
Bryn Mawr College
Scholarship, Research, and Creative Work at Bryn Mawr
College
Computer Science Faculty Research and
Scholarship Computer Science

2014

Experience Report: Type-checking Polymorphic
Units for Astrophysics Research in Haskell
Takayuki Muranushi
Kyoto University, muranushi.takayuki.3r@kyoto-u.ac.jp

Richard A. Eisenberg
Bryn Mawr College, rae@cs.brynmawr.edu

Let us know how access to this document benefits you.

Follow this and additional works at: http://repository.brynmawr.edu/compsci_pubs

Part of the Programming Languages and Compilers Commons

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/compsci_pubs/73

For more information, please contact repository@brynmawr.edu.

Custom Citation
Muranushi, T. and R.A. Eisenberg 2014. "Experience Report: Type-checking Polymorphic Units for Astrophysics Research in
Haskell." Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell, Gothenburg: 31-38.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship; Research; and Creative Work at Bryn Mawr College

https://core.ac.uk/display/303070456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs/73
mailto:repository@brynmawr.edu

Final draft submitted for publication at Haskell Symposium 2014

Experience Report: Type-checking Polymorphic
Units for Astrophysics Research in Haskell

Takayuki Muranushi
The Hakubi Center for Advanced Research

Kyoto University
muranushi.takayuki.3r@kyoto-u.ac.jp

Richard A. Eisenberg
University of Pennsylvania

eir@cis.upenn.edu

Abstract
Many of the bugs in scientific programs have their roots in mis-
treatment of physical dimensions, via erroneous expressions in the
quantity calculus. Now that the type system in the Glasgow Haskell
Compiler is rich enough to support type-level integers and other
promoted datatypes, we can type-check the quantity calculus in
Haskell. In addition to basic dimension-aware arithmetic and unit
conversions, our units library features an extensible system of di-
mensions and units, a notion of dimensions apart from that of units,
and unit polymorphism designed to describe the laws of physics.
We demonstrate the utility of units by writing an astrophysics re-
search paper. This work is free of unit concerns because every
quantity expression in the paper is rigorously type-checked.

Categories and Subject Descriptors J.2 [Physical Sciences and
Engineering]: Astronomy; Physics; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures; D.3.2 [Programming Languages]: Language Classifications—
Haskell

Keywords Type families; type-level computation; Haskell; quan-
tity calculus

1. Introduction
In 1983, when Canada was moving from the Imperial to the metric
system, a Boeing 767 ran out of fuel in the midst of a flight and
was on the verge of crashing, all because the airplane was given
22,300 pounds of fuel where 22,300 kg was actually needed [15].
In 1999, a NASA spacecraft Mars Climate Orbiter was lost after it
entered too low an orbit, because the software involved mistakenly
interpreted the thruster force in pounds of force when a measure-
ment in Newtons was assumed [17]. These are just samples of the
many incidents that have been caused by a mistake in units and di-
mensions.∗ Because of the possibility of such mistakes, scientists
routinely check for both dimensions and units as they perform cal-

∗ See, http://lamar.colostate.edu/~hillger/unit-mixups.
html, from where the anecdotes above are adapted.

[Copyright notice will appear here once ’preprint’ option is removed.]

culations. Kennedy sums it up well in saying that “units-of-measure
are to science what types are to programming” [9].

Type systems that enforce the correct handling of dimensions
and units have been around for some time [6, 8, 16]. Haskell, a
language renowned for its rich type system, naturally has multiple
packages that enable type-checking units-of-measure.† However,
as we attempt to describe real astrophysical reasoning in Haskell,
we became aware of an important concept that no existing library
supports — unit polymorphism.

Any meaningful law of physics holds in any system of units. For
example, the mass of fuel consumed in a flight equals the length of
the air route divided by the economy of the aircraft (length travelled
per volume of fuel) times density (mass per volume) of the fuel.
Slanted words all refer to dimensions, and the equation holds no
matter whether specific units are kilograms or pounds. Such unit-
independent laws are common in the quantity calculus, and unit
polymorphism naturally arises when we type-check our work. We
demonstrate three distinct merits of unit polymorphism (§ 3.4):

1. We can faithfully express unit-independence of laws of physics.

2. We can write libraries that deal with quantities without forcing
users to adopt specific choice of units.

3. We can perform calculations that would have resulted in over-
flows/underflows, had we used the default choice of units.

This report addresses the implementation of a unit-polymorphic
quantity calculus system not by extending Haskell’s type system di-
rectly, but by defining a library built with the features that Haskell
already supports. We describe the package units, and our experi-
ences in using this package to support astrophysics research.

Our contributions are as follows:

• In order to type-check the quantity calculus in Haskell’s type
system, we summarize the design principles and specifics of
the units package, which is available on Hackage (§ 3).

• We compare units to unittyped, a similar library that does not
support unit polymorphism (§ 4).

• With units, we can now write functions that deal with abstract
dimensions in Haskell. We demonstrate the use of units library
by writing an astrophysics paper in Haskell (§ 5).

2. Background: terminology
We describe here some terminology taken from the quantity cal-
culus, which we will use throughout this experience report. These
definitions are somewhat informal; please see “International Vo-
cabulary of Metrology” ([1], hereafter VIM) for the full details.

† dimensional, dimensional-tf and unittyped among others. For a list of
these, see http://www.haskell.org/haskellwiki/Physical_units

Muranushi, Eisenberg: Type-checking Polymorphic Units 1 2014/6/30

Quantity [VIM 1.1] A quantity can be thought of something that
can be measured. A quantity has an associated dimension and
is expressed in terms of a magnitude and a unit. For example,
diameter and wavelength are both quantities of the dimension
length. Examples of quantity values are 3.2 kg and 9.8 m/s2.

