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AUTOMATIC REALIZABILITY
OF GALOIS GROUPS OF ORDER 16

HELEN G. GRUNDMAN AND TARA L. SMITH

(Communicated by Lance W. Small)

ABSTRACT. This article examines the realizability of small groups of order
2k k < 4, as Galois groups over arbitrary fields of characteristic not 2. In
particular we consider automatic realizability of certain groups given the real-
izability of others.

1. INTRODUCTION

In this article we are concerned with automatic realizability results for small
Galois 2-groups, particularly those of order 16. We ask when it is true that the
realizability of a particular group G as a Galois group over a field K implies the
realizability of another group H as a Galois group over K. In some cases, these
results hold over all fields. In others, the automatic realizability depends on specific
properties of K. We are also interested in field-theoretic criteria which guarantee
the realizability of certain groups. By a famous result of Witt [Wi:1936], Satz,
p.237, the realizability of a 2-group G over a field of characteristic 2 depends only
on the minimal number of generators of G. For this reason we will always assume
our fields to be of characteristic not 2.

We obtain our results primarily by considering the obstructions to the realiz-
ability of the groups, expressed in terms of products of quaternion algebras in the
Brauer group Br(K) of the base field K. By manipulating these expressions, one
can often show that triviality of the obstruction for one group implies triviality of
the obstruction for another. This is particularly true if additional information on
the field, such as its level, is taken into consideration. The obstructions for these
groups have appeared in various references. A complete survey of known results is
provided in [GSS:1995]. We quote these results below and use them heavily in this
article. Realizability questions have been considered previously in the two articles
by C. U. Jensen, [Je:1989] and [Je:1992]. Jensen considers the structure of the
groups explicitly in most instances, and often describes precisely how to construct
fields realizing the groups, whereas our approach is less constructive. He also works
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with finite 2-groups in general, whereas we work just with groups of order at most
16. We obtain a number of new realizability results by our methods.

Our goal is to systematically examine the groups of order 16, and what can be
said about the realizability of each group as a Galois group over fields of charac-
teristic not 2. There are fourteen different groups of order 16, five of which are
abelian. We let C,, denote the cyclic group of order n. The five abelian groups
are C15,Cs x Co,C2,Cy x C2, and C4. By known results ([Wh:1957], [KuLe:1975],
[GSS:1995]) realizability for these groups is determined solely by realizability of
C, and the size of the square class group |K /K 2. Note that the criterion for the
realizability of C7 over K is simply the existence of two Cjy-extensions containing
distinct quadratic subfields. There are also the two decomposable groups obtained
by taking the direct products of each of the two nonabelian groups of order 8, the
dihedral group and the quaternion group, with Csy; we denote these two groups as
Dg x Cy and Qs x Cy respectively. Again, it is easy to see that Dg x Cy (respectively
Qs x Cy) is realizable if and only if Dy (respecitively Qg) is realizable, and |K /K?2|
is large enough; see [GSS:1995]. (We write Dy, to denote the dihedral group of
order 2n.)

We introduce notation and presentations for each of the remaining seven inde-
composable nonabelian groups below. We then give a list of the obstructions for
each of the ten groups in which we will be interested. In §2 we give group-by-group
descriptions of the results we have obtained for realizability, providing proofs for
those results that are not widely known. In §3 we present results in terms of condi-
tions on the level of the base field. Our results agree with or extend those obtained
in [Je:1989), [Je:1992] for groups of order 16. Similar results have also recently been
obtained in [L:1995].

