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Turbulence and transport suppression scaling with flow shear on the Large
Plasma Devicea)

D. A. Schaffner,b) T. A. Carter, G. D. Rossi, D. S. Guice, J. E. Maggs, S. Vincena,
and B. Friedman
Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547, USA

(Received 16 December 2012; accepted 20 March 2013; published online 15 May 2013)

Continuous control over azimuthal flow and shear in the edge of the Large Plasma Device (LAPD)
[W. Gekelman et al., Rev. Sci. Instr. 62, 2875 (1991)] has been achieved using a biasable limiter.
This flow control has allowed a careful study of the effect of flow shear on pressure-gradient-driven
turbulence and particle transport in LAPD. The combination of externally controllable shear in a
turbulent plasma along with the detailed spatial diagnostic capabilities on LAPD makes the
experiment a useful testbed for validation of shear suppression models. Motivated by these models,
power-law fits are made to the density and radial velocity fluctuation amplitudes, particle flux,
density-potential crossphase, and radial correlation length. The data show a break in the trend of
these quantities when the shearing rate (cs ¼ @Vh=@r) is comparable to the turbulent decorrelation
rate (1=sac). No one model captures the trends in the all turbulent quantities for all values of the
shearing rate, but some models successfully match the trend in either the weak (cssac < 1) or strong
(cssac > 1) shear limits. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4804637]

I. INTRODUCTION

Suppression of turbulence and turbulent transport by
flow shear has been observed on a multitude of different
magnetized plasma experiments.1–8 While the importance of
cross-field flow shear for the successful high confinement
operation of fusion devices is well recognized,9,10 we still
lack a fully first-principles understanding of how sheared
flow regulates turbulence and transport. This understanding
is essential in the development of a predictive capability for
transport for current and future devices such as ITER.
Experimental validation of shear suppression models is a
critical part of this development process, providing motiva-
tion for experiments in which the response of turbulence to
shear flow is carefully documented. External control of flow
shear in a magnetized plasma has been previously achieved
in a number of toroidal devices using biased electrodes to
drive cross-field currents and provide torque to drive plasma
rotation.11,12 Transport reduction and confinement transitions
have been observed in response to biasing and this response
has been compared to models for shear suppression, in par-
ticular in work performed by the TEXTOR group.13–15

Biasing has been used to induce rotation and cause tran-
sitions in particle confinement in the Large Plasma Device
(LAPD).6,7 Recently, a new data set has been gathered on
LAPD in which the flow shear was continuously varied using
a biasable limiter.8 These experiments demonstrated shear
suppression of turbulent transport and provided measure-
ments of a number of turbulent quantities including cross-
field particle flux, density and radial E"B velocity fluctua-
tions, density-velocity crossphase, and radial correlation
length. Moreover, the scan included data points in both the

weak and strong shear regime, as defined by the ratio of
shearing rate to inverse autocorrelation time. This provides
the ability for comparison to models which make separate
predictions for each regime.

Models based on radial decorrelation of turbulent struc-
tures by sheared flow are prevalent in the theoretical
literature16–25 and provide a number of predictions concern-
ing the quantitative scaling of turbulent quantities with shear.
The basic premise underlying these models is the competi-
tion between linear or nonlinear turbulence dynamics and
the tendency of sheared flows to “rip apart” or decorrelate
turbulent structures; this leads to reduced fluctuation ampli-
tude and decreased radial transport step-size. A large number
of theoretical models have been developed which use this
underlying principle. Variation in the predictions of these
models arise from assumptions: strength of flow shear com-
pared to turbulence timescales (strong vs weak), the underly-
ing instability driving the turbulence (i.e., Ion Temperature
Gradient [ITG] or Resistive Pressure Gradient Driven
Turbulence [RPGDT]), as well as consideration of passive
versus dynamic scalars.

This paper presents experimental fits of density fluctua-
tion amplitude, radial velocity fluctuation amplitude, particle
flux, crossphase, diffusivity, and radial correlation length as
functions of flow shear and compares them to a number of
model predictions. No one model predicts how all the quanti-
ties scale with shearing rate though some models do make
favorable comparisons for some quantities. The data gener-
ally show a stronger decrease in turbulent fluctuations than
crossphase as a contributor to reduction of particle flux. Fits
to the variation of the experimentally computed diffusion
coefficient with shear compare well to numerical simulation
predictions.

