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SUMMARY 

The archaeal enzyme geranylgeranyl reductase (GGR) catalyzes hydrogenation of 

carbon-carbon double bonds to produce the saturated alkyl chains of the organism’s 

unusual isoprenoid-derived cell membrane. Enzymatic reduction of isoprenoid double 

bonds is of considerable interest both to natural products researchers and to synthetic 

biologists interested in the microbial production of isoprenoid drug or biofuel molecules. 

Here we present crystal structures of GGR from Sulfolobus acidocaldarius, including the 

structure of GGR bound to geranylgeranyl pyrophosphate (GGPP). The structures are 

presented alongside activity data that depict the sequential reduction of GGPP to 

H6GGPP via the intermediates H2GGPP and H4GGPP. We then modified the enzyme to 

generate sequence variants that display increased rates of H6GGPP production or are able 

to halt the extent of reduction at H2GGPP and H4GGPP. Crystal structures of these 

variants not only reveal the structural bases for their altered activities; they also shed light 

onto the catalytic mechanism employed. 
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INTRODUCTION 

Isoprenoids, also called terpenes and terpenoids, form a large and structurally diverse 

class of natural products that display a multitude of biological functions. Isoprenoids are 

also a major target in synthetic biology for the microbial production of biofuels, 

medicines, and other commodity chemicals, such as the anti-malarial drug precursor 

artemisinic acid (Ro et al., 2006), the taxol precursor taxadiene (Ajikumar et al., 2010), 

the biodiesel precursors farnesene and bisabolene (Peralta-Yahya et al., 2011; Renninger 

and McPhee, 2008), and the carotenoid lycopene (Alper et al., 2005; Farmer and Liao, 

2000), which have all been produced in engineered microbes. All isoprenoids are 

constructed from the isomeric five-carbon (C5) building blocks isopentenyl 

pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are generated by 

the mevalonate pathway or the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. IPP and 

DMAPP are first condensed by prenyltransferases to form isoprenoid intermediates of 

varying chain lengths: geranyl pyrophosphate (GPP, C10), farnesyl pyrophosphate (FPP, 

C15), or geranylgeranyl pyrophosphate (GGPP, C20). Dedicated terpene synthases then 

convert these intermediates into monoterpene (C10), sesquiterpene (C15), or diterpene 

(C20) products using carbocation-based structural rearrangements, which use the double 

bonds of GPP, FPP, and GGPP as nucleophiles to cyclize, adjust, and rearrange the 

carbon skeleton. Terpene synthases are thus primarily responsible for the incredible 

structural diversity of isoprenoid products. 

Isoprenoids also form the major component of membrane phospholipids in 

archaea. Unlike bacterial or eukaryotic membranes, which are primarily composed of 

fatty acyl chains linked to phosphoglycerol by ester bonds, archaeal membranes are 
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composed of isoprenoid-derived chains linked to phosphoglycerol by ether bonds. Here, 

two geranylgeranyl chains from GGPP are first tethered to phosphoglycerol in the 

molecule 2,3-di-O-geranylgeranylglyceryl phosphate (DGGGP). Next, the enzyme 

geranylgeranyl reductase (GGR) performs the remarkable sixteen-electron reduction of 

all DGGGP double bonds to produce saturated alkyl chains using flavin adenine 

dinucleotide (FAD) as a cofactor. Interestingly, prior studies have shown that GGR from 

Sulfolobus acidocaldarius (SaGGR) is able to reduce three out of the four double bonds 

of the non-native substrate GGPP to produce the hexahydro-product, H6GGPP (Sato et al., 

2008). Although GGR from Thermoplasma acidophilum (TaGGR) can utilize NADPH as 

a direct electron source (Nishimura and Eguchi, 2006), SaGGR cannot directly use 

NADPH or NADH (Sato et al., 2008), and neither its ultimate in vivo source of electrons 

nor any potential redox protein partners are currently known. In addition, crystal 

structures of SaGGR and TaGGR have been previously determined (Sasaki et al., 2011; 

Xu et al., 2010). Although SaGGR was co-crystallized with 1.0 mM GGPP, the electron 

density was discontinuous and inconsistent with GGPP; instead, n-nonane and 

pyrophosphate were modeled (Sasaki et al., 2011). 

In addition to being of considerable biological interest due to its key role in 

archaeal membrane biosynthesis, GGR also holds great promise for isoprenoid 

production in engineered microbes, as its isoprenoid double bond reduction activity 

would allow for greater tailoring of the final product. Here, reduction of isoprenoid 

double bonds would decrease the reactivity and sensitivity to oxidation of the target 

compound, in addition to altering its physicochemical properties. Such features are 

especially beneficial for isoprenoid-based biofuels; in fact, microbially produced 
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farnesene and bisabolene must first be hydrogenated to farnesane and bisabolane, 

respectively, to become practical biodiesel alternatives (Peralta-Yahya et al., 2011; 

Renninger and McPhee, 2008). Further, in vivo enzymatic hydrogenation has several 

advantages over chemical hydrogenation. First, the capital cost of chemical 

hydrogenation would be eliminated by simply using a strain that expresses a requisite 

hydrogenation enzyme. In addition, in vivo hydrogenation would be valuable in host 

organisms that use the mevalonate pathway in anaerobic fermentation, where redox 

balance becomes a serious issue. Here, GGR could play an important role in consuming 

excess reducing equivalents and regenerating oxidized NAD(P)+. Enzymatic reduction of 

double bonds within the biosynthetic pathway also raises the possibility of using an 

engineered enzyme that could selectively reduce specific double bonds, as opposed to 

chemical hydrogenation of an isolated final product that would likely reduce all double 

bonds. Despite its potential, however, the use of GGR in synthetic biology for the 

reduction of isoprenoids has remained largely unexplored and unstudied, as GGR not 

only awaits further biochemical and structural characterization, but practical GGR 

enzymes must also be identified or engineered. 

