2. Exact, Non-Orientable Lagrangian Cobordisms between Sta-
bilized Legendrians. Given that every stabilized Legendrian knot has a
non-orientable Lagrangian endocobordism, a natural question is: What Leg-
endrian knots can appear as a “slice” of such an endocobordism? In this
section, we show that any stabilized Legendrian knot can appear as such a
slice.

Theorem 5.2. For smooth knot types K,K ′, let Λ be any Legendrian rep-
resentative of K and let Λ′ be a stabilized Legendrian representative of K ′.
Then there exists an exact, non-orientable Lagrangian cobordism between
Λ+ = Λ and Λ− = Λ′.
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Before moving to the proof of Theorem 5.2, we show that non-orientable
Lagrangian cobordisms define an equivalence relation on the set of stabilized
Legendrian knots:

Proof of Theorem 1.6. Let Ls denote the set of all stabilized Legendrian
knots of any smooth knot type. Define the relation ∼ on Ls by Λ1 ∼ Λ2 if
there exists an exact, non-orientable Lagrangian cobordism from Λ+ = Λ1

to Λ− = Λ2. Reflexivity of ∼ follows from Theorem 1.4. Symmetry of
∼ follows from Theorem 5.2. Transitivity of ∼ follows from Lemma 2.2.
Thus ∼ defines an equivalence relation. Moreover, by Theorem 5.2, we see
that with respect to this equivalence relation, there is only one equivalence
class. �

To prove Theorem 5.2, it will be useful to first show that there is an exact,
non-orientable Lagrangian cobordism between any two stabilized Legendri-
ans of a fixed knot type:

Proposition 5.3. Let K be any smooth knot type, and let Λ,Λ′ be Leg-
endrian representatives of K, where Λ′ is stabilized. Then there exists an
exact, non-orientable Lagrangian cobordism between Λ+ = Λ and Λ− = Λ′.

Proof. Fix a smooth knot type K, and let Λ1,Λ2 be Legendrian representa-
tives, where Λ2 is stabilized. By results of Fuchs and Tabachnikov, [28], we

know that there exist r1, `1, r2, `2 such that S`1− S
r1
+ (Λ1) = S`2− S

r2
+ (Λ2). By

applying additional positive stabilizations, if needed, we can assume r1 > `1.
Consider the case where Λ2 is the negative stabilization of some Legen-

drian: Λ2 = S−(Λ̂2). By applications of Lemma 5.1, there exists an exact,
non-orientable Lagrangian cobordism between:

(1) Λ1 and Sr1− S
r1
+ (Λ1);

(2) Sr1− S
r1
+ (Λ1) and S`1− S

r1
+ (Λ1), and thus between Sr1− S

r1
+ (Λ1) and S`2− S

r2
+ (Λ2);

(3) S`2− S
r2
+ (Λ2) and Sr2+ (Λ2);

(4) Sr2+ (Λ2) = Sr2+ (S−(Λ̂2)) and S−(Λ̂2) = Λ2.

By stacking these cobordisms (Lemma 2.2), we have our desired exact, non-
orientable Lagrangian cobordism between Λ1 and Λ2. An analogous argu-
ment proves the case where Λ2 is the positive stabilization of some Legen-
drian. �

Proof of Theorem 5.2. The strategy here is to first show that one can con-
struct an exact, non-orientable Lagrangian cobordism between Λ and a sta-
bilized Legendrian unknot Λ0. Similarly, it is possible to construct an exact,
non-orientable Lagrangian cobordism between Λ′ and a stabilized Legen-
drian unknot Λ′0; we will show it is possible to “reverse” this sequence of
surgeries and construct an exact, non-orientable Lagrangian cobordism be-

tween Λ′0 and Λ̃′, which is a stabilization of Λ′. By Proposition 5.3, there
exists an exact, non-orientable Lagrangian cobordism between Λ0 and Λ′0
and between Λ̃′ and Λ′. Thus we will have the desired exact, nonorientable
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Lagrangian cobordism between Λ and Λ0 by stacking the cobordisms be-
tween Λ and Λ0, between Λ0 and Λ′0, between Λ0? and Λ̃′, and between Λ̃?
and Λ′.

We first show how it is possible to construct an exact, non-orientable
Lagrangian cobordism from Λ to a Legendrian unknot; cf., [5]. Let Λ be an
arbitrary Legendrian knot. We can assume that Λ has at least one positive
crossing by, if necessary, applying a Legendrian Reidemeister 1 move. As
shown in Figure 16, performing an orientable or non-orientable surgery near
a crossing produces a crossing that can be removed through Legendrian
Reidemeister moves. Perform such a surgery on every crossing in Λ until
you have obtained k disjoint stabilized Legendrian unknots; since Λ has at
least one positive crossing, we have performed at least one non-orientable
surgery. Align the k Legendrian unknots vertically and perform surgeries
so that we obtain a single stabilized Legendrian unknot Λ0. In this way, we
have constructed an exact, non-orientable Lagrangian cobordism between Λ
and Λ0.