Dimension [VIM 1.7] A dimension is a name given to a group
of quantities that differ only by numerical factors. Examples
include length, mass, or velocity. Dimensions can be composed
of other dimensions; a velocity is a length over a time.

Unit [VIM 1.9] A unit is a particular amount of a quantity, with
which all other quantities of the same dimension can be mea-
sured. Examples of units include meters, feet, and kilograms.
Note that a unit always measures a unique dimension, but that
a dimension may have several different units available.
Quantities of the same units can be added. Any two quantities
can be multiplied, with their units and dimensions changing ac-
cordingly. For example, 50mph = 100mile/2 hr, at dimen-
sion velocity = length1 × time−1.

Coherent System of Units (CSU) [VIM 1.14] A coherent system
of units consists of a chosen set of base units and base dimen-
sions. Other units are derived by taking the product of pow-
ers of base units. Coherent units are direct products of powers
of base units, while off-system units require conversion factors
other than 1.
For example, the International System of Units (SI) is a CSU
that consists of seven base units and dimensions. A Joule
(=1 kg · m2/s2) is the coherent derived unit of energy in SI,
while a liter (=10−3 m3) is an off-system unit of volume with
respect to SI.

Numerical Value [VIM 1.20] The numerical value of a quantity
is the number in the quantity represented in a certain unit. For
example, the numerical value of 9.8 m/s2 is 9.8.

3. The units package
3.1 Design goals
What would distinguish units from other quantity calculus pack-
ages? What design principles were we aiming for? These ideals are
presented roughly in order of importance.

Strong type-checking: Under no circumstances should a quantity
representing a length be allowed to be added to a quantity rep-
resenting a time, for example. Multiplication of these quanti-
ties is allowed, of course, yielding a multiplicative dimension
of length × time.

Extensibility: A key attribute of units is that it is fully extensible.
The core system defines only one dimension, Dimensionless ,
with its unit Number . All other units are defined purely using
the interface exported by units. This makes units easily appli-
cable to domains beyond physics, such as finance and manage-
ment (Imagine ManMonth, a unit of dimension Labor .)

Simple user-visible types: After a small amount of work to set
up the dimensions and the units, users should be able to write
simple type signatures on their code. Additionally, declaring
new dimensions and units should be formulaic and not require
expert knowledge of Haskell’s type system.

Unit polymorphism: Definitions should not be tied to a user’s par-
ticular choice of units. For example, take the following defini-
tion of kinetic energy Ek:

kineticEnergy ::Mass → Velocity → Energy
kineticEnergy m v = 0.5 ∗|m |∗| v |∗| v

The property that Ek = 1
2
mv2 remains true whether we’re

measuring mass in kilograms, velocity in meters per second,
and energy in Joules, or not. Thus, we want enough flexibility
in our types to be able to give kineticEnergy a type more like

kineticEnergy ::Mass u → Velocity u → Energy u

where the type variable u encodes details of the particular units
at hand. Here, the dimensions, but not the units are fixed –
kineticEnergy is a dimension-monomorphic, unit-polymorphic
definition.

Unit conversions: A user should be able to specify known quanti-
ties in any convenient choice of units and request a result in any
convenient choice of units. How many years does the Sun take
to complete its galactic orbit of 27,200 light-years radius, given
its speed 220 km/s? Such a calculation should not require the
user to think about unit conversions — the type system should
handle it for him.

3.2 Interface
How would one keep track of dimensions and units in a type? Let’s
focus on dimensions, first. A dimension can be thought of as a set
of base dimensions paired with integer exponents. For example, a
velocity is a length1 × time−1, and energy is mass1 × length2 ×
time−2. To make these pairs easier to manage, we introduce a
Factor kind∗

data kind Factor = F ⋆ Z

where Z is our kind for type-level integers. Here, and throughout
our implementation, we make liberal use of algebraic datakinds,
promoted from datatypes, as introduced by Yorgey et al. [20].

Is the kind of a dimension Dimension? No — we choose to
use ⋆ because of its extensibility and convenience. Users can, in
any module, freely declare new datatypes with data, and these
datatypes serve as dimensions. For example, we might say

data Length = Length

and use the type Length as a dimension in a factor.
For these reasons, the first argument to our quantity type, of kind

[Factor], represents the set of dimension factors.
But, what about units? Units control exactly what number is

internally stored. If we are storing the length of a day in seconds,
we would store 86,400. If we were storing in hours, we would store
24. However, we still want to keep the dimensions primary, not the
units, in order to allow for unit-polymorphic programming.

The solution: store a finite map from dimensions to units in
the type. We call this mapping a local CSU, or LCSU. It is local
because, as we will see, it can vary in different places in our
program.

Finally, we wish to allow users to choose their own underlying
numerical type, so we index by this choice of representation.

We thus have the Qu type, defined as follows:

newtype Qu (dimFactors :: [Factor])
(lcsu :: LCSU) (n :: ⋆) = Qu n

The dimFactors parameter is our type-level list of Factors. The
parameter n is the underlying numerical representation; functions
creating and eliminating Qus require n to be in the Fractional

∗ Throughout this report, we imagine that Haskell has a richer syntax for
dealing with kinds. Here, we declare a datakind, which is a datatype that
can be used only at the kind level. Alas, this is not yet possible — one must
declare a datatype to get a datakind. Because ⋆ is only a kind, not a type,
using ⋆ as we have done here is impossible. The true definition of Factor
is data Factor star = F star Z , and whenever we use Factor , we must
write Factor ⋆. These details are distracting, so we ignore them from here
on out.

