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Methyl group rotation, 1H spin-lattice relaxation in an organic solid,
and the analysis of nonexponential relaxation

Peter A. Beckmanna) and Evan Schneiderb)

Department of Physics, Bryn Mawr College, 101 North Merion Avenue, Bryn Mawr,
Pennsylvania 19010-2899, USA

(Received 26 July 2011; accepted 20 December 2011; published online 6 February 2012)

We report 1H spin-lattice relaxation measurements in polycrystalline 4,4′-dimethoxybiphenyl at tem-
peratures between 80 and 300 K at NMR frequencies of ω0/2π = 8.50, 22.5, and 53.0 MHz. The
data are interpreted in terms of the simplest possible Bloch-Wangsness-Redfield methyl group hop-
ping model. Different solid states are observed at low temperatures. The 1H spin-lattice relaxation
is nonexponential at higher temperatures where a stretched-exponential function fits the data very
well, but this approach is phenomenological and not amenable to theoretical interpretation. (We pro-
vide a brief literature review of the stretched-exponential function.) The Bloch-Wangsness-Redfield
model applies only to the relaxation rate that characterizes the initial 1H magnetization decay in a
high-temperature nonexponential 1H spin-lattice relaxation measurement. A detailed procedure for
determining this initial relaxation rate is described since large systematic errors can result if this is
not done carefully. © 2012 American Institute of Physics. [doi:10.1063/1.3677183]

I. INTRODUCTION

Experiments involving methyl group (CH3) dynamics
and the models derived from these experiments provide in-
formation on intramolecular and intermolecular interactions
in van der Waals molecular solids. At temperatures below ap-
proximately 80 K in most solids, the models for methyl group
dynamics involve quantum mechanical tunneling1–9 and the
idea of the classical rotation of a triangle of spin-1/2 pro-
tons makes no sense. Indeed, the concepts of instantaneous
position and speed have no place in the fundamental quan-
tum mechanics of bound systems. Parameters such as cor-
relation times and activation energies emerge through de-
tailed calculations of quantum mechanical expectation values
and the use of the canonical ensemble. Above approximately
80 K in most solids, however, the classical hopping of a tri-
angle of protons3–5, 7, 10–14 is an excellent model for the in-
terpretation of nuclear magnetic resonance (NMR) relaxation
data and has withstood the test of time.15–20 In this model,
we do indeed picture the triangle of spins as hopping from
one equilibrium position to another in a 3m-fold barrier for
m = 1, 2, . . . Whereas the low-temperature tunneling model is
a very clear quantum mechanical model, the high-temperature
classical hopping model is a typical quantum-classical hy-
brid. It is quantum mechanical in the sense that the three-
proton wave function can be thought of as being highly
localized (thus defining “positions”). In addition, the three
protons jump instantaneously from one equilibrium position
to another, meaning that there is no “motion” in the classi-
cal sense. This model is classical in that one can calculate

a)Author to whom correspondence should be addressed. Electronic mail:
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b)Present address: Department of Astronomy, University of Arizona, 933
North Cherry Avenue, Room N204, Tucson, Arizona 85721-0065, USA.

potential energy functions and think of the methyl group as
continuously exchanging kinetic and potential energy as it
rotates. One speaks of equilibrium structures (atomic posi-
tions) and transition structures. These two approaches seem
internally inconsistent; the terms “instantaneous jump” and
“continuous rotation” both appear (or are implied) at var-
ious places in the model. We just need to admit that the
problem is with language, not with the mathematical mod-
els. Indeed, kinetic and potential energy have no place in
the quantum mechanics of bound systems. There is only en-
ergy. So, the high-temperature region for methyl group dy-
namics seems confusing, but the mathematical model and the
very small number of parameters that emerge, as reviewed
below, are clear and well defined. We note that the transi-
tion from the low-temperature quantum mechanical tunnel-
ing regime to the high-temperature classical hopping regime
is well understood.2–4, 10, 11, 13 We do note an interesting 1H
spectroscopy study in a single crystal of partially deuterated
methylmalonic acid [CDCH3(COOD)2] where, for spectra in
the range 69–104 K, using a quantum-mechanical model for
methyl group rotation gave a better fit of the data than the
classical hopping model.21 In the end, the tests of the validity
of a model are (1) whether or not it is consistent with a wide
variety of experimental results and (2) that it has a reasonably
small number of adjustable parameters, all of which can be
determined uniquely by the experiment.