Figure 16. For any Legendrian knot Λ, perform a surgery
near each crossing in order to get a set of disjoint Legendrian
unknots.

Figure 17. Surgeries used to convert to a link of Legendrian
unknots can be “undone”, at the cost of additional stabiliza-
tions.

A similar procedure can be used to construct a sequence of surgeries
from Λ′ to another Legendrian unknot Λ′0; now we show it is possible to

“reverse” this procedure and construct a sequence of surgeries from Λ′0 to Λ̃′,
a Legendrian obtained by applying stabilizations to Λ′. Figure 17 illustrates
how every surgery that was used to get to a Legendrian unknot can be
undone at the cost of adding additional zig-zags into the original strands.
Figure 18 illustrates this procedure with an example.

As outlined at the beginning of the proof, these constructions prove the
existence of an exact Lagrangian cobordism from Λ+ = Λ to Λ− = Λ′. �
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(a)

(b)

Figure 18. (a) Surgeries that give rise to an exact non-
orientable Lagrangian cobordism from the max tb version
of 31 to a stabilized unknot. (b) Surgeries that give rise
to an exact non-orientable Lagrangian cobordism from the
stabilized unknot to a stabilized representative of 31.

6. Additional Questions

We end with a brief discussion of some additional questions.
From results above, we know that exactly fillable Legendrian knots do

not admit exact, non-orientable Lagrangian endocobordisms while stabi-
lized Legendrian knots do. There are examples of Legendrian knots that are
neither exactly fillable nor stabilized. As mentioned above, Ekholm, [16],
has shown that if Λ is exactly fillable, then there exists an ungraded aug-
mentation of A(Λ). By work of Sabloff, [41], and independently, Fuchs and
Ishkhanov, [27], we then know that there exists an ungraded ruling of Λ.
(Definitions of graded/ungraded rulings can be found, for example, in [32].)
Then it follows by work of Rutherford, that the Kauffman bound on the
maximal tb value for all Legendrian representatives of the smooth knot type
of Λ is sharp, [39]. Thus, if the Kauffman bound is not sharp for the smooth
knot type K, then no Legendrian representative of K is exactly fillable. So
a natural question is:

Question 6.1. If Λ is a maximal tb representative of a knot type K for
which the upper bound on tb for all Legendrian representatives given by the
Kauffman polynomial is not sharp, does Λ have an exact, non-orientable
Lagrangian endocobordism?

The Legendrian representative of m(819) shown in Figure 1 satisfies the
hypotheses in Question 6.1; the Kauffman bound is known to be sharp for all
knots with 10 or fewer crossings except m(819), m(942), m(10124), m(10128),
m(10132), and m(10136); [36, 37, 39]. As mentioned in the Introduction,
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the paper [10] contains results that address this question which imply that
the answer to Question 6.1 is no. However, this now spawns new questions.
For example, consider the the max tb Legendrian representative of m(10132)
given as K2 in Sivek’s paper, [46, Figure 2]. The Legendrian K2 is not
stabilized, does not have an augmentation (and thus is not exactly fillable),
and does not have a finite-dimensional representation. Does K2 have an
exact, non-orientable, Lagrangian endocobordism?

There are also examples of Legendrians with non-maximal tb that are not
stabilized. For example, m(10161) is a knot type where the unique maximal
tb representative has a filling. However, there is a Legendrian representative
with non-maximal tb that does not arise as a stabilization. As shown in
[45, Figure 1], this non-maximal tb, non-stabilized Legendrian does have
an ungraded ruling, and the characteristic algebra of K2 does not have a
finite-dimensional representation, [46].

Question 6.2. Does the non-stabilized, non-maximal tb Legendrian repre-
sentative of m(10161) have an exact, non-orientable Lagrangian endocobor-
dism?

Additional examples of non-stabilized and non-maximal tb representatives
can be found in the Legendrian knot atlas of Chongchitmate and Ng, [12].

There are additional questions that arise from the constructions of fillings.
For example, it is known by results of Chantraine, [8], that orientable fillings
realize the smooth 4-ball genus. In Figure 6, examples are given of non-
orientable Lagrangian fillings of maximal tb representatives of 62 and m(62)
of cross-cap genus 2 and 4, respectively: the smooth 4-dimensional cross-cap
number of both 62 and m(62) is 1.

Question 6.3. Does there exist a non-orientable Lagrangian filling of these
Legendrian representatives of 62 and m(62) of cross-cap genus 1?
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