The seven indecomposable nonabelian groups of order 16 are: DC, the central
product of Dg with Cy amalgamating the central elements of order 2; @ A C, the
pullback of the system (Qs — Ca,Cy — C3) and also a semidirect product Cy x Cly;
D A C, the pullback of the system (Dsg — C3,Cy — C3) and also a semidirect
product (Cy x Cy) x Cy); Dig, the dihedral group of order 16; Q1¢, the quaternion
group of order 16; S D14, the semidihedral or quasidihedral group of order 16; and
Mjig, the modular group of order 16. Their presentations are as follows:

DC = (z,y,z|2° =y? =2* = 1,y toy = 22° [x,2] = [y, 2] = 1),
QArC=(rylat =y' =1y lay=2a1),
DAC=2=(x,y 2zt =y =22 =1,y oy =2z, [2, 2] = [y, 2] = 1),
Dig = (z,yla® = y* = Ly tay =2 1),

Qe = (z,yl® =y' =1,y tay =27y = 2¥),
SDig = (z,yl2® = y* =1,y ey = %),
Mg =2 (2, y|2® = y* = 1,y oy = 2°).
The following proposition is a compilation of all of the obstructions for the
realizability of the ten groups we are interested in, taken from [GSS:1995]. Details
and additional references can be found in that article.

Proposition 1. (1) A necessary and sufficient condition for the realizability of
the group C, as a Galois group over the field K is the existence of an element
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a € K — K? such that (a,—1) = 1 € Bry(K). In this case, the group Cy can be
realized by an extension of K which is quadratic over K(\/a).

(2) A necessary and sufficient condition for the realizability of the dihedral group
Ds of order 8 as a Galois group over the field K is the existence of independent
elements a,b € K/K? such that (a,b) = 1 € Bry(K). In this case, the group Ds is
realized by an extension of K which is cyclic over K (v/ab).

(3) A necessary and sufficient condition for the realizability of the group Qs as a
Galois group over the field K is the existence of independent elements a,b € K/K2
such that (a,b)(ab, —1) =1 € Bry(K).

(4) A necessary and sufficient condition for the realizability of the group DC' as
a Galois group over the field K is the existence of independent elements a,b,c €
K/K? such that (a,b)(c,—1) = 1 € Bry(K).

(5) A necessary and sufficient condition for the realizability of the group Q@ AC as
a Galois group over the field K is the existence of independent elements a,b € K/K2
such that (a,—1) = (a,b)(b,—1) =1 € Bry(K).

(6) A necessary and sufficient condition for the realizability of the group D AC as
a Galois group over the field K is the existence of independent elements a,b € K/K2
such that (a,—1) = (a,b) =1 € Bra(K).

(7) A necessary and sufficient condition for the realizability of the group D1g as a
Galois group over the field K is the existence of independent elements a,b € K/K2
and an element x € K such that (a,b) = (a,2)(z, —ab) = 1 € Bry(K).

(8) A necessary and sufficient condition for the realizability of the group Q16 as a
Galois group over the field K is the existence of independent elements a,b € K/K2
and an element = € K such that (a,b) = (a,2)(z, —ab)(ab, —1) = 1 € Bry(K).

(9) A necessary and sufficient condition for the realizability of the group SD1g as
a Galois group over the field K is the existence of independent elements a,b € K/K2
and an element x € K such that (a,b) = (a,—2)(x, —ab) = 1 € Bry(K).

(10) A necessary and sufficient condition for the realizability of the group Mg as
a Galois group over the field K is the existence of independent elements a,b € K/K2
and an element © € K such that (a,—1) = (a,2b)(z, —1) = 1 € Bry(K).

2. REALIZABILITY RESULTS FOR SPECIFIC GROUPS

We begin this section with some definitions, and then proceed to examine results
on realizability of each of the ten groups Cy, Ds,Qs, DC,Q A C,D A C, D1g, Q1s,
SDg, and Mi1g. We use the obstructions provided in Proposition 1 as our criteria
for realizability.

Definition. The level s(K) of the field K is the least positive integer n such that
—1 can be expressed as a sum of n squares; s(X) = oo if no such integer exists. If
s(K) is finite, then s(K) is a power of 2. If s(K) = oo, K is formally real.

Definition. The field K is pythagorean if every element which is a sum of squares
is in fact a square. In this case either s(K) =1 and K is quadratically closed, or
s(K) = oo.

