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HIGHLIGHTS 

 Rational drug design used to discover O-alkylhydroxylamines as IDO1 inhibitors. 

 Optimum inhibition with meta-halide substituted benzyl derivatives. 

 Heme iron binding of O-alkylhydroxylamines demonstrated. 

 Selective inhibition among several heme iron enzymes shown. 

 Nanomolar-level potency and limited toxicity in cells.  

ABSTRACT  Indoleamine 2,3-dioxygenase-1 (IDO1) is a promising therapeutic target for the treatment 

of cancer, chronic viral infections, and other diseases characterized by pathological immune 

suppression. Recently important advances have been made in understanding IDO1’s catalytic 

mechanism. Although much remains to be discovered, there is strong evidence that the mechanism 

proceeds through a heme-iron bound alkylperoxy transition or intermediate state. Accordingly, we 

explored stable structural mimics of the alkylperoxy species and provide evidence that such structures 

do mimic the alkylperoxy transition or intermediate state. We discovered that O-benzylhydroxylamine, 

a commercially available compound, is a potent sub-micromolar inhibitor of IDO1. Structure-activity 

studies of over forty derivatives of O-benzylhydroxylamine led to further improvement in inhibitor 

potency, particularly with the addition of halogen atoms to the meta position of the aromatic ring. The 

most potent derivatives and the lead, O-benzylhydroxylamine, have high ligand efficiency values, which 

are considered an important criterion for successful drug development. Notably, two of the most potent 

compounds demonstrated nanomolar-level cell-based potency and limited toxicity. The combination of 

the simplicity of the structures of these compounds and their excellent cellular activity makes them quite 

attractive for biological exploration of IDO1 function and antitumor therapeutic applications. 

mailto:mullera@mlhs.org


Keywords: IDO1 inhibition, O-alkylhydroxylamines, antitumor therapy, rational drug design 

Abbreviations: IDO1, indoleamine 2,3-dioxygenase isoform-1; Trp, tryptophan; UV-vis; ultraviolet-

visible; CYP3A4, cytochrome P-450 isoform 3A4. 

 

Introduction 

Immune escape by tumors is a fundamental aspect of disease progression resulting from 

immunoediting of tumors as they interact with the host immune system1,2. Key to this process from a 

therapeutic standpoint is that tumors are selected to engender a tolerogenic microenvironment that 

actively suppresses the ability of the immune system to mount an effective response3. Ongoing progress 

in understanding the cellular and molecular mechanisms that govern the pathological state of tumor 

immune tolerance has revealed several protein targets which provide the potential for therapeutic 

intervention4. One central player is the immunomodulatory enzyme indoleamine 2,3-dioxygenase, 

IDO1, formerly known as IDO before the discovery of a second isoform5,6. IDO1 can contribute to 

immune escape when expressed directly in tumor cells or when expressed in immunosuppressive 

antigen presenting cells such as tolerogenic dendritic cells or tumor associated macrophages7,8. For both 

cases, experimental results suggest that IDO1 inhibition may restore an effective antitumor immune 

response and thus provide a method to treat malignant diseases in combination with chemotherapeutic 

agents and/or immunotherapy-based strategies9. In fact, there are currently three drugs in clinical trials 

testing IDO1 inhibition as a strategy for the treatment of cancer10. Clearly there is an interest and a need 

for further development of potent IDO1 inhibitors to adequately address this therapeutic 

opportunity11,12.  

IDO1 is an extrahepatic, tryptophan (Trp) metabolizing enzyme, 13-15 which catalyzes the initial and 

rate-limiting step along the kynurenine pathway. The oxidative metabolism of Trp by IDO1 involves the 

coordination of molecular oxygen to a ferrous heme iron and its subsequent addition across the C-2/C-3 

bond of the indole ring.  Two alkylperoxy transition or intermediate states resulting from dioxygen 



insertion to C-2 or C-3 carbon of the indole ring (Figure 1, compound 1 and 2) have been proposed13,16-

18. Here we sought to rationally design a new family of IDO1 inhibitors by mimicking the alkylperoxy 

species as illustrated in Figure 1, in which one oxygen atom of the peroxo moiety is substituted with an 

electronegative atom, N (compound 3). To simplify compound 3, the alkylperoxy moiety is further 

reduced to Ar-C-X-Y, where Ar is an aryl ring and C is a linker containing a carbon moiety (such as 

methylene or carbonyl). In related work, two previously reported IDO1 inhibitors in the scientific 

literature demonstrate a similar theme in their inhibitor design: The hydroxyamidines reported in 2009 

by Incyte19 and the recent report of alkylhydrazine derivative inhibitory activity by Ching et al.20. 

Neither of these reports discussed the potential mimicry of the proposed alkylperoxy intermediate or 

related rational design idea. Contemporaneous with our studies, O-alkylhydroxylamine IDO1 inhibitors 

were reported in the patent literature by NewLink Genetics21. With the rise of chemical library screening 

for drug lead development, mechanism-based rational drug design ideas are less frequently used, but the 

current work illustrates there is still merit in their use as they proved a simple and efficient way to 

identify a new IDO1 inhibitor lead.  
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Figure 1. Proposed Alkylperoxy Transition or Intermediate State of IDO1 (1 and 2) and Their Mimic 

(3). 

Results and Discussion 

Discovery of New Structural Class of IDO1 Inhibitors. To explore this rational drug design idea, 

we screened commercially available compounds with a general structure of Ar-X-Y or Ar-C-X-Y 

(Table 1). Gratifyingly, a screen of a few dozen commercial compounds yielded several micromolar or 

sub-micromolar potency molecules. Similar to the recent report from the Ching group20, 



phenylhydrazine was found to be a highly potent inhibitor of IDO1. This is not surprising since 

phenylhydrazine has been found to interact with other heme-containing proteins, such as hemoglobin,22 

cytochrome P450,23 catalase24 and myoglobin25. In fact, phenylhydrazine can be oxidized by heme iron 

to generate phenyl radicals that can subsequently react to covalently modify the heme prosthetic 

group26. Although we did not see any signs of irreversible inhibition by phenylhydrazine, we chose to 

focus our efforts on O-benzylhydoxylamine, the second best inhibitor with an IC50 of 0.90 M, as we 

were more interested in developing a reversible inhibitor of IDO1. Nonetheless, all the compounds in 

Table 1 represent a new class of IDO1 inhibitors: alkylperoxy mimics. The therapeutic potential of 

IDO1 inhibition, as well as the commercial availability and sub-micromolar level potency of these 

compounds, made this discovery an important opportunity. Our efforts at developing peroxy structural 

mimics, in particular, optimizing the O-alkylhydroxylamine structural class, are described below.  

Table 1. IC50 of Commercially Available Ar-X-Y or Ar-C-X-Y Compoundsa 

Compound Structure IC50 (M) 

Ph-NH-NH2 0.23±0.25 

Ph-CH2-O-NH2 0.81±0.081 

Ph-CH2-NH-OH 6.0 

Ph-NH-OH 9.2 

Ph-C(=O)-NH-OH 16 

Ph-CH2-NH-NH2 71 

a IC50 values are based on single point inhibition curves run once for each compound, but repeated 2x 

for the most potent compounds (initial IC50 values below 1.0 M). These results are reported as the 

averages ± SD. 

Chemistry 

The O-alkylhydroxylamine derivatives were synthesized from the analogous alcohol through a one 

pot process involving the Mitsunobu reaction with N-hydroxyphthalimide27 and subsequent deprotection 

of the phthalimide group with hydrazine (Scheme 1)28. The O-alkyl hydroxylamines were purified and 



isolated as their hydrochloride salts. Alcohols that were not commercially available were synthesized 

via reduction of the appropriate aldehyde with NaBH4 (Scheme 2).  

Scheme 1. Mitsunobu Reaction to Convert Alcohols to O-Alkyl Hydroxylamines 
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Scheme 2. Synthesis of Monoaryl Alcohols 
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Results and Discussion 

IDO1 Inhibition by O-Alkylhydroxylamines. 

In an effort to further optimize the O-benzylhydroxylamine lead, we explored two general 

modifications of the O-benzylhydroxylamine structure: (1) alteration of the carbon linker between the 

aryl ring and the hydroxylamine group; (2) substitution of the aryl ring (Figure 2).  

 

Figure 2. Two Modifications of O-Benzylhydroxylamine Lead Compound 

Alternation of the carbon linker between the aryl ring and the peroxy mimic moiety 

Linker length and flexibility was explored with the compounds shown in Table 2. It quickly became 

clear that any modifications made to the carbon linker in the lead compound resulted in a dramatic 

decrease in inhibitor potency.  Attempts at rigidifying the hydroxylamine moiety in the benzylic 

position (compounds 3, 4 and 6) were unsuccessful as well.  



Table 2. Inhibition Data for Monoaryl Hydroxylamines with Various Linkers between the Aryl and the 

Hydroxylamine Groupa 

Compd Structure IC50 (µM) Compd Structure IC50 (µM) 

Lead 
 

0.81±0.081 
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a IC50 values are based on single point inhibition curves run once for each compound except for the lead 

compound which was repeated 2x. These results are reported as the average ± SD. 