Here, we present the structure of SaGGR bound with GGPP, along with activity 

data on GGPP reduction using a new enzymatic assay based on mass spectrometry. Using 

these results, we performed structure-guided design of SaGGR to alter the reaction rate 

and to tailor the extent of GGPP reduction. We generated SaGGR variants that exhibit 

increased rates of H6GGPP production and also identified additional SaGGR variants that 

are capable of halting GGPP reduction at the dihydro-product, H2GGPP, and at the 

tetrahydro-product, H4GGPP. Crystal structures of these SaGGR variants bound to GGPP 
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reveal the structural bases for their altered activities and further illuminate the catalytic 

mechanism of GGR, an enzyme of both biological interest and of potential utility in the 

microbial production of isoprenoid compounds. 

 

RESULTS AND DISCUSSION 

Structure and activity of wild-type SaGGR 

Crystal structures of SaGGR were determined to high resolution bound to 

phosphatidylglycerol (PG) and to GGPP. During the preparation of this manuscript, the 

structure of SaGGR in complex with a non-physiological ligand was published (Sasaki et 

al., 2011), which described the overall structure of SaGGR in detail. Briefly, SaGGR is a 

monomer composed of two functional domains: an FAD-binding Rossmann–type fold 

domain (residues 1–74) and a ligand–binding domain (residues 75–453) (Figure 1). The 

overall structure closely resembles TaGGR (Xu et al., 2010) with an r.m.s.d of 1.5 Å over 

350 residues. SaGGR possesses an additional 60 amino acids at the C-terminus that 

TaGGR does not. This region is !-helical in nature and is contiguous with the ligand-

binding domain; it does not clearly form a domain distinct from the ligand-binding 

domain. 

Alhough our crystals were prepared without substrate, additional density was 

observed in the active site (Figure S1A). Lipid analysis later revealed this to be PG, 

which, while not a GGR substrate, has a similar structure to the native substrate DGGGP 

(Figure S1B), and it is likely that the membrane lipid remained bound during purification. 

The two chains of PG bind in separate cavities (Figure S1A), and only one chain, which 

interacts with the FAD, appears to be bound in a catalytically relevant manner. The 
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chains are separated by Y215 and a loop region (290-301). The phosphate in the lipid 

head group forms salt bridge interactions with H55 and H297 and hydrogen bonds with 

Y340 and N294. 

We also co-crystallized SaGGR with GGPP (Figures 1 and 2A). Unexpectedly, 

electron density was resolved for three separate molecules of GGPP (Figure S2A). 

Similar to PG, only one GGPP molecule (GGPP1) appears to be bound in a catalytically 

competent manner. The hydrophobic chain from the second GGPP molecule (GGPP2) is 

bound in a manner similar to the second chain from PG. The third GGPP molecule 

(GGPP3) binds SaGGR alongside GGPP2 within the same cavity. Although electron 

density was clear for all GGPP alkyl chains, disorder was observed in the pyrophosphate 

head groups of some GGPP binding sites. Only the model for GGPP1 includes both 

phosphate groups of the pyrophosphate moiety. The model for GGPP2 contains a single 

phosphate, and GGPP3 is modeled without any phosphates, and it is possible that GGPP 

became dephosphorylated during the course of crystallization. Therefore, a mixture of 

substrates with different degrees of phosphorylation may be present and only the 

phosphates that could be confidently fit into the electron density were included in the 

model. However, to avoid confusion all GGPP-based ligands will be referred to as GGPP.  

The pyrophosphate moiety of GGPP1 binds SaGGR in a completely different 

manner than the phosphate in PG. The "-phosphate forms a hydrogen bond with the 

backbone carbonyl of N90, while the phosphate of GGPP2 shows similar binding 

interactions as the phosphate from PG: salt bridges are formed between the 

pyrophosphate moiety and H55, H297, and K343 and hydrogen bonds occur with Y340 
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and N294 (Figure 2A). In all three GGPP molecules, the alkyl chains are bound by 

hydrophobic residues of the protein. 

In the bound GGPP1 molecule that represents reactive GGPP binding, the terminal 

double bond at the opposite end from the pyrophosphate group, the #14 double bond, sits 

directly facing the N5 position of FAD (3.1 Å) from which it accepts a hydride for its 

reduction. Interestingly, the GGPP methyl group adjacent this double bond is located in 

the space formed between the conserved residues F219 and W217 (Figure 2B). Because 

all other geranylgeranyl double bonds of the native DGGGP substrate must also be 

reduced by FAD in the reaction cycle, all double bonds would be positioned in a similar 

manner, with their adjacent, branching methyl groups wedged between F219 and W217. 

In this way, these two residues are involved in properly orienting the substrate in order to 

present the double bond to FADH2 for reduction. 

Our activity studies of wild-type (WT) SaGGR with GGPP reveal a six-electron 

reduction of GGPP to H6GGPP, via the intermediates H2GGPP and H4GGPP, with an 

optimal temperature of approximately 50°C and an optimal pH of approximately 5.5 

(Figure S3). In the reaction, GGPP (m/z: 449.2) is reduced first to H2GGPP (m/z: 451.2), 

which is observed only initially and in low levels (Figure 3A and Figure S4). 

