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Linear and nonlinear measures predict swimming in the leech

C. J. Cellucci,1,3 P. D. Brodfuehrer,2 R. Acera-Pozzi,1 H. Dobrovolny,1 E. Engler,1 J. Los,1 R. Thompson,1

and A. M. Albano1
1Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010
2Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010

3Department of Physics, Ursinus College, Collegeville, Pennsylvania 19426
and The Arthur P. Noyes Clinical Research Center, Norristown, Pennsylvania 19401

~Received 6 March 2000!

Stimulation of a trigger interneuron of an isolated nerve cord preparation of the medicinal leech,Hirudo
medicinalis, sometimes leads to swimming; sometimes it does not. We investigate signals transmitted in the
ventral cord of the leech after stimulation and seek quantitative measures that would make it possible to
distinguish signals that predict swimming from those that do not. We find that a number of linear as well as
nonlinear measures provide statistically significant distinctions between the two kinds of signals. The linear
measures are the time dependence of~i! the standard deviation and~ii ! the autocorrelation function at a small
time delay. The nonlinear measures are~i! a measure of nonlinear predictability and~ii ! the time dependence
of a measure of the size of the embedded signal trajectory. Calculations using surrogate data suggest that the
differences between the two classes of signals are dynamical as well as statistical.

PACS number~s!: 05.45.2a, 87.10.1e, 87.19.Nn

I. INTRODUCTION

In the medicinal leech,Hirudo medicinalis, the initiation
of swimming following body wall stimulation can be traced,
neuron to neuron, from the mechanosensory neurons that
perceive the stimulus to motor neurons that produce the
swimming movements@1–3#. In this swim-initiating path-
way, neuronal information flows sequentially from mecha-
nosensory neurons to trigger interneurons~cells Tr1!, to seg-
mental swim-gating interneurons, to oscillator interneurons.
The output connections of the swim oscillator network drive
motor neurons in each segmental ganglion that produce the
undulatory body wall movements of swimming@1–3#. How-
ever, the synaptic interactions described in the swim-
initiating pathway do not adequately explain the behavioral
variability observed in the isolated leech nervous system fol-
lowing activation of this pathway. For example, stimulation
of cell Tr1 can elicit swimming in one trial, but may not in
the next trial, even though the strength of cell Tr1 stimula-
tion is constant in both trials@3#. Similar behavioral variabil-
ity also occurs in intact leeches in response to body wall
stimulation@4#.

Recent attempts to understand why stimulation of cell Tr1
does not reliably trigger swimming has led to the hypothesis
that the control of swimming involves two parallel systems
originating in the head ganglion that have opposite effects on
the segmental swim-generating network, a swim-activating
system that excites the segmental swim-generating network
and a swim-inactivating system that inhibits or suppresses it
@5#. In order for a given stimulus to initiate swimming, the
swim-activating system must be turned on and the inactivat-
ing system turned off. Attempts to identify neurons in the
head ganglion that comprise the swim-activating and
-inactivating systems and are directly involved with deter-
mining whether a leech swims in response to a given stimu-
lus have been largely unsuccessful@6#. The inability to
physiologically identify individual neurons that strongly af-

fect the probability of eliciting swimming is consistent with
the control of swimming being a function of the coordinated
activity of large populations of neurons in the leech nervous
system. Individual neurons may only make a small contribu-
tion to the net output of the system, and could easily be
missed during physiological searches. Support for a distrib-
uted process controlling swimming is clearly revealed in ex-
tracellular records of neuronal spiking activity descending
from the head ganglion in the lateral connectives prior to
swimming. These recordings show a complex pattern of
spiking activity that is coincident with the onset of swim-
ming @5#. Collectively, these observations suggest that no
single neuron or even a small group of neurons determines
absolutely whether swimming will occur in response to a
given input. Under these circumstances, a computational
analysis of neuronal activity is most likely necessary to de-
cipher how the leech nervous system encodes the initiation
of swimming

One of the simplest things expected of the computational
analysis of biological data is to provide some quantitative
measures that would make it possible to distinguish distinct
states of the system that produced the data. These states
could be associated with different behaviors either as precur-
sors or correlates of these behaviors. It is, however, not quite
so easy to live up to these expectations. In recent years, for
instance, various linear and nonlinear measures have been
used to study human electroencephalograms~EEGs!. Some
of these studies have been attempts to forecast epileptic sei-
zures~@7# and references therein,@8,9#!. Although these have
shown varying levels of promise there is, as yet, no reliable
predictor of the onset of epilepsy@11,12#.

