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Frequency-modulated excitation of a two-level atom

Michael W. Noel, W. M. Griffith, and T. F. Gallagher
Department of Physics, University of Virginia, Charlottesville, Virginia 22901

~Received 19 September 1997!

We present a detailed experimental study of the frequency-modulated excitation of a two-level atom, using
a microwave field to drive transitions between two Rydberg Stark states of potassium. In the absence of a
modulation the interaction is the standard model of the Rabi problem, producing sinusoidal oscillations of the
population between the two states. In the presence of a frequency modulation of the interacting field, however,
the time evolution of the system is significantly modified, producing square wave oscillations of the popula-
tion, sinusoidal oscillations at a different frequency, or even sinusoidal oscillations built up in a series of stair
steps. The three responses described above are each found in a different regime for the frequency of the
modulation with respect to the unmodulated Rabi frequency: the low-, high-, and intermediate-frequency
regimes, respectively. @S1050-2947~98!03209-0#

PACS number~s!: 42.50.Hz, 32.80.2t, 32.30.Bv, 42.50.Md

I. INTRODUCTION

The two-level atom is perhaps the most basic system in
which to study the interaction between a quantum system
and an electromagnetic field. In the simplest case of the in-
teraction with a continuous monochromatic field, familiar
Rabi oscillations of the population between the two states are
seen in the temporal evolution of the system @1–4#. In the
frequency domain the same simple interaction is manifested
in the well-known three-peaked fluorescence spectrum @5–
7#. This spectrum is a result of the dressing of the atomic
states by the strong resonant field @8#, which appears as the
Autler-Townes doublet when probed with a second weak
laser @9–12#.
When the amplitude of the exciting field is modulated the

atomic response becomes more complicated. For instance,
the excitation with a 100% amplitude-modulated field leads
to resonances in the steady-state inversion when the modu-
lation frequency is at a subharmonic of the Rabi frequency
@13#. There is also a more complicated beating in the sys-
tem’s time evolution, which has a strong dependence on the
initial phase of the modulation @14–16#. Finally, the reso-
nance fluorescence @17–21# and Autler-Townes @22,23#
spectra from an amplitude modulated interaction are more
complicated than the monochromatic case, containing a se-
ries of peaks separated by the modulation frequency whose
widths alternate.
In the case of a frequency-modulated excitation, many

interesting effects have been predicted and observed. To
date, most of the experimental work with such an interaction
has focused on the development of the very sensitive tech-
nique of frequency-modulation spectroscopy @24,25#. Recent
theoretical exploration of the time evolution of a two-level
system driven by a frequency-modulated field has revealed
square-wave oscillations of the population @26,27# as well as
more complicated and phase-dependent structures @28,29#.
The resonance fluorescence @30# and Autler-Townes @31#
spectra for a frequency-modulated interaction have also been
considered, revealing additional sidebands in the spectrum,
chaotic behavior of the spectrum for two frequency modula-
tion, and simultaneously forbidden resonances.

In this paper we present a detailed experimental study of
the frequency-modulated excitation of a two-level atom. We
focus on the transient dynamics of the system for a wide
range of parameters of the modulation. For our system we
used two well isolated states of a potassium Rydberg atom in
an electric field. They are adiabatically connected to the 21s
and 19f zero-field states, and we shall label the states 21s
and 19f as shown in Fig. 1. The 21s state shifts quadratically
in energy as a function of the static electric field and the 19f
state has a linear Stark shift. The static electric field was used
to tune the level separation into resonance with a microwave
photon that coupled the two states. Rather than modulate the
frequency of this microwave photon directly we instead
chose to apply a second low-frequency field. This radio-
frequency ~rf! field in combination with the static electric
field had the effect of modulating the energy separation be-
tween the two states. Modulation of the level separation is
formally equivalent to modulation of the exciting field fre-
quency, and is much more convenient in this system of Stark
states.