Substitution of the Aryl Ring 

Derivatization of the O-benzylhydroxylamines via substitution on the aromatic ring initially explored 

potential interactions with the amino acid residues located in the active site (C129, S167, Y126) by 

adding hydrogen donating or accepting substitutions to the phenyl ring. Previous work from our 

laboratory had successfully exploited these interactions in the optimization of the phenyl-imidazole 

structural series29. However, addition of a hydroxyl group at the ortho (29) or para (31) position 

substantially reduced inhibition (Table 3). Likewise, ortho, meta, or para- substitution with a methoxy 

also proved deleterious (24, 26 and 30).  Halogen substitution was the only successful modification that 

increased inhibitor potency, which contrasts with the results of the phenyl-imidazole study29. Addition 

of iodine, bromine, chlorine or trifluoromethyl substituents to either ortho, meta or para positions of O-

benzylhydroxylamine (8-15) proved beneficial with the greatest gain in IDO1 inhibitor potency seen 

with halogens in the meta position. In contrast to other halogen substitutions, the more electronegative 



fluorine containing inhibitors (15, 16 and 18) were essentially equipotent or slightly less potent than the 

lead. 

Table 3. Inhibition Data for Monoaryl Hydroxylamines with Ring Substitutiona 

ONH2
X

 

a IC50 values are based on single point inhibition curves run once for each compound, but repeated at 

least 2x for the most potent compounds (initial IC50 values below 0.4 M). These results are reported as 

the averages ± SD. 

The benefits of halogen aromatic substitution have been recognized before in several previous reports 

of structure-activity relationship studies19,30-35. There are three potential explanations for the benefits of 

halogen substitution: Favorable pi stacking interactions between the halo-aromatics and aromatic amino 

acid side chains in the IDO1 active site; halogen bonding between the halogen atoms of the inhibitor 

and Lewis basic sites in the IDO1 active site36; or beneficial hydrophobic interactions between the 

halogen and a complementary pocket in the active site. Favorable pi stacking interactions between the 

three relatively more electron rich Phe residues (F163, 164 and 226) in the active site and the electron 

poor halo-aromatic pi systems in the inhibitors would benefit binding. Contradicting that assessment 

Compd X IC50(µM) Compd X IC50(µM) Compd X IC50(µM) 

8 4-I 0.22± 0.066 16 3-F 1.0 24 2-OCH3 5.4 

9 3-Cl 0.30± 0.015 17 4-Cl 1.3 25 4-CF3 8.9 

10 3-Br 0.32± 0.042 18 2-F 1.4 26 3-OCH3 9.5 

11 3-I 0.34± 0.12 19 4-Br 1.6 27 4-Ph 12 

12 3-CF3 0.41 20 2-Br 1.6 28 
4-

CH(CH3)2 
15 

13 2-I 0.57 21 2-CF3 2.5 29 2-OH 19 

14 2-Cl 0.63 22 3-CH3 2.7 30 4-OCH3 24 

Lead H 0.81±0.081 23 4-NO2 2.7 31 4-OH 61 

15 4-F 0.98       



would be the fluorobenzene derivatives (15, 16, and 18) which afforded inhibition essentially equivalent 

to the lead, O-benzylhydroxylamine, or slightly less potent. The weaker activity of the fluorine 

substitutions versus the chlorine, bromine and iodine would be consistent with halogen bonding events 

since fluorine is too electronegative and has too small a sigma hole for effective halogen bonding37,38. A 

more traditional explanation of simple favorable hydrophobic interactions by the halogens seems less 

likely due to the weaker activity seen with 3-methyl (22) and 4-isopropyl (28), which are considered 

roughly isosteric with chlorine and iodine respectively39.  

Disubstitution of the Aryl Ring 

Synergistic effects of multiple substituents were also explored with a particular focus on maximizing 

the halogen benefits. However, as depicted in Table 4, minimal additive effects were observed when 

combining beneficial substitutions from the monoaryl system. None of the disubstituted derivatives was 

more potent than the most potent monosubstituted derivatives, i.e. the C-3 substituted compounds.  

Table 4. Inhibition Data for Monoaryl Hydroxylamines with Ring Disubstitutiona 

ONH2
X

Y

 

a IC50 values are based on single point inhibition curves run once for each compound. 

Spectroscopic Analysis of Monoaryl Hydroxylamine Binding 

Compd R IC50(µM) Compd R IC50(µM) Compd R IC50(µM) 

32 2,3-Cl2 0.45 37 3,5-Cl2 0.90 42 
2-CF3, 4-

F 
2.4 

33 
3-CF3,4-

Cl 
0.49 38 2-F,4-CF3 1.1 43 3,5-F2 3.4 

34 
2-F, 5-

CF3 
0.57 39 2,4-F2 1.4 44 3,5-Br2 4.2 

35 2,4-Cl2 0.63 40 
2,5-

(OCH3)2 
1.7 45 

3,5-

(CF3)2 
4.6 

36 2-Cl, 4-I 0.73 41 3,4-Cl2 2.1 46 
2-OH, 3-

OCH3 
55 

Lead H 0.81±0.081       



Given the perplexing results, especially the contradictions with the phenyl-imidazole work, we further 

explored the binding mechanism of the monoaryl hydroxylamines, including the lead compound, a 

monosubstituted derivative (8) and a disubstituted derivative (40), by UV-Vis absorption spectroscopic 

studies. As shown in Figure 3B, in the absence of inhibitors, the deoxy ferrous enzyme exhibits Soret 

and Q band at 427 and 556 nm, characteristic for a typical five-coordinate high-spin heme species. 

Binding of the lead compound, 8 and 40, led to shift of the Soret band to 419-421 nm, and the 

appearance of two new Q bands at 531/556 nm, characteristic of a six-coordinate low-spin species, 

indicating the coordination of the monoaryl hydroxylamines to the heme iron, possibly via the amine 

group. Although definitive proof of the coordination of the amine group to the heme iron requires 

further studies, the result strongly supports the proposed mimicry of the alkylperoxy transition or 

intermediate state by the monoaryl hydroxylamines.  

In addition to the deoxy enzyme, we also studied inhibitor binding to the CO-bound ferrous enzyme, 

where CO was used as a surrogate for O2. The CO-bound IDO1 exhibits Soret and Q band at 421 and 

538/568 nm, typical for a CO bound six-coordinate low-spin heme species (Figure 3C).  The addition of 

the lead compound resulted in a spectrum similar to that of the inhibitor-bound deoxy species shown in 

(B), indicating that inhibitor binding prevents CO binding to the heme iron. In contrast, the addition of 8 

or 40 led to a spectrum, consistent with a mixture of inhibitor-bound deoxy spectrum (B) and CO-bound 

spectrum (C), indicating that inhibitor binding partially prevents CO binding to the heme iron. 

Comparative studies suggested that the affinity of these inhibitors towards the ferric enzyme (Figure 

3A) is much weaker than the ferrous enzyme.  



 

Figure 3. Absorption spectra of ferric (A), deoxy ferrous (B) and CO-bound (C) IDO1 in the presence 

of 500 M inhibitors. Ref spectra were obtained in the absence of inhibitors. The 616 nm band labeled 

with an asterisk is of unknown origin. 

Modeling of Monoaryl Hydroxylamine Binding to Guide Drug Development 

With confirmation that the monoaryl hydroxylamine compounds inhibit IDO1 by coordinating to the 

heme iron, we then turned to docking studies using Gold (v5.1) to determine their potential binding 

modes (Figure 4). Unsubstituted monoaryl inhibitor, O-benzylhydroxylamine, was predicted to have 

two equally plausible binding modes: in the interior of the cavity near residues F163 and S167, or in the 

entrance of the cavity between residues F226 and the heme propionate group. Ortho-substituted 

inhibitors (C-2 substitution, Figure 5) were predicted to bind in the back of the cavity (blue structure in 

Figure 4), while the para-substituted inhibitors (C-4 substitution, Figure 5) appeared to preferentially 

bind in the cavity entrance (magenta structure in Figure 4). The two outliers to this trend were 

compound 29 (2-OH) and compound 31 (4-OH). For compound 31, docking predicted the formation of 

a hydrogen bond with the S167 in the back of the cavity, while for compound 29 docking suggested 

hydrogen bonding with the heme propionate in the front of the cavity. Nonetheless, assessment of the 

inhibition data does not support that either of these predicted hydrogen bonds enhance the binding 

affinity in comparison with the halogenated derivatives; this stands in contrast to earlier reported 

hydroxyl-substituted 4-phenyl-imidazole inhibitors29. Docking of the meta substituted analogs to IDO1, 



however, did not define a consistent binding mode as the aryl ring could be equally positioned either in 

the back or the entrance of the cavity (C-3 substitution, Figure 5).  

 

Figure 4. Compounds 8 and 14 Docked in the IDO1 Active Site. Compound 14 (blue; chlorine atom 

green) binds in the interior of the active site, while 8 (magenta; iodine atom red) prefers to bind in the 

active site entrance when docked. The heme is shown in white and the green represents active site 

structure of IDO1.  