Here, we explore the use of some linear and nonlinear
techniques in the analysis of data from a simpler behavior in
a much simpler system. We simply ask whether we can find
quantitative measures that would make it possible to distin-
guish signals propagating in the leech ventral nerve cord that
lead to swimming from those that do not. Specifically, we
analyze two sets of time series measured from signals propa-
gating along the ventral nerve cord following Tr1 stimula-
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tion. One signal propagates toward the rear while the other
signal propagates toward the head~ACN and PCN, respec-
tively, in Fig. 1!. These signals are clearly nonstationary~see
Fig. 2!, so rather than using a single set of measures to de-
scribe an entire time series, or treating the signal’s trajectory
in a reconstructed state or phase space as an attractor, we
partition it into successive nonoverlapping epochs and then
use the time evolution of the properties of the epochs to
characterize the time series.

We find that analysis of the ventral chord signals provides
statistically significant discriminations between signals that
lead to swimming and those that do not, and that these are
achieved using both linear and nonlinear measures. The lin-
ear measures are the time dependence of the standard devia-
tion and that of the autocorrelation function at some small
time delay. The nonlinear measures are two that are rela-
tively robust against noise and the limitations imposed by
small data sets:~1! nonlinear predictablity@10,11#, and ~2!
the time dependence of the mean distance between points in
multidimensional time-delay embeddings of the data. In ad-
dition, we compare the patterns of spiking activity for swim-
ming elicited by intracellular stimulation of cell Tr1 and
swimming episodes that occur spontaneously.

II. NEURAL CORRELATES OF SWIMMING

1. Leech nervous system

The leech central nervous system consists of head and tail
ganglia connected by the ventral nerve cord, a chain of 21
segmental ganglia and their intersegmental connectives. The
segmental ganglia are numbered sequentially, from 1–21,
beginning with the ganglion posterior to the head ganglion
~Fig. 1!. Each segmental ganglion is joined by connectives
composed of two large lateral bundles of nerve fibers~2800
axons each! and a thin bundle called Faivre’s nerve~97 ax-
ons! @13#!. A pair of nerve roots arises from each segmental
ganglion to innervate the body wall surrounding that seg-
ment. In isolated nerve cords, swimming activity is indicated
by rhythmic bursts of action potentials in the dorsal posterior
~DP! nerve, a branch of a segmental peripheral nerve@12#.

2. Experimental setup

In an isolated leech nerve cord extending from the head
ganglion to the tail ganglion, we recorded extracellularly

FIG. 1. Diagram of the experimental preparation. Preparation
consists of the isolated leech ventral nerve cord extending from the
head ganglion~HG! to the tail ganglion~TG!. Extracellular record-
ing of multiunit spiking activity in the lateral connectives were
made at two locations: ACN, posterior to the segmental ganglion 2;
PCN, anterior to segmental ganglion 17. Extracellular recording
from a peripheral nerve~dorsal posterior, DP! was used to monitor
the occurrence of swimming in the isolated nerve cord. Swimming
was initiated by intracellular stimulation of cel Tr1.

FIG. 2. Neuronal activity patterns in the lateral connectives as-
sociated with swimming and nonswimming trials.~a! and ~c! In
both triggered and spontaneous swim episodes, neuronal activity in
ACN increases and decreases in PCN approximately 3 s before the
initiation of swimming. ~b! In nonswimming trials, no consistent
change was evident in the activcity pattern in ACN or PCN.