FIG. 1. Stark states of a potassium Rydberg atom. The static
electric field was used to tune the 19f –21s level separation into
resonance with the 8-GHz microwave photons. The inset shows the
two well isolated states that make up our two-level atom.
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It is natural to compare the frequency of the modulating
field to the Rabi frequency of the resonant transition driven
by the microwave field in the absence of the modulation, and
we have studied the effect of this modulating field over a
wide range of frequencies. We begin with the case in which
the modulation frequency is slow compared to the Rabi fre-
quency. Next, we move to the limit of fast modulation. We
then consider the case of intermediate modulation frequen-
cies and draw some connections between the two limiting
cases. A second parameter that is also very important in de-
termining the system’s evolution is the amplitude of the
modulation. Within each of the sections outlined above we
discuss the range of modulation amplitudes used along with
their influence on the observed dynamics.

II. SLOW MODULATION

A. Microwave dressed state

We begin by considering the limit in which the modula-
tion frequency is small compared to the resonant Rabi fre-
quency driven by the microwave field in the absence of
modulation. For this case we look at the dressed states of the
atom plus microwave field and then consider the effect of the
modulating field on these dressed states.
The theory of dressed or Floquet stark states of an atom in

combined static and microwave fields has been presented in
several papers @4,32# with the main result that, at a given
microwave multiphoton resonance ~we use the single photon
resonance!, the problem is reduced to two states coupled by
the interaction, Vmwq, where q refers to the number of pho-
tons absorbed. The inset of Fig. 2 shows the states of our
system after having subtracted the energy of one microwave
photon from the upper state. In the absence of the microwave
interaction, these two states cross, and we refer to them as
uncoupled states ua& and ub&. In the presence of the micro-
wave interaction, the Schrödinger equation at the one-photon
resonance is

iF ȧ
ḃ
G5FWa

Vmw1

2
Vmw1

2
Wb

G FabG , ~1!

where a and b are the amplitudes and Wa50 and Wb

52k(Estatic2E1) are the energies of the states ua& and ub&.
Here we have neglected the quadratic Stark shift of the 21s
state, which has little effect for the field strengths used in this
experiment, so k5549 MHz/~V/cm! is the relative slope of
the 21s and 19f states at the one-photon resonance. Estatic is
the static electric field and E15289 V/cm is the field at
which one microwave photon is in resonance with the level
separation.
The energies, Wa5(Wb2AWb

21Vmw1
2 )/2 and Wb

5(Wb1AWb
21Vmw1

2 )/2 of the dressed states, ua& and ub&
are found by simply diagonalizing the time-independent
Hamiltonian in Eq. ~1!. The dressed states form an avoided
crossing whose separation at the one-photon resonance is
Vmw1. A general expression for the separation of the dressed
state avoided crossing at the q photon resonance is given in
Ref. @32# as

Vmwq5VstaticJqS kEmwvmw
D ~2!

where Vstatic is the size of the static field avoided crossing, Jq
is a Bessel function of order q, Emw is the microwave field
amplitude, and vmw is the microwave frequency.
Next we consider the effect of adding the rf modulating

field to the upper state energy along with the static electric
field, Wb52k@Estatic2E rfcos(vrft)2E1# . We set the static
field to the one-photon microwave resonance Estatic5E1 and
use a sinusoidal modulation that begins as a cosine and
whose amplitude is large, so that the system will initially be
off resonance and far from the avoided crossing. For these
conditions the lower dressed state ua& is initially made up of
mostly the lower uncoupled state, ua&, which is the state that
we initially populate, so a(t50)'1. Since the modulation
is slowly changing, the population will remain in the lower
dressed state as the microwave field is swept through reso-
nance. On the other side of the crossing the lower dressed
state is composed mostly of uncoupled state ub&, so the two-
level system makes a transition between the two uncoupled
states in the familiar method of adiabatic rapid passage
@33,34#. Each time the sinusoidal modulation sweeps the sys-
tem through resonance the population will jump between un-
coupled states, so the population of state ub& as a function of
time oscillates like a square wave with a period equal to that
of the modulating field.

B. Square-wave population oscillations

We measured the time evolution of the two-state system
in the presence of a slow modulation as follows. The atom
was prepared in the 21s state with a pair of laser pulses. The
modulation and microwave fields were then turned on to
interact with the atom. By adjusting the phase of the rf
modulating field relative to the start of the microwave pulse
we started with the system initially off resonance. The length
of the microwave pulse was then scanned from 0 to 256 ns in
1 ns steps and the upper state population measured after each
step.
The heart of the experimental apparatus is shown in Fig.