Definition. An elementa € K — K2 is rigid if the set of elements in K represented
by the quadratic form (1, a) is precisely K2UaK?. The field K is said to be rigid if
every a € K —+K? is rigid. Notice that if K is rigid and s(K) = 2, then 2 € £K?2,

and if K is rigid and s(K) = oo, then 2 € K2.
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Proposition 2.1. The group Cy is realizable as a Galois group over K if and only
if K is not pythagorean.

Proof. The obstruction to the realizability of Cy is equivalent to the existence of
an element a € K which is a sum of two squares but not a square. |

Proposition 2.2. Assume |K/K2| > 4. The dihedral group Dg of order 8 is always
realizable over K unless s(K) =1 and K is rigid.

Proof. If s(K) > 2 and |K/K?| > 4, then there exists a € K such that a,—a
are independent mod K2. Since (a,—a) = 1 € Bry(K) always, we see that D is
realizable. If s(K) = 1 and there do not exist a,b € K , independent mod K2, such
that (a,b) = 1 € Bry(K), then for all a € K — K? we must have that the form

(1,a) only represents elements in K2 U aK?. Thus K is rigid. O

Proposition 2.3. Assume |K/K2| > 4. The quaternion group Qs of order 8 is
always realizable over K unless either s(K) = oo and sums of squares are rigid in
K, or s(K) =1 and K is rigid. In particular, if K is not formally real, then Qs is
realizable if and only if Dg is realizable. If Qs is realizable, then Cy is realizable.

Proof. The proof of all but the last statement is contained in [Wa:1990] and can
be derived from Proposition 1 using the equality (a,b)(ab, —1) = (—a,—b)(—1,—1)
in Bro(F'). The last statement follows by noting that the given conditions for
realizability of Qs imply K cannot be pythagorean. |

Proposition 2.4. Assume |K/K?|> 8. The group DC is realizable over K unless
K is rigid, in which case s(K) = 1,2, or cc.

Proof. The result is derived by manipulating the obstruction (a,b)(c, —1) (see
[MiSm:1991]). O

We now consider realizability of @ A C. Notice first that if s(K) = 1, the
obstruction for realizability of @ A C reduces to that for Qs (and for Dg). If s(K) =
2, let @ = —1, and choose b independent of —1. Then (—1,—-1) =1 € Bry(K) and
(=1,b)(b,—1) =1, so there is a Q A C-extension of K. The following proposition
considers realizability of @ A C in general, giving an automatic realizability result
that holds over any field K.

Proposition 2.5. The group Q A C is realizable over K if and only if Qs is real-
izable over K.

Proof. If Q A C is realizable, then clearly so is Qs, as well as Cy, since they are
quotients. Conversely, assume Qs is realizable. Then we have independent a, b such
that (a,b)(a,—1)(b,—1) = 1 € Bry(K). By manipulation of quaternion algebras
we have (—a, —b)(—1,—1) = 1, and working with known criteria for the splitting
of a tensor product of two quaternion algebras, we have (a,b,ab) ~ (1,1,1), so a
is a sum of three squares, but not a square. If a is a sum of two squares, then
(a,—1) = 1, giving the desired @ A C-extension. If not, then there exists ¢ € K
which is a sum of two squares but not a square, such that a is represented by the
form (1,¢), so (1,¢) ~ (a,ac). Then (a,—c) =1 € Bry(K), so (a,c)(a,—1) =1,
and since ¢ is a sum of two squares, (¢,—1) = 1. Now a, ¢ are independent since ¢
is a sum of two squares but a is not, so we have a Q A C-extension of K. O
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Proposition 2.6. Assume |K/K?| > 4. The group D A C is realizable over K
unless (a) s(K) =1 and K is rigid, (b) s(K) = oo and K is pythagorean, or (c)
S(K) =2 and Cy x Cy is not realizable as a Galois group over K.

