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COMPUTING THE ARITHMETIC GENUS 
OF HILBERT MODULAR FOURFOLDS 

H. G. GRUNDMAN AND L. E. LIPPINCOTT 

ABSTRACT. The Hilbert modular fourfold determined by the totally real quar- 
tic number field k is a desingularization of a natural compactification of the 
quotient space Fk\H4, where Fk = PSL2(Ok) acts on H4 by fractional linear 
transformations via the four embeddings of k into R. The arithmetic genus, 
equal to one plus the dimension of the space of Hilbert modular cusp forms of 
weight (2, 2, 2, 2), is a birational invariant useful in the classification of these 
varieties. In this work, we describe an algorithm allowing for the automated 
computation of the arithmetic genus and give sample results. 

1. INTRODUCTION 

Let k be a totally real algebraic number field of degree n over Q with ring of 
integers Ok and discriminant dk. For i = 1,..., n and a E k, let a - a(i) denote 
the ith embedding of k into the real numbers. The group SL2 (0k) acts on tln, the 
product of n copies of the complex upper half plane, by 

( c b ( , 
( (1)Zl 

) 
(2)(1 c 

(2) 2 a(2) a"(n)zn+ 
~2b(n) 

c d) (ZlZ2 
Zn)= c(l)zl + d(l) ' C(2)z2 + 

d(2),'.' 
c(n)z + d(n) 

The Hilbert modular group of the field k is Fk = PSL2(0k). The Hilbert modular 
variety of k is a desingularization of the natural compactification of Fk\7knR. For 
more detailed discussions of the construction of these varieties, see [7] and [12]. 

The arithmetic genus, in the sense of Hirzebruch [8], is a birational invariant 
useful in the classification of nonsingular varieties. Specifically, it is equal to one 
plus the dimension of the space of Hilbert modular cusp forms of weight (2, 2, 2, 2). 
By [4], the arithmetic genus of the Hilbert modular variety of k is given by 

(-1)"vol(Fk\THn) + C E(rk, ) + L(rk, 4), 

where the first summation is over a complete set of representatives of the I7k- 

equivalence classes of fixed points of Fk and the second is over the set of cusps. 
Precise definitions of E(rk, 7) and L(rk, K) are given below. 

Hirzebruch [7] provided a formula for computing the arithmetic genus in the 
cases where the ring Ok contains a unit of norm -1. This has been widely used 
for computing the arithmetic genus of Hilbert modular varieties of odd dimension, 
since -1 is a unit of norm -1 in any field of odd degree. For varieties of even 
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dimension, the computation is more complicated. In the 1970's, Hirzebruch, van 
de Ven, and Zagier [9, 10] demonstrated how to carry out these computations for 
surfaces, but until recently little progress was made with higher degrees. It must 
be said that part of this is due to the earlier lack of computational tools. For 
example, a challenge as little as a decade ago, the computation of the volume term, 
(-1)nvol(Fk\ n), is all but trivialized by now-available software packages. 

In [6], the current authors focused on the degree four case and determined how to 
compute the fixed point term, E. E(Fk, ri). This left the cusp term, , L(rk, ), 
as the final roadblock to completing the computations. In this paper, we offer a 
now complete solution to the problem, providing an algorithm for computing the 
arithmetic genus of the Hilbert modular variety of an arbitrary quartic field k, and 
describing our implementation thereof. 

We develop the necessary mathematics and describe our algorithm for computing 
the cusp term in Section 2. In Section 3, we review the needed results from [6] and 
describe our algorithms for computing the volume and fixed point terms. Finally, in 
Section 4, we describe our specific implementation and give a table of the arithmetic 
genera of the Hilbert modular fourfolds determined by the 210 totally real quartic 
fields of smallest discriminant. 

2. THE CUSP TERM 

In this section, we develop the tools needed for computing the cusp term, 

1 
L(]k,•), K 

for an arbitrary quartic field, k. We begin by defining notation. 
Let Ck denote the group of ideal classes and 8k the group of units of (Ok. It is 

well known that the set of cusps of Fk \7j4 is in one-to-one correspondence with Ck. 
Letting [a] be the ideal class corresponding to the cusp n, we have 

L(Fk, [a]) = L(Fk, ) 1 sign 
(N(a)) 16r d IN(a) 

with d(a-2) the discriminant of a-2 [4]. In this notation, the cusp term is given by 

Z[a]EC, L(rk, [a]). 
We begin with a lemma proved in [6]. 

Lemma 1. If (Ok contains a unit of norm -1 or an integral ideal b for which 

b2 = (3) is a principal ideal with N(O) < O0, then Z- L(rk, K) = 0. 