 

Figure 5. Structure-Activity Relationships (SAR) of Substituted Monoaryl Hydroxylamines with 

Predicted Binding Mode. Plot of pIC50 values for the substituted hydroxylamine compounds.  The x-axis 

lists the substitution number on the phenyl ring with disubstituted represented by the sum of the two 

numbers.  The data points are colored based on docked binding mode in the back (blue), front (pink) or 

either location (gray) of the IDO1 active site. 

Detailed Enzyme Inhibition Studies 

As further confirmation of the inhibitory characteristics of the hydroxylamine structural class, 

inhibitory constants (Ki) were determined for two of the most potent hydroxylamine inhibitors. Analysis 

showed Ki values of 164 and 154 nM for two O-alkylhydroxylamines, 8 and 9, respectively These 

potency values yield ligand efficiencies of 0.93 for both compounds40 41,42. Given the strong correlation 

between successful drugs and high ligand efficiencies, the O-alkylhydroxylamines represent a promising 

class of IDO1 inhibitors43. Based on Lineweaver-Burk graphical analysis, both molecules demonstrated 
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an uncompetitive mode of inhibition. Additionally, it was determined that inhibition of IDO1 activity by 

these two compounds was reversible and appeared to be the result of one-to-one interaction between the 

O-alkylhydroxylamine inhibitor and IDO1 based on dose-response studies. Details of the procedures 

and graphs for these studies can be found in the Supplementary Data section (see Figures S1-S3). An 

uncompetitive mode of inhibition would seem inconsistent with the demonstrated binding at the heme 

iron from the spectroscopic studies. However, 4-phenylimidazole has been crystallized in IDO1 bound 

to the heme iron44 and it demonstrates noncompetitive inhibition45. Furthermore, 4-phenylimidazole 

derivatives have also demonstrated an uncompetitive inhibition mode29 and presumably they are also 

binding at the IDO1 active site, in direct competition with the Trp binding location. Therefore, 

uncompetitive or non-competitive inhibition mode does not preclude binding in the active site or to the 

heme iron. One explanation for such behavior is that the inhibitors are actually in direct competition for 

binding at the heme iron with the other substrate in the reaction, oxygen. In an assay that modifies the 

concentration of tryptophan, an inhibitor that competes with oxygen would likely afford an 

uncompetitive inhibition mode.  

Selectivity Studies 

The simplicity of the O-alkylhydroxylamines makes concerns about their selectivity warranted, 

especially given their primary mechanism of attraction to IDO1, heme iron binding. To analyze the 

selectivity of two of the top compounds, 8 and 9, two additional heme iron containing enzymes, catalase 

and CYP3A4, were screened for inhibition. As noted in Table 5, neither 8 nor 9 showed inhibition of 

catalase; perhaps this is not surprising given catalase’s small natural substrate, hydrogen peroxide, 

however, this result does demonstrate that the inhibitory activity of these compounds is not attributable 

to an indirect effect on the catalase in the reaction mixture that is required to protect IDO1 from 

oxidative damage. CYP3A4 was inhibited at the low micromolar level by both 8 and 9. However, this is 

still 22- and 48-fold less potent than IDO1 based on the IC50 values for 8 and 9, respectively.  This 

suggests that the O-alkylhydroxylamines are selective, but they do demonstrate some promiscuity and as 

studies advance, they will need to be closely monitored for off-target activity.  



Table 5. Inhibition of catalase and CYP3A4 by 8 and 9 

Compound 
IDO1 Catalase CYP3A4 

IC50 (µM) IC50 (µM) Fold Δ IC50 (µM) Fold Δ 

8 0.33 > 100 > 300 7.2 22 

9 0.31 > 100 > 320 15 48  

 

Cell-based Assays 

To assess the therapeutic potential of the hydroxylamine structural class, two of the most potent 

compounds, 8and 9, were tested for cell-based activity in two cell systems: HeLa, expressing native 

human IDO1 induced with IFN, and Trex, expressing recombinant human IDO1 induced with 

doxycycline (Table 7; graphs found in Supplementary Data, Figure S4). Both compounds demonstrated 

nanomolar level activity in both the HeLa and Trex cell lines. Compounds 8 and 9 were more potent in 

the cell-based assay than in the isolated enzyme assay. Although such a result is generally considered 

inconsistent with normal drug activity, this irregularity has been seen repeatedly with IDO1 studies19,46 

and has been attributed to deficiencies in the isolated enzyme assay, and specifically problems with 

controlling IDO1 redox activity. 

Table 7. IDO1 IC50 values in HeLa and Trex cell-based assays 

Compound HeLa (µM)a Trex (µM)b 

8 0.10 ± 0.024 0.18 

9 0.14 ± 0.023 0.077 

aHeLa assay results are the averages of three runs  with standard deviations 

bTrex assay was a single run 

 

Cytotoxicity studies with HeLa cells also demonstrated good cell viability up to concentrations of 100 

M of 8 and 9 (see Supplementary Data, Figure S4). Assessment of impact of human serum protein 

binding indicated a substantial reduction in inhibitory activity for one of the compounds, 8, while the 



inhibitory activity of 9 was relatively unaffected (see Supplementary Data, Figure S5). This analysis 

indicates that it should be possible to develop O-alkylhydroxylamine inhibitors that are not unduly 

compromised by serum protein binding.  

Cumulatively, the cell-based potency and the cytotoxicity studies dramatically illustrate the 

therapeutic potential for the hydroxylamines. To the best of our knowledge, there are only two other 

structural classes reported to date with similar nanomolar-level cell-based potency19,32,33,46 and both of 

these have been developed for clinical evaluation.  

Conclusion 

A new structural class of IDO1 inhibitors, O-alkylhydroxylamines, has been discovered. The parent 

compound, O-benzylhydroxylamine, exhibits sub-micromolar inhibition and, unlike many similarly 

potent IDO1 inhibitors, is an inexpensive, commercially available compound. Structure-activity studies 

of the O-benzylhydroxylamine lead have explored the chemical space around this structure and led to 

some modest improvements in potency. Halogenation of the aromatic ring was particularly successful in 

improving potency. Spectroscopic studies have shown that the O-alkylhydroxylamine compounds 

coordinate to the heme iron, which provide preliminary support for these compounds as alkylperoxy 

transition or intermediate state mimics. More importantly, among the strongest enzymatic inhibitors in 

the O-alkylhydroxylamine class, two exhibited submicromolar cell-based potency with minimal 

toxicity. With ligand efficiencies of 0.9, these compounds hold significant promise as therapeutic tools. 

Translating enzymatic potency to cell-based potency has been a major roadblock to inhibitor 

development for other structural classes such as the naphthoquinones47. Furthermore, two O-

alkylhydroxylamine derivatives, 8 and 9, demonstrated exceptional potency on par with the two 

compounds INCB02436048 and NLG91949 that are currently being evaluated in clinical trials. Given the 

exciting potential of these rather simple molecules to meet the burgeoning interest in IDO1 inhibition 

for both biological investigations of the kynurenine pathway and therapeutic applications, we believe 

that the O-alkyl hydroxylamines will be a useful structural class of inhibitors.  



Experimental Section 

 

Chemical synthesis.  

General Procedures.  

All reactants and reagents were commercially available and were used without further purification 

unless otherwise indicated. Anhydrous THF was freshly distilled from Na and benzophenone. All 

reactions were carried out under an inert atmosphere of argon or nitrogen unless otherwise indicated. 

Concentrated refers to the removal of solvent with a rotary evaporator at normal water aspirator pressure 

followed by further evacuation with a direct-drive rotary vane vacuum pump. Thin layer 

chromatography was performed using silica gel 60 Å precoated glass or aluminum backed plates (0.25 

mm thickness) with fluorescent indicator, which were cut. Developed TLC plates were visualized with 

UV light (254 nm), iodine, p-anisaldehyde or ninhydrin. Flash column chromatography was conducted 

with the indicated solvent system using normal phase silica gel 60 Å, 230-400 mesh. Yields refer to 

chromatographically and spectroscopically pure (>95%) compounds except as otherwise indicated. 

Melting points were determined using an open capillary and are uncorrected. 1H NMR spectra were 

recorded at 400 MHz and 13C NMR spectra were recorded at 100 MHz. Chemical shifts are reported in 

δ values (ppm) relative to an internal reference (0.05% v/v) of tetramethylsilane (TMS, 0.0) for 1H 

NMR and the CD3OD solvent peak (49.0) for 13C NMR. Peak splitting patterns in the 1H NMR are 

reported as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br,broad. The attached 

proton test (APT) experiment was conducted for 13C NMR analysis;  methylene and quaternary carbons 

were identified as negative peaks, while methyl and methine had positive peaks.  HPLC was conducted 

on an Agilent 1100 with an Ascentis Express C-18 column (100 x 4.6 mm, 2.7 m) and a mobile phase 

of 80:20 MeCN:H2O. GC analyses were performed on the free hydroxylamine with an EI-MS detector 

fitted with a 30 m x 0.25 mm column filled with cross-linked 5% PH ME siloxane (0.25 µm film 

thickness); gas pressure 7.63 psi He. Analysis of samples involved heating from 70 to 250°C 

(10°C/min) and finally holding at 250°C for 7 min. The free hydroxylamine compounds were generated 



by treating the hydrochloride salts with saturated NaHCO3 and extracting with EtOAc. All compounds 

were found to be >95% purity by elemental analysis, GC, or HPLC as indicated. 