Subsequently, a more significant build up of H4GGPP (m/z: 453.2) occurs, attaining a 

maximum accumulation after approximately 3 min. This H4GGPP intermediate is then 

consumed with concomitant formation of the product, H6GGPP (m/z: 455.2). The fully 

reduced form, H8GGPP (expected m/z: 457.2), was not detected (Figure S4). These 

findings are consistent with prior SaGGR results, which also identified H6GGPP as the 

product with the greatest degree of GGPP reduction (Sato et al., 2008). Time course 
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experiments yield a maximal apparent rate (vapp) of H6GGPP formation of 12 ± 2 µM 

min-1 and an apparent rate constant (kapp) for H6GGPP of 0.40 ± 0.05 min-1 (Table 2). 

Another useful metric to assess the rate of reaction is the time required to reach 50% 

maximal conversion (t50) of GGPP to H6GGPP, which was 6.3 min. 

 

Engineered GGR variants with altered activity 

Using our crystal structure of GGPP-bound WT SaGGR, we designed mutant enzymes 

with the goal of altering enzyme activity. We then determined crystal structures for 

engineered variants with improved activity or those that may provide insight into the 

enzyme mechanism. One objective was to engineer SaGGR to fully reduce the non-native 

GGPP substrate, as reduction to H8GGPP had not been observed in the WT enzyme. 

Because the crystal structure depicted the site of the terminal, #14 GGPP double bond 

poised for reduction by FAD (Figure 2B), and because our activity studies showed that 

three of the four double bonds are reduced, we speculated that the remaining, unreduced 

double bond was the double bond closest to the pyrophosphate, the #2 double bond. This 

judgment was also reached in prior SaGGR experiments with GGPP (Sato et al., 2008). 

Therefore, we targeted the largely hydrophobic residues lining the GGPP-binding 

channel for mutation to polar or positively charged residues, with the aim of bringing the 

pyrophosphate moiety deeper into the active site. We also mutated these residues to those 

with smaller side chains in order to better accommodate the pyrophosphate head group. 

Another objective was to inhibit unproductive binding of GGPP to the auxiliary binding 

sites observed in the crystal structure as GGPP2 and GGPP3 (Figure 2A). Here, we 
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mutated residues pointed towards these binding channels to bulkier hydrophobic residues 

in order to sterically hinder non-catalytic GGPP binding. 

Of the >30 SaGGR variants tested, none fully reduced GGPP to H8GGPP. 

However, several mutants displayed interesting activity profiles that significantly differed 

from WT SaGGR. Two mutants, I206F and L377H, exhibited faster overall reduction of 

GGPP to H6GGPP compared to WT SaGGR (Figure 3F). Time course experiments gave 

vapp of H6GGPP for I206F and L377H mutants of 16 ± 4 and 28 ± 11 µM min-1, 

respectively, kapp of 0.53 ± 0.14 and 0.94 ± 0.36 min-1, respectively, and t50 of 5.0 and 3.7 

min, respectively (Table 2). As with the wild-type enzyme, the I206F and L377H mutants 

reduce GGPP first by rapid formation and consumption of H2GGPP, followed by an 

initial buildup of H4GGPP that precedes reduction to H6GGPP, the final product 

(Figures 3B-3C, Figure S4).  

The I206F mutation was intended to obstruct non-catalytic GGPP binding in the 

GGPP2 and GGPP3-binding sites determined in the WT crystal structure. The structure of 

this variant confirms that F206 partially occludes the second cavity (Figure 4A and 

Figure S2B). Therefore, the catalytically inactive binding conformations are unavailable 

to GGPP. Weak electron density was observed for the GGPP1 position. However, the 

ligand could not be modeled with full confidence and was not included in the final 

structure (Figure S2B). 

For the L377H mutant, the WT SaGGR crystal structure shows L377 residing on 

the enzyme’s surface, at the opening of the catalytic GGPP binding site and directly 

adjacent the pyrophosphate head group. Mutation of this residue to histidine was intended 

to stabilize GGPP binding in its catalytic binding site. Indeed, H377 of the mutant forms 
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a salt bridge with the GGPP pyrophosphate (Figure 4B), thereby improving substrate 

binding. Apart from its interaction with H377, GGPP binds to the L377H in the same 

way as it binds to the WT enzyme, with the terminal, #14 double bond directly adjacent 

the N5 of FAD (Figure 4B). 

Interestingly, a double I206F/L377H mutant produced H6GGPP faster than either 

of the single I206F or L377H mutants (Figure 4, Figure S4), with vapp, kapp, and t50 for 

H6GGPP of 29 ± 3 µM min-1, 0.95 ± 0.09 min-1, and 2.6 min, respectively (Table 2). 

Overall, the I206F/L377F mutant was the fastest SaGGR variant tested, generating 

H6GGPP approximately 2.4-fold faster than the WT enzyme. The crystal structure of the 

I206H/L377H double mutant correspondingly depicts the features of both I206F and 

L377F single-mutant structures described above combined in the same structure, with 

GGPP also bound with its #14 double bond directly adjacent the N5 of FAD. From these 

data, it appears that the rate-enhancing effects of the individual mutations are additive. 