If the hypothesis of Lemma 1 is not satisfied by k, then there exists a real 
character, ) : Ik -+ +1, on the group of nonzero fractional ideals, satisfying 
4((a)) = sign(N(a)) for all nonzero a E Ok. It follows that b(a2) = 1 and so, 
letting x vary over integral ideals in 

Ok, 

L(rk,[a])-v lm S S ) 
74 g j(x)s 

[a]ECk [a]ECk xcE[a2] 

lim() 
iCk/C21 [7r4 ---*lE N (x) 

[[xc]Ek 
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As in [6], let D be the set of characters : Ik- induced by a complete set 
of characters on the group Ck/C'. Then, 

L(Fk, [a]) = -- N(x) 5 (x) 
[a] CCk 7;x 

- 4E-limE - 7r4 _s--l 
N(z 

(X)s 

74Q 

Now, since each 0 is trivial on principal ideals, each 00 is a quadratic character 
on Ik satisfying 00((a)) = sign(N(a)) for all nonzero a E Ok. Hence, each 4)q 
corresponds, via class field theory, to a quadratic extension k' of k, unramified at 
each finite place and ramified at each infinite place. In fact, as q ranges through 
D, the k' range through all such field extensions of k. 

Since each k' is a totally complex quadratic extension of the totally real number 
field k, we have 

7•4 kR Wk' k/- (1) L(1, I?) = L(1, k'/k) = Rk 

hkRkwk, 
' Idk' 

where hk, hk', Rk, Rk', dk, dk' are the class numbers, regulators, and absolute values 
of the discriminants of Ok and Ok', respectively, and Wk, Wk' are the numbers of 
roots of unity in these rings. 

Combining the above with the fact that wk = 2 yields the following theorem. 

Theorem 2. If 0(k contains a unit of norm -1 or an integral ideal b for which 

b2 = (3) is a principal ideal with N(0) < O0, then - L(Fk, K) = 0. Otherwise, 

)L(Fk 2 
:hk'Rk, (2) L( ,) hk 'k k wk/ Ii; 

where k' ranges through the set of unramified, totally complex, quadratic extensions 
of k. 

To compute the sum in equation (2), we use the computer algebra package 
KASH [3]. We determine the set of quadratic fields, k', as follows. RayClassField 
and RayClassFieldAuto are used to determine the narrow class field of k (that is, 
the field corresponding to the group of positive principal divisors). Then 
OrderSubfield is used to find all degree 8 subfields. OrderSig is used to de- 
termine which of these subfields are totally complex, and OrderIsSubfield is used 
to determine which of the totally complex subfields contain k. Once the appropriate 
quadratic extensions of k have been determined, the commands OrderClassGroup, 
OrderReg, and OrderTorsionUnitRank can be used to evaluate each summand. 

This computation is carried out only when Ok contains no unit of norm -1 and 
no integral ideal b for which b2 = (P) is a principal ideal with N(O) < 0. We check 
for a unit of norm -1 by using the commands OrderUnitsFund and EltNorm. If 
none exists, we determine whether there is an integral ideal b for which 62 = (/) 
is a principal ideal with N(0) < 0, by using OrderClassGroupCyclicFactors. 
Viewing the class group as a product of cyclic groups, this command provides, for 
each cyclic factor, the order of the factor and an ideal in a class that generates it. 
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For each cyclic factor of even order, we raise the representative ideal to the order 
of the factor, thus producing a principal ideal. Finally, we use IdealIsPrincipal 
to obtain a generator for the ideal and EltNorm to determine whether the norm of 
the ideal's generator is negative. 

If any of these generators is of negative norm, then setting it equal to 3 gives 
us that by Theorem 2, E, L(Fk, K) = 0. We now show that if no such generator 
exists, then no such 3 exists. 

Lemma 3. If the above process fails to yield a generator of negative norm, then 
every generator of any principal ideal equal to the square of an integral ideal in Ok 
has positive norm. 

Proof. Suppose that b is an integral ideal such that 62 = (0) and N(0) < 0. 
Since k is totally real and contains no unit of norm -1, b is not principal and so is 
in an ideal class of order 2. 

Let cl, c2,... ,cn be representative ideals for generators for the cyclic factors of 
the class group of k. Let el, e2,...,e, be minimal nonnegative integers such that 
c"' ce2... ? en is in the same ideal class as b. So we have 

c1 e2 = b, 
for some a, -7 E Ok. Thus 

(3) 22C2e, C2e2 .2en , 2 1 2 
"''n 

- (13) 

Since each side of equation (3) is a principal ideal, the hypothesis gives us that each 

C2ei has a generator of positive norm. (Note that ei = 0 for any cyclic factor of the 
class group of odd order, since each c2ei is principal.) Hence 7y2 (0) and therefore (13) 
have generators of positive norm. Since Ok has no units of norm -1, all generators 
of (0) have positive norms. This contradicts our supposition and concludes the 
proof. 