General Synthesis of O-Alkyl Hydroxylamines.  

To a solution of alcohol (1 mmol) in freshly distilled THF (5 ml) was added triphenylphosphine (1.1 

mmol) and N-hydroxylphthalimide (1.1 mmol). After the solution was cooled to 0oC 

diisopropylazodicarboxylate (1.1 mmol) was added dropwise. The solution was allowed to warm to 

room temperature over 3 hours. Reaction progress was monitored by TLC (1:1 heptanes:ethyl acetate).  

Hydrazine monohydrate (1.1 mmol) was then added and the solution was allowed to stir for 30 min. The 

resulting reaction mixture was filtered to remove the white precipitate. The filtrate was concentrated and 

subjected to flash chromatography (1:1 heptanes/ethyl acetate). The resulting product was dissolved in 

ether and treated with HCl (2.0 M solution in ether) to afford the HCl salt of the O-alkylhydroxylamine. 

Contaminating diisopropyl hydrazinodicarboxylate could be washed away from the HCl salt with 

dichloromethane.  

O-(α-Cyclopropyl)benzylhydroxylamine hydrochloride (1). Synthesized from α-cyclopropyl benzyl 

alcohol according to the general procedure to afford 1 as white crystals in 96% yield. 1H NMR (400 

MHz, CD3OD) δ 7.46-7.41 (br s, 5H, ArH), 4.86 (s, 1H, ArCH, J=8 Hz), 1.36-1.29 (m, 1H, 

ArCH(ONH2)CH), 0.87-0.81 (m, 1H, CH2), 0.65-0.57 (m, 2H, CH2), 0.36-0.31 (m, 1H, CH2). 
13C NMR 

(100 MHz, CD3OD)  138.36, 130.66, 130.19, 128.63, 92.98, 16.05, 6.14, 2.64. Anal. calcd. for 

C10H14ClNO: C= 60.15; H=7.07; N=7.01. Found: C=60.05%, H = 7.35%, N =6.91%. 

O-(3-Phenyl-2-propenyl)-1-hydroxylamine hydrochloride (2). Synthesized from 3-phenyl-2-propen-1-

ol according to the general procedure to afford 2 as white crystals in 90% yield. 1H NMR (400 MHz, 

CD3OD) δ 7.53-7.47 (m, 2H, ArH), 7.34-7.29 (m, 3H, ArH), 6.85 (d, 1H, ArCH, J=16 Hz) 6.40-6.33 

(m, 1H, ArCHCH), 4.69 (dd, 2H, ArCHCHCH2, J=6.9, 1.1 Hz). 13C NMR (100 MHz, CD3OD)  

139.57, 137.10, 129.93, 129.88, 128.13, 121.47, 77.00. Anal. calcd. for C9H12ClNO: C, 58.23; H, 6.52; 

N, 7.54Found: C=58.71, H = 6.95, N =7.49. 



O-(1,2,3,4-Tetrahydro-1-naphthalene)-hydroxylamine hydrochloride (3). Synthesized from 1,2,3,4-

tetrahydro-1-naphthalenol according to the general procedure to afford 3 in 62% yield as white crystals. 

1H NMR (400 MHz, CD3OD) δ 7.40 (d, 1H, ArH,  J=8 Hz), 7.31 (t, 1H, ArH, J=4 Hz), 7.25-7.17 (m, 

2H, ArH), 5.14 (t, 1H, ArCH, J=2 Hz), 2.90-2.75 (m, 2H, ArCH2), 2.32-2.27 (m, 1H, ArCH2CH2), 2.01-

1.94 (m, 2H, ArCH2CH2CH2), 1.87-1.81 (m, 1H, ArCH2CH2). 
13C NMR (100 MHz, CD3OD)  139.93, 

132.27. 131.63, 130.44, 130.33, 127.16, 82.10, 29.55, 27.51, 18.67. Anal. calcd. for C10H14ClNO: 

C=60.15; H=7.07; N= 7.01Found: C=60.13, H = 7.34, N =6.91. 

O-(2,3-Dihydro-1H-inden-2-yl)-hydroxylamine hydrochloride (4). Synthesized from 2,3-dihydro-1H-

inden-2-ol according to the general procedure to afford 4 as white crystals in 81% yield. Mp=132-

133.5oC. 1H NMR (400 MHz, CD3OD) δ 7.29-7.25 (m, 2H, ArH),  7.22-7.18 (m, 2H, ArH), 5.07-5.02 

(m, 1H, ArCH2CH), 3.37 (d, 1H, ArCHCH2, J=4 Hz), 3.33 (d, 1H, ArCHCH2, J=4 Hz), 3.19 (d, 1H, 

ArCHCH2, J=4 Hz), 3.15 (d, 1H, ArCHCH2, J=4 Hz.  13C NMR (100 MHz, CD3OD)  139.18, 126.73, 

124.25, 86.05, 37.65. GC tR = 3.182 min. 

O-Phenethylhydroxylamine hydrochloride (5). Synthesized from phenethyl alcohol according to the 

general procedure to afford 5 as white crystals in 56% yield. Mp = 110-111oC. 1H NMR (400 MHz, 

CD3OD) δ 7.28-7.21 (m, 5H, ArH), 4.25 (t, 2H, ArCH2, J=8 Hz), 2.98 (t, 2H, ArCH2CH2, J=8 Hz). 13C 

NMR (100 MHz, CD3OD)  139.28, 129.97, 129.61, 127.83, 76.86, 35.08.  Anal. calcd. for C8H11NO-

0.9375 HCl:  C=56.07, H=7.03, N=8.06.  Found: C=55.88%, H = 6.56%, N =8.08%. 

O-(2-3-Dihydro-1H-inden-1-yl)hydroxylamine (6). Synthesized from 2,3-dihydro-1H-inden-ol 

according to the general procedure to afford 6 as white crystals in 78% yield. Mp=150.5-152oC. 1H 

NMR (CD3OD) δ 7.49 (d, 1H, ArH, J=8 Hz), 7.40-7.33 (m, 2H, ArH), 7.30-7.26 (m, 1H, ArH), 5.59 (d, 

2H, CHONH2, J=4 Hz), 3.18-3.10 (m, 1H, ArCH2), 2.96-2.89 (m, 1H, ArCH2), 2.48-2.39 (m, 1H, 

ArCH2CH2), 2.36-2.31 (m, 1H, ArCH2CH2). 
13C NMR (100 MHz, CD3OD)  146.69, 139.10, 131.42, 

127.95, 127.02, 126.28, 90.29, 31.90, 30.83. GC tR = 6.781 min.  



O-(3-Phenylpropyl)-hydroxylamine hydrochloride (7). Synthesized from 3-phenylpropanol according 

to the general procedure to afford 7 as white crystals in 95%yield. Mp=168-169oC.1H NMR (400 MHz, 

CD3OD) δ 7.33-7.25 (m, 2H, ArH), 7.21-7.13 (m, 3H, ArH), 4.02 (t, 2H, CH2ONH2, J=8 Hz), 2.72 (t, 

2H, ArCH2, J=8 Hz), 2.03-1.96 (m, 2H, ArCH2CH2,). 
13C NMR (100 MHz, CD3OD)  142.15, 129.66, 

129.51, 127.33, 75.63, 32.63, 30.57.  GC tR = 6.425 min.  

4-(Iodobenzyl)hydroxylamine hydrochloride (8). Synthesized from 4-iodobenzyl alcohol according to 

the general procedure to afford 8 as white crystals in 70% yield. Mp =210-212oC 1H NMR (400 MHz, 

CD3OD) δ 7.80 (d, 2H, ArH, J=4 Hz), 7.22 (d, 2H, ArH  J=4 Hz), 4.99 (s, 1H, ArCH2). 
13C NMR (100 

MHz, CD3OD)  139.03, 133.86, 132.02, 96.09, 77.16. GC tR = 8.828 min.  

O-(3-Chlorobenzyl)hydroxylamine hydrochloride (9). Synthesized from the respective alcohol 

according to the general procedure to afford 9 as white crystals in 50% yield. Mp =144-148oC. 1H NMR 

(400 MHz, CD3OD) δ 7.49 (s, 1H, ArH), 7.45-7.35 (m, 1H, ArH), 5.04 (s, 2H, ArCH2). 
13C NMR (100 

MHz, CD3OD)  139.49, 135.59, 131.42, 130.55, 130.12, 128.56, 77.02. GC tR = 6.251 min.  

