
Bryn Mawr College
Scholarship, Research, and Creative Work at Bryn Mawr
College
Computer Science Faculty Research and
Scholarship Computer Science

1996

Analogy-Making: A Connectionist Exploration
Doug Blank
Bryn Mawr College, dblank@brynmawr.edu

Let us know how access to this document benefits you.

Follow this and additional works at: http://repository.brynmawr.edu/compsci_pubs

Part of the Computer Sciences Commons

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/compsci_pubs/26

For more information, please contact repository@brynmawr.edu.

Custom Citation
Blank, D.S. (1995). A distributed representation of multiple objects in a visual scene. Proceedings of the 1995 Midwest Artificial
Intelligence and Cognitive Science Society Conference

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship;  Research;  and Creative Work at Bryn Mawr College

https://core.ac.uk/display/303070086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs/26
mailto:repository@brynmawr.edu


Implicit Analogy-Making: A Connectionist
Exploration 

Douglas S. Blank 

Indiana University
Computer Science Department 
Lindley Hall 215
Bloomington, IN 47405

blank@cs.indiana.edu 

Table of Contents 

Introduction 

Representation, Architecture & Training Procedure 

Experiments 

Discussion 

References 

Introduction 

Most everyone, including the experts, would agree that analogy-making is best defined as a process that
creates a mapping between items in one domain (often called the source) to "similar" items in another
(often called the target). Based on this definition, many researchers have attempted to model
analogy-making by creating a mapping between two sets of data structures that represent the domains
(see (Gentner, 1983) and (Holyoak and Thagard, 1989), for example.) In fact, most researchers treat an
analogy as if it were equivalent to a mapping between the two domains. Let us refer to this type of
modeling as "explicit analogy-making" as it represents the analogy via a set of explicit correspondences.
An explicit analogy-making model might begin with the representations of the dynamics of heat-flow
and water-flow, including relevant relations and attributes (see Figure 1) (Gentner, 1983). A set of
correspondences, representing a mapping between all analogous items in the two domains, would then
be produced by the model. 
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Figure 1. The representation of a typical "explicit analogy-making" problem. The red arrows indicate the explicit results of
running the model (after (Gentner, 1983).) 

An alternative viewpoint defines analogy-making as a type of behavior. In this view a system might, say,
point to pairs of corresponding items one set at a time. Therefore the system is not required to produce
an explicit mapping; the mapping is implied by the pointing, or more generally, by the behavior of the
system. Let us refer to this type of modeling as "implicit analogy-making." Focusing on the behavior of
making analogies rather than on explicit internal structures allows for the possibility of very different
kinds of solutions to the analogy-making problem. 

One analogy-making task that is defined completely in terms of behavior is the "Do this!" task posed by
Hofstadter and French (see (Hofstadter and FARG, 1995) for much discussion of this task and other
related ones.) French's model operates in a microworld representing a café table top, complete with
saucers, spoons, salt shakers, etc. A boiled-down version of French's "Do this!" task was defined as
follows. Consider Set #1 of Figure 2. Imagine an experimenter pointing to the triangle in the Source
scene (the black hand) and saying, "Do this!" The subject's task is then to point to the "same" thing in the
Target scene. Although simply stated, French has shown that the Tabletop domain can be full of subtlety
(French, 1992). 1 Notice that the need for internal structured representations (such as those in Figure 1)
is not specified by the task's description. 

Figure 2. Simple geometric analogies designed in the style of Hofstadter and French's Tabletop model (Hofstadter and FARG,
1995). 

Explicit analogy-making creates many assumptions about analogy and how one might model it. For
instance, this view typically assumes that there exist pre-structured representations on which the
mapping process operates. It is not at all clear that this assumption is cognitively plausible (Chalmers,
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French, and Hofstadter, 1995). This view also suggests that not only can the mapping process be
separated from the structure-forming process, but that it is also distinct from more general perceptual
processes, such as recognition. This, too, seems unlikely. Although these issues have been partially
addressed by Hofstadter and colleagues (1995), one question remains: How could a system learn to
make analogies? In an attempt to answer this question, I have chosen to model the stripped-down "Do
this!" task with a connectionist network. 

Representation, Architecture & Training Procedure 

I could have attempted to model the "Do this!" task in a connectionist network with representations
similar to those in Figure 1. However, Hofstadter and colleagues have argued quite convincingly that
pre-structured representations for analogy-making leave out an important portion of the problem:
perception (Chalmers, French, and Hofstadter, 1995). A raw camera image would not work as a
representation as it contains too much unstructured information. To provide the network with a slightly
more abstract representation of a scene, a new representation was created. This section briefly describes
the representation, network architecture and training method. For more details see (Blank, 1995) and
(Blank, 1996). 