 On the other hand, another mutant, G91H, halts the reduction of GGPP at 

H2GGPP (Figure 3D, Figure S4). After reaching maximal H2GGPP levels after 

approximately 10 min, only a very small quantity of H2GGPP is reduced further to 

H4GGPP or to H6GGPP (Figures 3D and 3F). This is in contrast to the H6GGPP-

producing WT, I206F, L377H, and I206F/L377H enzymes discussed above, which do not 

accumulate appreciable levels of H2GGPP at any point during the reaction. The G91H 

mutant displays vapp, kapp, and t50 for H2GGPP of 25 ± 4 µM min-1, 0.83 ± 0.14 min-1, and 

3.0 min, respectively (Table 2). Notably, the G91H t50 for H2GGPP is slightly greater 

than the I206F/L377H t50 for H6GGPP, indicating that the fastest H6GGPP producer 

performs three reductions of GGPP (from GGPP to H6GGPP) faster than G91H performs 
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one reduction (from GGPP to H2GGPP). Interestingly, although mutation of both G91 

and L377 to histidine gives completely different reactive outcomes, forming H2GGPP 

and H6GGPP products, respectively, both residues in the WT SaGGR crystal structure are 

located at a similar position on the surface of the enzyme, at the opening of the same 

GGPP binding site. In fact, G91 and L377 sit directly across the opening from each other, 

with the GGPP pyrophosphate group located in the center. Our crystal structure of the 

G91H variant shows that, like H377 in the L377H mutant, H91 similarly forms a salt 

bridge with the GGPP pyrophosphate (Figure 4C). However, unlike in the L377H 

structure, GGPP in the G91H structure is bound in a different position, where the GGPP 

substrate has slid farther into the protein cavity, placing the #6 double bond instead of the 

#14 double bond directly adjacent N5 of FAD. 

Going one reduction further than the G91H mutant, another SaGGR variant, the 

F219L mutant, ceases GGPP reduction at H4GGPP without significant conversion to 

H6GGPP (Figure 3E, Figure S4). Interestingly, F219 is a conserved residue that is 

thought to serve a role in substrate binding as described above, where the GGPP methyl 

group flanking the reduced double bond is wedged between F219 and the conserved 

W217 in order to correctly orient the substrate double bond for reduction by FADH2. 

Mutation of F219 to leucine was intended to provide more room in the substrate-binding 

channel for the pyrophosphate head of GGPP to move farther into the active site without 

compromising the hydrophobic environment. The crystal structure of the F219L mutant 

confirms that this is the case (Figure 4D). In experiments with the F219L mutant, a small 

buildup of H2GGPP is observed after the reaction is initiated, followed by the production 

of H4GGPP, with vapp, kapp, and t50 for H4GGPP of 23 ± 5 µM min-1, 0.78 ± 0.15 min-1, 
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and 3.0 min, respectively (Table 2), without significant reduction to H6GGPP (Figure 3F). 

It is possible that the increased size of the active site cavity no longer provides sufficient 

van der Waals interactions for efficient binding and further reduction of the substrate. 

 Using simple mutations derived from structure-guided design, we have enhanced 

and expanded the catalytic repertoire of SaGGR activity towards a non-native substrate, 

GGPP. Three mutants (I206F, L377H, and I206F/L377H) exhibit faster production of 

H6GGPP than the WT, increasing the overall rate of product formation by up to 2.4-fold. 

Two other mutants selectively arrest the progression of GGPP reduction at different 

intermediate stages, with G91H producing H2GGPP and F219L producing H4GGPP at 

rates comparable to H6GGPP formation in the fastest H6GGPP-producing mutants. These 

mutants provide customized degrees of hydrogenation for the key isoprenoid intermediate 

GGPP. Overall, these results highlight the power of structure-guided design in tailoring 

the kinetic and reactive outcomes of enzymes through small changes in the protein 

sequence. 

 

Mechanistic implications 

Our structures of engineered SaGGR variants not only reveal the structural bases for their 

altered reactivities, they also help illuminate the enzymatic mechanism employed. As 

these structures capture snapshots of the GGPP substrate at different stages during the 

reaction, the mechanism by which GGR reduces successive double bonds of the same 

substrate may be more deeply explored. 

 As discussed, the GGPP-bound crystal structures of the H6GGPP-producing 

enzymes (WT and L377H GGR) show the GGPP #14 double bond directly adjacent the 
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N5 position of the FAD cofactor. On the other hand, the structure of the G91H mutant, 

which reduces just one double bond to form H2GGPP, shows that formation of the salt 

bridge between H91 and the GGPP1 pyrophosphate now places the #6 double bond 

adjacent N5 of FAD. These results suggest that the first double bond to be reduced is the 

#6 double bond, while the #14 double bond is the last double bond to be reduced. Here, 

through its interaction with the GGPP1 pyrophosphate, the G91H mutant obstructs 

translocation of the H2GGPP intermediate to inhibit further reduction (Figure 4C). This 

reduction sequence implies that the double bond between #6 and #14, the #10 double bond, 

is the second to be reduced. As H8GGPP is not formed by any enzyme, these data suggest 

that the #2 double bond is left intact, consistent with prior studies (Sato et al., 2008). In 

all, our SaGGR structures indicate that GGR first reduces GGPP at the #6 double bond, 

then at #10, and finally at #14 (Fig. S2C). 

 Interestingly, in the structure of the F219L mutant which performs two reductions 

of GGPP to H4GGPP, GGPP1 is bound in the same manner as in the WT and L377H 

structures, with the #14 double bond adjacent the N5 of FAD (Figure 4D). This 

observation suggests that the F219L variant first reduces the #10 double bond before 

reducing the #14 double bond, giving the GGPP1 position represented in the structure and 

consistent with the order of reduction described above. 