Muranushi, Eisenberg: Type-checking Polymorphic Units 2 2014/6/30

class. Note that Qu is a newtype — there is no runtime cost to
type-checking your quantities.

An LCSU is stored as a type-level association list, mapping
dimensions to units:

data kind LCSU = MkLCSU [(⋆, ⋆)]

Here, we see that units, like dimensions, are denoted with elements
of kind ⋆. The situation for units is analogous for that for dimen-
sions — we want the set of units to be modular and extensible;
hooking into Haskell’s ability to do this with datatype definitions is
the easiest way of achieving these goals.

Dimension and Unit classes When a user wishes to declare
a new dimension or unit, she must also make instances of the
Dimension or Unit class, as appropriate. The details of how these
work internally are beyond the scope of this report, but they are
critically necessary for type-checking and automatic unit conver-
sion. It is worth noting, however, that a Unit instance must declare
the related dimension and define the relationship to a convertible
unit, if any — the rest of the unit conversions are inferred from this
one known link.

Unit and dimension combinators The units package defines a
small set of combinators used to build compound units and dimen-
sions from simpler ones. These are :∗ for multiplication, :/ for divi-
sion, :ˆ for exponentiation, and :@ for prefixing. Thus, the follow-
ing definitions are all quite logical:

type Velocity = Length :/Time -- divide two units
type Kilogram = Kilo :@Gram -- Kilo is prefix, not unit
type Area = Length :ˆTwo -- Two is type-level 2

We must distinguish :@ (prefixing) from :∗ (unit multiplication)
because Kilo :@Gram can, for example, be added to something
expressed in Grams, but Meter :∗Gram cannot.

Setting up the Qu type Getting all the details correct for the Qu
type is challenging. The units package exports a number of type
synonyms to make this easier. Here is a more complete example of
how it all fits together:

data LengthDim = LengthDim
instance Dimension LengthDim
data TimeDim = TimeDim
instance Dimension TimeDim

data Meter = Meter
instance Unit Meter where

-- there is no known convertible unit
type BaseUnit Meter = Canonical
type DimOfUnit Meter = LengthDim

data Second = Second
instance Unit Second where

type BaseUnit Second = Canonical
type DimOfUnit Second = TimeDim

type MyLCSU = MkLCSU ’[’(LengthDim,Meter),
’(TimeDim, Second)]

type Length = MkQu DLN LengthDim MyLCSU Double
type Time = MkQu DLN TimeDim MyLCSU Double
type Velocity = MkQu DLN (LengthDim :/TimeDim)

MyLCSU Double

distance :: Velocity → Time → Length
distance v t = v |∗| t

The MkQu DLN type synonym creates an appropriately instanti-
ated Qu type, suitable for use in the type signature for distance.
The DLN suffix means that MkQu DLN expects a dimension, an
LCSU, and a numerical type. Other combinations are also exported.

Introducing and eliminating quantities Quantities are made us-
ing the (%) operator and eliminated using the (#) operator:

(%) :: (ValidDLU dim lcsu unit,Fractional n)
⇒ n → unit → Qu dim lcsu n

(#) :: (ValidDLU dim lcsu unit,Fractional n)
⇒ Qu dim lcsu n → unit → n

Both of these functions take a unit parameter. This is why the unit
(and dimension) types are not empty; it is convenient to use the
one data constructor to represent the type. Continuing the example
above, we could write

speedOfLight :: Velocity
speedOfLight = 299792458 % (Meter :/Second)

The operator (%) treats its numerical parameter as being measured
in terms of the unit specified; the value is converted to be measured
in the unit specified in the LCSU. The runtime information about an
LCSU necessary for this conversion is buried inside the ValidDLU
definition. (ValidDLU asserts that a dimension can be used with a
certain LCSU and choice of unit.) The operator (#) is analogous,
but operates in the other direction.

Quantity combinators All the standard mathematical operations
are available on quantities: addition, subtraction, multiplication and
division (both among quantities and with scalars), exponentiation,
comparisons, and roots. Operator names are decorated by vertical
bar(s) on the side(s) quantities are applied.

Because exponentiation and root-taking change the type-level
integers, the exponent must be known at compile time. This re-
flects the fact that only nondimensional quantities can be raised to
variable powers. We use singletons (as generated by the singletons
package [4]) to represent the exponents.

The types of these combinators ensure the correctness of the op-
erations. For example, the type of |+|, the addition operator, checks
to make sure the dimensions of both operands are equivalent.

3.3 Implementation
The gritty details of how the implementation tracks these types and
makes all the pieces fit together are beyond the scope of this report.
We pause to note a few points that may be of general interest:

Type-level integers We use our own type-level integer kind Z
extensively. This kind uses a unary (Peano-style) representation
with type families implementing standard operations. There is no
enhanced reasoning/solving capability with our Z kind, but this
is not a problem in practice. We chose not to use GHC’s built-
in type-level naturals for two reasons: 1) we require integers, not
natural numbers; and 2) there is not yet enough support for runtime
access to the build-in naturals. Specifically, if n1 and n2 are known
at runtime (that is, we have KnownNat n1 and KnownNat n2),
we cannot get n1 + n2 at runtime (that is, GHC cannot solve for
KnownNat (n1 + n2)).