Here, we report solid state NMR 1H spin-lattice relax-
ation experiments in polycrystalline 4,4’-dimethoxybiphenyl.
(The molecule is shown as an inset in Fig. 1.) The exper-
iments are performed at temperatures above 80 K and we
use the classical (i.e., the quantum-classical hybrid) methyl
group hopping model to interpret the data. The data covers a
large temperature range at three NMR frequencies and only
three adjustable parameters appear in the model. All three pa-
rameters are highly constrained by independent models. This
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FIG. 1. The stretched-exponential characteristic 1H relaxation rate, R*, ver-
sus inverse temperature, T−1, in polycrystalline 4,4′-dimethoxybiphenyl at
NMR frequencies ω0/2π = 8.50 (�), 22.5 (�, �, ●), and 53.0 MHz ( , �,

). The inset shows the molecule. The different symbols for 22.5 and 53.0
MHz indicate different groupings of experiment days indicating (at lower
temperatures) slightly different structures on different groups of days. At tem-
peratures below (i.e., to the right of) the approximate positions of the vertical
lines, the stretching parameter β > 0.95 (see Fig. 4). At these temperatures,
the stretched-exponential relaxation fit and a single-exponential relaxation
fit, characterized by R, are indistinguishable (R* = R). The experimental un-
certainties are within the sizes of the symbols. The solid lines correspond
to a single fit as discussed in the text. The dashed line indicates the high-
temperature RS values in Fig. 2. The data to the right of the vertical lines are
the same in Figs. 1 and 2 and are shown on an expanded scale in Fig. 3.

project represents a very strong test of the “classical” methyl
group hopping model.

Above 100–120 K (depending on the NMR frequency),
the 1H spin-lattice relaxation in this study is nonexponen-
tial for well-understood reasons.22, 23 A main thrust of this
paper is to present a detailed look at the analysis of these
1H solid state NMR nonexponential relaxation data. If care
is not taken, significant systematic errors in reported val-
ues of relaxation rates can result. Though the molecule it-
self is of little significance to the best of our knowledge, the
analysis of nonexponential relaxation is an important gen-
eral problem in many fields of science. Characterizing this re-
laxation using a stretched-exponential function24 is very pre-
cise, but the relaxation rate that corresponds to meaningful
theoretical models is the less precisely determined rate that
characterizes the initial recovery curve of a perturbed nu-
clear magnetization.22, 23 (As a byproduct of this project, we
provide a brief literature review of the stretched-exponential
function in Sec. IV B.) Between 80 K and 100–120 K, again
depending on the NMR frequency, the 1H spin-lattice re-
laxation is exponential. In this paper, we discuss the proce-
dure for extracting meaningful dynamical parameters from
the entire temperature and NMR frequency dependence of
the relaxation. Elsewhere, we relate the observed barrier for
methyl group rotation determined here to both the molecular
and crystal structure of 4,4′-dimethoxybiphenyl.25 1H spin re-
laxation involves the modulation of both intramolecular and
intermolecular 1H spin−1H spin interactions and as such is
sensitive to small changes in the solid state, either crystal
structure or molecule conformation (or both). Thus, we are
able to observe polycrystalline 4,4′-dimethoxybiphenyl in dif-
ferent states on different days as a consequence of different
thermal histories.26–30

II. EXPERIMENTAL METHODS

The sample of 4,4′-dimethoxybiphenyl was purchased
from Sigma Aldrich and further purified by recrystallization
from 95% ethanol. Solid state 1H spin-lattice relaxation mea-
surements were made between 80 and 300 K at NMR frequen-
cies of ω0/2π = 8.50, 22.5, and 53.0 MHz (corresponding
to magnetic fields of 0.200, 0.528, and 1.24 T). 1H magne-
tization recovery curves were measured using an inversion-
recovery pulse sequence. Low NMR frequencies are used in
these NMR relaxation studies to bring the methyl group mean
hop rates into resonance with the NMR frequencies at reason-
able temperatures. This is to be contrasted with the high NMR
frequencies used in NMR spectroscopy measurements in or-
der to better resolve chemical shifts and other interactions.

Temperature was controlled by a flow of cold nitrogen
gas that could be heated to obtain the desired temperature.
Temperature was measured with homemade silver-soldered
copper-constantan thermocouples that were imbedded in the
samples 2 mm outside the end of the 15 mm long, 7 mm di-
ameter NMR coil. The many thermocouples used in the labo-
ratory are carefully calibrated every few years using standard
temperature references. They have not varied over a 25-year
period. There is typically a 0.5 K gradient along the 15 mm
of sample in the coil. Absolute temperatures are measured to
±2 K and temperature differences are monitored to ±0.2 K.
Four thermocouples were used with two different samples at
three different NMR frequencies (each with its own probe) at
two complete (and independent) experimental stations. Three
of the four thermocouples were used with both samples at all
three frequencies. Observations were made at ω0/2π = 22.5
and 53.0 MHz at one station and at 8.50 and 22.5 MHz at the
other.

The free induction decay following a π /2 observation
pulse is not strictly exponential31 in a polycrystalline sample
but can be characterized by the time to decay to approximately
1/e of the maximum height observed after the amplifier recov-
ery. This time was approximately 7 μs and varied very little
over the entire temperature range studied. This corresponds to
an NMR line width of approximately 450 kHz.