This paper is organized as follows. A brief review of
shear decorrelation models is provided in Section II,

a)Paper TI2 2, Bull. Am. Phys. Soc. 57, 291 (2012).
b)Invited speaker.
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followed by a discussion of the LAPD experiments in Sec.
III. In Sec. IV, the approach for model fitting of the experi-
mental data is discussed and the results of these fits are pre-
sented in Sec. V. Finally, a discussion of how these fits
compare to analytic and simulation model predictions is
given in Sec. VI.

II. MODELS OF SHEAR SUPPRESSION

Two of the earliest models of shear suppression were
decorrelation models developed by Biglari, Diamond, and
Terry16 (hereafter BDT) and Shaing.17 The BDT theory
presents a generalized analysis of the transport of a passive
scalar in a mean sheared flow in the strong-shear regime
with constant turbulent drive (pressure gradient). The BDT
model predicts that normalized fluctuation amplitude scales
directly with shearing rate, cs, to the #2/3 power

hj~nj2i
hj~nj2ics¼0

$ ðcssacÞ#2=3; (1)

where n can be any quantity such as density or temperature and
the normalization factor, sac, is the autocorrelation time of the
unsheared turbulence. Conversely, the Shaing model focuses
on the weak shear limit and predicts a scaling of the form

hj~nj2i
hj~nj2ics¼0

$ 1# aðcssacÞ2; (2)

where a is a constant containing mode number information.
Zhang and Mahajan18,19 developed a model which

included the self-consistent modification of the fluctuation
spectrum and the diffusion coefficient by flow shear. This
allowed the development of a model for shear suppression of
turbulent amplitude which could span both the weak and
strong shear regimes

hj~nj2i
hj~nj2ics¼0

 !#1

$ 1þ aðcssacÞ2: (3)

The resulting model shows correspondence to the Shaing
model in the weak shear regime while the BDT model can
be recovered in the strong shear regime but only for the case
where the diffusion coefficient is constant (independent of
fluctuation amplitude).

Work by Ware and Terry20,21 made predictions for the
effect of shear on particle transport specifically in resistive
pressure-gradient driven turbulence (RGPDT). Their work
predicted a decrease in flux as Cp $ 1# c2

s in the weak shear
limit. Additionally, the model predicted a decrease in the co-
sine of the crossphase between density and radial velocity
fluctuations of the form 1# c2

s . They too incorporated the
modification of the pressure gradient, formulating an expres-
sion for shear suppression of radial particle diffusivity of the
form

D

Dcs¼0
$ 1# bðcsÞ

2; (4)

where b is a constant which depends on the linear growth
rate and radial mode width.

Further work by Terry, Newman, and Ware22 examined
the modification of flux in the strong shear regime for a non-
mode-specific turbulent system, predicting a direct scaling of
Cp $ c#4

s overall. Here fluctuation amplitude reduction con-
tributed one power while crossphase reduction contributed
three powers of cs, indicating that, in the strong shear limit,
crossphase modification is the dominant flux suppression
mechanism rather than reduction of the fluctuation
amplitude.

Kim and Diamond23 recast the decorrelation model to
include resonance absorption between the shear flow and
fluctuations leading to a much weaker dependence of particle
flux on shear, Cp $ c#1

s , and even weaker dependence of the
crossphase on shear: cosðhnvrÞ $ c#1=6

s . In this model, fluctu-
ations decreased as j~nj2 $ c#5=3

s . Additional work along
these lines24 considered a more self-consistent model for the
turbulence, treating the fluctuating flows dynamically using
interchange drive. This model predicted a decrease in fluctu-
ating radial velocity amplitude as a function of shear
which scales as j~vr j2 $ c#3

s in the weak shear limit, and as
j~vr j2 $ c#4

s in the strong-shear limit.
Finally, work by Newton and Kim has utilized numeri-

cal simulations using a generic turbulence model25 with a fi-
nite correlation time, sac ( c#1

s . Their work produced
scalings of D $ c#1:75

s ; j~nj2 $ c#2:41
s , and cosðhnvrÞ $ c#0:22

s
which correspond to the strong shear regime for this dataset.