Closed type families Our implementation depends critically on
closed type families [5] to be able to consider a type-level list of
Factors to be a set. Closed type families give us the ability to
write a Boolean type-level equality predicate on types of kind ⋆.
This predicate, in turn, is necessary when defining the set-contains
operation; we need to know when two types do not equal in order
to recur. The whole approach of units – using types of kind ⋆ to
encode an extensible set – would be infeasible without closed type
families.

3.4 Examples of unit polymorphism
Writing unit-independent quantity expressions So, how many
pounds of gasoline did the pilot actually need? Given the travel

Muranushi, Eisenberg: Type-checking Polymorphic Units 3 2014/6/30

distance dist (in miles), the fuel economy of the aircraft eco (miles
per gallon) and gasoline density gasden (pounds per gallon), it is
easy to write the function using units:

-- Length, Density , and Mass are from from an SI library
-- D.Area refers to the dimension Area, not the type Area
-- MOne is a type-level number for (-1)

type PerArea = MkQu DLN (D.Area :ˆMOne)
gasMass :: Fractional n ⇒ Length ℓ n → PerArea ℓ n

→ Density ℓ n → Mass ℓ n
gasMass dist eco gasden = dist |/| eco |∗| gasden

Note that the type is parametric in ℓ, the LCSU. This means that
the function will work regardless of the units we wish to use to
express the given dimensions. Also, because no conversions need to
be done during this computation, we do not need any constraints on
ℓ at all – run-time knowledge about ℓ is needed only when creating
a quantity or extracting a quantity’s numerical value.

Avoiding over/underflows by domain-specific scaling One cru-
cial application of the LCSU mechanism is to provide consistent
scaling of quantities for astronomers or chemists, whose research
objects are much larger or smaller compared to daily scales. The
use of SI units in such fields might cause overflows / underflows
and produce nonsensical results.

For example, the Lennard-Jones potential is a model of molec-
ular interaction commonly used in chemistry. The model takes two
parameters ϵ and σ and gives the attractive force F as a function of
the distance r between two molecules:

F =
24ϵσ6

r7
− 48ϵσ12

r13

units can readily model this formula:

ljForce :: Energy ℓ Float → Length ℓ Float
→ Length ℓ Float → Force ℓ Float

ljForce eps sigma r
= (24 ∗| eps |∗| sigma |ˆ pSix) |/| (r |ˆ pSeven)
|−|(48 ∗| eps |∗| sigma |ˆ pTwelve) |/| (r |ˆ pThirteen)

Then, how many Newtons is the attractive force between two Argon
atoms at distance 4 Å? If we type the following into GHCi

λ> let sigmaAr = 3.4e-8 %Meter
epsAr = 1.68e-21 % Joule
r = 4.0e-8 %Meter

λ> (ljForce epsAr sigmaAr r :: Force SI Float) # Newton

we get a blunt NaN as answer. This is because the Lennard-Jones
model involves the inverse 13th to 6th powers of lengths, and
(10−8)6 is already out of range of the single precision float. (Recall
1 Å= 10−8 m.)

Define an LCSU that is more suitable for chemistry, say

type CU = MkLCSU ’[’(Length,Angstrom),
’(Mass,ProtonMass), ’(Time,Pico :@ Second)]

and you will get a meaningful response just by replacing SI with
CU .

λ> (ljForce epsAr sigmaAr r :: Force CU Float) # Newton
9.3407324e-14

Laws with such powers are very common, and there are many
applications so computationally heavy that the use of double preci-
sion is not an option. Most CPUs can perform single precision float
arithmetic twice as fast as double precision, and GPUs (Graphic
Processing Units) can do even more (4–20 times). As an extreme
case, GRAPE series [3, 12], the gravity-force-specific computers

widely used by astrophysicists, adopt fixed-point real number rep-
resentations for speed. On such cutting-edge hardware where real
number range is traded off for better performance, users are respon-
sible for choosing the right scale, and units supports doing so.

4. The unittyped package
We evaluate the success of units by comparing it with unittyped, a
different approach to type-checking units-of-measure in Haskell.
Indeed, before discovering units, one of the authors (TM) had
contributed to unittyped with physics applications in mind. We
give a brief overview of unittyped in this section. The differences
from a user’s point of view are summarized in Table 1.

unittyped, like units, expresses compound dimensions and
units as lists of pairs of key types and type-level integers. The
type for quantity in unittyped is:

Value (dim :: [(⋆,Z)]) (uni :: [(⋆,Z)]) (n :: ⋆)

which resembles units’s counterpart:∗

Qu (dim :: [Factor]) (lcsu :: LCSU) (n :: ⋆)

However, the two libraries treat dimension-unit correspon-
dence in different ways. The Value type constructor of unittyped
takes both the dimension and unit as arguments. A type class
Convertible’ asserts that uni is of the dimension dim, and then
provides the conversion factor for the unit. Every arithmetic opera-
tion requires a Convertible’ constraint.

On the other hand, Qu of units takes only the dimensions. The
corresponding unit can be computed on demand by referring to
the LCSU dictionary. A Value can equally represent coherent and
off-system units, while Qu is designed to express only coherent
unit quantities. Off-system units in units appear only at conversion
to/from numerical values. Various type constraints are still needed
for unit conversions, but none is needed for arithmetic. This is
because coherent units can be operated on without conversion.