III. NMR RELAXATION REVIEW AND
THE NMR PARAMETERS

A. Spin-1/2 spin-lattice relaxation

Abragam31 describes the nuclear spin relaxation for an
ensemble of isolated interacting pairs of spin-1/2 nuclei
whose internuclear vectors are of fixed lengths but are re-
orienting randomly. The spin-lattice relaxation rate for this
system is strictly exponential. Abragam also reviews devel-
opments prior to about 1960, including the important contri-
butions from Bloembergen, Purcell, and Pound,32 Solomon,33

Redfield,34 Tomita,35 Bloch,36 and Wangsness and Bloch.37

Additional important contributions in this early epoch were
made by Woessner38 and by Stejskal and Gutowsky.14 Later
developments along with appropriate references appear in the
texts by Slichter,39 Ernst et al.,40 and Kimmich.41 Goldman42

has produced a recent review of the formalism. We refer to the
current approach as the Bloch-Wangsness-Redfield theory of
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nuclear spin relaxation,34, 36, 37 which is beautifully summa-
rized in a detailed manner by Kimmich.41

B. The origin of the nonexponential relaxation
at high temperatures

The nuclear spin-lattice relaxation resulting from the re-
orientation of a methyl group is complicated by the fact that
the reorientation of the three spin-spin vectors in a methyl
group is neither random nor uncorrelated. First, there are three
spins and eight spin states. Second, in a solid, each triangle of
spins reorients in a plane, not isotropically. Third, the motion
of the three spin-spin vectors is 100% correlated. Runnells22

and Hilt and Hubbard23 dealt with these complications in de-
tail and the result for an ensemble of isolated methyl groups
oriented in the same direction (with respect to the applied
magnetic field) is that the relaxation proceeds as the sum of
four exponentials. This perturbed magnetization decay can be
expressed in algebraic form as a function of the angle between
the single methyl group rotation axis and the applied mag-
netic field. Although no experiment could ever observe four
exponentials (which would involve at least nine adjustable pa-
rameters), nonexponential 19F relaxation has been observed
in a single crystal of CF3COOAg.43 Hilt and Hubbard23 per-
formed a numerical averaging over all orientations of the
methyl group reorientation axes appropriate for a polycrys-
talline powder and found that the relaxation is still nonexpo-
nential, particularly near the relaxation rate maximum and at
higher temperatures. This has been observed in the work re-
ported here and previously in other polycrystalline solids.44, 45

Early experiments where nonexponentiality was ob-
served were performed on solid samples made of small
molecules (compared with 4,4′-dimethoxybiphenyl). In these
samples, motions, such as whole-molecule tumbling in the
solid state, are occurring on the NMR time scale (approx-
imately 10−12 to 10−5 s in our case) in addition to methyl
group motion.44–46 The degree to which the relaxation is non-
exponential depends on the relative time scales of the two
motions (methyl group rotation and molecular tumbling) as
well as on the geometry of the molecule.47 The presence of
either 1H spin-spin interactions between methyl group pro-
tons and other protons or between protons on different methyl
groups makes the relaxation more exponential.45, 48 This has
been born out in experiments with solids comprised of larger
organic molecules with several or many static (on the NMR
time scale) hydrogen atoms. In many of these cases, the depar-
ture from exponential relaxation is very slight or not observed
at all.49–53 Polycrystalline 4,4′-dimethoxybiphenyl, however,
seems to be an exception.

Finally, it has been shown that when the relaxation is
nonexponential, the rate constant that characterizes the initial
recovery of the nuclear magnetization following a perturba-
tion is the rate predicted by the Bloch-Wangsness-Redfield
model.22, 44 So, at short times following a perturbation, the ef-
fect of the correlations among the three spin-spin vectors does
not come into play.

We note that the nonexponentiality at higher tempera-
tures does not result from the lack of spin diffusion. The NMR
spectrum is a very wide line (hundreds of kHz) over the en-

tire temperature range studied. This is to be compared with
chemical shift differences of approximately 100s of Hz or less
for all the protons involved in these organic molecular solids.
A common spin temperature is maintained on the time scale
of the inverse line width, even at the highest temperatures
studied.

C. Theoretical expressions for the relaxation rate
and the origin of the fitting parameters

The relaxation rate (appropriate for 4,4′-
dimethoxybiphenyl) is given by20, 31R = (n/N) C [J(ω0,
τ ) + 4J(2ω0, τ )]. This expression is appropriate at temper-
atures between 80 and 100–120 K (depending on the NMR
frequency) where the relaxation is exponential. At higher
temperatures, this expression is appropriate for the rate that
characterizes the initial recovery of the nonexponential relax-
ation. The constant C corresponds conceptually to the overall
strength of the 1H−1H spin-spin interactions that are being
modulated by methyl group rotation (and any other motion
that may be occurring on the NMR time scale). Considering
only intramethyl 1H−1H spin-spin interactions, C takes on
the value C̃ = (9/40)(μ0/4π2)2(¯γ 2/r3)2 for 1H magnetogyric
ratio, γ , and intramethyl H−H distance, r. μ0 is the magnetic
constant. The various numerical factors that go into the
ratio 9/40 are discussed elsewhere.16 C/C̃ is then treated as
a fitting parameter and should be of order unity since the
intramethyl H−H distances are usually significantly shorter
than methyl H–nonmethyl H distances and R is proportional
to r−6. Using the factor, n/N, in the above expression is an
approximation and assumes that spin diffusion, characterized
by a rate (7 μs)−1 = 1.4 × 105 s−1 over the entire tempera-
ture range studied (as discussed above) is much larger than
the maximum value of the spin-lattice relaxation which is
R ≈ 102 s−1. That is, the energy-preserving spin-spin inter-
actions (with small contributions from phonons) between
the mobile n 1H nuclei and the immobile (N – n) 1H nuclei
maintains the spin system at a common spin temperature.
Another way to think of this is that all N 1H nuclei are
equally affected by the perturbation in the inversion-recovery
experiment but the N − n immobile 1H nuclei are only
relaxed via the n mobile protons. This is an approximation
because there are time dependent spin-spin interactions
between methyl 1H nuclei and nearby immobile 1H nuclei.
But, again, their distances are generally large compared with
the intramethyl 1H nuclear−1H nuclear distance and their
dynamics involve small angular oscillations.