III. SHEAR SUPPRESSION EXPERIMENTS

The Large Plasma Device (LAPD) is a 17 m long,
$60 cm diameter cylindrical plasma produced by a barium-
oxide coated nickel cathode.26 In the experiments reported
here, a plasma of density $2" 1012 cm#3 and peak tempera-
ture of 8 eV are produced in a uniform solenoidal magnetic
field of 1000 G. All measurements reported here were col-
lected using Langmuir probes recording floating potential,
Vf, or ion saturation current, Isat. Azimuthal electric field
fluctuations, ~Eh, are found by taking the simultaneous differ-
ence in two Vf signals separated a small azimuthal distance
apart. Turbulent particle flux C / h~ne

~Ehi is determined
through correlating density fluctuations with ~Eh, where it is
assumed that Eh produces radial E"B flow. The relative
crossphase between fluctuation time-series is determined
through the cross-spectrum of the quantities. That is,

h ¼ tan#1
hQðf ; rÞif ;r
hCðf ; rÞif ;r

; (5)

where Q and C are the imaginary and real parts of the cross-
spectrum, calculated from the product of the complex FFTs
of the two time-series in question as in

Gðf ; rÞ ¼ x̂)ðf ; rÞŷðf ; rÞ: (6)

The cross-spectrum is first averaged over frequencies to
power-weight the crossphase signal, and then averaged radi-
ally, before the phase is determined using Eq. (5). Finally,
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steady-state azimuthal flow, Vh, is determined through the ra-
dial derivative of plasma potential profiles measured using a
swept-Langmuir probe technique again assuming only E"B
flow. The shearing rate in a cylinder has been defined by
many authors16,27 as

cs ¼ r
@

@r

Vh

r
¼ @Vh

@r
# Vh

r
: (7)

This definition results in zero shearing rate for rigid
body rotation in a cylinder. In these experiments, the flow
profiles are far from rigid body and measurements are per-
formed at large radius (r $ 30 cm). Therefore the Vh=r term
is very small and a local definition of shearing rate is reason-
able and has been used in other experimental work.4,6,14,15

Therefore, the shearing rate definition adopted for the data
presented here is computed as cs ¼ @Vh=@r.

The shearing rate is normalized using the autocorrela-
tion time of the turbulence sac. This is determined by finding
the width of the autocorrelation function of the density time
series at zero shearing rate. Spectral calculations (FFT) are
performed using a time window of 3.2 ms (the flat-top of the
bias-driven flow phase). The plasma potential is determined
from Langmuir probe sweeps 2.5 ms long during the flat-top
period.

A large annular aluminum limiter was installed in
LAPD to provide a parallel boundary condition for the edge
plasma and is biased relative to the cathode of the plasma
source to control plasma potential and cross-field flow. A
diagram of the limiter arrangement and biasing circuit is
shown in Fig. 1(a).

A recent experiment on the LAPD demonstrated the
ability to achieve continuous control of steady-state azi-
muthal flow and flow shear through the use of these biasable
limiters.8 Spontaneous rotation is observed in LAPD in the
ion diamagnetic drift direction (IDD). This spontaneous flow
can be reduced and reversed into the electron diamagnetic
drift direction (EDD) as the limiter bias is increased. This
results in a continuous variation of edge flow and flow shear
including zero flow and flow shear states. Shearing rates are
achieved up to about five times the turbulent inverse autocor-
relation time or decorrelation time (s#1

ac ) as measured in the
state with minimum shearing rate. Radial particle flux and
fluctuation amplitude are reduced as shearing rate is
increased and the resulting transport changes cause observ-
able steepening of the density gradient.

Examples of time series of density and radial velocity
measurements for the minimum flow shear state and a high
flow shear state are shown in Figure 2 specifically for
r¼ 29 cm, in the middle of the shear layer. Comparison of
the curves shows a decrease in fluctuations throughout the
entire time averaging region. Profiles made from these time-
averaged quantities are shown in Figure 3 for density fluctua-
tions, radial velocity fluctuations, particle flux, and shearing
rate. A minimum shearing rate, intermediate shearing rate,
and high shearing rate state are shown and with suppression
of these measurements clearly visible especially within the
spatial averaging region indicated by the grey dashed lines
(27 cm to 31 cm). The averaging region was chosen to avoid

FIG. 1. (a) Diagram of the LAPD device showing relative location of the an-
nular limiter and basic biasing setup. (b) Velocity profiles using plasma poten-
tial from swept measurements. (c) Flow at the limiter edge (black, triangles)
and mean shearing rate, averaged over 27 < r < 31 cm (red, circles).