O-(3-Bromobenzyl)hydroxylamine hydrochloride (10). Synthesized from 3-bromobenzenyl alcohol 

according to the general procedure to afford 10 as white crystals in 98%yield. Mp=210-211oC. 1H NMR 

(400 MHz, CD3OD) δ 7.66-7.56 (m, 2H, ArH), 7.43 (d, 1H, ArH, J=8 Hz),7.37 (t, 1H, ArCH, J=8 Hz), 

5.03 (s, 2H). 13C NMR (100 MHz, CD3OD)  136.78, 133.62, 133.14, 131.71, 129.02, 123.59, 77.03. 

Anal. calcd. for C7H9ClBrNO:C=35.25; H=3.80; N=5.87.Found: C=35.37%, H = 3.52%, N =5.76%. 

O-(3-Iodobenzyl)hydroxylamine hydrochloride (11). Synthesized from the respective alcohol 

according to the general procedure to afford 11 as white crystals in 41% yield. Mp=209-214C. 1H 

NMR (400 MHz, CD3OD) δ 7.82-7.77 (m, 2H, ArH ), δ 7.44 (d, 1H, ArH , J=8 Hz),  7.21 (t, 1H, ArH, 

J=8 Hz), 4.98 (s, 2H, ArCH2). 
13C NMR (100 MHz, CD3OD)  139.79, 139.27, 136.74, 131.77, 129.62, 

95.02, 77.04.  GC tR =8.732 min.  

O-(3-Trifluoromethylbenzyl)hydroxylamine hydrochloride (12).  Synthesized from 3-

trifluoromethylbenzyl alcohol according to the general procedure to afford 12 as white crystals in 88% 



yield. Mp=164-165oC 1H NMR (400 MHz, CD3OD) δ 7.77-7.72 (m, 3H, ArH), 7.65 (t, 1H, ArH, J=8 

Hz), 5.14 (s, 2H, ArCH2). 
13C NMR (100 MHz, CD3OD)  134.40, 132.62, 130.7 (q, JC-F=40 Hz), 

129.50, 125.92 (q, JC-F=4 Hz), 125.51 (q, JC-F=4 Hz), 123.99 (d, JC-F =270 Hz), 75.71. GC tR = 4.170 

min.  

O-(2-Iodobenzyl)hydroxylamine hydrochloride (13). Synthesized from the respective alcohol 

according to the general procedure to afford 13 as white crystals in 43% yield. Mp=119-120oC. 1H 

NMR (400 MHz, CD3OD) δ 7.95 (d, 1, ArH , J=8 Hz), 7.51-7.44 (m, 2H, ArH), 7.16 (t, 1H, ArH, J=8 

Hz), 5.14 (s, 1H, ArCH2). 
13C NMR (100 MHz, CD3OD)  141.12, 137.07, 132.35, 132.01, 129.83, 

100.05, 81.35. Anal. calcd. for C7H9ClINO-H2O: C, 27.70; H, 3.65; N, 4.61. Found: C=27.84, H =3.66, 

N =4.48. 

O-(2-Chlorobenzyl)hydroxylamine hydrochloride (14). Synthesized from the respective alcohol 

according to the general procedure to afford 14 as white crystals in 75% yield. Mp=148-150oC. 1H 

NMR (400 MHz, CD3OD) δ 7.57 (d, 1H, ArH , J= 8 Hz), 7.48-7.35 (m, 3H, ArH), 5.22 (s, 2H, ArH). 

13C NMR (100 MHz, CD3OD)  135.63, 132.68, 132.21, 131.89, 130.74, 128.37, 74.92. Anal. calcd. for 

C7H9Cl2NO: C, 43.33; H, 4.67; N, 7.22.Found: C=43.01, H =4.72, N =7.03. 

O-(4-Fluorobenzyl)hydroxylamine hydrochloride (15). Synthesized from 4-fluorobenzyl alcohol 

according to the general procedure to afford 15 as white crystals in 85% yield. Mp=219-220oC. 1H 

NMR (400 MHz, CD3OD) δ 7.49 (t, 2H, ArH, J=4 Hz) 7.16 (t, 2H, ArH, J=4 Hz), 5.02 (s, 2H, ArCH2). 

13C NMR (100 MHz, CD3OD)  164.90 (d, JC-F=240 Hz), 132,87 (d, JC-F=9 Hz), 130.53 (d, JC-F=3 Hz), 

116.78 (d, JC-F=22 Hz), 77.31. Anal. calcd. for C7H9ClFNO: C, 47.34; H, 5.11; N, 7.89. Found: 

C=47.43, H = 4.94, N =7.81. 

O-(3-Fluorobenzyl)hydroxylamine hydrochloride (16). Synthesized from 3-fluorobenzyl  alcohol 

according to the general procedure to afford 16 as white crystals in 81% yield. Mp=245oC (decomp).1H 

NMR (400 MHz, CD3OD) δ 7.45 (t, 1H, ArH, J=8 Hz) 7.28-7.15 (m, 3H, ArH), 5.07 (s, 2H, ArCH2). 

13C NMR (100 MHz, CD3OD)  164.22 (d, JC-F=240 Hz), 136.91 (d, JC-F=8 Hz), 131.80 (d, JC-F=8 Hz), 



126.04 (d, JC-F=3 Hz), 117.31 (d, JC-F=21 Hz), 116.85 (d, JC-F=22 Hz), 77.12 (d, JC-F=2 Hz). GC tR = 

3.981 min.  

O-(4-Chlorobenzyl)hydroxylamine hydrochloride (17). Synthesized from 4-chlorobenzyl alcohol 

according to the general procedure to afford 17 as white crystals in 70% yield. Mp=226-228.5oC. 1H 

NMR (400 MHz, CD3OD) δ 7.44 (br s, 4H, ArH), 5.05 (s, 2H, ArCH2). 
13C NMR (100 MHz, CD3OD)  

136.54, 133.11, 132.05, 130.01, 77.13. Anal. calcd. for C7H9Cl2NO: C=43.44; H=4.67; N=7.22 .Found: 

C=43.32%, H =4.59%, N =7.15%. 

O-(2-Fluorobenzyl)hydroxylamine hydrochloride (18). Synthesized from the respective alcohol 

according to the general procedure to afford 18 as white crystals in 90% yield. Mp=182-184C. 1H 

NMR (400 MHz, CD3OD) δ 7.58-7.45 (m, 2H, ArH), 7.27-7.19 (m, 2H, ArH), 5.17 (s, 2H, ArCH2). 
13C 

NMR (100 MHz, CD3OD)  162.93 (d, JC-F=247 Hz), 133.26 (d, JC-F=8 Hz), 133.19 (d, JC-F=4 Hz), 

125.82 (d, JC-F=3 Hz), 121.48 (d, JC-F=14 Hz ), 116.71 Hz (d, JC-F=21 Hz), 71.73 (d, JC-F=4 Hz).  GC tR = 

4.067 min. 

O-(4-Bromobenzyl)hydroxylamine hydrochloride (19). Synthesized from 4-bromobenzyl alcohol 

according to the general procedure to afford 19 as white crystals in 92% yield. Mp=232-236oC. 1H 

NMR (400 MHz, CD3OD) δ 7.58 (d, 2H, ArH, J=4 Hz), 7.37 (d, 2H, ArH, J=4 Hz), 5.02 (s, 2H, 

ArCH2). 
13C NMR (100 MHz, CD3OD)  133.60, 133.11, 132.29, 124.70, 77.23. GC tR =7.383 min.  

O-(2-Bromobenzyl)hydroxylamine hydrochloride (20). Synthesized from 2-bromobenzyl alcohol 

according to the general procedure to afford 20 as white crystals in 87% yield. Mp=95-98oC. 1H NMR 

(400 MHz, CD3OD) δ 7.70 (dd, 1H, ArH, J=4, 1 Hz), 7.54 (dd, 1H, ArH, J=4, 1 Hz), 7.46 (dt, 1H, ArH, 

J=7, 1 Hz), 7.37 (dt, 1H, ArH, J=7, 1 Hz), 5.20 (s, 2H, ArCH2). 
13C NMR (100 MHz, CD3OD)  134.38, 

133.83, 132.71, 132.56, 129.19, 125.47, 77.32. Anal. calcd. for C7H9ClBrNO C=35.25; H=3.80; 

N=5.87.Found: C=35.14%, H = 3.57%, N =5.86%. 

O-(2-Trifluoromethylbenzyl)hydroxylamine hydrochloride (21). Synthesized from 2-

trifluoromethylbenzyl alcohol according to the general procedure to afford 21 as white crystals in 78% 



yield. Mp=115-119oC.1H NMR (400 MHz, CD3OD) δ 7.81 (d, 1H, ArH, J=8 Hz), 7.76 -7.66 (m, 2H, 

ArH), 7.63 (t, 1H, ArH, J=8 Hz), 5.26 (s , 2H, ArCH2). 
13C NMR (100 MHz, CD3OD)  133.89, 132.94, 

132.41, 131.13, 130.10 (q, JC-F 40 Hz), 127.50 (q, JC-F=6 Hz), 125.53 (d, JC-F=271 Hz), 74.25. Anal. 

calcd. for C8H9ClF3NOC=42.22; H=3.99; N=6.15. Found: C=42.10%, H 4.15%, N =6.05%. 