3. The interaction between the atoms and the microwave and
rf fields took place inside a piece of WR137 waveguide. The

FIG. 2. Dressed states of an atom in combined static and micro-
wave fields. The inset shows the avoided crossing that occurs due to
the coupling between the two states.

2266 PRA 58MICHAEL W. NOEL, W. M. GRIFFITH, AND T. F. GALLAGHER



potassium atoms effusing from a resistively heated oven en-
tered the waveguide through a small hole in one of its sides.
The two nanosecond dye laser beams, tuned to excite the
atom from the 4s to 4p and 4p to 21s states entered the
waveguide through a hole on the opposite side.
The 8-GHz microwave field was coupled into and out of

the waveguide using waveguide to coaxial adapters. By puls-
ing the microwave field with a square envelope, the interac-
tion time with the microwave field was varied. To generate
this variable length microwave pulse we double mixed ~us-
ing Watkins-Johnson M14A mixers! the continuous wave
output of a Hewlett Packard HP8350B microwave sweeper
with a digitally programmable pulse from a Tektronix
AWG2040 arbitrary wave-form generator. The resulting mi-
crowave pulse was amplified and sent into the waveguide.
The output of the waveguide was attenuated and terminated
with a microwave detector.
The AWG2040 also triggered a Wavetek model 22 func-

tion generator, which produced a sinusoidal field at 10.25
MHz whose phase was locked to the beginning of the micro-
wave pulse. By isolating the center section of the waveguide
from ground with thin teflon spacers at each end, we were
able to apply the modulating field directly to the outside of
the waveguide.
Inside the waveguide was a copper septum to which we

applied the static electric field, used to tune to the microwave
resonance, and a field-ionization pulse used to detect the up-
per (19f ) state population. The field-ionization pulse was
applied after the microwave interaction, and its amplitude
was adjusted so that it only ionized atoms that were in the
19f state, not those in the 21s state. The 19f ions then passed
through a small hole in the top of the waveguide and im-
pinged upon a microchannel plate detector.
The time evolution of the two-level atom driven by the

microwave field both with and without the slow modulating
field is shown in Fig. 4. In Fig. 4~a!, with the modulation
turned off, we see the standard sinusoidal Rabi oscillations at
a frequency of 81 MHz for this microwave field strength. In
Fig. 4~b!, with the modulation on at a frequency of 10.25
MHz (v rf'

1
8 Vmw1) and amplitude of approximately 0.6

V/cm (kE rf5329 MHz!, we see square rather than sinusoidal
oscillations of the excited-state population, the sharp jumps
occurring each time the modulating field sweeps the system
through resonance with the microwave field.

Although we used a 50-V resistor to terminate the wave-
guide section to ground, there was also a large capacitance at
the ends of the waveguide, resulting in an impedance mis-
match for the rf signal and a corresponding uncertainty in
our estimate of the rf amplitude experienced by the atoms. In
the low-frequency regime, however, the atomic response
should be insensitive to the modulation amplitude. To verify
this we took several scans at rf amplitudes ranging from 0.4
to 0.8 V/cm (kE rf5220 to 440 MHz! and saw nearly identi-
cal responses.

III. FAST MODULATION

A. rf multiphoton resonances

For a fast modulating field we take a different theoretical
approach. In this case we consider the states of the atom
dressed by both the microwave and rf fields. In the previous
section it was stated that the atom plus microwave field in-
teraction produces dressed states with an avoided crossing
that is identical to a static field avoided crossing. Dressing
these states again with the rf field is straightforward. In fact,
this analysis is identical to the Floquet description given by
Stoneman et al. @32#. The result of this analysis is that the
upper state is broken up into a carrier and series of sidebands

FIG. 3. The portion of the experimental apparatus in which the
interaction takes place. It is a piece of WR137 waveguide with a
septum and holes to couple in the fields, lasers, and atoms used in
the experiment.

FIG. 4. Time evolution of the two-level atom ~a! without the rf
modulation and ~b! with the rf modulation.