FIG. 2. (a) Single shot (not averaged) time series of density fluctuations
from a Langmuir probe at 29 cm. The black curve shows the trace for the
minimum shearing rate state while the red is for a high flow shear state. The
3.2 ms shown is the temporal averaging region. (b) Time series for radial ve-
locity fluctuations (mean subtracted) taken using two vertically spaced float-
ing potential probe tips also at 29 cm.

055907-3 Schaffner et al. Phys. Plasmas 20, 055907 (2013)



the effect of the limiter-edge-localized coherent mode as
much as possible, but the mode does influence the spatial
averaging region somewhat at the highest flow states.

Figure 4 shows the experimental results for measure-
ments of spatially averaged density fluctuation amplitude, ra-
dial velocity fluctuation amplitude, and density-radial
velocity crossphase as functions of normalized shearing
rates. All data presented are averaged over the radial range
27 < r < 31cm as indicated in Figures 1 and 3. The shearing
rates achieved span two regimes: a weak-shear regime where
cssac < 1 and a strong-shear regime where cssac > 1. The
blue solid lines correspond to the best fits for the strong-shear
cases while the green are the best fits for the weak-shear case.
Similar plots for particle flux and diffusivity D ¼ C=jrnj are
shown in Figure 5. Error bars of þ/#20% for each quantity
are shown on the plots and used in the fits, reflecting a statisti-
cal error from the number of shots used to average the quan-
tity (r $ 1=

ffiffiffiffiffiffiffiffiffiffiffi
Nshots

p
).

Measurements of the radial correlation length were
recorded as a function of shearing rate (applied bias) using a
two-probe correlation technique. A reference probe collect-
ing Isat is kept stationary at a particular axial and radial loca-
tion within LAPD. A second Langmuir probe situated at an

axial point closer to the cathode is moved shot-to-shot in a
rectangular grid around the radial location of the reference
probe. The cross-field cross-correlation function of these two
measurements is computed shot-to-shot for a delay time s as
Cðx; y; sÞ ¼ hIrefðx; y; tÞImotðx; y; tþ sÞi.

Figure 6(a) shows the normalized correlation function
Cðx; yÞ=Cmax for the unbiased state (flow in the IDD), a mini-
mum shear state, and a high bias state (large EDD flow) with
a reference probe located at x¼ 29.5 cm, y¼ 0 cm (right in
the middle of the shear layer). The black curve represents the
contour line where Cðx; yÞ=Cmax ¼ 0:5. The radial correla-
tion length Drc is defined here as the radial width of this
black curve through the reference probe location. The varia-
tion of the correlation length versus shearing rate is shown in
Figure 6 (normalized to the maximum radial correlation
length calculated for all biases, rmax ¼ 5:5 cm). The correla-
tion length is found to decrease substantially with shear. A
break in the trend of decreasing correlation length is
observed for larger shearing rates where the correlation func-
tion appears to be dominated by a coherent mode (which
also appears in the temporal power spectrum).

Some achieved parameter regimes for the shearing rate
and density gradient length scales are presented in Figure 7.
The azimuthal velocity scale length is calculated as
Lv ¼ jrlnðvE"BÞj#1. This value is compared to the density
gradient scale length, Ln ¼ jrlnnj#1 as a function of normal-
ized shearing rate. This plot shows that for all of the strong

FIG. 3. Shot-averaged profiles of (a) density fluctuations, (b) radial velocity
fluctuations, (c) particle flux, and (d) shearing rate normalized to sac. The
limiter edge is indicated by the purple dotted line at 26 cm. The spatial aver-
aging region is indicated by the dashed lines between 27 and 31 cm. The
three curves for each of the first three plots show the suppression of the
quantity with increase shearing rate inside the spatial averaging region. The
averaging region avoids direct influence from the coherent mode localized at
the limiter edge.