O-[(3-Methylphenyl)-methyl]-hydroxylamine hydrochloride (22). Synthesized from 3-methyl 

benzenemethanol according to the general procedure to afford 22 as white crystals in 94% yield. Mp 

=187-188.5oC. 1H NMR (400 MHz, CD3OD) δ 7.33-7.22 (m, 4H, ArH), 5.01 (s, 2H, ArCH2), 2.37 (s, 

3H, ArCH3). 
13C NMR (100 MHz, CD3OD)  139.84, 134.12, 131.30, 131.02, 129.79, 127.49, 78.17, 

21.23. Anal. calcd. for C8H12ClFNO C=55.34; H=6.97; N=8.07. Found: C=55.47%, H = 7.22%, N 

=8.06%. 

O-(4-Nitrobenzyl)hydroxylamine hydrochloride (23). Synthesized from the respective alcohol 

according to the general procedure to afford 23 as off-white crystals in 54% yield. Mp =199-199.5oC. 

1H NMR (400 MHz, CD3OD) δ 8.29 (d, 2H, ArH, J=12 Hz), 7.70 (d, 2H, ArH, J=12 Hz), 5.19 (s, 

ArCH2, 2H). 13C NMR (100 MHz, CD3OD)  149.92, 141.55, 130.98, 124.90, 76.56. Anal. calcd. for 

C7H9ClN2O3:C=41.09; H=4.43; N=13.69. Found: C=41.20%, H =4.42%, N =13.42%. 

O-(2-Methoxybenzyl)hydroxylamine hydrochloride (24). Synthesized from respectivealcohol 

according to the general procedure to afford 24 as white crystals in 64% yield. Mp=102-104oC. 1H 

NMR (400 MHz, CD3OD) δ 7.42 (t, 1H, ArH , J=8 Hz), 7.37 (d, 1H, ArH, , J=4 Hz), 7.06 (d, 1H, ArH, 

J=8 Hz), 6.99 (t, 1H, ArH, J=8 Hz),  5.09 (s, 2H, ArCH2), 3.88 (s, 3H, CH3). 
13C NMR (100 MHz, 

CD3OD)  159.72, 132.67, 122.43, 121.75, 112.14, 73.34, 56.09. GC tR = 6.953 min.  

O-(4-Trifluoromethylbenzyl)hydroxylamine hydrochloride (25). Synthesized from the respective 

alcohol according to the general procedure to afford 25 as white crystals in 99% yield. Mp= 179-181oC. 

1H NMR (400 MHz, CD3OD) δ 7.77 (d, 2H, ArH, J=8 Hz), 7.67 (d, 2H, ArH, J=8 Hz),5.16 (s, 2H, 

ArCH2). 
13C NMR (100 MHz, CD3OD)  138.81, 132.52 (d, JC-F=32 Hz), 130.73, 126.84 (q, JC-F=4 Hz), 



124.09, 77.07. Anal. calcd. for C8H9ClF3NO: C=42.22; H=3.99; N=6.15 Found: C=41.98%, H = 3.89%, 

N =6.34%. 

O-(3-Methoxybenzyl)hydroxylamine hydrochloride (26). Synthesized from 3-methoxybenzenyl 

alcohol according to the general procedure to afford 26 as white crystals in 98% yield. Mp=126-

127.5oC. 1H NMR (400 MHz, CD3OD) δ 7.34 (t, 1H, ArH, J=8 Hz), 7.03-6.97 (m, 3H, ArH), 5.04 (s, 

2H, ArCH2), 3.81 (s, 3H, CH3OAr). 13C NMR (100 MHz, CD3OD)  161.44, 135.64, 130.99, 122.46, 

116.15, 116.74, 78.00, 55/76. Anal. calcd. for C8H12ClNO2. C=50.67; H=6.38; N=7.39. Found: 

C=50.52%, H =6.07%, N =7.36%. 

O-(4-Phenylbenzyl)hydroxylamine hydrochloride (27). Synthesized from the respective alcohol 

according to the general procedure to afford 27 as white crystals in 75% yield. Mp=187-188oC. 1H 

NMR (400 MHz, CD3OD) δ 7.71 (d, 2H, ArH, J=8 Hz), 7.62 (d, 2H, ArH, J=8 Hz), 7.52 (d, 2H, ArH, 

J=8 Hz), 7.44 (t, 2H, ArH, J=4 Hz), 7.37 (t, 1H, ArH, , J=4 Hz),  5.07 (s, 2H, ArCH2). 
13C NMR (100 

MHz, CD3OD)  143.93, 141.55, 133.21, 131.05, 129.98, 128.83, 128.03, 127.94, 77.98. GC tR = 

12.779 min.  

O-(4-Isopropylbenzyl)hydroxylamine hydrochloride (28). Synthesized from the respective alcohol 

according to the general procedure to afford 28 as white crystals in 89%yield. Mp=159-160oC. 1H NMR 

(400 MHz, CD3OD) δ 7.39 (d, 2H, ArH, J=8 Hz), 7.33 (d, 2H, ArH, J=8 Hz), 5.03 (s, 2H, ArCH2),2.99-

2.92 (m, 1H, (CH3)2CHAr), 1.27 (d, 6H, J=8 Hz). 13C NMR (100 MHz, CD3OD)  150.55, 130.30, 

129.36, 126.60, 76.69, 33.86, 22.89. Anal. calcd. for C10H16ClNO C=59.55; H=8.00; N=6.94. Found: 

C=59.46%, H = 7.77%, N =7.02%. 

O-(2-Hydroxybenzyl)hydroxylamine hydrochloride (29). Synthesized from the respective alcohol 

according to the general procedure to afford 29 as white crystals in 79% yield. Mp=134-135oC. 1H 

NMR (400 MHz, CD3OD) 7.35-7.25, (m, 2H, ArH) 6.93-6.85 (m, 2H, ArH), 5.10 (s, 2H, ArCH2). 
13C 

NMR (100 MHz, CD3OD)  157.79, 132.82, 132.37, 120.86, 120.78, 116.46, 73.63.  GC tR = 7.582 min.  



O-(4-Methoxybenzyl)hydroxylamine hydrochloride (30). Synthesized from 4-methoxy benzyl alcohol 

according to the general procedure to afford 30 as white crystals in 87%yield. Mp=125-127oC. 1H NMR 

(400 MHz, CD3OD) δ 7.39 (d, 2H, ArH, J=8 Hz), 6.99 (d, 2H, ArH, J=8 Hz), 4.98 (s, 2H, ArCH2), 3.83 

(s, 3H, ArOCH3). 
13C NMR (100 MHz, CD3OD)  162.17, 135.55, 132.21, 126.00, 124.20, 115.13, 

77.75, 55.64. Anal. calcd. for C8H12ClNO2: C=50.67; H=6.38; N=7.39.Found: C=50.84%, H = 6.53%, 

N =7.39%. 

O-(4-Hydroxylbenzyl)hydroxylamine hydrochloride (31). Synthesized from 4-hydroxybenzyl alcohol 

according to the general procedure to afford 31 as white crystals in 44% yield. Mp=189-191oC. 1H 

NMR (400 MHz, CD3OD) δ 7.29 (d, 2H, ArH, J=8 Hz), 6.85 (d, 2H, ArH, J=8 Hz), 4.93 (s, 2H, 

ArCH2). 
13C NMR (100 MHz, CD3OD)  160.14, 132.50, 124.86, 116.63, 78.11. HPLC tR = 0.475 min.  

O-(2,3-Dichlorobenzyl)hydroxylamine hydrochloride (32). Synthesized from 2,3-dichlorobenzyl 

alcohol according to the general procedure to afford 32 as white crystals in 48% yield. Mp=184.5-

185.5oC. 1H NMR (400 MHz, CD3OD) δ 7.64 (dd, 1H, ArH, J=8, 1 Hz), 7.51 (dd, 2H, ArH,  J=8, 1 Hz), 

7.39 (t, 1H, ArH, J=8 Hz), 5.24 (s, 2H, ArCH2).  13C NMR (100 MHz, CD3OD)  134.63, 134.61, 

133.84, 132.88, 130.96, 129.32, 75.38. GC tR = 8.752 min.  

O-(4-Chloro-3-trifluoromethyl)benzyl)hydroxylamine hydrochloride (33). Synthesized from the 

respective alcohol according to the general procedure to afford 33 (12% yield) as white crystals.). 

Mp=120-122oC. 1H NMR (400 MHz, CD3OD) δ 7.86 (s, 1H, ArH), 7.69 (2, 2H, ArH), 5.10 (s, 2H, 

ArCH2). 
13C NMR (100 MHz, CD3OD)  135.33, 134.30 (d, JC-F=3 Hz), 133.35, 129.54 (q, JC-F=30 Hz), 

129.49, 124.13 (d, JC-F=271 Hz), 76.39.  Anal. calcd. for C8H8Cl2F3NO-0.25 HCl: C=35.43; H=3.08; 

N=5.17. Found: C=35.11%, H =2.81%, N =5.11%. 