FIG. 5. Dressed states of the atom plus microwave field plus rf
field system. The rf field produces a series of sideband resonances
to which we can tune using the static electric field. At each of these
sidebands there is an avoided crossing whose size is a function of
the amplitude of the modulating field.
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as shown in Fig. 5, just as a frequency-modulated radio sig-
nal consists of a carrier and sidebands.
In the limit where the modulation frequency is large com-

pared to Vmw1 these rf resonances are well separated and
each forms its own avoided crossing. The separation between
dressed states, or equivalently, the rf multiphoton Rabi fre-
quency at these avoided crossings is given by

V rfq5Vmw1JqS kE rfv rf
D , ~3!

where Jq is again a Bessel function of order q, but now q
refers to the number of rf photons being absorbed. E rf and
v rf are the rf field amplitude and frequency, respectively. By
adjusting the static electric field we can tune to each of these
rf avoided crossings and study them individually.

B. Experiment

In the limit of fast modulation we again expect sinusoidal
oscillations of the population, but now at an effective Rabi
frequency given by Eq. ~3! as a function of modulation am-
plitude. We were able to map out these Bessel functions by
measuring the rf Rabi frequency V rfq at a given rf resonance
q for different rf field amplitudes E rf . The Rabi frequencies
were again measured by scanning the microwave pulse width
for each fixed modulation amplitude and recording the time
evolution of the upper state.
Application of the much higher modulation frequencies

necessary in this limit required a very different experimental
arrangement, which is shown in Fig. 6. In this case the in-
teraction took place in the center of an rf transmission line.
This transmission line was designed to maintain 50-V im-
pedance over a broad range of frequencies ~from less than 50
MHz to over 2 GHz! by keeping the proper height to width
ratio over the length of the line. The rf signal was coupled
into and out of the transmission line at each end using 50-V
coaxial cables. The center conductor of each cable was con-
nected to the top plate of the line and the outer conductor
was coupled to the lower plate through an rf capacitor. The
purpose of the blocking capacitors was to isolate the rf elec-
tronics from the high voltage static electric field and slowly
varying field-ionization pulse, which were applied directly to
the bottom plate of the transmission line.

In this case a 9-GHz microwave field was introduced into
the interaction region between the plates of the transmission
line using a microwave horn. The horn was designed to pro-
vide good impedance matching to free space by flaring it in
the horizontal direction. In order to efficiently couple most of
the microwave power into the region between the plates of
the rf transmission line, the vertical dimension of the horn
was designed to match the vertical separation of the plates.
The atomic beam entered the transmission line opposite

the horn and the lasers entered at an angle to cross the atomic
beam underneath a 0.5-mm hole in the upper plate. Ions were
extracted through this small hole and collected on a micro-
channel plate detector.
To create the variable length microwave pulse for this

arrangement we used a Stanford Research Systems DG535
programmable pulse generator to mix with the cw micro-
waves. Here the AWG2040 was triggered with the DG535
and programmed to generate the rf modulation frequency.
We began by fixing the amplitude of the microwave and

rf fields and scanning the static electric field to look at the rf
multiphoton resonances. The absorption spectrum in Fig. 7
shows the carrier and several sideband resonances. In this
case the microwave amplitude was set to yield a microwave
Rabi frequency of Vmw15156 MHz. The rf frequency was
set to v rf5330 MHz'2Vmw1 and its amplitude to E rf
54.13 V/cm (kE rf52.27 GHz!. For these parameters the rf
resonances were well separated so the high-frequency ap-
proximation of this section is valid.
The variation in the widths of the peaks in Fig. 7 is due to

the variation in the rf Rabi frequencies defined by Eq. ~3!.
For this particular rf field amplitude V rf1 and V rf3 are small,
leading to narrow resonances where as V rf0 and V rf2 are
large leading to broad peaks. Also, since the microwave
pulse width for this scan was only 128 ns the system had not
yet reached its steady-state value for the inversion so there is
some structure in the broad resonances.
Next we fixed the static field at an rf resonance and mea-

sured Rabi oscillations for various rf field amplitudes. In Fig.

FIG. 6. Portion of the experimental apparatus in which the in-
teraction takes place. The rf field is sent along the transmission line
and the microwave field radiates out of the horn.