 Although the order of double bond reduction is suggested by the structures, the 

structures do not indicate whether GGR employs a processive mechanism or not, that is 

whether the enzyme successively reduces the double bonds of a single substrate molecule 

before moving on to the next, or whether H2GGPP or H4GGPP intermediates dissociate 

from the enzyme before the final H6GGPP product is made. However, the mass 
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spectrometry data indicate that the mechanism of H6GGPP formation is not processive, as 

before H6GGPP is made, GGPP continues to be consumed to form H2GGPP and 

H4GGPP, allowing a clear buildup of the intermediate H4GGPP. Therefore, H4GGPP 

must dissociate from the enzyme, enabling the next molecule of GGPP to bind and be 

reduced, before reduction of H4GGPP to H6GGPP proceeds. However, it is difficult to 

determine whether the first two GGPP reductions, first to H2GGPP and then to H4GGPP, 

are processive. On the one hand, a processive mechanism to H4GGPP appears to be 

supported by the data, as no significant buildup of H2GGPP is observed. However, it is 

also possible that the second reaction to form H4GGPP is sufficiently faster than the first 

to allow rapid reduction of H2GGPP, making the first step rate-determining. Additional 

studies may be performed to further explore the processivity of GGR reduction. Although 

it is possible that the native reaction with DGGGP may not follow the same mechanism, 

this is unlikely as the enzyme catalyzes the reduction of the same geranylgeranyl moiety 

of both GGPP and DGGGP substrates. 

 

Conclusions 

The crystal structure of WT SaGGR bound with GGPP was determined, which 

unexpectedly showed three binding sites for GGPP and revealed how the enzyme orients 

double bonds to be reduced by the bound FAD cofactor. Structure-guided design of the 

enzyme yielded SaGGR variants that enhanced the rate of H6GGPP product formation. 

Interestingly, additional mutants were observed to arrest the degree of GGPP reduction at 

H2GGPP and H4GGPP. Crystal structures of these variants reveal the structural bases for 

their altered activities, in addition to providing insight into the SaGGR mechanism. 
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With these GGR variants, the degree of GGPP reduction can be customized 

enzymatically, a feature that is particularly useful in synthetic biology. As GGPP is a key 

intermediate in the production of countless isoprenoid-derived products, including all 

diterpenes, retinoids, and carotenoids, modified GGRs such as these may be used to tailor 

the degree of hydrogenation and alter the isoprenoid product profile. Because terpene 

synthases rely on double bonds at specific positions to rearrange the carbon skeleton, the 

use of modified GGRs to selectively reduce specific GGPP double bonds can re-direct 

the reactive outcome towards different products. In addition, it is useful that, as with the 

WT enzyme, no SaGGR variants reduced the #2 double bond, as a double bond in this 

position is necessary for providing the resonance-stabilized allylic carbocation in 

subsequent reactions that involve removal of the pyrophosphate group; if the #2 double 

bond were reduced, the resulting H8GGPP would be a dead-end product. As our 

engineered enzymes exhibit altered product profiles, these studies pave the way for the 

use of modified GGRs in the microbial production of tailored isoprenoid products. 

 

EXPERIMENTAL PROCEDURES 

Plasmid construction 

A codon-optimized gene encoding SaGGR was synthesized (Genscript USA, Inc.) with 

flanking Nde I and BamH I restriction sites. The gene cassettes were digested with Nde I 

amd BamH I and ligated into pSKB3, a plasmid which confers kanamycin resistance and 

encodes a TEV protease-cleavable N-terminal hexahistadine tag to aid in protein 

purification. Mutant SaGGR constructs were made by standard oligonucleotide-directed 

PCR mutagenesis using pSKB3-SaGGR as a template and the complementary 
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oligonucleotides listed in Table S1 as primers. All constructs were verified by DNA 

sequencing (Quintara Biosciences). 

 

Protein overexpression and purification 

Plasmids were transformed into Escherichia coli BLR(DE3) or Rosetta2(DE3)pLysS 

cells for overexpression. Cells were grown in LB or TB medium supplemented with 

50!µg/mL kanamycin, or 50!µg/mL kanamycin plus 34!µg/mL chloramphenicol in the 

case of the Rosetta2(DE3)pLysS cells, at 37°C to an OD600 of 0.5-0.7, when the cultures 

were transferred to 18°C. Overnight overexpression was then induced with 0.1-0.5 mM 

isopropyl "-D-1-thiogalactopyranoside (IPTG). Cells were harvested by centrifugation at 

5,000 $ g for 15 min at 4°C, flash-frozen in liquid nitrogen, and stored at -80°C until use.  

Cells were thawed and resuspended in Lysis Buffer (20 mM NaH2PO4, pH 7.4, 

200 mM NaCl, 20 mM imidazole), and phenylmethylsulfonyl fluoride (PMSF) and 

Benzonase (EMD Millipore) were added at 0.5 mM and 5 U/mL concentrations, 

respectively. Cell lysis was performed by sonication, and cell debris was pelleted by 

centrifugation at 50,000 $ g for 30 min. Soluble extracts were incubated with Ni-NTA 

resin for 1 h at 4°C and loaded onto a column. The flow-through was discarded and the 

resin was washed with approximately 10 column volumes of Lysis Buffer containing 

40 mM imidazole. Protein was eluted with Lysis Buffer containing 250 mM imidazole, 

and yellow fractions representing FAD-bound GGR were collected and pooled. The 

purified protein was buffer-exchanged into Lysis Buffer by either overnight dialysis or 

cycles of protein concentration and dilution.  
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To remove the hexahistidine tag, EDTA (0.5 mM), DTT (1 mM), and 

hexahistidine-tagged TEV protease (approximately 1:100 molar ratio compared to GGR) 

were added. Reactions were mixed and incubated overnight at room temperature. TEV 

protease, cleaved hexahistidine tags, and any remaining uncleaved SaGGR were removed 

by passing the solution through Ni-NTA resin pre-equilibrated with Lysis Buffer and 

collecting the flow-through. Successful cleavage of the tag and the purity of SaGGR were 

assessed by SDS-PAGE. The protein was then buffer exchanged into 20 mM NaH2PO4, 

pH 7.4, using a Sephadex G-25 column (GE Healthcare) and concentrated to 7-10 mg/mL. 