Representation 

A new representation was created based on Smolensky's Tensor Product method (Smolensky, 1990). A
Tensor Product representation is a distributed set of activations formed by taking the outer product of a
role vector and a filler vector (Smolensky, 1990). The resulting matrix is a distributed set of activations
representing the binding of the role to the filler. In the new represention, the hard-edged categories of
"role" were replaced with a vector representing "spatial location." The new representation, termed Iconic
Representation (IR), was formed by taking the Tensor Product between a vector representing "what" an
object is (e.g., "blue" and "triangle"), and a vector representing "where" it is found in a scene. The IRs of
many objects can then be additively combined to represent scenes of many objects. 

IRs do not explicitly represent relations between objects, but do explicitly represent attributes. For
instance an IR of a blue square above a red circle would explicitly represent red, blue, square, and
circle with blue bound to square and red bound to circle; it would not, however, represent above or
below explicitly. For this reason IRs are incapable of representing hierarchical structure, or any kind of
structure for that matter. This may be seen as a large weakness in the power of Iconic Representations.
However, Hofstadter and colleagues have made convincing arguments against the use of pre-structured
representations as inputs to analogical models (Chalmers, French, and Hofstadter, 1995). Structure is
therefore left for the network to learn. 

Architecture & Training Procedure 

A 3-layer 343x49x110 recurrent connectionist network was created (See Figure 3). Standard
backpropagation was used to adjust the weights (Rumelhart, Hinton, and Williams, 1986). The network
was trained to make analogies in the following manner. First, an IR of a Source scene was created and
placed on the input layer (see Figure 3, left panel). The "what" of an object was represented by a 6 unit
localist encoding indicating the object's color (3 units) and shape (3 units). The "where" was represented
by a 2x2 area of activation inside a 7x7 pixel scene. A representation of the object being pointed to was
created by activating nodes (2x2) in the Pointer bank (7x7) corresponding to the object's location in the
scene. The network was then trained to produce the representations of the figure and ground objects of
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the Source scene on the output layer (Figure 3, middle panel). Here, the figure of a scene is defined to be
the object being pointed to and the ground is everything else in the scene. Next an IR of the Target scene
was placed on the same units that held the Source IR from the previous time step. Now, instead of
placing activations representing an object being pointed to, the hidden unit activations (called the
context) were copied from the previous time step into the Pointer bank (as with a simple recurrent
network (Elman, 1990)) (Figure 3, right panel). The network was then trained to complete the analogy,
that is, to produce on the output layer the analogous object as Figure. The remaining objects were
regarded as Ground. 

Figure 3. The network architecture and training procedure. 

This architecture and training procedure had the following desirable features. Instead of having a bank of
units for the Source IR and a separate bank for the Target IR they share the same connections, thereby
making generalization easier. Likewise, the Pointer and the context activations also shared units. The
Pointer and context activations filled analogous roles in the training of the network: looking at the
"Source scene" and the "object being pointed to" is analogous to looking at a "Target scene" and
"remembering the Source scene plus what was pointed to in it." 

The iconic representations provide a flexible method to encode a wide variety of scenes without
explicitly representing relations. The training procedure allows the network to learn to identify the
Figure and the Ground in a scene when an object is being pointed to, and when a scene is being
compared to a previously viewed scene. The network allows for a natural sharing of weights between
items with similar function (between source and target scenes, and between pointing and context). 

Experiments 

This section describes three types of experiments made using the architecture, representation, and
training procedure described above. During the training of each of the following experiments only three
objects were placed in each scene, and their positions were limited to the four corners, although this need
not be the case. 

Experiment #1: Abstract category analogies 

The first experiment was made to see if the network could learn to identify objects based on abstracted
categories such as "the object that is different from the other two on the dimension of color." This was
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tested by creating a Source scene that had a single object differ from the other two objects by either
shape or color, and a Target scene that had one object differ by shape from the other two objects (in the
Target scene) and another object differ from the other two by color (see Figure 2.) The object that was
different in the Source (by either shape or color) was pointed to, and the network's goal was to select the
object in the Target that differed "in the same way." For instance, a green circle differed from two blue
circles in the same way that a red triangle differed from a green triangle and a green square. That is,
they both differ on the dimension of color. Note that "same" and "different" were not explicitly
represented but had to be learned by the network. Position played no role in this task. 