J(ω, τ ) is the spectral density,54 which can be interpreted
conceptually as the distribution of methyl group rotation (an-
gular) frequencies, ω, with τ −1 being the mean (angular) fre-
quency. This frequency ω/2π is not to be confused with the
NMR frequency ω0/2π . The motion of the magnetic dipoles
(spins) produces a time-dependent magnetic field and the
same spin system relaxes via the ω = ω0 Fourier component
(single spin flips) and the ω = 2ω0 Fourier component (dou-
ble spin flips) of this field. (See Hoult55 for a very detailed dis-
cussion concerning what is happening, what is not happening,
what should be said, and what should not be said, concerning
the observation of an NMR signal. Also, see Engelke56 for a
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discussion of the role of virtual photons in a quantum field
theoretic description of the detection of an NMR signal.)

The correlation time (the mean time between instanta-
neous methyl group rotational hops) is assumed to be given
by an Arrhenius relation τ = τ∞ exp(ENMR/kT) for NMR ac-
tivation energy, ENMR, and “infinite temperature correlation
time”, τ∞. This Arrhenius relation is also an approximation
as discussed extensively by Clough and Heidemann13 but is
a good approximation so long as the NMR activation en-
ergy ENMR � kT. (For the relaxation study presented here,
ENMR/kT varies from approximately 16 at the lowest temper-
atures to approximately 5 at the highest temperatures.) ENMR

and τ∞ are fitting parameters. It is convenient to define τ̃◦
= (2π /3)(2I/ENMR)1/2, where I is the moment of inertia of a
methyl group. This simply assumes τ̃◦−1 is an attempt (angu-
lar) frequency in a harmonic oscillator approximation.57 The
preexponential factor for hopping motion is much discussed
in the literature and a variety of models results in expressions
for τ̃◦ that are, to within a factor of 2 or 3, the same as the ex-
pression given by the harmonic model.13, 16, 57 With this defi-
nition of τ̃◦, τ∞/τ̃◦ becomes the fitting parameter and it should
be within an order of magnitude or so of unity.

The simplest random hopping motion models for an en-
semble of methyl rotors all characterized by the same envi-
ronment and therefore by the same NMR activation energy,
ENMR, predicts that J(ω, τ ) is given by the Debye (or Poisson
or Bloembergen-Purcell-Pound) spectral density31, 32, 54 J(ω,
τ ) = 2τ /(1 + ω 2τ 2) which follows from using Poisson statis-
tics to describe the rotational process.30, 39–41

There are three adjustable parameters used in fitting
the relaxation rate data: ENMR, C/C̃, and τ∞/τ̃◦. The pa-
rameter ENMR should be in the range 8–16 kJ mol−1 for
the types of solids of which 4,4′-dimethoxybiphenyl is an
example.20, 49, 50, 58–63 The parameter C/C̃ should be approx-
imately 1, or perhaps somewhat larger if the time dependence
of methyl 1H nuclei−nonmethyl 1H nuclei vectors is signifi-
cant. The parameter, τ∞/τ̃◦, should be within an order of mag-
nitude of unity.

IV. EXPERIMENTAL RESULTS

A. Exponential NMR relaxation: the single
exponential R

The relaxation is exponential to within experimen-
tal uncertainty at low temperatures and the recovery of
the perturbed magnetization, M(t), was fitted to M(t)
= M(∞)[1 −(1 − cosθ )exp(−Rt)]. M(∞) is the equilibrium
magnetization and the adjustable parameter, θ , accounts for
imperfections in the perturbing inversion π pulse. That is, in
the ideal case, (1 − cosθ ) = 2 if θ = π . [M(0), the initial mag-
netization after the perturbation, could be used as a fitting
parameter instead of θ .] We note that in these experiments,
exponential relaxation involves a three-parameter fit: R, θ [or
M(0)], and M(∞). The rates, R, are shown to the right of the
vertical lines in Figs. 1 and 2 and these regions are repeated
in Fig. 3. The uncertainties in the values of R are very small
and uncertainty bars are within the sizes of the symbols for R
in Figs. 1–3 and as such are not visible.