Proof. If s(K) = 1, the obstruction for D A C reduces to that for Ds, and the
group is not realizable precisely when K is rigid (condition (a)). If s(K) > 2 and
there exists a # —1 € K which is a sum of two squares but not a square, then
(a,—1) = (a,—a) = 1 € Bry(K), satisfying the obstruction to the realizability of
D A C as a Galois group over K. If there is no such a, then either all sums of squares
are in fact squares, in which case K is pythagorean and formally real (condition
(b)), or the only element a € K — K2 for which (a,—1) = 1 is a = —1, in which
case s(K) = 2 and Cy x C4 cannot be realized as a Galois group over K (condition
(c)). Note that in condition (c), the only Cy-extensions of K will be those lying

over K(v/-1). O

When s(K) = 1, all the nonabelian groups of order 16 and exponent 4 are
realizable if any of them are, provided |K /K?| is large enough. This is clear from
the obstructions given in Proposition 1, since the obstructions for all of these groups
become identical when —1 is a square in K. We have the following result.

Corollary 2.7. If s(K) = 1, then any one of the groups Ds,Qs,Q A C,D A C
is realizable over K if and only if the other three groups are realizable over K. If

|K / K 2| > 8, the realizability of these groups is also equivalent to the realizability of
DC.

The following proposition links realizability of D A C' with that of DC when
s(K) > 2. Combining this with Corollary 2.7 shows that D A C automatically
realizes DC' if K has enough square classes.

Proposition 2.8. Assume s(K) > 2 and |K/K? > 8. If 2 € —K?2, then realiz-
ability of D A C implies D1g is realizable, which implies DC' is realizable. If2 € K2,
then realizability of D A C implies S D1 is realizable, which implies DC' is realizable.
If2¢ +K2, DC is realizable.

Proof. First observe that if 2 ¢ £K?, then since the form (1, —2) represents —1,
K cannot be rigid and DC is realizable. Now assume D A C is realizable. We
may fix a,b independent mod K? such that (a,—1) = (a,b) = 1 € Bry(K). First
assume 2 = —1 mod K2. In the obstruction for the realizability of Dig, choose
the same a,b and let * = 1. Then the obstruction for D¢ becomes (a,b) and
(a,2)(1,—ab) = (a,—1), both of which we have assumed to be trivial. Thus D¢ is
realizable. Now assume 2 = —1 mod K2 and Dsg is realizable. Then there exist a,b
independent and = € K such that (a,b) = (a, —1)(z, —ab) = 1. If a # —b € K/K?,
then a,b,—1 are independent; and since s(K) = 2 (because 2 = —1), we have
(a,b)(—1,—1) = 1, realizing DC. If a = —b, then we have (a,—1) = 1. Choose
¢ € K such that a,c, —1 are independent. Then (¢,—c)(a,—1) = 1, realizing DC.

For the remainder of the proof, assume 2 € K2. Then the criterion for the
realizability of SDsg is the existence of independent ¢,d € K and z € K such that
(¢,d) = (¢,-1)(x,—ed) = 1. Choose ¢ = a,d = b, where (a,—1) = (a,b) = 1 is
given by the realizability of D A C, and take x = 1.

We show below (Proposition 2.15) that, in general, realizability of S D¢ implies
realizability of Cy. If s(K) > 4, C, automatically realizes DC. If s(K) = 2,
realizability of SDs¢ gives us independent a, b such that (a,b) = (a, —1)(z, —ab) =1
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for some z € K. If a = —b, then (a,—1) = 1. Choose ¢ € K such that a,c,—1
are independent. Then (¢, —c)(a,—1) = 1, realizing DC. If a # —b, then a,b,—1
are independent, and (a,b)(—1,—1) = 1, since s(K) = 2, so we again obtain the
realizability of DC. O

Proposition 2.9. Assume |K /K 2| > 4. The group Di¢ is always realizable over
K if s(K) > 4. If s(K) = 2, then Dy is realizable unless 2 € —K?2, in which
case realizability of D A C implies realizability of Dis. If s(K) = 1, any one of
the groups Dig,Q16, and SDig is realizable if and only if the other two are, and
realizability of any of these groups implies the realizability of Ds. This in turn
implies the realizability of Mg, Qs,Q A C, and D A C, and if |K/K2| > 8, of DC
as well. Thus if s(K) =1 and |K/K?| is large enough, D1 automatically realizes
all other groups of order 16.