3. THE VOLUME AND FIXED POINT TERMS 

As noted in [5], vol(Fk\Kn) =4k (-1), which is easily computed using the 
command zetak in the software package PARI [1]. It follows from the work of 
Siegel [11, 13] that 15k (-1) is a rational integer. Although PARI does not provide 
specific error-bounds for zetak, all of the outputs were within 10-25 of an integral 
multiple of 15 

Computing the fixed point term is more involved. As defined in [4], letting rj be 
the equivalence class of a fixed point z, this term is given by 

(4) E(rFk, [z= r 1 - MErz i= 
MIO 

where Fz is the isotropy subgroup of z and ( is the rotation factor of M. We 
summarize our computational formula for this term in the following theorem, which 
is easily derived from [6, Theorem 4.2]. 

For any field k', let hk' and Rk' be the class number and regulator of Ok' re- 
spectively. For r G {2, 3, 4, 5, 6} let 

m, 
= 

(Rk( • )h r)/(Rkhk), 

and let 6 be the relative discriminant of k(e ) over k. 
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Theorem 4. Let k be a totally real quartic number field. 
If dk = 1125, then ZE E(Fk, r) = 1 
If dk = 2000, then •• E(Fk, 7) = 151 

If dk = 2048, then 

Zn 
E(Fk, 7) = *4 

If dk = 2304, then Z E(EFk, r) = 61 

If dk 4 {1125, 2000, 2048, 2304}, then 
m2 m3 m4 m5 m6 

(5) ZE(rk,7)= 9f2 + 
-f3 

+ f4 + 
-f5 

+ 6f6, 96 216 64 40 864 

where the fr are as given in Table 1. 

The following corollary simplifies the computation. 

TABLE 1. Values of fr for r = 2, 3, 4, 5, 6 

v/- E k, V3 
- 

k 
20k 20k' T f2 f4 f6 
p- 

- - 6 3 0 
p2 2 - 

- 12 3 0 
p4 54 - 54 38 0 

p4 54 4 - 18 20 0 

p4 58 - 18 9 0 

v2 0k, v E k 

20k 20k' f2 f4 f6 
p s2 - 25 0 209 

p2 52t2 
- 15 0 209 

p2q2 - - 99 0 209 

p4 
- - 45 0 209 

/ V k, / • k 
20k 20k 6S f2 f4 f6 

p - - 3 0 0 
pq - - 3 0 0 
pqr - - 3 0 0 

pqrs - - 3 0 0 
p2 52 - 78 0 0 

p2 52t2 
- 48 0 0 

p12 54 
- 15 0 0 

p2q s2t2 - 30 0 0 

p 2q s2t2U2 
- 12 0 0 

p2q 54t2 
- 9 0 0 

p2qr 52t2u2 - 30 0 0 
p2qr 52A2U212 

- 12 0 0 

p2qr s54t22 - 9 0 0 
p2q2 52t2 - 300 0 0 

p2q2 s2t2u2 - 120 0 0 

p2q2 52t2u202 
- 48 0 0 

p2q2 q 542 
- 90 0 0 

p2q2 54t2U2 
- 36 0 0 

p2q2 54t4 - 27 0 0 

p3q 56t2 U2t2 21 0 0 

p3q 56t2 U402 9 0 0 

p4 54 
- 138 0 0 

p4 54t4 - 48 0 0 

p4 58 U2 45 0 0 
p4 58 U4 21 0 0 

V•k 
30k 30k/ f3 

p - 9 
pq - 9 
pqr - 9 

pqrs - 9 
p2 52 54 
p2 S2t2 90 

p2q 52t2 45 

p2 q 52t2u2 27 

p 2qt 52t2U2 45 

p2qr 52t2u2,2 27 

p2q2 52t2 234 

p2q2 52t2U2 144 

p2q2 
2 52t2u2v2 90 

p3q - 36 
p4 54 162 
p4 54t4 90 

V3- E k 

30k 30k/ f3 
p2 - 40 

p22 - 112 

p4 - 76 

V/E k 
50k 50k' f5 
p4 4 16 
p4 $ q4 12 

:p4 
_ 

2 

i~5 
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Corollary 5. Let k be a totally real quartic field. 
If V2 V k, then f4 = 0. 
If V5 ? k, then fs = 0. 
If v3• k, then f6 = 0. 