FIG. 2. The 1H short-time (initial recovery) exponential relaxation rate, RS,
versus inverse temperature, T−1, in polycrystalline 4,4′-dimethoxybiphenyl
at NMR frequencies ω0/2π = 8.50 (�), 22.5 (�, �), and 53.0 MHz ( , �,

). The different symbols for 22.5 and 53.0 MHz indicate different groupings
of experiment days indicating (at lower temperatures) slightly different struc-
tures on different groups of days. At temperatures below (i.e., to the right of)
the approximate positions of the vertical lines, RS and a single-exponential
relaxation fit characterized by R are indistinguishable (RS = R). Where error
flags are not shown, the experimental uncertainties are within the sizes of the
symbols. The solid lines correspond to a single fit as discussed in the text.
The dashed line indicates the high-temperature R* values in Fig. 1. The data
to the right of the vertical lines are the same in Figs. 1 and 2 and are shown
on an expanded scale in Fig. 3.

B. Stretched-exponential NMR relaxation: R∗ and β

The relaxation is nonexponential at high temperatures
and the entire recovery curve is well characterized by a four-
parameter stretched exponential, M(t) = M(∞)[1−(1 − cosθ )
exp{−(R*t)β}]. The stretched-exponential function was intro-
duced (as a fitting function in a physical science context) in
1854 by Kohlrausch.24 It was reintroduced in 1970.64 The pa-
rameter, R*, is “the characteristic relaxation rate” and the pa-
rameter, 0 < β < 1, is the “stretching factor.” R* versus T −1 is
shown in Fig. 1 and β versus T −1 is shown in Fig. 4. When β

> 0.95 (to the right of the vertical lines in Fig. 1), stretched-
exponential relaxation is indistinguishable from exponential

FIG. 3. The single-exponential 1H relaxation rate, R, versus inverse temper-
ature, T −1, in polycrystalline 4,4′-dimethoxybiphenyl at NMR frequencies
ω0/2π = 8.5 (�), 22.5 (�, �), and 53.0 MHz ( , �, ) for temperatures
below the vertical lines in Figs. 1 and 2. The relaxation is exponential in
this regime. The different symbols for 22.5 and 53.0 MHz indicate differ-
ent groupings of experiment days, indicating slightly different structures on
different groups of days. The six lines are guides for the eye and all have the
same slope of lnR versus T−1. All groups except the bottom line for 53.0 MHz
involve two or more days of experiments. The experimental uncertainties are
within the sizes of the symbols.
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FIG. 4. The stretching parameter, β, versus inverse temperature, T−1, for the 1H spin-lattice relaxation measurements in polycrystalline 4,4′-dimethoxy-
biphenyl. β = 1 corresponds to exponential relaxation. To within experimental uncertainty, single-exponential relaxation is indistinguishable from stretched-
exponential relaxation for β > 0.95, indicated by the horizontal lines. The vertical arrows indicate the values of the R* maxima in Fig. 1. (a) Measurements at
NMR frequencies ω0/2π = 8.50 (�), 22.5 (●), and 53.0 MHz (�). (b) Just the ω0/2π = 22.5 MHz data.

relaxation in our experiments and, to within experimental un-
certainty, R* = R.

Figure 5 shows a magnetization M(t) decay for which
β = 0.79 ± 0.01. Figure 5(a) shows the relaxation curve
with the inset showing shorter times. Figure 5(b) shows
very short times. In all three plots in Figs. 5(a) and 5(b),
a fit to both an exponential and a stretched exponential is
shown. Figure 5(c) shows a difference plot; the difference
between the observed M(t) and the fit to both a single ex-

FIG. 5. An inversion recovery 1H nuclear spin-lattice relaxation experi-
ment in polycrystalline 4,4′-dimethoxybiphenyl at an NMR frequency ω0/2π

= 22.5 MHz and at a temperature T = 155 K (103 T−1 = 6.46 K−1). (a) and
(b) The nuclear magnetization M versus time t between the perturbation π

pulse and the measurement π /2 pulse in an inversion recovery experiment. A
stretched-exponential fit (solid line) gives R* = 14.0 ± 0.2 s−1 (see Fig. 1)
and β = 0.79 ± 0.01 (see Fig. 4). A single exponential (dashed line) is a poor
fit to the relaxation curve. The inset in (a) shows the first 60 ms. (b) The first 9
ms. The uncertainties for both the main plot and the inset in (a) are within the
size of the symbols. The uncertainties can be seen in (b). (c) The difference
between the observed and fitted M(t) values for the stretched-exponential (●)
and single exponential (�) fits in (a) and (b). The logarithmic time scale is
used solely to spread the data out. The lines joining the values are guides for
the eye. The data in parts (a), (b), and (c) have the same uncertainties. (d)
The single-exponential relaxation rate, RS, that characterizes the short-time
magnetization recovery versus the maximum time, tmax , used in the determi-
nation of RS. The RS value (used in Fig. 2) for this experiment is taken to be
RS = 35.4 ± 2.8 s−1 as indicated by the datum going through the horizontal
line.

ponential and to a stretched exponential. The sole purpose
of the logarithmic time scale in Fig. 5(c) is so the data can
be clearly seen at all time scales. [Fig. 5(d) is discussed be-
low.] We suggest that a less careful study would not observe
the departures from exponential relaxation. For complete-
ness, we note that when the relaxation is nonexponential, a
double exponential M(t) = M1(∞)[1−(1 − cosθ )exp(−R1t)]
+ M2(∞)[1−(1 − cosθ )exp(−R2t)], provides a fit visually
identical to the stretched exponential. However, whereas the
stretched exponential is a four-parameter fit (and implies a
continuous distribution of relaxation rates65, 66), the double
exponential is a five-parameter fit. In addition, the fit for the
double exponential returns very large uncertainties for M1(∞)
and M2(∞) (though their sum is determined quite accurately),
which indicates that a five-parameter fit is unnecessary and
models based on it may be unjustified.