Proof. The criterion for the realizability of Dig is the existence of independent
a,be K, and z € K, such that (a,b) = (a,2)(z, —ab) = 1 € Bry(K). Assume first
s(K) > 2. If 2 ¢ +K?, choose a = —2,b = 2; then D¢ is realizable. If 2 € K2,
choose a = —b for some a ¢ +K?2. If 2 € —K?, then necessarily s(K) = 2, and
D A C realizes D1g as shown in Proposition 2.8.

Assume now that s(K) = 1. The realizability criteria for all three groups
Dqg,Q16,SD16 reduce to the existence of independent a,b € K and z € K such
that (a,b) = (a,2)(z,ab) =1 € Bry(K). Thus they are all equivalent and clearly
imply the realizability of Dg. Realizability of Dg implies the realizability of the
other groups listed, as shown in Corollary 2.7 above for all groups except Mg, and
in Corollary 2.14 below for Mis. When s(K) =1, (a,a) = 1 for all a € K, realizing
Cj, so realizability of Dj¢ is sufficient to guarantee the realizability of all groups of
order 16 over K when |K /K2 is large enough. a

Corollary 2.10. If s(K) =1 and 2 € K2, then the realizability of any one of the
groups Dg,Qs, D A C,Q A C, D1g, Q16,S D1, M1s implies the realizability of all of
the others.

Proof. Under the given assumptions on K, we have already seen the equivalence of
the realizability criteria for the groups Dig, @16, and SD1g (Proposition 2.9), and
for the groups Ds, Qs, Q@ A C, D A C, (Corollary 2.7), and the result for M4 follows
from Corollary 2.14 below. Also Dg is a quotient of D1, so is trivially realized by
it. Thus, what remains to show is that realizability of Dg implies realizability of
Dig. If —1,2 € K2, the criterion for Dig becomes (a,b) = (x,—ab) = 1 for some
independent a,b € K and some € K. Choosing = 1 makes D;¢ realizable
whenever Dy is. O

Just as realizability of Qs implies realizability of Ds, so does realizability of Q16
imply realizability of D14, as the following proposition, together with Proposition
2.9, shows.

Proposition 2.11. Ifs(K) < 2, Q16 is realizable if and only if D1 is. If s(K) > 4,
realizability of qu implies realizability of Cy,Dg, D X C, D1g,SD1s, and Mig, and
also of DC if |K /K?| > 8. If2 € K?, realizability of Q1¢ is equivalent to realizability
of Qs.

Proof. We have already seen in Proposition 2.9 that for s(K) = 1, Q16 is realizable
over K if and only if Dy is. If s(K) = 2 and either group is realizable, then we have
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independent a,b € K/K? with (a,b) = 1. If a = —b, then (a,2) = (a,2)(-1,-1),
and so realizability of either group implies that of the other. If a # —b, then
(av 2)(3:7 _ab) = ((1, 2)(1'7 _ab)(_lv _1) = ((1, 2)(1'7 _ab)(_lv _ab)(_]-v ab) =
(a,2)(—z, —ab)(—1,ab), so the obstruction for Djs becomes the obstruction for
Q16 by replacing x with —z.

For the remainder of the proof, we assume s(K) > 4. The groups Dg and Dsg
are always realizable if [K /K?2| > 4. If 2 ¢ K2, then we have seen that the groups
Cy,D A C, and, if |K/K2| > 8, also DC' are always realizable. To see that SDig
and Mg are realizable, note that s(/K) > 4 and 2 ¢ K? imply that 2,—2 are
independent. So taking a = 2, b = —2, and 2 = 1, the obstructions for SDg and
Mg are each trivial. Thus we now assume 2 € K2