Final protein concentrations were determined by the Bradford method (Bradford, 1976) 

and by the absorbance at 280 nm using a calculated extinction coefficient, !, of 

82,100 M-1 cm-1.  Protein samples were either used directly or aliquoted, flash frozen in 

liquid nitrogen, and stored at -80°C until use. 

 

Enzymatic assays 

Reactions were performed at least in triplicate and contained 100 mM 2-(N-

morpholino)ethanesulfonic acid (MES) pH 5.5, 20 mM sodium dithionite, 200 µM FAD, 

and 100 µM GGPP. Reaction mixtures were pre-heated to 50°C and initiated by the 

addition of 30 µM purified SaGGR. The reactions were mixed and incubated at 50°C for 

varying durations. Reactions were quenched and extracted with an equal volume of 

n-butanol. In experiments that determined the pH optimum, 100 mM citric acid/sodium 

citrate (pH 2.5-5.0), MES (pH 5.5-6.5), and NaH2PH4/Na2HPO4 (pH 7.0-8.0) were used 

as reaction buffers in place of MES, pH 5.5. In experiments that determined the 
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temperature optimum, reaction mixtures were pre-heated to varying temperatures on a 

thermal cycler, and purified WT SaGGR was added to initiate the reaction.  

To screen SaGGR variants for the extent of GGPP reduction, the organic phase 

was analyzed by LC-MS. Reaction products were separated by HPLC (Agilent 

Technologies) using a 2.1$150 mm ZIC-pHILIC column (EMD Millipore) and an 

isocratic elution of 64% v/v acetonitrile and 36% v/v 50 mM ammonium acetate in water 

at a flow rate of 0.15 mL/min at 40°C. The HPLC system was coupled to a triple 

quadrupole mass spectrometer (Applied Biosystems). Electrospray ionization (ESI) was 

conducted in the negative ion mode, and single ion monitoring (SIM) was used for the 

detection of [M-H]- ions at approximately 449, 451, 453, and 455 m/z, representing 

GGPP, H2GGPP, H4GGPP, and H6GGPP, respectively. 

To quantify GGPP and its reactions products for WT SaGGR and select mutants, 

the organic phase was analyzed by LC-TOF MS. Reaction products were separated by 

HPLC using a ZIC-pHILIC column (Merck SeQuant, via The Nest Group, Inc., MA) and 

an isocratic elution of 62% v/v acetonitrile and 37% 50 mM ammonium carbonate in 

water at a flow rate of 0.2 mL/min at 40°C. The HPLC system was coupled to a time-of-

flight mass spectrometer (Agilent Technologies). ESI was conducted in the negative ion 

mode, and MS experiments were carried out in full scan mode, at 0.86 spectra/s for the 

detection of [M-H]- ions. The instrument was tuned for a range of 50-1700 m/z. Data 

acquisition and processing were performed by the MassHunter software package. 

Analytes were quantified using seven-point calibration curves (1.5625-100 µM GGPP) 

whose R2 coefficients were >0.99.  



Page 20 of 36!

The total concentrations of all reaction products varied between samples, perhaps 

due to differences in extraction efficiency. Therefore, instead of directly establishing 

absolute concentrations for each product, relative concentrations were first determined 

and as a percentage of the total products for each sample. Apparent reaction rates, vapp, 

for each sample were thus determined initially in units of % min-1, which were then 

converted to µM min-1 given the initial substrate concentration of 100 µM. The validity of 

this unit conversion rests only on the assumption that GGPP, H2GGPP, H4GGPP, and 

H6GGPP extract with approximately equal efficiencies, which we believe is reasonable. 

 

Crystallization 

Purified WT and mutant SaGGR were concentrated to ~10 mg/ml in a buffer containing 

25 mM HEPES pH 7.4. Crystallization screening was carried out on a Phoenix robot (Art 

Robbins Instruments, Sunnyvale, CA) using a sparse matrix screening method (Jancarik 

and Kim, 1991). Proteins were crystallized by sitting-drop vapor diffusion in drops 

containing a 1:1 ratio of protein solution and 0.1 M Tris pH 7.5, 10% PEG 3350 and 0.2 

M L-proline. An additional 5 mM GGPP was added to the crystallization buffer to obtain 

the ligand-bound crystals. Yellow crystals were observed within two days. For data 

collection, crystals were flash frozen in liquid nitrogen from a solution containing mother 

liquor and 10% glycerol. 

 

X-ray data collection and structure determination 

The X-ray diffraction data for SaGGR were collected at the Berkeley Center for 

Structural Biology beam lines 8.2.1 and 8.2.2 of the Advanced Light Source at Lawrence 
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Berkeley National Laboratory. Diffraction data were recorded using ADSC Q315R 

detectors (Area Detector Systems Corporation, San Diego, CA). Processing of image data 

was performed using the HKL2000 suite of programs (Otwinowski and Minor, 1997). 

For the WT structure, phases were calculated by molecular replacement with the program 

PHASER (McCoy et al., 2007), using the structure of TaGGR (PDB ID: 3OZ2) (Xu et al., 

2010) as a search model. Automated model building was conducted using Autobuild 

(Terwilliger, 2003)  from the PHENIX suite of programs (Adams et al., 2010) resulting in 

a model that was 85% complete. Manual building using Coot (Emsley and Cowtan, 2004) 

was alternated with reciprocal space refinement using PHENIX (Afonine et al., 2012). 