O-(2-Fluoro-5-Trifluoromethylbenzyl)hydroxylamine hydrochloride (34). Synthesized from the 

respective alcohol according to the general procedure to afford 34 as white crystals in 40% yield. 174.5-

175oC. 1H NMR (400 MHz, CD3OD) δ 7.89-7.83 (m, 2H, ArH), 7.42 (t, 1H, ArH, J=8 Hz), 5.22 (d, 2H, 

ArCH2, 
4JC-F=12 Hz). 13C NMR (100 MHz, CD3OD)  164.70 (d, JC-F=254 Hz), 130.56, 130.50 (d, JC-



F=15 Hz), 128.42, 125.02 (d, JC-F=269 Hz), 123.03 (d, JC-F=16 Hz), 117.95 (d, JC-F=22 Hz), 70.95 (d, JC-

F=4 Hz).   Anal. calcd. for C8H8ClF4NO-0.25 HCl: C=37.72, H=3.27, N=5.50. Found: C=37.61%, H 

=3.05%, N =5.36%. 

O-(2,4-Dichlorobenzyl)hydroxylamine hydrochloride (35). Synthesized from 2,4-dichloro benzyl 

alcohol according to the general procedure to afford 35 as white crystals in 69% yield. Mp=184.5-

185.5oC. 1H NMR (400 MHz, CD3OD) δ 7.57-7.54 (m, 2H, ArH), 7.44-7.41 (m, 1H, ArH), 7.40 (dd, 

1H, ArH, J=2.0 Hz, 8.2 Hz), 5.19 (s, 2H, ArCH2). 
13C NMR (100 MHz, CD3OD)  137.50, 136.74, 

133.94, 131.07, 130.71, 128.88, 74.40. Anal. calcd. for C7H8Cl3NO C=36.80; H=3.53; N=6.13.Found: 

C=36.89%, H =3.50%, N =5.88%. 

O-(2-Chloro,4-iodobenzyl)hydroxylamine hydrochloride (36). Synthesized from the respective 

alcohol according to the general procedure to afford 36 as white crystals in 80% yield. Mp=117-119oC. 

1H NMR (400 MHz, CD3OD) δ 7.91 (s, 1H, ArH), 7.78 (d, 1H, ArH, J=8 Hz ),  7.31 (d, 1H, ArH, J= 8 

Hz), 5.17 (s, 2H, ArCH2). 
13C NMR (100 MHz, CD3OD)  139.26, 137.91, 136.43, 133.89, 131.89, 

96.49, 74.51. Anal. cald. for C7H8Cl2INO: C=26.28; H=2.52; N=4.38.Found: C=26.62%, H =2.15%, N 

=4.34%. 

O-(3,5-Dichlorobenzyl)hydroxylamine hydrochloride (37). Synthesized from respective alcohol 

according to the general procedure to afford 37 as white crystals in 43% yield. 1H NMR (400 MHz, 

CD3OD) δ 7.52 (s, 1H, ArH), 7.45 (d, 2H, ArH), 5.05 (s, 2H, ArCH2). 
13C NMR (100 MHz, CD3OD)  

138.30, 136.58, 130.41, 128.66, 76.35. GC tR = 8.248 min.  

O-(2-Fluoro, 4-trifluoromethylbenzyl)hydroxylamine hydrochloride (38). Synthesized from 2-fluoro-

4-trifluoromethyl benzyl alcohol according to the general procedure to afford 38 as white crystals in 

67% yield. Mp=228-231oC.1H NMR (CD3OD) δ  7.75 (t, 1H, ArH,  J=8 Hz), 7.61 (t, 2H, ArH, J=8 Hz), 

5.23 (s, 2H, ArCH2). 
13C NMR (100 MHz, CD3OD)  162.41 (d, JC-F=250 Hz), 134.84 (dd, JC-F=42, 8 

Hz), 133.79 (d, JC-F=4 Hz), 126.00 (d, JC-F=14 Hz), 124.46 (d, JC-F=270 Hz), 122.67 (t, JC-F=4 Hz), 



114.20 (dq, JC-F=25, 4 Hz), 70.94 (d, JC-F=3 Hz). Anal. calcd. for C8H8ClF4NO: C=39.12; H=3.28; 

N=5.70. Found: C=39.06%, H =3.02%, N =5.66%.  

O-2,4-(Difluorobenzyl)hydroxylamine hydrochloride (39). Synthesized from the respective alcohol 

according to the general procedure to afford 39 as white crystals in 30% yield. Mp=155-157oC. 1H 

NMR (400 MHz, CD3OD) δ 7.54 (q, 1H, ArH, J=4 Hz), 7.10-7.03 (m, 2H, ArH), 5.12 (s, 2H, ArCH2). 

13C NMR (100 MHz, CD3OD)  165.63 (d, JC-F=249 Hz), 163.23 (d, JC-F=231 Hz), 134.70 (d, JC-F=5 

Hz), 117.83, 112.92 (d, JC-F=4 Hz), 105.16 (t, JC-F=26 Hz), 71.12 (d, JC-F=4 Hz). Anal. calcd. for 

C7H8ClF2NO: C=42.99; H=4.12; N=7.16.Found: C=43.15%, H = 3.74%, N =6.89%. 

O-(2,5-Dimethoxybenzyl)hydroxylamine hydrochloride (40). Synthesized from 2,5-dimethoxybenzyl 

alcohol according to the general procedure to afford 40 as white crystals in 90% yield. Mp=115-120oC. 

1H NMR (400 MHz, CD3OD) δ 6.99-6.95 (m, 3H, ArH), 5.05 (s, 2H), 3.83 (s, 3H), 3.76 (s, 3H). 13C 

NMR (100 MHz, CD3OD)  155.11, 153.71, 123.23, 118.26, 116.95, 113.27, 73.22, 56.56, 56.20.  Anal. 

calcd. for C9H14Cl3NO3: C=49.21; H=6.42; N=6.38.Found: C=49.14%, H =6.76%, N =5.94%. 

O-(3,4-Dichlorobenzy)lhydroxylamine hydrochloride (41). Synthesized from 3,4-dichlorobenzyl 

alcohol according to the general procedure to afford 41 as white crystals in 48%yield. Mp=193.5-

195.5C. 1H NMR (400 MHz, CD3OD) δ 7.64 (s, 1H, ArH), 7.60 (d, 1H, ArH, J=8 Hz), 7.39 (dd, 1H, 

ArH, J=8, 1 Hz), 5.06 (s, 2H, ArCH2). 
13C NMR (100 MHz, CD3OD)  135.13, 134.57, 133.78, 132.28, 

132.11, 130.06, 76.42. Anal. calcd. for C7H8Cl3NO C=36.80; H=3.53; N=6.13. Found: C=36.40%, H 

=3.08%, N =6.10%. 

O-(2-Trifluoromethyl,4-fluorobenzyl)hydroxylamine hydrochloride (42). Synthesized from respective 

alcohol according to the general procedure to afford 42 as white crystals in 61% yield. Mp=118-119oC. 

1H NMR (400 MHz, CD3OD) δ 7.59 (dd, 1H, ArH, J=8, 1 Hz), δ 7.51 (dd, 1H, ArH , J=8, 1 Hz),  7.47 

(dt, 1H, ArH, J=4, 1 Hz), 5.22 (s, 2H, ArCH2). 
13C NMR (100 MHz, CD3OD)  164.21 (d, JC-F=249 

Hz), 135.99 (d, JC-F=8 Hz), 132.41 (q, JC-F=32 Hz), 128.62, 124.57 (d, JC-F=272 Hz), 120.65 (d, JC-F=21 

Hz), 115.35 (m), 73.55 (d, JC-F=2 Hz).  GC tR =3.903 min. 



 O-(3,5-Diflourobenzyl)hydroxylamine hydrochloride (43). Synthesized from 3,5-diflourobenzyl 

alcohol according to the general procedure to afford 43 as white crystals in 92% yield. Mp=200.5-

201oC.1H NMR (400 MHz, CD3OD) δ 7.10 (d, 2H, ArH, , J=4 Hz), 7.03 (t, ArH, J=8 Hz), 5.09 (s, 2H, 

ArCH2). 
13C NMR (100 MHz, CD3OD)  164.66 (dd, JC-F=247, 13 Hz), 138.65 (t, JC-F=9 Hz ), 112.89 

(dd, JC-F=12, 7 Hz ), 105.57 (t, JC-F=25 Hz ), 76.45. GC tR =3.717 min.  

O-(3,5-Dibromobenzyl)hydroxylamine hydrochloride (44). Synthesized from 3,5-dibromo benzyl 

alcohol according to the general procedure to afford 44 as white crystals in 79%yield. Mp=197-200oC. 

1H NMR (400 MHz, CD3OD) δ  7.79 (t, 1H, ArH, J=1 Hz), 7.62 (d, 2H, ArH,  J=1 Hz), 5.03 (s, 2H, 

ArCH2). 
13C NMR (100 MHz, CD3OD)  138.71, 135.95, 132.02, 124.22, 76.16. GC tR = 10.513 min.  