One origin of the stretched exponential is that it is not
an intrinsically fundamental function (i.e., as in the solu-
tion of a differential equation that models the dynamics)
but rather an excellent approximation to either a hierarchy
of an effectively infinite number of (exponential) relaxation
rates or a distribution of independent (exponential) relaxation
rates.65, 66 It has found use in interpreting neutron scatter-
ing experiments,67, 68 Kerr-effect spectroscopy in liquids,69

studies of glass-forming liquids,70 dielectric relaxation,71–75

luminescence spectroscopy,76, 77 linear dichroism correla-
tion spectroscopy,78 lipid bilayer dynamics,79 NMR spin-
lattice relaxation in a random Heisenberg chain,80 light
scattering,74, 75 ion conductivity measurements,81 NMR stud-
ies of ion conduction,82, 83 photobleaching relaxation,84 and
various forms of structural relaxation.85, 86

It is not straightforward to relate the parameters R* and
β to the dynamics. If taken as a correlation function, the func-
tion exp{−(R*t)β} cannot be Fourier transformed in closed
form for arbitrary β and much effort has gone into relat-
ing it, or its numerically determined Fourier transform, to
other functions such as the phenomenological Davidson-Cole
function.75, 86, 87 Also, much effort has gone into determining
a distribution of exponential relaxation rates that gives the
stretched exponential.88, 89 The best one can do is to relate
R* to a distribution function describing the fraction of relax-
ors with (an exponential) relaxation rate below R* and the
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fraction above R*. (R* should not be called the average re-
laxation rate.) But even then, these distribution functions
depend on β. The meaning of β as a general parameter
is even less clear than the meaning of R* although cer-
tain specific values have been studied. β = 1 corresponds
to exponential relaxation. The cases of β = 2/3, 1/2, and
1/3 have been investigated very thoroughly and the distri-
bution of exponential relaxation rates can be expressed in
closed form using gamma functions and generalized hyperge-
ometric functions.88, 89 For β < 1, the stretched-exponential
function is unphysical at short times,65, 70, 71, 76, 77 or, equiv-
alently, at high frequencies69, 71 and this can be addressed
by phenomenologically multiplying it by the appropriate
function65, 69, 71 or by shifting the time origin.76, 77 Our NMR
relaxation experiments do not involve times short enough for
this to be a problem. Finally, a very interesting topological
approach to stretched-exponential relaxation that relates β to
the dimensionality of the system has been presented.90

C. The determination of the initial recovery rate,
RS, for the nonexponential NMR relaxation

RS characterizes the initial magnetization decay follow-
ing a perturbation. Fig. 2. shows RS versus inverse tem-
perature, T −1. If the relaxation is nonexponential and the
magnetization recovery is limited to smaller and smaller times
after the perturbation, eventually the relaxation will be seen
to be exponential to within experimental uncertainty. RS is the
rate to which the Bloch-Wangsness-Redfield model pertains.
At temperatures below those indicated by the vertical lines
in Figs. 1 and 2, the relaxation is exponential and RS = R*
= R. Some of the uncertainties in RS at higher temperatures
are appreciable, especially at an NMR frequency of ω0/2π

= 8.50 MHz, as seen in Fig. 2.
RS was determined by fitting the relaxation to a single

exponential and observing the “goodness of fit” and the frac-
tional uncertainty in RS as the maximum time, t (called tmax),
between the perturbation π pulse and the observing π /2 pulse
used in the fit was decreased. Values of [t, M(t)] between
the smallest t value [typically 500 μs which is the case in
Fig. 5(c)] and tmax were used to determine RS. This process is
outlined in Fig. 5(d). At large values of tmax the relaxation is
nonexponential and as tmax is decreased, the value of RS gets
larger and the relaxation becomes more exponential. In Fig. 5,
for example, the complete data set has tmax = 1.75 s [Fig. 5(a)]
and when tmax is reduced to 76 ms [Fig. 5(d)], the relaxation
appears to be well fitted by a single exponential with a value
of R = 24 s−1, with a very small uncertainty [within the size
of the symbol in Fig. 5(d)]. As tmax is decreased further, RS be-
comes larger as does the uncertainty as outlined in Fig. 5(d).
Eventually, the uncertainties become very large, in part be-
cause the number of data points used in the fit gets small and
in part because the range in t gets so small that the relaxation
curve is approaching a linear function. Although the equiva-
lent of Fig. 5(d) looks slightly different for the very many runs
performed at higher temperatures, in each case a reasonable
value of RS emerges. For the data in Fig. 5(d), tmax = 24 ms
was chosen and this gives RS = 35.4 ± 2.8 s−1. A less careful
experiment taking t to 76 ms would conclude that the relax-

ation is exponential with R = 24 s−1 (and with a very small
uncertainty), which would lead to an error of approximately
32%. Only if t were taken to much longer values would the
practitioner realize that the relaxation was nonexponential.