Waters were automatically placed using PHENIX and manually added or deleted with 

Coot according to peak height (>3.0 % in the Fo-Fc map) and the distance to a potential 

hydrogen bonding partner (< 3.5 Å). TLS refinement (Winn et al., 2001) of 10 groups, 

chosen by the TLSMD web server (Painter and Merritt, 2006), was used in later rounds 

of refinement. All mutant structures were refined and built in the same manner as the WT 

model. All data collection, phasing, and refinement statistics are summarized in Table 1. 
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Figure 1. Overall fold of SaGGR. The structure of SaGGR was solved to high 

resolution bound with GGPP (magenta). SaGGR is a monomer composed of two 

functional domains, an FAD (yellow) binding Rossmann-type fold domain (residues 1-

74) and a ligand–binding domain (residues 75-453). Protein in cyan ribbons and FAD (C 

in yellow) and GGPP (C in magenta) shown in sticks, with O in red, N in blue, and P in 

orange. 
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Figure 2. Active site of SaGGR. (A) SaGGR was co-crystallized with GGPP. Electron 

density was resolved for three separate molecules of GGPP (Figure S2). Like PG, only 

one chain (GGPP1), appears to be bound in a catalytically competent manner, with its #14 

double bond proximal to N5 of FAD. The hydrophobic chain from the second molecule 

(GGPP2) is bound in a similar manner as the second chain from PG. The third molecule 

(GGPP3) binds SaGGR alongside GGPP2 within the same cavity. (B) The SaGGR active 

site showing the FAD isoalloxazine ring, the GGPP1 #14 double bond, and conserved 

residues W217 and F219. FAD (C in yellow), GGPP (C in magenta), and protein residues 

(C in cyan) shown in sticks, with O in red, N in blue, and P in orange. 
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Figure 3. Distribution of WT and mutant SaGGR reaction products over time. 

Reaction products for (A) WT, (B) I206F, (C) L377H, (D) G91H, and (E) F219L SaGGR. 

(F) Time-dependent formation of H6GGPP from GGPP for WT and mutant SaGRR. WT, 

I206F, L377H, and I206F/L377H SaGGR produce H6GGPP as the final product. 

However, the primary products of the G91H and F219L mutants are H2GGPP and 

H4GGPP, respectively. The apparent rate of GGPP reduction to H6GGPP was enhanced 

in I206F, L377H, and I206F/L377H mutants compared to the WT. 
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Figure 4. Active sites of engineered SaGGR variants. (A) The I206F mutant shows 

increased activity compared to WT SaGGR. GGPP1 and GGPP2 are not present in this 

structure but have been modeled in to demonstrate that F206 partially occludes the 

second cavity. Therefore, this catalytically inactive binding conformation is unavailable 

to GGPP. I206 from the WT structure (orange) has been overlaid with F206 to 

demonstrate the steric hindrance caused by the introduction of a bulky phenylalanine. (B) 

The L377H mutant shows improved activity over WT and I206F and reduces 3 of the 4 

GGPP double bonds. H377 forms a salt bridge with the GGPP pyrophosphate. (C) The 

G91H mutant reduces only one GGPP double bond. H91 forms a salt bridge with the 

GGPP pyrophosphate, with the #6 double bond adjacent the N5 of FAD. (D) The F219L 

mutant only reduces two GGPP double bonds. The mutation increases the size of the 

active site cavity and may no longer provide sufficient van der Waals interactions for 

efficient binding and reduction of substrate. FAD (C in yellow), GGPP (C in magenta), 

and protein residues (C in cyan) shown in sticks, with O in red, N in blue, and P in orange.  
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Table 1. X-ray data collection and refinement statistics. 
 SaGGR GGPP G91H I206F L377H F219L I206F/L377H 
PDB ID 4OPC 4OPD 4OPU 4OPL 4OPG 4OPI 4OPT 
Resolution (Å) 50 -1.4  

(1.42 -1.4) 
50  - 1.83  
(1.86  - 1.83) 

50 – 2.70 
(2.75 – 2.70) 

50 – 2.48  
(2.52-2.48) 

50 – 2.07  
(2.11-2.07) 

50 – 2.24 
(2.28-2.24) 

50 – 2.60  
(2.64-2.60) 

Space group C 1 2 1 P 1 P 2 1 2 1 2 1 P 2 1 2 1 2 1 P 2 1 2 1 2 1 P 2 1 2 1 2 1 P 2 1 2 1 2 1 
Unit cell (Å) a = 109.0 

b = 65.3 
c = 63.2 

a = 63.1 
b = 63.2 
c = 65.1 

a = 63.9 
b = 82.0 
c = 106.2 

a = 65.3 
b = 78.9 
c = 106.0 

a = 63.2 
b = 81.7 
c = 105.9 

a = 63.8 
b = 83.0 
c = 106.4 

a = 63.7  
b = 82.2 
c = 106.4 

 ! = & = 90° 
" = 92.0° 

! = 121.0° 
" = 90.0° 
& = 88.6° 

! = " = & = 90° ! = " = & = 90° ! = " = & = 90° ! = " = & = 90° ! = " = & = 90° 

Total reflections 511159 272344 153053 181226 328857 186897 121720 
Unique reflections 83434 75985 15943 19915 34256 27895 17900 
Multiplicity 6.1 (4.5) 3.6 (2.6) 9.6 (8.3) 9.1 (5.7) 9.6 (8.0) 6.7 (5.4) 6.8 (5.5) 
Completeness (%) 96.60 (82.40) 97.30 (93.4) 98.7 (87.2) 97.4 (77.1) 100.0 (99.9) 99.3 (93.5) 98.0 (81.4) 
I/sigma(I) 33.7 (1.92) 11.1 (1.15) 17.8 (1.46) 28.5 (1.53) 27.7 (1.82) 23.0 (2.87) 15.3 (1.43) 
R-sym 0.039 (0.506) 0.107 (0.547) 0.122 (0.892) 0.103 (0.644) 0.075 (0.890) 0.068 (0.547) 0.110 (0.816) 
R-factor 0.15 0.15 0.21 0.26 0.19 0.19 0.19 
R-free 0.18 0.19 0.25 0.29 0.21 0.23 0.22 
RMS from ideal 
geometry 