FIG. 4. Scaling of (a) density fluctuation amplitude, (b) radial velocity fluc-
tuation amplitude, and (c) density-radial velocity crossphase. Density and
velocity fluctuations are each normalized to the value measured at minimum
shear. The green curves correspond to 1# c!s fits of the weak shear regime
for density fluctuations and crossphase, while radial velocity fluctuations are
fit to c!s in the weak shear regime. The blue curves all correspond to c!s fits
for each of the three plots. The last three points in each plot are not included
in the fits due to potential influence of the coherent mode at high shearing
rate.
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shear regime, and nearly half of the weak shearing regime,
Ln > Lv. The reverse is true only for the weakest shear. In
general, the velocity gradient scale length decreases much
faster than the density gradient scale length with increased
shearing rate magnitude and is smaller than the density gra-
dient scale length for most of the dataset.

IV. EXPERIMENTAL SHEAR SUPPRESSION SCALING

The variation of the experimentally measured quantities
with normalized shearing rate was fit to functions motivated
by models discussed above: functions of the form 1# c!s
(hereafter M1) and of c!s (hereafter M2). For M1, the meas-
ured quantity, y, was normalized to the value at zero shear,
then transformed as –(1 – y). Then, taking the logarithm of
both sides, a linear fit was made for points in the weak shear
and in the strong shear separately. The resulting slope of the
fit is taken as the power !. For M2, no transformation of the
quantity y is made before taking the logarithm and fitting.
For a complete comparison to the wide range of model pre-
dictions made, fits were made for density fluctuation ampli-
tude, radial particle flux, density-radial velocity fluctuation
crossphase, radial velocity (E"B) fluctuation amplitude, ra-
dial correlation length, and experimentally determined diffu-
sivity (C=jrnj). The best fits are summarized in Tables I–VI
for each model type and for both weak and strong shear. The
v2 and v2=ndf (where ndf is the number of degrees of free-
dom) is also indicated in the tables as well as the one stand-
ard deviation error, r, in the fit parameter, !. For weak shear

fits, all points less than the weak shear cutoff cssac < 1 are
used in the fit. For strong shear, all but the last three points
are used. The last points appear to be strongly influenced by
the presence of a coherent mode that develops in the highest
shear and flow cases and is thought to be a break from the
scaling observed in the strong shear regime. For quantities
determined by averaging over frequency (e.g., density and
velocity fluctuation amplitudes, flux and diffusivity), the fre-
quency band used was 350 Hz to 100 kHz.

The log-log plots in Fig. 8 highlight the break in the
trend between the weak and strong shear regimes. It should

FIG. 5. Scaling of (a) radial particle flux and (b) diffusion coefficient each
normalized to the value at minimum shear, C0

p ¼ 1:7" 1016cm#2 and
D0 ¼ 36:7 m2=s. The green curves correspond to 1# c!s fits of the weak
shear regime with ! ¼ 0:693 for flux and ! ¼ 0:445 for D. The blue curves
correspond to c!s fits with ! ¼ #1:571 for flux and ! ¼ #1:715 for D. The
last three points in each plot are not included in the fits do to potential influ-
ence of the coherent mode at high shearing rate.

FIG. 6. Normalized correlation functions for (a) unbiased, IDD flow state,
(b) no shear state, and (c) high bias, high EDD flow state where the black
curve represents a decrease of 0.5 from peak. (Color scale indicates normal-
ized correlation for all three biases.) (d) Radial correlation length normalized
to maximum correlation length (5.5 cm) versus normalized shearing rate
with M2 fits for weak (green) and strong (blue) shear. (e) Ratio of radial cor-
relation length to density gradient scale length.

FIG. 7. Ratio of velocity gradient length scale to density gradient length
scale versus normalized shearing rate in the radial region of 27 to 31 cm.

055907-5 Schaffner et al. Phys. Plasmas 20, 055907 (2013)



be noted that while turbulent quantities show a different
trend with shear below and above a normalized shearing rate
of unity, the density gradient scale length also shows a
marked change in behavior.8 The gradient scale length
decreases rapidly (increasing pressure-gradient drive) in the
weak shear regime followed by saturation in the strong shear
regime (constant turbulent drive with increased shear).
Therefore, care has to be taken in interpreting the change in
the trends plotted above: it could be occurring due to a
change in the shear regime but also could be due drive.