Another difference is in the method of type-level computation.
unittyped uses functional dependencies while units uses closed
type families (Table 1, (2)). Critically, the way unittyped uses func-
tional dependencies appears to take advantage of a long-standing
GHC bug,† which is fixed in GHC 7.8. (Table 1, (3)) Essentially,
the functional dependencies in unittyped overlap in much the same
way as the type family equations do in units, as needed to imple-
ment type-level sets. However, overlapping equations in a closed
type family has a reasonable, well-defined semantics; such over-
lap over unordered functional dependencies does not. It is an open
question whether the unittyped approach can be brought up to date
with GHC 7.8. The authors conjecture that this is indeed not possi-
ble.

The discontinuity of the build is one reason why TM stopped
using unittyped. The other is the lack of unit polymorphism, dis-
covered while using unittyped. Filling this gap motivated units’
design.

4.1 The gasMass example in unittyped

Let’s see what the gasMass example would look like when written
in unittyped. We still want the definition to be unit-polymorphic. A
natural starting point is to put type variables in places of unit types.

∗ Note that Factor is equivalent to (⋆,Z)
† Fixing the bug (https://ghc.haskell.org/trac/ghc/ticket/
2247) is by implementing the liberal coverage condition [18].

Muranushi, Eisenberg: Type-checking Polymorphic Units 4 2014/6/30

(1) quantity calculus package unittyped units

(2) means of type level computation functional dependencies closed type families
(3) current status buildable on GHC 7.6.3 but not on 7.8.1 buildable on GHC 7.8.2
(4) type signature of a quantity Value (dim :: [(⋆,Z)]) (uni :: [(⋆,Z)]) (n :: ⋆) Qu (dim :: [Factor]) (lcsu :: LCSU) (n :: ⋆)

(5) convert to quantity x = mkVal 5.2 :: Gram Double x = 5.2 % Gram

(6) convert to numerical value val x x # Gram

(7) extract x (in g) in kg val (autoc x :: Value [(Mass,POne)]
[(Kilo Gram,POne)] Double)

x # kilo Gram

(8) pretty-print x (in g) in kg pp (fmap (0.001∗) x) ++ "kg" ppIn (kilo Gram) x

(9) define a type synonym for a
compound unit (spectral radiance)

type SR = Value
[(Mass,POne), (Time,NTwo)]
[(Watt,POne), (Meter ,NTwo),
(Hertz ,NOne)]

type SR = Watt :/(Meter :ˆTwo) :/Hertz

Table 1: Comparison of features in unittyped and units. Code fragments are abbreviated for the sake of readability.

gasMass :: Value ’[’(Length,POne)] len n
→ Value ’[’(Length,NTwo)] fe n
→ Value ’[’(Mass,POne), ’(Length,NThree)] den n
→ Value ’[’(Mass,POne)] mass n

gasMass dist eco gasden = dist |/| eco |∗| gasden
Alas, it doesn’t compile! The correct program is as follows.

gasMass :: (Fractional n
,Convertible’ ’[’(Length,POne)] len
,Convertible’ ’[’(Length,NTwo)] fe
,Convertible’ ’[’(Length,PThree)] vol
,Convertible’ ’[’(Mass,POne), ’(Length,NThree)] den
,Convertible’ ’[’(Mass,POne)] mass
,MapNeg fe nfe -- nfe = 1 / fe
,MapMerge len nfe vol -- vol = len * nfe
,MapMerge vol den mass -- mass = vol * den
) ⇒ Value ’[’(Length,POne)] len n
→ Value ’[’(Length,NTwo)] fe n
→ Value ’[’(Mass,POne), ’(Length,NThree)] den n
→ Value ’[’(Mass,POne)] mass n

gasMass dist eco gasden = dist |/| eco |∗| gasden
We need 9 lines of type constraints and 4 lines of types for just one
line of value-level computation. This result does not argue in favor
of strong typing.

Here, the result unit type mass is not just universally quantified,
but actually depends on len, fe, and den in a complicated way —
hence all the constraints above. The number of constraints required
are at least twice the number of arithmetic operations in the func-
tion body. This quickly renders unit polymorphism in unittyped
impractical.

5. Writing an Astrophysics Research Paper in
unittyped and units

In this section, we report the experience of writing an astrophysics
paper, titled “Observation of Lightning in Protoplanetary Disks by
Ion Lines” [14]. Notably, the paper draft is written in the form of a
Haskell program that performs calculations, plots figures, generates
LATEXsources for the slides and the paper. In addition to the use of
units, we aim to further assure the consistency of the paper by using
the same program both to generate the LATEXformulae in the paper
and to perform the actual computation.

The development history of the paper consists of two versions,
broadly speaking. The paper draft was initially written using unit-
typed and later rewritten using units. It took 5 working days to

rewrite the draft. The unittyped and units version are 2447 and
2462 lines of Haskell code, respectively. As a result, we have two
programs that achieve the same goal using different libraries, ideal
material for a comparative study.

Dimension and unit as independent concepts Working with
unittyped, we had difficulty dealing with dimensions and units
separately. In unittyped, the kind of dim and uni are both [(⋆,Z)].
Writing “functions” for kinds other than ⋆ requires type-level pro-
gramming, which is still awkward in Haskell. In unittyped, the
library-supported way to wrap dim, unit :: [(⋆,Z)] into kind ⋆ is
by Value, which takes a dimension and a unit in pair.

In units, on the other hand, there are two ways to refer to units
and dimensions. One is by unit and dimension combinators (§ 3.2)
that produces values of kind ⋆. The other is by type-level list of kind
[Factor] . The ability to refer to dimensions or units separately,
and the existence of two kinds of representations makes units more
expressive.