First we show realizability of Q1 is equivalent to realizability of Qs. Given
a,b realizing @16, we cannot have a = —b, since then (—1,—1) = 1, implying
s(K) < 2. Thus we have (a,b) = (z,—ab)(ab,—1) for some z € K. If z € K2,
then (ab. —1) = 1, so (a,b)(ab, —1) = 1, realizing Qs. If zab € K?, then (x, —ab) =
(zr,—z) = 1, so (ab,—1) = 1, and we again have Qs as above. Finally, if neither
x nor zab is a square, then z,ab are independent. Further, (x,ab)(rab,—1) =
(z,ab)(z,—1)(ab,—1) = (x,—ab)(ab,—1) = 1, realizing Q5. Conversely, given Qs
as a K-Galois group, we know we also have Q A C as a K-Galois group. Thus, there
exist a,b independent such that (a,—1) = (a,b)(b,—1) = 1. Choose ¢ = ab,d =
b,z = a. Then (¢,d) = (ab,b) = (a,b)(b,—1) = 1 and (c,2)(z, —cd)(cd, 1) =
(a,—1) =1, and so we have a ()1s-extension of K.

It remains to show that when 2 € K2, realizability of Q¢ implies that of Cy,
D A C,SDyg, and M1g. We have seen that Qg realizes Q A C, so we get Cy
because it is a quotient of @ A C. Since s(K) > 4, C, is realizable if and only if
D A C is realizable (Propositions 2.1 and 2.6). Suppose (a,—1) = 1 realizes Cj.
Necessarily @ and —1 are independent, since if a = —1, s(K) < 2. Let b = —a,
x =1 in the obstruction for M. Then we have (a,—1) = (a,—a)(1,—1) =1, so
Mg is realizable. To see realizability of Cy implies realizability of SD1g, again let
b = —a. Then under the assumption 2 € K2, (a,—a) = (a,—1) = 1, and so SD¢
is realizable. O

Proposition 2.12. Ifs(K) =1, then SDi¢ is realizable if and only if D1s and Q16
are. If s(K) > 2 and |K/K?| > 4, then SD1¢ is always realizable unless 2 € K?,
in which case realizability of SD1g is implied by that of D A C.

Proof. We have already seen in Proposition 2.9 that if s(K) = 1, then SDjg is
realizable if and only if D1 and Q16 are. Also we have seen in Proposition 2.8
that if s(K) > 2, 2 € K2, and D A C is realizable, then so is SDyg. So it remains
to show that if 2 ¢ K2 and s(K) > 2, we can always realize SDyg. If 2 ¢ —K?2,
then 2, —2 are independent, and we can let a = 2,b = —2; then (2,—-2) = 1, so the
obstruction for SDyg is trivial. If 2 € —K?, then necessarily s(K) = 2. Choose
a ¢ +K? and let b= —a. Then (a,—2) = 1, so again SD;¢ is realizable. |

Proposition 2.13. Assume |K/K?| > 4. The group Mg is always realizable over
K wunless either s(K) = 1 and K is rigid, or s(K) = oo and K is pythagorean.
Thus realizability of either D A C or Qs implies that of M.

Proof. If s(K) = 1, the obstruction for Mg becomes simply (a,2b). If 2 ¢ K2,
letting b = 2 makes the obstruction trivial. If 2 € K2, then the obstruction becomes
(a,b), which is the same as the obstruction for Ds. This group is realizable if
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and only if K is not rigid. Now assume s(K) = 2. Let a = —1,b ¢ +K?2, and
x = 2b. Then (—1,—1) = (—1,2b)(—1,2b) = 1, so Mg is realizable. Finally assume
s(K)>4.1f2¢ K2, then 2,—2 are independent. Let a = 2,b= —2,2 = 1. Then
(2,-1)=(2,-1)(1,—-1) =1, so My is realizable. If 2 € K2, we have shown in the
proof of Proposition 2.11 that realizability of Cy implies the realizability of Mg,
and Cj is realizable unless s(K) = oo and K is pythagorean. O

Corollary 2.14. Assume s(K) = 1. If2 € K2, realizability of any of Dsg, Qs,
Q A C,D A C is equivalent to realizability of Mys. If2 ¢ K? and |K/K?| > 4, then
Mg is always realizable.

Proof. This follows directly from the preceding proof and Corollary 2.7. O

Proposition 2.15. Realizability of any of Mig, Q16, or SD1s implies realizability
Of 04.