Lastly, fits were made to a range of shearing rates that
spanned portions of both the weak and strong shear regimes;
specifically, a range that included all but the lowest two
shearing rate values and the three highest shearing rate val-
ues (again, dropping the last three to avoid any influence of
the coherent mode). The models used are M2 and a third
model based on the Zhang and Mahajan interpolated from
Eq. (3) which was designed to describe both weak and shear
scaling (hereafter M3). Fits, v2 values, and r errors are dis-
played for density fluctuation amplitude, particle flux,

diffusivity, and crossphase in Table VII and are shown plot-
ted against the data in Figure 9.

V. RESULTS

A. Density and velocity fluctuations

The best fits for scaling of density fluctuation amplitude
are shown in Table I. For the weak shear regime, the v2 val-
ues suggest M1 to be a slightly better fit to the data than M2.
Though M1 is not used for prediction of strong shear scaling
in the literature, a fit was made to it here for completeness;
values of v2 show M2 to be the better model for the strong
shear regime.

The ! ¼ #0:513 fit for M2 in the strong shear limit is
reasonably close to the BDT prediction of –(2/3). However,
it should be reiterated that BDT assumes a fixed turbulence

TABLE I. Power-law fits for j~n2j with shear for frequencies in 350 Hz to

100 kHz. Model form is the particular model used in the fit, with C a con-
stant and ! resulting best-fit exponent.

Model form cs regime ! v2 v2=ndf r

$1# Cc!s cssac < 1 0.743 7.644 0.450 0.164

$1# Cc!s cssac > 1 0.218 0.337 0.037 0.118

$Cc!s cssac < 1 #0.178 25.08 1.320 0.038

$Cc!s cssac > 1 #0.513 0.254 0.028 0.328

FIG. 8. Log-log plot of (a-b) density fluctuation amplitude and (c-d)particle
flux versus shearing rate. Weak shear fits, (a) and (c), are shown with the
solid red lines and a theoretical prediction—dashed line—of ! ¼ 2 is
included for comparison of slope (line is manually offset). Strong shear fits,
(b) and (d), are shown with the solid blue lines and theoretical predictions
are indicated with the dashed lines. The last three points in each plot are not
included in the fits do to potential influence of the coherent mode at high
shearing rate.

FIG. 9. Fits over a shear range spanning both weak and strong regimes for
(a) density fluctuation amplitude, (b) particle flux, (c) diffusivity, and (d)
crossphase. Red lines correspond to $Cc!s model while the blue curves cor-
respond to the $1=ð1þ Cc!s Þ model.

TABLE II. Power-law fits for j~v2
r j scaling with shear for frequencies in

350 Hz to 100 kHz.

Model form cs regime ! v2 v2=ndf r

$Cc!s cssac < 1 0.014 15.99 0.888 0.040

$Cc!s cssac > 1 #0.866 0.392 0.056 0.360

055907-6 Schaffner et al. Phys. Plasmas 20, 055907 (2013)



drive and that in this dataset, the gradient scale length
decreases substantially as shear is increased, resulting in an
increase in turbulent drive. This actually implies a stronger
than BDT scaling of fluctuation amplitude suppression over-
all. The fit scaling is much smaller than that predicted by
Kim/Diamond (! ¼ #5=3) and Newton/Kim (! ¼ #2:41).
For M2 weak shear, the experimental fit of ! ¼ #0:178 also
suggests weaker scaling than the prediction by Kim/
Diamond of –(2/3).

A prediction for the scaling of radial velocity fluctuation
amplitude is only made by Kim and Diamond.24 in the
dynamically evolved case. Fits, listed in Table II, suggest a
much weaker scaling than predicted for both weak and
strong shear. The weak shear fit actually shows a slight
increase in fluctuation amplitude rather than a ! ¼ #3 scal-
ing while in the strong shear regime a fit of ! ¼ #0:866*
#4 is found.

From fits over the full range of shearing rates, shown in
Table VII, M3 appears to be a slightly better model than M2.
The M2 fit, ! ¼ #0:527, is similar to the strong shear only
fit, but clearly has a worse v2 value.