Defining type synonyms for compound units (c.f. Table 1, (9))
is a frequently used technique in our work (28 such synonyms
are defined). In unittyped, we must specify the destination unit
in the type signature, along with its dimensions. Unit conversions
(c.f. Table 1, (7)) are another place where we want to specify only
units. In units, we specify only units; the dimension for the unit is
inferred. The combinators over kind ⋆ offer ease to the programmer
by allowing value-level units (for example Meter :ˆ pTwo) that
are quite similar to their type-level counterparts (Meter :ˆTwo).
The more-internal types of kind [Factor] make the implementation
tractable.

Numerical value accessibility In unittyped, users can convert a
numerical value to a quantity, or vice versa, using two functions
mkVal :: n → Value d u n and val ::Value d u n → n (c.f. Table
1, (5,6)). Moreover, the type constructor Value d u is a Functor ,
so users can apply any numerical function to the numerical value
of a quantity.

On the other hand, units is designed to limit user access to nu-
merical values, in order to protect unit consistency. The recom-
mended way for converting between quantities and numerical val-
ues is by use of the (%) and (#) operators (c.f. § 3.2), which ex-
plicitly take a unit expression as an argument. The direct use of the
Qu constructor is discouraged.∗ Qu d ℓ is not a Functor . Qu d ℓ n
is in the Floating class — the type class that allows use of transcen-
dental functions such as sin and exp — only if n is Floating and
d is dimensionless. This meets with our physical expectations of
when these functions are applicable.

∗ units still exports the Qu constructor in module Data.Metrology.Unsafe

Muranushi, Eisenberg: Type-checking Polymorphic Units 5 2014/6/30

The expression x#Number converts x to numerical value with
type-level assertion that x is a dimensionless quantity (c.f. Table
1, (6)). The unittyped counterpart, val x , has no such assertion.
Users can still add the assertion by adding a type signature to val ,
but since it makes the expression longer, users cease to use it. Im-
portantly, the shortest possible expression for conversion function
in units, (#Number), comes with an assertion, while in unittyped
val , is without.

In unittyped, 94 mkVals and 19 vals were used to convert
quantities of various units to numbers, and vice versa. They are
changed to (#)s and (%)s with corresponding units in units. Each
update represents more static checking for the code powering the
paper.

Pretty Printing Pretty printing is important because it is where
the results are presented to outside world. We symbolically refer to
a pretty-printer as pp. Several flavor of pps are used in the paper
[14], 63 times in total.

Working with unittyped, the pretty printer converted only
the numerical value to LATEX expressions, and the unit symbols
were typeset “by hand” outside of the checked system. More-
over, the combined use of the pretty printer and fmap, such as
in pp (fmap (0.001⋆) x) ++ "kg" (Table 1, (8)), occurs 3 times in
the unittyped-based source code. Here, the user avoids the use of
in-place unit conversion (which is tedious in unittyped) and ma-
nipulates the numerical value and the unit symbol directly. With
the pretty printer controlling only the numerical value, we cannot
assert the correctness of the quantity expression at the LATEX-level.

In the units version, we redefined the pretty-printers so that each
takes a unit and a quantity as arguments, and prints the quantity in
the given unit, followed by the unit symbol. This new design allows
mapping of quantities from Haskell to LATEX in the correct sense,
since a quantity consists of a magnitude and a measurement unit.
In unittyped, it was difficult to write pretty-printers that take the
unit as an argument, since the value-level representation of units is
absent.

Error Messages The readability of the error messages is impor-
tant to help the users locate and fix unit mistakes.

Error messages of units are relatively instructive, compared
to those of unittyped. The separation of dimensions and units
is one factor that contributes to the readability because it effec-
tively halves the length of the printout of corresponding types. The
error messages, such as Couldn’t match type ’Time’ with
’Length’, are quite suggestive.

Two major shortcomings in the clarity of error messages are
with type-level integers (which print in unary), and the SI LCSU
(which prints in seven lines). It is unclear how to improve this
without more control over the error message generation system.

Unit Coherence Writing with unittyped, the quantities in the
paper ranged over multiple systems of units: the cgs (centimeter-
gram-second) units, SI units, and domain-specific units such as
astronomical units (AUs) and electron volts. Several components
of the paper depend on multiple systems of units. At each such
place, we have to decide on which system to use and to convert
other units. The resultant paper draft was chimera of unit systems.

This undesirable situation disappeared when working with in
units. We choose the SI as the LCSU in all parts of the paper. We
could still define and pretty-print quantities using arbitrary units.
The automatic conversion afforded by (%) and (#) allowed us to
use our units of choice.

Summary of Comparison We ended our experience with a few
takeaways:

• An effective way to achieve unit polymorphism is by represent-
ing a quantity as triples of its dimension, the system of units it
belongs to, and its numerical value type.

• Having units and dimensions be representable as types of kind
⋆ makes them easier to work with, as we do not have to bother
with proxies.

• A library can be designed to hide the value constructor for the
quantity type, to refrain users from unit-unsafe computations,
and yet remain user friendly. It is important that the shortest
ways to write quantity calculus are unit-safe, and are short
enough.

6. Related work: Comparison to F#
The units package provides an embedded domain-specific type
system in Haskell, and we have compared it against another, similar
approach. Here, we compare units against F#’s approach to type-
checking units.

F# has built-in support for type-checking quantities, as derived
from the work by Kennedy [8]. Kennedy’s work does not include a
separation between dimensions and units, and thus does not support
the unit polymorphism as described in this paper.