To compute the values of ZE E(Fk, r ) we first use the KASH function OrderDisc 
to check if k is any of the four special fields listed in Theorem 4. If not, we evaluate 
equation (5) as follows: EltRoot determines which, if any, of v2, V'5, and 4/3 are 
in k; then applying Corollary 5 as appropriate determines the values of some of 
the fr. For the remaining fr, we use Table 1 to determine what ideals need to 
be factored and use OrderDisc to define any needed relative discriminants. The 
function Factor is used to factor the ideals, and the exponents of the factorization 
are extracted for use with the table. The values of the mr are computed directly 
using the KASH functions OrderReg and OrderClassGroup for the regulators and 
class numbers, respectively. 

TABLE 2. Arithmetic genera of Hilbert modular fourfolds 

dk X dk X dk X dk X dk X dk X 
725 1 7625 5 13068 7 17609 5 22221 7 26125 12 

1125 2 8000 5 13448 6 17725 7 22545 9 26176 10 
1600 2 8069 3 13525 6 17989 5 22592 9 26224 9 
1957 1 8112 4 13625 7 18097 7 22676 9 26225 10 
2000 3 8468 3 13676 6 18432 8 22784 11 26525 10 
2048 2 8525 4 13725 7 18496 14 22896 8 26541 9 
2225 2 8725 4 13768 5 18625 9 23252 8 26569 12 
2304 3 8768 4 13824 7 18688 10 23297 7 26825 9 
2525 2 8789 3 13888 6 18736 6 23301 9 26873 8 
2624 2 8957 3 13968 9 19025 8 23377 7 27004 10 
2777 1 9225 5 14013 5 19225 8 23525 9 27225 14 
3600 4 9248 5 14197 5 19429 6 23552 9 27329 8 
3981 2 9301 3 14272 5 19525 8 23600 9 27472 9 
4205 2 9792 5 14336 6 19600 10 23665 7 27648 13 
4225 3 9909 5 14400 8 19664 12 23724 11 27725 10 
4352 4 10025 5 14656 7 19773 10 24197 9 27792 14 
4400 3 10273 3 14725 6 19796 12 24336 13 28025 11 
4525 3 10304 5 15125 8 19821 7 24400 12 28224 13 
4752 4 10309 4 15188 5 20032 8 24417 9 28224 14 
4913 3 10512 7 15317 5 20225 8 24437 8 28400 11 
5125 4 10816 5 15529 5 20308 7 24525 11 28473 9 
5225 3 10889 3 15952 5 20808 9 24749 7 28669 9 
5725 3 11025 7 16225 7 21025 9 24832 15 28677 9 
5744 3 11197 3 16317 7 21056 8 24917 8 28749 10 
6125 4 11324 5 16357 5 21200 8 25088 11 29237 8 
6224 3 11344 4 16400 9 21208 7 25225 10 29248 11 
6809 2 11348 4 16448 7 21308 8 25488 14 29268 13 
7053 3 11525 5 16448 7 21312 10 25492 9 29813 9 
7056 5 11661 4 16609 5 21469 7 25525 10 29952 13 
7168 4 12197 4 16997 6 21568 11 25717 7 30056 18 
7225 4 12357 6 17069 5 21725 8 25808 9 30056 16 
7232 4 12400 6 17417 6 21737 8 25857 14 30125 14 
7488 5 12544 9 17424 10 21801 9 25893 8 30273 10 
7537 2 12725 5 17428 6 21964 10 25961 8 30400 12 
7600 4 13025 6 17600 7 22000 11 26032 9 30512 11 
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4. IMPLEMENTATION AND RESULTS 

Our implementation consists of a shell script calling two programs: a simple 
PARI program that produces a table of values of (k(-1), and a KASH program 
that performs the remainder of the calculations. As input, the script takes a file of 
fields in a form output by PARI as found at the University of Bordeaux's number 
fields web site [2], with one field per line. Our PARI program creates a new file of 
(k(-1) values which our KASH program reads along with the original input file. 
For each field in the input file, the KASH program computes the volume term, the 
fixed point term, and the cusp term as described in this paper and combines them 
to compute the arithmetic genus. 

We ran the programs using PARI 2.1.4 and KASH 2.2 on a SUN Ultra-60, with 
a 450MHz Sun UltraSPARC-II processor, running the Solaris 5.8 operating system. 
Results for the Hilbert modular varieties defined by the 210 totally real quartic 
fields of smallest discriminant are given in Table 2. As an indication of the time 
involved in these calculations, it takes approximately 40 minutes to compute the 
first 100 cases, 100 minutes to compute the 210 given in the table, and 13 hours to 
compute the first 1000. 

As a final note, running the program using KASH 2.4 resulted in errors, appar- 
ently arising from a problem with the OrderSubfield command. 
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