B. Flux and diffusivity

Particle flux and diffusivity fits and v2 results are shown
in Tables III and IV, respectively. Like density fluctuations,
M1 seems to be slightly better than M2 for fitting data in the
weak shear limit based on v2 values. However, for strong
shear, the M1 model actually has a lower v2 than the M2
model, though M1 is not derived in the strong shear limit in
the literature. Despite the higher v2, the fit of ! ¼ #1:571
falls in between the extremes of predictions of ! ¼ #1 and
! ¼ #4. The weak shear fit of ! ¼ #0:188 falls far short of
the Kim/Diamond M2 prediction of ! ¼ #1.

Diffusivity has lower v2 values for M1 with weak shear
and strong shear. The only predictions for D come from
Terry and Ware with a functional form like M1 and a numer-
ical simulation result from Newton and Kim25 for evolved
turbulence with a finite correlation time. The experimental fit

of ! ¼ 0:445 again falls short of the Terry/Ware predicted
! ¼ 2, though the M2 fit in the strong shear limit with
!¼#1:715 is extremely close to the Newton/Kim predicted
value of !¼#1:75. The full range results suggest M3 a
slightly better fit for flux while M2 a slightly better fit for
diffusivity.

C. Crossphase and correlation length

Fits for the scaling of cosine of the crossphase between
density and radial velocity fluctuations are shown in
Table V. M1 is found to fit only slightly better than M2 for
both weak and strong shear limits. The M2 fit in the
weak limit of ! ¼ #0:022 and M2 fit in the strong limit of
! ¼ #0:373 both tend to support the prediction of mild scal-
ing with crossphase made by Kim/Diamond with ! ¼ #ð1=6Þ
and Newton/Kim with ! ¼ #0:22, rather than the large scal-
ing of ! ¼ #3 made by Terry.22 In fact, the full range fit of
M2 for crossphase of ! ¼ #0:102 is in excellent agreement
with the Kim/Diamond fit of ! ¼ #ð1=6Þ which is predicted
for both weak and strong shear.

It should be pointed out that the variation of cross-phase
with shear in this dataset is markedly different than what was
observed in an earlier LAPD experiment where flow was
driven by biasing the vacuum chamber wall.7 This previous
experiment was performed at lower magnetic field and at
larger bias, resulting in a stronger E"B rotation and much
stronger normalized shearing rate (cssac $ 20). In that work,
a strong modification of cross-phase was observed (with little
to no amplitude reduction).

Finally, a fit to radial correlation length is made and com-
pared to the prediction made by BDT.16 Neither the weak
shear fit of ! ¼ #0:290 nor the strong shear of ! ¼ #0:113 is
unreasonably far from the predicted value of ! ¼ #1=3
though the v2 values do not suggest a great fit to either model.
It should again be noted that these correlation lengths are
measured in the steady-state period when the density gradient
scale length will have already adjusted due to the change in
transport. Thus, this decrease in radial correlation length could
be due to the turbulence adjusting to the new gradient scale
length rather than a direct response to shear. In Figure 6(b),

TABLE III. Power-law fits for Cp scaling with shear for frequencies in

350 Hz to 100 kHz.

Model form cs regime ! v2 v2=ndf r

$1# Cc!s cssac < 1 0.693 5.157 0.3034 0.142

$1# Cc!s cssac > 1 0.556 2.899 0.3221 0.010

$Cc!s cssac < 1 #0.188 29.84 1.57 0.038

$Cc!s cssac > 1 #1.571 4.013 0.446 0.327

TABLE IV. Power-law fits for D ¼ Cp=rn scaling with shear for frequen-

cies in 350 Hz to 100 kHz.