Given these constraints there were a possible of 216 variations of the Source scene for each of the two
types (e.g., "differ by shape" and "differ by color"). The Target scene was generated as follows. Three
objects exactly alike were created. One object was picked and its shape changed. A different object was
picked and its color changed. Given these constraints there are a total of 1,080 possible Target scenes
and a total of 466,560 unique combinations of pairs of Source and Target scenes. 

A database of 10,000 unique Source-Target pairs was generated randomly. The network was trained on
9,850 of these, leaving 150 to test for generalization after training. After being trained 100,000 times on
instances of the 9,850 Source-Target training pairs, the network reached 100% performance. That is, the
network had learned that if the pointed-to object in a Source scene differed from the other objects (in the
Source scene) by shape then the object in the Target that also differed by shape was to be "pointed-to"
(as with Set #1 of Figure 2.) To test the generalization ability, the 150 pairs of Source-Target scenes that
were not used in training were tested and the network got each problem correct. 

Experiment #2: Position-based analogies 

The first experiment successfully showed that analogies could be made with the network based on
abstracted categories based on shape and color (the "what" attributes.) Experiment #2 was designed to
see if the network could ignore shape and color details, and make analogies based solely on position in a
scene (the "where" portion of the representation). This was tested by training a network to select the
analogous object in a spatial pattern. 

Figure 4. Samples of Experiment #2. The robot claw shows the correct choices as defined by the task. Set #3 has a Target
scene which has been rotated 1 turn. 

The Source scenes were generated exactly as were the Source scenes from Experiment #1. That is, one
object was made to differed by either shape or color from the other two. The Target scene was created by
taking a scene formed like the Source scene but rotating it clockwise 0, 1, 2, or 3 turns. For instance, the
Target scene of Set #3 of Figure 4 was generated by rotating the Source scene 1 turn, and the Target
scene of Set #4 was generated by rotating the Source scene 3 turns. 

There were 432 unique Source scenes, however this time any one of the three objects could be pointed to
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rather than just the one that differed. That gave 1,296 unique Source scenes, and 432 unique
corresponding Target scenes for a total of 559,872 unique Source-Target pairs. A database of 31,000
random, unique Source-Target pairs was created, and 1,000 were saved for testing. Training went much
more quickly than that of Experiment #1; the network reached 100% in 11,800 exposures. Obviously,
this network did not need to be trained on nearly as many different analogies as were available. The
network was then tested on the remaining 1,000 Source-Target pairs, and it got each one correct. 

Experiment #3: Abstract category and Position-based analogies 

This experiment was created to test analogies that required information from both relations and
attributes. Target and Source scenes were created as before with the following changes. Target scenes
were versions of the Source scene with a twist: they were either flipped horizontally, vertically, or
rotated 0, 1, 2, or 3 times, or a result of flipping and rotating. Figure 5 shows a sample of a Target scene
that was flipped about a vertical axes. This problem was more difficult than the previous two
experiments: the network was unable to learn to do all of the types of twists no matter how the network
was trained. 

To test to see if this was just too hard a task for the network to learn, a series of "concept nodes" were
added to the input. These nodes provided "hints" as to the type of twisting for each analogy
(Abu-Mostafa, 1990). Four units indicated the amount of rotation (0, 1, 2, or 3 turns) and 4 units
indicated the flipping (horizontal, vertical, or none.) Using these hints, 20,000 pairs of Source-Target
sets were generated. The network was trained on 19,500, leaving 500 for testing. With the hints the
network was then able to learn all of the tasks getting 100% correct after only 66,000 exposures. Of the
remaining 500 testing pairs left, it got 484 correct (96.8%.) 

Figure 5. Samples from Experiment #3. Sets #5, 6, and 7 show all the parts of an implicit analogy. In contrast, Set #8 shows
an explicit representation of the analogy. 

Discussion 

One might object to a model of analogy-making that first requires 100,000 trials of training; it is
well-known that people can make analogies instantly and spontaneously. If one considers that these
networks "knew" nothing initially but had to learn about figure, ground, location, color, shape, etc. then
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that objection becomes unfounded. On the other hand, the networks, after training, "gush" their answers
out with no temporal processing to speak of (Hofstadter and FARG, 1995). Although analogies often
come to mind seemingly instantly a model that does not "actively explore" an analogy problem appears
lacking. These objections (and other limitations and analysis) are discussed at length in (Blank,
forthcoming). 

By supplying Iconic Representations and training to make a basic Figure/Ground distinction, a simple
network learned to perform these analogy-making tasks. Looking at the system's behavior we see that it
must have learned to make distinctions based on self-created "categories." Although the analogies made
by these initial networks were very simple, this methodology does expose a large, unexplored area
available for future explorations in analogy-making. 
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