D. The results at lower temperature—different states?

At temperatures below 100–120 K (depending on NMR
frequency), where the relaxation is strictly exponential, dif-
ferent sets of relaxation rates R versus temperature T were
observed in different groups of days as can be seen in Figs. 1
and 2 and more clearly on the expanded plot in Fig. 3. Fig. 3
shows several parallel lines, all guides for the eye, for differ-
ent sets of R versus T observed on different groups of days.
All lines in Fig. 3 have the same slope of lnR versus T−1.
The different lines for NMR frequencies ω0/2π = 22.5 and
53.0 MHz suggest slightly different structures, either molec-
ular, crystal, or both. As outlined in Sec. II, we checked care-
fully that the observed differences were not a result of sys-
tematic effects associated with certain probe plus sample plus
thermocouple combinations.

E. The fitted relaxation rate parameters

RS = R = (n/N) C [J(ω0, τ ) + 4J(2ω 0, τ )] can be used for
the initial recovery of the nuclear magnetization at tempera-
tures above 100–120 K (depending on NMR frequency) or the
entire magnetization curve at temperatures below 100–120 K.
J(ω, τ ) = 2τ /(1 + ω 2τ 2) with the mean time between hops
τ = τ∞ exp(ENMR/kT). There are three fitting parameters: C,
ENMR, and τ∞. With C̃ = (9/40)(μ0/4π2)2(¯γ 2/r3)2 and τ̃◦
= (2π /3)(2I/ENMR)1/2, C/C̃ and τ∞/τ̃◦ replace C and τ∞ as
fitting parameters. The Poisson spectral density, J(ω, τ ) = 2τ /
(1 + ω2τ 2), requires that the magnitude of the slope of lnRS

versus T−1 be the same at low and high temperatures. The fit
shown for RS in Fig. 2 gives ENMR = 11.5 ± 0.5 kJ mol−1,
C/C̃ = 1.0 ± 0.1, and τ∞/τ̃◦ = 0.80 ± 0.15. The fitted value
of C/C̃ = 1.0 ± 0.1 suggests that, to within experimental un-
certainty, the model is appropriate and that only intramethyl
1H spin–1H spin interactions need to be taken into account. In
addition, the fitted value of τ∞/τ̃◦ = 0.80 ± 0.15 is in good
agreement with the simplest model where τ̃◦−1/2π is inter-
preted as a methyl group librational frequency at the bottom
of the potential well.

This theoretical model for RS versus T−1 in Fig. 2 does
not apply to R* versus T −1 in Fig. 1, but we use it to compare
the two graphs. The high temperature fit in Fig. 1 is indicated
by the dashed line in Fig. 2 and vice-versa. The low tempera-
ture data is the same in both figures. R* is significantly smaller
than RS in the vicinity of the relaxation rate maximum and at
higher temperatures. Although doing so has no justification,
fitting the R* versus T−1 curve with the same expression used
for the RS versus T−1 curve gives the same value for ENMR

but now C/C̃ = 0.70 ± 0.07 and τ∞/τ̃◦ = 0.55 ± 0.15. These
fitted parameters have no interpretation, but it is interesting
to note that to within experimental uncertainty, RS versus T−1

and R* versus T−1 can be fitted with the same NMR activa-
tion energy, ENMR. But a value of C/C̃ = 0.70 ± 0.07 is not
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physically possible. So long as accurate values for the intra-
methyl group H–H distances are used, a value of C/C̃ < 1 is
not possible. This is explained in Sec. IV F.

F. The sensitivity of the strength parameter C̃
on the H–H distance in a methyl group

The theoretical NMR strength parameter C̃ = (9/40)
(μ0/4π2)2(¯γ 2/r3)2 is proportional to r−6, where r is the dis-
tance between hydrogen atoms in the methyl groups (all of
which are equivalent in crystalline 4,4′-dimethoxybiphenyl).
So, in computing the strength parameter, care needs to be
taken to determine r as accurately as possible. The values of r
determined from electronic structure calculations in a suitable
cluster of molecules based on the x-ray structure determina-
tion of the positions of the carbon and oxygen atoms,25 are
175.4, 175.9, and 176.4 pm for an average of 〈r〉 = 〈r6〉(1/6)