       

Bonds (Å) 0.006 0.007 0.002 0.002 0.002 0.002 0.002 
Angles (°) 1.1 1.064 0.723 0.564 0.612 0.716 0.575 
Ramachandran 
plot 

       

Favored (%) 99 98 98 98 98 98 97 
Outliers (%) 0 0.2 0 0 0 0 0 
Clashscore 1.98 3.83 4.22 2.91 1.9 1.91 2.47 

Statistics for the highest-resolution shell are shown in parentheses. 
 

 

 

  

Table 2. Kinetic data for wild-type SaGGR and its engineered mutants. 
SaGGR variant Product vapp (µM min-1) kapp (min-1) t50 (min) 

WT H6GGPP 12 ± 2 0.40 ± 0.05 6.3 
I206F H6GGPP 16 ± 4 0.53 ± 0.14 5.0 
L377H H6GGPP 28 ± 11 0.94 ± 0.36 3.7 

I206F/L377H H6GGPP 29 ± 3 0.95 ± 0.09 2.6 
G91H H2GGPP 25 ± 4 0.83 ± 0.14 3.0 
F219L H4GGPP 23 ± 5 0.78 ± 0.15 3.0 

Note: vapp, kapp, and t50 are the apparent rate, the apparent rate constant, and the time to 
reach 50% maximal conversion from GGPP, respectively, for the products indicated. 
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Figure S1, related to Figure 1. Binding of phosphatidylglycerol (PG) to SaGGR. (A) 

Protein in cyan ribbons and FAD (C in yellow) and PG (C in green) in sticks (O in red, O 

in blue, P in orange). 2FO–FC density around PG in blue mesh contoured at 1 !. (B) The 

structure of PG in the model compared to 2,3-di-O-geranylgeranylglyceryl phosphate 

(DGGGP), the native GGR substrate.  
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Figure S2, related to Figures 1, 2, and 4. The GGPP binding sites of SaGGR. (A) Of 

the three GGPP molecules bound, only one (GGPP1) represents a catalytically relevant 

binding site, with the "14 double bond positioned adjacent the N5 of FAD for reduction. 

Electron density for the entire pyrophosphate moieties of GGPP2 and GGPP3 was 

insufficient to model these head groups. Protein in cyan ribbons and FAD (C in yellow) 

and GGPP (C in magenta) in sticks (O in red, O in blue, P in orange). 2FO–FC density 

around GGPP molecules in blue mesh (1 !). (B) 2FO–FC omit density (blue mesh, 1 !) in 
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GGPP-binding regions of the I206F SaGGR mutant. Although some weak density is 

present, it is insufficient to include GGPP in the final model. Instead, the GGPP-binding 

locations are shown based on the GGPP positions in the WT SaGGR structure. It should 

be noted that strong density is observed near the phosphate head group of GGPP2. It is 

possible that in the absence of GGPP2 a phosphate ion has bound to this position. (C) The 

structure of GGPP and the proposed SaGGR-catalyzed stepwise reduction to H6GGPP.  
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Figure S3, related to Figure 3 and Table 2. Temperature and pH optima for WT 

SaGGR. (A) The optimal temperature for the enzyme appeared at about 55°C, while (B) 

the pH optimum was at about 5.5. 
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Figure S4, related to Figures 3 and 4 and Table 2. Representative mass 

spectrometry data from WT and mutant SaGGR enzymatic activity experiments, 

determined by LC-TOF MS. The mass spectrum for the GGPP-only control without 

added enzyme (bottom, red line) shows a single species representing unreacted GGPP 

(parent peak a, m/z: 449.2; additional peaks observed in this spectrum represent GGPP 

isotopic peaks [M+1], [M+2], etc.). In the enzymatic assay with WT SaGGR, GGPP is 

rapidly consumed to form the singly-reduced intermediate H2GGPP (parent peak b, m/z: 

451.2) before formation of the H4GGPP intermediate (parent peak c, m/z: 453.2). 

Following a build-up of H4GGPP, further reduction to H6GGPP (parent peak d, m/z: 

455.2) ensued, which is the final product. The fully reduced H8GGPP product (expected 

m/z: 457.2) was not observed. Data for mutant SaGGR are also shown, depicting the 

reduction of GGPP to H6GGPP for I206F, L377H, and I206F/L377H mutants. However, 

GGPP reduction terminates at H2GGPP and H4GGPP for the G91H and F219L SaGGR 

mutants, respectively. 
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Table S1, related to Figures 3 and 4 and Table 2. Oligonucleotide primers used for 

the generation of SaGGR mutants. Mutant codons are capitalized. The reverse primers 

used contain the reverse complementary sequence of the forward primers below. The 

I206F/L377H mutant was generated using the L377H oligonucleotide primer and the 

I206F mutant sequence as the template. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Mutant Forward primer (5'-) 
I206F gaggaccatgactacttgagaatattcTTTgatcaagagacatctccaggc 
L377H aagaagaagattataaaagaagaggatctgCATgaagcaagtgaaaaaggagatcttca 
G91H gatatgcagacagtatggacagtaaatCATgagggttttgaactaaatgccc 
F219L ccaggcggttattggtggtacCTGcctaaagggaagaacaaag 
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