FIG. 7. Scan of the static electric field ~plotted in frequency
units! for fixed microwave and rf amplitude and pulse width. The
carrier resonance is labeled D50 and the third sideband is labeled
D53v rf . For the narrow resonances we are near a zero of the
Bessel function that is determining the transition strength for that
resonance. The opposite is true for the broad resonances. Since the
microwave pulse width was only 128 ns the system had not yet
reached its steady-state value for the inversion so there is some
structure in the broad resonances.
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8 we show the compilation of such measurements along with
the theoretically predicted Bessel functions for two rf reso-
nances, the carrier and the third sideband. The insets show
sinusoidal Rabi oscillations at a few specific rf amplitudes.
These data show excellent agreement with the theoretical
prediction given in Eq. ~3!. The only parameter used to fit
these data was the Rabi frequency at E rf50, which we mea-
sured to be 156 MHz, since we did not have an accurate
measure of the microwave power at the interaction region.
The rf amplitude was determined by measuring the voltage
of the rf wave form on an oscilloscope, taking into account
losses in the cables and transmission line, and converting this
to a field using the known spacing between the plates of the
rf transmission line. Using this calibration resulted in excel-
lent agreement between the location of the measured zeros of
the Rabi frequency and the theoretical prediction for the ze-
ros of the Bessel function.
The small size of the interaction region ~defined by the

intersection of the lasers, atomic beam, and projection of the
extraction hole! leads to excellent static and microwave field
homogeneity. The decay of the rf Rabi oscillations seen in
the insets in Fig. 8 is due to the residual microwave field
inhomogeneity. With this setup we were able to measure
frequencies as low as 10 MHz. We also show data taken at
the rf amplitudes for which V rf0 and V rf3 are zero. At these
amplitudes the population remained in its initial state during
the entire scan of the microwave pulse width.
Bessel functions oscillate in sign, implying that for some

rf amplitudes the rf Rabi frequency is negative. We have

plotted some of our observed Rabi frequencies as being
negative, although we cannot, using the method described,
determine the sign of the Rabi frequency. However, we were
able to verify that the Rabi frequency does change sign for
modulation amplitudes on opposite sides of a zero of the
Bessel function using a different method.
To measure this sign change we focus on the three modu-

lation amplitudes noted as a, b, and c in Fig. 8~a!. Figure 9~a!
shows the time evolution for the rf amplitude at the point
labeled a in Fig. 8. In Figs. 9~b! and 9~c! we changed the
amplitude of the rf modulating field at a fixed time during a
scan of the microwave pulse width. Using the AWG2040,
this sinusoidal wave form at 330 MHz with a sudden change
in amplitude was easily generated. We chose this time to be
3/4 of the Rabi period for the initial rf amplitude. When we
changed the modulation amplitude we not only saw the Rabi
period change, but also a 180° phase shift, which depended
on whether or not the sign changed. More specifically, if the
Rabi frequency had changed sign as in Fig. 9~b!, the popu-
lation of the upper state increased rather than continuing to
decrease, whereas for no sign change as in Fig. 9~c! the
population continued to decrease.
In Fig. 9 we also see that after the change in rf amplitude,

the amplitude of the Rabi oscillations in curve ~b! are larger
than in curve ~c!. To explore this effect further we moved the
position of the rf amplitude change much later in time. In
fact, we waited until the different atoms in our ensemble had
completely dephased and washed out the Rabi oscillations.
Now when the sign of the Rabi frequency was changed we
reversed the effect of this dephasing and saw an echo in the
Rabi oscillations ~see Fig. 10!. This is in many ways analo-
gous to a photon echo @35# or nutation echo @36# seen in
optical resonance experiments, as well as the familiar spin
echoes @37# and rotary echoes @38# seen in nuclear magnetic
resonance.

FIG. 8. A compilation of data for various rf amplitudes with the
static field tuned to ~a! the carrier and ~b! the third sideband reso-
nance. The insets show the Rabi oscillation at a few specific modu-
lation amplitudes from which we measured the Rabi frequencies.
The axes on all of the insets are scaled identically to the one that is
labeled. The points explicitly labeled a, b, and c are modulation
amplitudes that also appear in Figs. 9 and 10.