Proof. First, Cy is a quotient of Mg, so this is a case of trivial realizability. It is not
a quotient of either of the other two groups, however, so these results are of more
interest. We may assume s(K) = oo and K is pythagorean, since C4 otherwise
is always realizable. Thus 2 € K2. We have observed in this case that Qg is
equivalent to Qs (Proposition 2.11) which is equivalent to @ A C' (Proposition 2.5),
which has Cy as a quotient, so realizability of Q15 implies realizability of Cj.
Finally, suppose SD;g is realizable and 2 € K2. Then there exist independent
a,b € K such that (a,b) = 1 and (a,—1)(z, —ab) = 1 for some z € K. By the
common slot, or linkage, property for quaternion algebras, there exists y € K such
that (a,-1) = (y,—1), (z,—ab) = (y,—ab), and (y,ab) = 1. Thus (ay,—1) =
(a,—1)(y,—1) = 1. If y # a, then (ay,—1) = 1 implies the existence of a Cy-
extension containing K (,/ay). If y = a, then (a,ab) = 1 = (a, b) implies (a,a) =1,
so there exists a Cy-extension containing K (1/a). |

3. REALIZABILITY RESULTS BY CONDITIONS ON THE FIELD K

In this section we organize the realizability results according to the level of K.
For groups of order 16, our results yield or improve the results obtained in [Je:1989],
[Je:1992] and [L:1995]. Jensen’s results are obtained using a variety of methods,
and many hold for larger classes of 2-groups, not just those of order 16. When
considering just groups of order 16, however, most of these results can be obtained
and even strengthened working solely with the obstructions to the realizability of
the groups.

Theorem 3.1. Assume s(K) =1.

(1) The group (Cy)™ is realizable if and only if |K /K?| > 2",

(2) If any one of the groups Ds, Qs, D A C,Q A C is realizable, so are the rest. If
|K / K 2| > 8, then realizablility of these groups is equivalent to realizability of DC.

(3) If2 ¢ K? and |K/K?| > 4, then Mg is always realizable.

(4) If any one of the groups D1s, @16, S D1¢ is realizable, then so are the other
two. Realizability of any of these groups trivially realizes Dg. Thus, if |K / K 2| > 16,
realizability of any of these groups implies realizability of all groups of order 16.

(5) If2 € K2, i.e. if K conlains a primitive 8th root of unity, then realizability of
any of the groups Dg, D1g, M1g tmplies realizability of the others. Thus, zf|K/K2| >
16 and K contains a primitive 8th root of unity, realizability of any nonabelian group
of order 16 implies realizability of all groups of order 16.
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Proof. Most of the results follow directly from the propositions and corollaries in §2.
For (1), observe that (a,—1) = 1 for all @ € K. Thus the number of independent
Cy-extensions that exist over K is precisely the number of independent square
clagses in K. (2) follows directly from Corollary 2.7 and (3) from Corollary 2.14.
The first statement of (4) follows from Proposition 2.9. The first statement of (5)
comes from Corollary 2.10. The final statements of (4) and (5) now follow from the
rest of the theorem. Notice that |K/K?| > 8 is sufficient for realizability of all of
these groups except C’;‘. O

Theorem 3.2. Assume s(K) = 2.

(1) The group Cy is always realizable.

(2) If |K/K?| > 4, the groups Ds,Qs,Q A C, and Mg are always realizable.

(3) The group Dsg is realizable if and only if Q16 is.

(4) The group D A C is realizable if and only if Cy x Cy is.

(5) If |K/K2| >4 and 2 € K2, then Dig is always realizable, and realizability of
D & C implies realizability of SD1g. If |K/K?| > 8, realizability of SDyg implies
realizability of DC.

(6) If|K/K2| >4 and —2 € K2, then SDig is always realizable, and realizability
of D A C implies realizability of Dis. If |K/K2| > 8, realizability of D1g implies
realizability of DC.