O-(3,5-Bis(triflouromethyl-benzyl)hydroxylamine hydrochloride (45). Synthesized from 3,5-

(bis)triflouromethyl benzyl aclohol according to the general procedure to afford 45 as white crystals in 

93% yield. Mp-195-197oC.1H NMR (400 MHz, CD3OD) δ 8.08 (s, 2H, ArH), 8.04 (s, 1H, ArH), 5.26 

(s, 2H, ArCH2). 
13C NMR (100 MHz, CD3OD)  137.90, 133.22 (q, JC-F=33 Hz), 130.60 (d, JC-F=3 Hz), 

124.59 (d, JC-F=271 Hz), 124.13 (t, JC-F=3 Hz), 76.14. Anal. calcd. for C9H8ClF6NO C=36.57; H=2.73; 

N=4.74.Found: C=36.55%, H = 2.49%, N =4.64%. 

O-(2-Hydroxy-3-methoxybenzyl)hydroxylamine hydrochloride (46). Synthesized from 2-hydroxy-3-

methoxybenzyl alcohol according to the general procedure to afford 46 as white crystals in 45%yield. 

Mp=176-178oC.1H NMR (400 MHz, CD3OD) δ 7.03 (d, 1H, ArH, J=8 Hz), 6.91-6.82 (m, 2H, ArH), 

5.08 (s, 2H, ArCH2), 3.87 (s, 3H, ArOCH3). 
13C NMR (100 MHz, CD3OD)  149.13, 147.21, 124.15, 

120.61, 120.56, 113.91, 73.28, 56.56. Anal. Calcd. for C8H12ClNO3 C=46.73; H=5.88; N=6.81.Found: 

C=46.38%, H = 5.71%, N =6.72%. 

Biochemical assays. Recombinant human IDO1 was expressed and purified as described.50 Inhibition 

assays to determine IC50 and Ki values were performed in a 96-well microtiter plate as described by 

Littlejohn et.al.50 with some modification. Under these assay conditions, we have previously determined 

that the recombinant hIDO1 follows Michaelis-Menten kinetics51. Briefly, the reaction mixture 



contained 50 mM potassium phosphate buffer (pH 6.5), 40 mM ascorbic acid, 400 g/ml catalase, 20 

M methylene blue and ~27 nM purified recombinant IDO1 per reaction. The reaction mixture was 

added to the substrate, L-tryptophan (L-Trp), and the inhibitor.  For IC50 determinations, inhibitor 

solutions were made fresh and serially diluted and the L-Trp substrate was tested at 100 M (Km=80 

M). For Ki determinations, the assay was set up similarly except that serial dilutions of inhibitors were 

matrixed with serial dilutions of L-Trp substrate. The reaction was carried out at 37˚C for 60 min and 

stopped by the addition of 30% (w/v) trichloroacetic acid. The plate was then incubated at 65 ˚C for 15 

min to convert N-formylkynurenine to kynurenine and centrifuged at 1250 g for 10 min. Lastly, 100 l 

supernatant from each well was transferred to a new 96 well plate and mixed at equal volume with 2% 

(w/v) p-dimethylamino-benzaldehyde (Ehrlich’s reagent) in acetic acid. The yellow color generated 

from the reaction with kynurenine was measured at 490 nm using a Synergy HT microtiter plate reader 

(Bio-Tek, Winooski, VT). As an initial compound screen, assessments of IC50 values were performed as 

single point dilution series. The most potent compounds were subsequently retested two or more times 

with the results reported as averages. The data were analyzed using Graph Pad Prism 4 software (Graph 

Pad Software Inc., San Diego, CA) and the Enzyme Kinetics module in SigmaPlot version 10 (Systat 

Software Inc, San Jose, CA).  (Note that a separate experiment analyzing the possible competition 

between kynurenine and four different O-alkylhydroxylamine inhibitors for p-

dimethylaminobenzaldehyde showed no impact on the visible absorbance reading from the presence of 

any one of the four inhibitors.) 

Spectroscopic measurements. The UV-Vis spectra were obtained at room temperature using a 

UV2401 spectrophotometer (Shimadzu Scientific Instruments, Inc., Columbia, MD) with a slit width of 

1 nm in a 1 cm path-length quartz cuvette. The proteins (5 M) were buffered with a 100 mM pH of 7.4 

Tris buffer. The deoxy samples were prepared by injecting ~10-fold excess sodium dithionite into the 

protein samples pre-purged with nitrogen gas with a gas-tight syringe. The CO adducts were prepared 

by adding 200 l CO gas (1 atmosphere) into the deoxy samples. 



Cell-based IDO1 inhibition and cytotoxicity assays. Compounds were evaluated for inhibitory 

activity against human IDO1 expressed endogenously in HeLa cells and exogenously in T-Rex cells.  

HeLa cells were seeded in a 96 well plate at a density of 10,000 cells per well in 100 l DMEM + 10% 

fetal bovine serum + 1% Penicillin-Streptomycin and IDO1 expression was induced by the addition of 

IFN to a final concentration of 100 ng/mL. T-Rex cells containing a tet-regulated human IDO1 cDNA 

were seeded in a 96-well plate at a density of 10,000 cells per well in 100 µL of DMEM + 10% FBS + 

1% Penicillin-Streptomycin and IDO1 expression was induced by the addition of 100 µL of media 

containing 20 ng/mL doxycycline.  With both assays, IDO1 induction was allowed to proceed for 24 

hours after which the media was discarded, the wells rinsed once, and serial dilutions of compound in 

200 µL of DMEM +10% FBS with the final concentration of tryptophan adjusted to 100 µM. Following 

incubation at 37 °C for an additional 24 hrs, the assay was stopped by the addition of 50 µL of 50% 

(w/v) TCA to each well, and the cells were fixed by incubating for 1 hr at 4 °C.  

Assessment of IDO1 activity. Compound IC50 values were assessed from single point dilution series with 

the most potent compounds subsequently retested two or more times and the results reported as 

averages. Following the TCA fixation step, the supernatants were transferred to a round-bottomed 96-

well plate  and incubated at 65 °C for 15 min. The plates were then centrifuged at 1250 x g for 10 min, 

and 100 µL of clarified supernatant was transferred to a new flat-bottomed 96-well plate and mixed at 

equal volume with 2% (w/v) p-dimethylaminobenzaldehyde in acetic acid. The yellow reaction was 

measured at 490 nm using a Synergy HT microtiter plate reader (Bio-Tek, Winooski,VT). Graphs of 

inhibition curves with IC50 values were generated using Prism v.5.0 (GraphPad Software, Inc.). 

Assessment of cell viability. The single point dilution series used to determine IC50 values were also 

evaluated for cell viability. The TCA-fixed cells remaining in the 96-well plate following transfer of the 

media were processed essentially as described52. Fixed cells were washed four times in tap water, 

blotted, air-dried, and treated for 15 min at room temperature with 100 µL of 0.4% (w/v) 

sulfarhodamine B (SRB) (Sigma-Aldrich, St. Louis, MO) prepared in 1% acetic acid. Wells were then 



rinsed four times in 1% acetic acid, air-dried, and developed by adding 200 µL of 10 mM unbuffered 

Tris-HCl and incubating for 15 min at room temperature with gentle shaking. Staining intensity, 

proportional to cell number, was determined by reading the absorbance at 570 nm on a plate reader. 

Graphs of cell viability curves were generated using Prism v.5.0 (GraphPad Software, Inc.). 

Docking calculations. Small molecules were constructed in MOE V2011.1 (Chemical Computing 

Group, Inc.) and ionized and hydrogens added using MOE’s WashMDB function. The small molecule 

conformation was minimized to a gradient of 0.01 with the MMFF94x53,54using a distance-dependent 

dielectric constant of 1. The crystal structure of IDO1 bound with 4-phenylimidizole was used for 

docking calculations44. The 2-[N-cyclohexylamino]ethanesulfonic acid and 4-phenyl-1-imidazole 

ligands were removed from the active site docking, hydrogen atoms were added and tautomeric states 

and orientations of Asn, Gln, His residues were determined with Molprobity55,56. Hydrogens were then 

added to crystallographic waters using MOE. The Amber9957 force field in MOE was used, and iron 

was parameterized in the Fe+3 state. Dioxygen was not added to the iron. All hydrogens were minimized 

to an rms gradient of 0.01, holding the remaining heavy atoms fixed. A stepwise minimization followed 

for all atoms using a quadratic force constant (100 kcal-mole/Å) to tether the atoms to their starting 

geometries; for each subsequent minimization, the force constant was reduced by a half until reached 

0.01 and was then followed by a cycle of minimization without applying any constraints. GOLD version 

5.1 (Cambridge Crystallographic Data Centre) was used with coordination binding of the 

hydroxylamine nitrogen to the Fe+3 atom of the heme. Chemscore parameters, adapted for metal–ligand 

interactions, were used for scoring58. Fifty genetic algorithm (GA) docking runs were performed with 

the initial_virtual_pt_match_max = 2.5, all other parameters were set as defaults.  
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