Model form cs regime ! v2 v2=ndf r

$1# Cc!s cssac < 1 0.445 11.60 0.682 0.054

$1# Cc!s cssac > 1 0.187 3.188 0.354 0.030

$Cc!s cssac < 1 #0.300 50.43 2.65 0.040

$Cc!s cssac > 1 #1.715 4.610 0.512 0.327

TABLE V. Power-law fits for cosðhnvr Þ scaling with shear for frequencies in

350 Hz to 100 kHz.

Model form cs regime ! v2 v2=ndf r

$1# Cc!s cssac < 1 0.324 2.89 0.152 0.545

$1# Cc!s cssac > 1 1.272 0.037 0.004 1.573

$Cc!s cssac < 1 #0.022 2.49 0.131 0.040

$Cc!s cssac > 1 #0.373 0.155 0.017 0.328

TABLE VI. Power-law fits for Drc scaling with shear for frequencies in

350 Hz to 100 kHz.

Model form cs regime ! v2 v2=ndf r

$Cc!s cssac < 1 #0.290 5.8730 0.1631 0.084

$Cc!s cssac > 1 #0.113 3.7040 0.3370 0.111
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the ratio of the radial correlation length to the density gradient
scale length is shown, indicating that this ratio remains con-
stant with shearing rate. In order to evaluate the effect of
shearing rate on radial correlation length independent of
changes to the gradient scale length, the correlation length
could be studied in the transient phase after the flow is turned
on but before the profile has had time to steepen. Investigation
of the dynamics of the transition will be the subject of future
work.

VI. DISCUSSION

While the large variation in fits for six turbulent quanti-
ties makes careful model validation difficult, there are a num-
ber of conclusions that can be drawn from the analysis
reported here. First the experimental results from this dataset
show a distinct difference in scaling between the weak and
strong shear regimes, consistent with expectations from many
models. The models fit to separate regimes generally have
lower or at least comparable v2 values than those fit to a range
in shearing rate that spans both weak and strong regimes.
Second, none of the three models tested were clearly better
than the others based on v2 goodness of fit. The fits were gen-
erally not very close to predicted values though a few quanti-
ties did yield fits that were very close to the theory—namely,
the strong shear density M2 fit of !¼#0.515, the strong
shear M2 diffusivity fit of !¼#1.715, and the full range
crossphase M2 fit of !¼#0.102. However, the goodness-of-
fit for the alternative models in each of these cases were either
not significantly worse, or were in fact better. Third, the data
clearly support the prediction that density fluctuation ampli-
tude is more strongly suppressed than the crossphase and thus
makes a more significant contribution to the suppression of
radial transport. However it should be noted that at much
stronger shear (in previous LAPD datasets), dominant modifi-
cation of crossphase is observed. Finally, as indicated by the
wide range of predictions, the scaling of shear suppression
may be dependent on the nature of the turbulence used in the
model. Many of the suppression models discussed are mode
specific such as RPGDT for the Terry/Ware models or inter-
change turbulence for the later Kim/Diamond models.
Neither of these two models fit the LAPD results

quantitatively well which suggests the need for a model based
on LAPD-specific turbulent drive.

VII. CONCLUSIONS

Power-law fits have been performed against experimen-
tal measurements of density fluctuations, radial velocity fluc-
tuations, particle flux, crossphase, diffusivity, and radial
correlation length as a function of shearing rate. These fits
have been compared to a range of decorrelation models of
shear suppression. No model correctly captures the observed
variation in all turbulent quantities; however, some models
do make predictions which are close to observations for one
or two turbulent quantities. Qualitative agreement with some
models is found: in particular in the fact that transport sup-
pression is found experimentally to be due to fluctuation am-
plitude reduction rather than by crossphase change. The
quantitative disagreement with these models could arise due
to a number of issues. Models that assume a fixed turbulent
drive (do not allow for changes in density gradient scale
length) are unlikely to match the data. Additionally, many
models assume a turbulence model which may be inappro-
priate (ITG or interchange drive are unlikely to be relevant
to LAPD, although rotational interchange can be active).
While the various models cited in this paper deal with con-
stant sheared flow, variations in scalings may arise to due
fluctuations in the shearing rate.24,28,29 It is also possible that
decorrelation is incorrect as the underlying physical mecha-
nism for shear suppression. Alternative models have been
proposed, including enhanced coupling to damped eigenmo-
des30 (this model focuses mainly on zonal flows rather than
mean flows, however) or suppression due to spectral shift.31

Comparison of this dataset to predictions made by alternative
shear suppression models will be the subject of future work.
Additionally, comparison to direct numerical simulation of
LAPD turbulence in the presence of sheared flow will be
undertaken in the future. This work will build on prior work
simulating LAPD turbulence using the BOUTþþ code.32–34
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