(7) If [K/K?| > 4 and 2 ¢ £K?, then the groups Dig,Qis, D A C,SDig, and
CyxCy are always realizable. If|K/K?| > 8, DC is also realizable. If|K/K?| > 16,
every group of order 16 is realizable.

Proof. (1) follows from Proposition 2.1; note in particular that (-1,—-1) =1 €
Bry(K), realizing Cy. (2) comes from Propositions 2.2, 2.3, 2.5, and 2.13. Propo-
sition 2.11 gives (3). Proposition 2.6 shows the realizability of D A C' is implied
by that of Cy x Cy. Conversely, if D A C is realizable, there exists independent
a,b e K with (a,—1) = (a,b) = 1. If a # —1, there exist Cy-extensions containing
K(y/a) and K(v/=1). If a = —1, there exist Cj-extensions containing K (v/b) and
K(y/—1). This gives (4). Propositions 2.8 and 2.9 give both (5) and (6).

Finally, for (7), Proposition 2.9 gives realizability of Dsg; this together with
Proposition 2.11 gives realizability of Q5. The group Cy x Cy is realizable because
(—=1,-1) = (—1,2) = 1, so there exist independent Cy-extensions of K containing
K(v/=1) and K(v/2) respectively. Proposition 2.12 gives the realizability of SDjs.
The realizability of DC follows from Proposition 2.8. Finally, all of these combined
with (2) give the last statement. O

Theorem 3.3. Assume s(K) >4 and |K/K?| > 4.

(1) The groups Ds and Di¢ are always realizable.

(2) The group Qs is realizable if and only if Q A C is.

3)If2 ¢ K2, the groups Cy, D A C,SDsg, and Mig are always realizable. If
|K/K?| > 8, then DC is also realizable.

(4) If2 € K2, then Qqg is realizable if and only if Qs is. If any one of the
groups Cy, D A C,SD1g, M1 is realizable, so are the rest. All of these groups are
automatically realized by Qs. If | K /K 2| > 8, realizability of any of these groups
implies realizability of DC'. Thus, in this case, realizability of all nonabelian groups
of order 16 is implied by realizability of Qs.
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Proof. Propositions 2.2 and 2.9 give (1), and (2) is exactly Proposition 2.5. Since
(=1,2) = 1 € Bry(K) always, if 2 ¢ K2, K cannot be pythagorean, and since —2 ¢
K 2. this also implies that K cannot be rigid. Thus Propositions 2.1, 2.6, 2.12, and
2.13 give (3). The first statement of (4) follows from Proposition 2.11. The second
statment can be derived as follows: Propositions 2.12 and 2.13 show realizability of
D A C imply realizability of M1 and SD1g. Proposition 2.15 shows realizability of
either of these groups implies realizability of Cy. And Proposition 2.6 together with
Proposition 2.1 gives the fact that Cy realizes D A C when s(K) > 4. The third
statement of (4) follows from Proposition 2.3, and the fourth from Proposition 2.4.
The final statement summarizes the results above. O

We have the following proposition, improving on results of Jensen which state
that realizability of Qs implies realizability of @ A C, implying realizability of Dy,
and realizability of Dg implies realizability of one of D¢, SD1g, or Mis.

Proposition 3.4. Realizability of Qs is equivalent to that of Q@ A C and implies
that of Ds. Realizability of Ds implies realizability of at least one of D1g or Mig.

The first result in Proposition 3.4 follows from Proposition 2.5 and Theorems
3.1(2), 3.2(2), and 3.3(2). The second result can be derived as follows. Theorem
3.1(3),(5) shows that if s(K) = 1, Ds automatically realizes Mj¢. The realizability
of Dg implies |K/K?| > 4, so if s(K) = 2, Mg is realizable by Theorem 3.2(2),
and if s(K) > 4, D is realizable by Theorem 3.3(1).

Jensen also derives a number of results which depend on square class considera-
tions and existence of certain roots of unity in the field. Again, if one considers just
groups of order 16, these results can be obtained from Theorems 3.1-3.3. The roots
of unity needed by Jensen in this case are at most 8th roots of 1, so considering the
behavior of —1 and 2 in K/K? suffices.
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