FIG. 9. Curve ~a! shows the Rabi oscillations for a modulation
amplitude at the highlighted point labeled a in the previous figure.
In ~b! and ~c! there is a vertical line showing the time at which the
rf amplitude was suddenly switched during the time scan to the
value labeled b and c, respectively, in the previous figure.
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By considering the Bloch vector rotating on a sphere it is
easy to see where the echo comes from @39#. For an on-
resonant interaction the Bloch vector rotates through both
poles of the sphere at the resonant Rabi frequency. For an
atom that is slightly detuned from resonance ~mostly due to
field inhomogeneities in our case! the Bloch vector does not
quite reach the north pole ~complete inversion! and it rotates
at a slightly faster frequency, the generalized Rabi frequency.
Since we excite many different atoms, each with slightly
different detunings and thus different generalized Rabi fre-
quencies, we see the amplitude of the Rabi oscillations for
the ensemble decay as the different frequencies dephase. By
changing the sign of the Rabi frequency we change the di-
rection of rotation of each of the Bloch vectors in the en-
semble. This effectively reverses time, winding each Bloch
vector back up to its initial starting point, where the ampli-
tude of the Rabi oscillations for the ensemble is again a
maximum.

IV. INTERMEDIATE MODULATION

A. Stair step population oscillations

With this understanding of the two limits of modulation
frequency we turn to the intermediate frequency regime,
where the frequency is too slow for the rf resonances to be
well isolated and yet too fast for the population to adiabati-
cally follow the microwave dressed states.
Here we used an experimental arrangement that was iden-

tical to that described in Sec. III B and again focused on the
time evolution of the system. Figure 11~a! shows microwave
Rabi oscillations at a frequency of Vmw5108 MHz with the
modulating field off. In Figs. 11~b! and 11~c! we show the
time evolution for two specific modulation amplitudes and a
modulation frequency of v rf552 MHz' 1

2 Vmw1. For Fig.
11~b!, we see an oscillation at '25 MHz built up in a series
of steps that occur at twice the modulation frequency. It is
similar to a Rabi oscillation in that the transition probability
oscillates over time. The curve in Fig. 11~c! is more like the
square population oscillations seen in Fig. 4 except that the
population is never completely transferred to the upper state.
A qualitative understanding of this behavior is gained us-

ing a Landau-Zener phase accumulation model. In this model

we consider the microwave dressed states introduced in Sec.
II A. In Fig. 12 we show the dressed states as a function of
time in the sinusoidal modulating field. As the rf field sweeps
the system through resonance at the dressed state avoided
crossing, there is a nonzero transition amplitude for making a
diabatic transition to the other state. The system is now in a
superposition of the two dressed states, so when the avoided
crossing is traversed a second time there will be interference
between the two transition amplitudes. The result of this in-
terference depends on the relative phase accumulated by the
two states during their evolution in between crossings. In
Fig. 11~b! the rf amplitude was chosen to result in construc-
tive interference ~a single cycle transition probability of one!,
whereas in Fig. 11~c!, the interference was destructive ~a
single cycle transition probability of zero!. Different rf am-
plitudes and frequencies would result in different half and
single cycle transition probabilities, with consequently more
complicated time dependence. The choice of parameters that
produced Figs. 11~b! and 11~c! makes the time dependence
particularly simple since after one cycle, the population is
entirely in one state or the other. As an example of a differ-
ent choice of conditions, an rf frequency of Vmw1 /2 and a
large rf amplitude would result in small half cycle transition
probabilities and discretized Rabi oscillations, with stair

FIG. 10. Here the amplitude of the rf field was suddenly
switched from a to b, but at a much later time than in the previous
figure. This allowed the ensemble to completely dephase before the
sign change and then rephase in the form of an echo after the sign
change of the Rabi frequency.

FIG. 11. In curve ~a! we show a Rabi oscillation of 108 MHz in
the absence of frequency modulation. For ~b! and ~c! the modula-
tion was turned on with a frequency of 52 MHz and an amplitude of
0.92 V/cm and 0.78 V/cm, respectively. The vertical lines are the
times at which the rf field sweeps the system through resonance
with the microwave field. In ~b! we see constructive interference at
the second avoided crossing and in ~c! we see destructive interfer-
ence.