Here is some F# code that converts between temperature units:∗

[<Measure>] type degC // temperature, Celsius
[<Measure>] type degF // temperature, Fahrenheit
let convertCtoF (temp : float<degC>) =
9.0<degF> / 5.0<degC> ⋆ temp + 32.0<degF>

let convertFtoC (temp : float<degF>) =
5.0<degC> / 9.0<degF> ⋆ (temp − 32.0<degF>)

There are several immediate advantages to F#’s approach over
units’s. Computation uses normal arithmetic operators, such as ⋆
and /; no need for the more verbose |∗| and |/|. We also see that
declaring new units is much easier in F# than it is with units – no
need for a Unit and Dimension classes.

F# falls short in one substantial way, however: it does not sup-
port dimension-monomorphic unit polymorphism. It is possible, for
example, to express gasMass in F# while remianing polymorphic
over the units:

let gasMass (dist : float< ’len>)
(eco : float<1 / ’len ˆ 2>)
(gasden : float< ’mass / ’len ˆ 3>)
: float< ’mass> = dist / eco ⋆ gasden

However, this definition is dimension-polymorphic. Nothing con-
strains the units len or mass is bound to – they might not represent
length and mass. The power of units’s implementation of polymor-
phism allows the writer of gasMass to restrict calls of that function
to have appropriate units.

The lack of notion of dimensions also means that F# is unable to
do any implicit unit conversion. Any conversion must be specified
by hand-written multiplication by conversion factors, and they are
not distinguished from ad-hoc conversion factors between units
of different dimensions. The following three functions are equally
accepted by F#. Note the bad conversion factor in the second line:

let convg2kg (x : float<g>) = x / 1000.0<g / kg>
let convg2kg’ (x : float<g>) = x / 10.0<g / kg>
let convmm2kg (x : float<mm>) = x / 39.17<mm / kg>

Error messages As expected, the built-in nature of F#’s support
for type-checking quantities leads to better error messages. For

∗ Adapted from http://msdn.microsoft.com/en-us/library/
dd233243.aspx

Muranushi, Eisenberg: Type-checking Polymorphic Units 6 2014/6/30

example, the following lines of F# produce the error messages
below, respectively:

let x = 4<m>+ 2<s>
let vel : float<m / s> = 5.0<m> ⋆ 3.0<s>

The unit of measure ’s’ does not match
the unit of measure ’m’

The unit of measure ’m/s’ does not match
the unit of measure ’m s’

Contrast to equivalent code in Haskell:

x = (4 %Meter) |+|(2 % Second)
vel = (5 %Meter) |∗|(3 % Second) :: Velocity

Couldn’t match type ‘D.Length’ with ‘D.Time’
Couldn’t match type ‘’S ’Zero’ with ‘’P ’Zero’

The first Haskell error message is quite helpful. The second is
less so, for two reasons: numbers are printed in unary and the user
has to deduce that the error message is discussing the exponent
assigned to the time dimension.

Let’s try constructions that are dimension-polymorphic. We’ll
write a function prod that multiplies a list of quantities together.
The result must accordingly be the product of all of the units, but
we’ll say that the result has the same measure as the input list. Here
is the F#:

let prod (qs : float<’u> list) : float<’ u> =
List.fold (⋆) 1.0< > qs

warning: This construct causes code to be less
generic than indicated by the type annotations.
The unit-of-measure variable ’u has been
constrained to be measure ’1’.

And now the Haskell:

prod :: [Qu d ℓ n] → Qu d ℓ n
prod = foldr (|∗|) (1 % Number)

Couldn’t match type ‘d’ with ‘’[]’

Interestingly, this is not an error in F#. Like its ancestor ML, F#
does not issue a hard error when a declared type is too polymorphic.
Haskell’s error more cryptically suggests the same problem as F#’s
warning, that the function makes sense only when the quantities
are in fact dimensionless. However, it would take a good measure
of experience for the units programmer to figure this out from the
error message.

Malformed environments One area where F# clearly is superior
is in the creation of the unit environment. As we’ve seen above,
declaring new units in F# is easy with a [<Measure>] type
declaration. However, declaring new units in Haskell with units
is not so easy: one must declare dimension and unit types, with
Dimension and Class instances. This process is easy to get wrong,
especially because dimensions, units, and ordinary types all share
the kind ⋆. The error messages when working in a malformed
environment are horrific.

For example, suppose a novice user just declared a Meter type,
with no dimension and no Unit instance:

data Meter = Meter
type Length = MkQu˙U Meter
add1 :: Length → Length
add1 x = x |+|(1 %Meter)

Could not deduce
(Subset

(CanonicalUnitsOfFactors (UnitFactorsOf Meter))
(CanonicalUnitsOfFactors

(LookupList (DimFactorsOf (DimOfUnit Meter))
’DefaultLCSU))

,Subset
(CanonicalUnitsOfFactors

(LookupList (DimFactorsOf (DimOfUnit Meter))
’DefaultLCSU))

(CanonicalUnitsOfFactors (UnitFactorsOf Meter)))
arising from a use of ’%’

Even the designers of units cannot easily deduce the fix – add
a proper Unit instance – from this message. F#’s built-in syntax
for unit declarations avoids this problem entirely. Future work
with the units package includes some Template Haskell functions
to produce correct dimension and unit definitions, as well as a
Template Haskell function to check the sanity of the environment.

7. Conclusion
The units library allows us to work with a domain-specific system
of units, like the chemists’ units above. We can use multiple LCSUs
in the case of interdisciplinary study such as astrochemistry. units’s
design of CSU-local computation and manual inter-CSU conver-
sion encourages users to create large LCSU blocks and minimize
conversions between them.