= 175.9 pm. (None of the variations here are great enough
for 〈r〉 and 〈r6〉(1/6) to be different to four significant figures.)
This is to be compared with 178.9, 178.2, and 178.1 pm (〈r〉
= 〈r6〉(1/6) = 178.4 pm) as determined from electronic struc-
ture calculations in the isolated molecule25 and with 160.0,
160.1, and 160.1 pm (〈r〉 = 〈r6〉(1/6) = 160.1) as determined
by the software that places the hydrogen atoms in “ideal posi-
tions” in the single-crystal x-ray diffraction experiment.25 Be-
cause of the weakness of the diffraction signal from hydrogen
atoms (no core electron and a single valence electron), the po-
sitions and occupancies are difficult to measure accurately by
x-ray crystallography. In addition, due to thermal vibrations,
C−H bond lengths are apparently shortened in x-ray and neu-
tron crystal structures. The shortening could be as large as
3 pm for C−H bond lengths in methyl groups in neutron
diffraction measurements. C−H bond lengths obtained from
x-ray diffraction are known to be shortened by more than
10 pm.91 Indeed, if we used the x-ray values, r would be
10% too short and therefore the theoretical strength parameter
C̃ (proportional to r−6) would be 60% too large. One would
then find that the experimentally determined strength param-
eter, C/C̃, is more than a factor of two, too small, and this
would lead to an impossible conclusion. Even if the r values
determined by electronic structure calculations in the isolated
molecule were used, the small error in r would be 1.4% re-
sulting in an 8.5% error in C̃. There may be additional methyl
1H spin–nonmethyl 1H spin interactions that could make the
observed strength parameter C greater than C̃, the theoreti-
cally calculated parameter that assumes intramethyl interac-
tions only but not the other way around. The computed value
of C̃ considers only the intramethyl spin-spin interactions and
therefore has to be a minimum value, so long as the r values
are accurate. As such, it is important to use the positions for
the hydrogen atoms computed from electronic structure cal-
culations in a cluster made from the structure determined by
x-ray diffraction or neutron scattering.25

V. CONCLUSIONS AND SUMMARY

Fitting the 1H NMR nuclear spin-lattice relaxation data
for 4,4′-dimethoxybiphenyl provides an activation energy for
methyl group rotation of 11.5 ± 0.5 kJ mol−1. This value is

in reasonable agreement with the value of 10.3 kJ mol−1 de-
termined from the electronic structure calculations in an ap-
propriate cluster of molecules.25 The NMR parameter that
characterizes the strength of the dipole-dipole interactions
whose modulation is responsible for the relaxation agrees
very well with data obtained from the experiment but only if
one uses the “correct” value for the H–H distances in a methyl
group; namely those obtained from electronic structure calcu-
lations in a cluster of molecules based on the x-ray determi-
nation of the atomic positions of all atoms except hydrogen
atoms.25

On different groups of days, we observed statistically
different lnR versus T−1 regions (for relaxation rate R and
temperature T) at lower temperatures where the relaxation
was exponential and could, therefore, be characterized very
accurately. This presumably results from very slight differ-
ences in the molecular conformation, the crystal structure, or
both.26 Very small differences in H–H separations, r, have a
huge effect since the interactions that enter the expressions for
the observed relaxation rates are proportional to r−6. There
are cases where different polymorphs have very different ob-
served R versus T −1 curves29, 30 and there are cases, such as
that observed here and elsewhere,15, 92 where small changes
in the observed R versus T −1 curves have yet to be corre-
lated with different structures determined from x-ray diffrac-
tion. 1H NMR relaxation in the solid state is probably much
more sensitive to small structural changes than either neutron
scattering or x-ray diffraction. However, the technique cannot
appropriately characterize the state.

We showed how very well a stretched-exponential func-
tion fits nonexponential relaxation data while introducing
only one additional adjustable parameter (when compared
with exponential relaxation). A brief literature review of
the use of the stretched-exponential function was given in
Sec. IV B. However, this fitting function is nothing more than
a convenient phenomenological representation of the data and
the resulting parameters that characterize the relaxation are
not amenable to interpretation in any meaningful way at this
time aside from saying that they characterize a distribution
of relaxation rates in a manner that cannot be related to a
particular model. Indeed, we showed that if the stretched-
exponential characteristic relaxation rates were used instead
of the significantly greater values of the relaxation rates ob-
tained from an initial recovery of the perturbed nuclear mag-
netization, the fitted NMR strength parameter changed by
30% and was lower than its smallest possible theoretical
value.

Some studies interpret nonexponential relaxation in
terms of the sum of two exponentials, which involves one
more adjustable parameter than a stretched-exponential func-
tion (and two more than exponential relaxation). If this in-
terpretation of the data is driving a subsequent model (i.e.,
two kinds of relaxors), then it should be determined that a
stretched exponential (implying a continuous distribution of
relaxors) does not fit the data.

We noted that in regions where the nuclear spin-lattice
relaxation is nonexponential, if an automated program were
used to provide a single-exponential relaxation rate, the pro-
gram might very well return an incorrect value. Unless the



054508-8 P. A. Beckmann and E. Schneider J. Chem. Phys. 136, 054508 (2012)

experimenter looked closely at the data, the nonexponential-
ity would not be seen and the rate determined could be signif-
icantly lower (by more than 30% in the case presented here)
than a value obtained from the appropriate initial slope. The
message here is to use a large range in time and carefully vi-
sually inspect the fit, do not simply trust the parameters and
the uncertainties delivered by a nonlinear fitting algorithm.
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