FIG. 12. Schematic representation of the Landau-Zener phase
accumulation model. At the first avoided crossing the population
splits between states. At subsequent avoided crossings the popula-
tion following the two paths can interfere.
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steps occurring at every half rf cycle. Unfortunately, these
parameters were unattainable with our apparatus.
This behavior is much like a multilayer dielectric stack in

optics, where each dielectric interface corresponds to an
avoided crossing in our system. The light propagating
through such a dielectric stack is split at each interface de-
pending on the reflection coefficient. The result of the inter-
ference at each interface depends not only on this reflection
coefficient, but also on the phase accumulated by the inter-
fering beams in between interfaces.

B. Landau-Zener model

The model outlined in the previous section is developed
in more detail here. The model is used in this section to
explain the atomic response in this intermediate frequency
regime, and in the next section it is used to make some
connections between the high- and low-frequency regimes.
The first Landau-Zener transition shown in Fig. 12 is de-

scribed by the unitary matrix @40–42#,

ULZ15S AP 2A12Pe2if

A12Peif AP D . ~4!

Here f is the phase accumulated during this transition and P
is the Landau-Zener probability for making a diabatic tran-
sition @43#,

f5
p

4 2d ln d1d1arg G~12id!, ~5!

P5exp~22pd!, ~6!

d5
Vmw1
2

4 dW/dEdE/dt . ~7!

The rate of change of the states’ energy with respect to the
electric field is dW/dE5k and the rate of change of the field
with respect to time is dE/dt5v rfE rf when at the crossing.
Using the experimental parameters for Figs. 11~b! and 11~c!
we find that P'0.5, leaving the system in a superposition of
the two states after a half cycle of rf. This transition prob-
ability is in good agreement with the size of the first step
seen in Figs. 11~b! and 11~c!.
Next, we model the evolution between the first and sec-

ond crossings as a simple phase accumulation by the two
states, using the propagation matrix,

Uu12
5S 1 0

0 e2iuD . ~8!

Note that we have chosen the special case in which the mi-
crowave field is on resonance so the sinusoidal oscillation of
state ub& is symmetric about the state with no Stark shift, ua&.
In this case the phase accumulation u between anticrossings
~for the first half cycle of the field! is given by

u5E
p/2vrf

3p/2vrf
kE rfcos~v rft !dt52

2kE rf
v rf

. ~9!

At the second crossing we again have a Landau-Zener
transition described by the evolution matrix,

ULZ25S AP A12Peif

2A12Pe2if AP D . ~10!

The outcome of this Landau-Zener transition depends on the
phase u accumulated by the two state amplitudes in between
crossings, as well as the Landau-Zener phase accumulated
during the transition, f . For the data shown in Fig. 11~b! the
phase accumulation results in constructive interference at the
second crossing, and nearly all of the population is trans-
ferred to the upper state. In Fig. 11~c! we have destructive
interference, which forces the population back to the initial
state.
In this simple treatment the unitary transformations for

the Landau-Zener transitions are written with the assumption
that transitions occur only at the crossing, and the phase
accumulation is written as if the states actually cross. This
gives a good qualitative understanding of the data shown in
Fig. 11, however, some deviations from the sharp stair steps
predicted by the model can be seen. In particular, we see
some oscillations where our model predicts no transitions
~between crossings!. These are simply off resonant transi-
tions driven by the microwave field that are not included in
this simple model.

V. THE FIELD-PHOTON CONNECTION

In the Landau-Zener model outlined above the modula-
tion is viewed as a contribution to the static electric field that
moves the system back and forth on the microwave dressed
states. This is identical to the analysis used for slow modu-
lation frequencies except that we have included the phase
evolution of the states in between crossings. For slow modu-
lations it was not necessary to include this phase since nearly
all of the population was transferred between states at each
avoided crossing, never leaving the system in a superposition
of states with the potential for interference.
We can also apply this model in the high-frequency limit,

where the rf modulation behaves more like a photon produc-
ing isolated resonances. In fact, the assumptions that were
only approximately met at the end of the last section are
more rigorously valid in the high-frequency regime where
the avoided crossings are narrow and well separated.
By defining a single cycle propagator for our atom field

system,

U~T ,0!5Uu23
ULZ2Uu12

ULZ1, ~11!

and applying this propagator repeatedly,

c~ t5nT !5Un~T ,0!c~0 !, ~12!

we can build up the evolution of our system one rf cycle at a
time.
To find the n cycle transition probability using this single

cycle propagator we follow the treatment given in Ref. @44#.
We begin by multiplying out the four matrices given in
Eq. ~11!,
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U~T ,0!5S P1~12P !e2i~u22f! AP~12P !~e2i~u2f!2e2if!