The assertion that all unit conversions are eliminated under each
LCSU helps us to optimize the underlying computation. Hardware
accelerators such as GPUs are becoming popular today, and mul-
tiple Haskell libraries for parallel array computation on CPUs and
GPUs have been proposed [2, 7, 10, 11, 19]. Expressing laws of hy-
drodynamics in Haskell has been demonstrated [13]. Such libraries,
if used together with easy, consistent scaling and the correctness
check of units provided by units, constitute a powerful develop-
ment environment for computational science.

What is more, we can write a well-documented library with
the basic equations of high-school physics without choosing any
particular system of units — the library would take the user’s
choice as a parameter. Putting all of this together, we will be able
to teach and study physics in Haskell.

Acknowledgments
We thank Thijs Alkemade for the development of the unittyped
library that greatly helped in writing the unittyped version of the
astrophysics paper; Iavor Diatchki for the improvements of the
type-level naturals in GHC upon our request; and the anonymous
reviewers for detailed and helpful feedback. This material is based
upon work supported by the National Science Foundation under
Grant No. 1116620.

References
[1] Bureau International des Poids et Mesures. International vocabulary of

metrology: Basic and general concepts and associated terms. JCGM,
pages 1–91, 2012.

[2] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and
V. Grover. Accelerating Haskell array codes with multicore GPUs.
In Declarative Aspects of Multicore Programming (DAMP ’11), pages
3–14, 2011.

[3] T. Ebisuzaki, J. Makino, T. Fukushige, M. Taiji, D. Sugimoto, T. Ito,
and S. K. Okumura. GRAPE Project: an Overview. Publications of
the Astronomical Society of Japan, 45:269–278, June 1993.

[4] R. A. Eisenberg and S. Weirich. Dependently typed programming with
singletons. In Haskell Symposium ’12, pages 117–130, 2012.

Muranushi, Eisenberg: Type-checking Polymorphic Units 7 2014/6/30

[5] R. A. Eisenberg, D. Vytiniotis, S. Peyton Jones, and S. Weirich.
Closed type families with overlapping equations. In Principles of
Programming Languages (POPL ’14), pages 671–683, 2014.

[6] P. Guo and S. McCamant. Annotation-less unit type inference for C.
Final Project, 6.883: Program Analysis, 2005.

[7] G. Keller, M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and
B. Lippmeier. Regular, shape-polymorphic, parallel arrays in Haskell.
In SIGPLAN Not., volume 45, pages 261–272. ACM, 2010.

[8] A. Kennedy. Programming Languages and Dimensions. PhD thesis,
University of Cambridge, 1996.

[9] A. J. Kennedy. Types for units-of-measure: Theory and practice. In
Z. Horváth, R. Plasmeijer, and V. Zsók, editors, Central European
Functional Programming School, volume 6299 of Lecture Notes in
Computer Science, pages 268–305. Springer, 2010. .

[10] B. Larsen. Simple optimizations for an applicative array language for
graphics processors. In Declarative Aspects of Multicore Program-
ming (DAMP ’11), pages 25–34, 2011.

[11] G. Mainland and G. Morrisett. Nikola: Embedding compiled GPU
functions in Haskell. SIGPLAN Not., 45(11):67–78, Sept. 2010.

[12] J. Makino, T. Fukushige, M. Koga, and K. Namura. GRAPE-6:
Massively-Parallel Special-Purpose Computer for Astrophysical Par-
ticle Simulations. Publications of the Astronomical Society of Japan,
55:1163–1187, Dec. 2003.

[13] T. Muranushi. Paraiso: an automated tuning framework for explicit
solvers of partial differential equations. Computational Science &
Discovery, 5(1):015003, 2012.

[14] T. Muranushi, E. Akiyama, S. Inutsuka, N. Hideko, and S. Okuzumi.
Observation of lightning in protoplanetary disks by ion lines. The
Astrophysical Journal, to be Submitted, 2014.

[15] W. H. Nelson. The Gimli glider. Soaring Magazine, 1997.
[16] P. Roy and N. Shankar. Simcheck: An expressive type system for

simulink. In NASA Formal Methods, pages 149–160, 2010.
[17] A. G. Stephenson, D. R. Mulville, F. H. Bauer, G. A. Dukeman,

P. Norvig, L. S. LaPiana, P. J. Rutledge, D. Folta, and R. Sackheim.
Mars climate orbiter mishap investigation board Phase I report, 44 pp.
NASA, Washington, DC, 1999.

[18] M. Sulzmann, G. J. Duck, S. Peyton-Jones, and P. J. Stuckey. Under-
standing functional dependencies via constraint handling rules. Jour-
nal of Functional Programming, 17:83–129, 2007.

[19] J. Svensson, M. Sheeran, and K. Claessen. Obsidian: A domain spe-
cific embedded language for parallel programming of graphics pro-
cessors. In Implementation and Application of Functional Languages
(IFL ’08), pages 156–173, 2011.

[20] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and
J. P. Magalhães. Giving Haskell a promotion. In Types in Language
Design and Implementation (TLDI ’12), pages 53–66, 2012.

Muranushi, Eisenberg: Type-checking Polymorphic Units 8 2014/6/30

	Bryn Mawr College
	Scholarship, Research, and Creative Work at Bryn Mawr College
	2014

	Experience Report: Type-checking Polymorphic Units for Astrophysics Research in Haskell
	Takayuki Muranushi
	Richard A. Eisenberg
	Custom Citation

	tmp.1502555890.pdf.fj2_T