AP~12P !~eif2ei~u2f!! P1~12P !ei~u22f! D . ~13!

Next, we diagonalize this matrix to find eigenvalues,

l65expF6i@y #arctanSA12x2

x D G , ~14!

where

x5P1~12P !cos~u22f!. ~15!

In the high-frequency limit the Landau-Zener transitions are
nearly diabatic so P'1 and f'p/4. In this limit the ap-
proximations arctan(g)'g and A12x2/x'A2(12x) can be
made, resulting is the simplified eigenvalues,

l65expF6i2A12P cosS 2
u

22
p

4 D G . ~16!

Finally, if we substitute in the expression for the Landau-
Zener transition probability P'12pVmw1

2 /2kv rfE rf and the
phase accumulation u522kE rf /v rf , and use the large argu-
ment form of the Bessel function, J0(y)5A2/pycos(y
2p/4) we can write

l65expF6ip
Vmw1

v rf
J0S kE rfv rf

D G . ~17!

Using Eq. ~12! of Ref. @44# and the eigenvalues calculated
above we find the time evolution of the upper state is given
by

ub~ t !u2}sin2F12Vmw1J0S kE rfv rf
D tG , ~18!

where we have set t52pn/v rf . From this we can immedi-
ately see that the rf Rabi frequency for the carrier resonance
considered here is identical to that given in Eq. ~3!,

V rf05Vmw1J0S kE rfv rf
D . ~19!

Note that although the derivation is not sensitive to the sign
of the Rabi frequency, we have left out the absolute value
signs, in part bolstered by our experimental results. The cal-
culation of the Rabi frequency for arbitrary rf photon number
q is a straightforward extension of the one presented. Al-
though the result for the Rabi frequency is not new, as it is
essentially the same result as in @32#, this is the first time that
it was obtained using the single cycle propagator framework.

VI. CONCLUSION

We have presented a detailed experimental study of the
frequency modulated interaction with a two-level atom. By
considering a broad range of frequencies of the modulation
we were able to gain a basic understanding of the system in
terms of some very well-known concepts such as adiabatic
rapid passage, multiphoton resonances, and Landau-Zener
transitions. We conclude with some comments on other sys-
tems in which there are similarities to or applications of this
study.
As we stated earlier, the dressed-state anticrossing created

by interaction with the microwave field is formally identical
to a static field avoided crossing. In fact, such field-induced
avoided crossings have been put to use in other systems.
Garraway and Stenholm @45,46# have used field-induced
avoided crossings to build an interferometer within a mol-
ecule. In this interferometer, a vibrational wave packet is
split and recombined at a pair of avoided crossings to pro-
duce an interference pattern that depends on the phase accu-
mulated between the two crossings.
Another system in which avoided crossings are familiar is

the collision between a pair of atoms. By adding a field and
studying radiatively assisted collisions, Renn et al. @42,47#
have found some striking similarities to the frequency modu-
lated interaction with a two-level atom. They use a Landau-
Zener phase accumulation model to derive the cross section
for the N-photon-assisted resonance.
The intuition gained from the study of simple systems and

interactions like the one presented in this paper may also
prove very useful in the more complicated problem of coher-
ent control of a quantum system. The goal in coherent con-
trol is to guide the evolution of a system along a particular
path to a desired final state @48–50#. Many different para-
digms have been developed to perform such a task, often
involving very complicated interactions. Often these globally
optimal fields are so complicated that they would be very
difficult to create experimentally. Approaching this problem
from the other end by studying the frequency modulated in-
teraction with a two-level atom is an important first step
toward coherent control of more complicated systems
through more complicated interactions @51,52#.
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