PRE 62 4827LINEAR AND NONLINEAR MEASURES PREDICT . . .



neural signals propagating in a lateral connective prior to and
following stimulation of cell Tr1~Fig. 1!. Neuronal activity
in the connectives and DP nerve was recorded using extra-
cellular suction electrodes, while the electrical potential of
cell Tr1 was recorded and stimulated using an Axoclamp 2B
~Axon Instruments, Foster City, CA! amplifier in bridge
mode. One extracellular recording location was from the cut
end of one lateral connective posterior to segmental ganglion
2, ~referred to as the anterior connective, ACN! while the
other recording location was from the contralateral connec-
tive anterior to segmental ganglion 17~posterior connective,
PCN!. Since the leech nervous system is bilaterally sym-
metrical, it is likely that the neural activity patterns recorded
in one lateral connective reflect the spike activity patterns
occurring in the other connective. The only noticeable differ-
ence between isolated preparations with intact lateral con-
nectives and those with one lateral connective severed was
an increase in the latency between Tr1 stimulation and the
beginning of swimming in the latter group.

3. Physiological data

In the preparation described above, seven Tr1 stimulation
trials triggered swimming and seven ‘‘spontaneous’’ swim
episodes occurred. In all seven trials where stimulation of
cell Tr1 triggered swimming, we observed two consistent
changes in the neuronal activity pattern recorded from the
anterior and posterior connective recording sites, ACN and
PCN, respectively. First, several seconds prior to swimming,
the amount and amplitude of neural signals in ACN in-
creased and remained elevated throughout the duration of the
swim episode. Second, coincident with the increase in ACN
activity, large amplitude signals ceased and there was an
overall decrease in neural activity in PCN that gradually in-
creased before the onset of swimming@Fig. 2~a!#. An almost
identical change in ACN and PCN activity patterns occurred
before the onset of all seven spontaneous swim episodes: an
increase in ACN activity and a simultaneous decrease in
PCN activity @Fig. 2~c!#. On the other hand, in 13 trials

where Tr1 stimulation did not lead to swimming, no consis-
tent change was evident in ACN and PCN activity patterns
@Fig. 2~b!#.

III. ANALYSIS

All analyses were performed on a time series consisting
of a segment of ACN and PCN recorded data. For Tr1, trig-
gered swim episodes this segment, referred to as the post-
stimulus segment, consisted of the portion of the time series
starting at the end of spiking activity in cell Tr1 to the onset
of swimming, which is indicated by the first burst of action
potentials in the DP nerve~see Fig. 2!. In trials where Tr1
stimulation did not elicit swimming, the end of the post-
stimulus period occurred approximately 6 s after stimulation
of cell Tr1, which corresponded to the average swim latency
in trials where swimming occurred following stimulation of
cell Tr1. Data segments starting approximately 6 s before the
onset of swimming were used in the analyses of spontaneous
swim episodes.

A. Statistical and spectral measures

Each time series of extracellularly recorded ACN and
PCN signals is partitioned into non-overlapping 400-point
~0.100 s! epochs and linear measures are calculated for each
epoch. This provides time-dependent characterizations of the
time series. Figure 3 shows the time dependence of the
mean, standard deviation, skewness, and kurtosis of post-
stimulus ACN signals for a nonswimming and a triggered
swimming case. Figure 4 shows the same graphs for the
ACN signal preceding a spontaneous swimming episode. In-
vestigation of these figures and similar figures shows that
only the standard deviations of the poststimulus ACN signals
show any obvious differences—they increase before swim-
ming starts. This is consistent with some of the qualitative
observations made in the previous section.

A crude quantification of the time course of the signals
may be obtained by performing a linear fit of their time

FIG. 3. Time dependence of the mean, stan-
dard deviation, skewness, and kurtosis of post-
stimulus ACN signals for~a! a nonswimming and
~b! a triggered swimming case.
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dependence, and using the slopes of these fits to characterize
the data. Figures 5 and 6 show the standard deviations vs.
time, and the linear fits, for post-stimulus ACN signals cor-
responding to nonswimming and triggered swimming. Figure
7 shows the corresponding values for an ACN signal preced-
ing spontaneous swimming. Figure 8 shows the slopes of
these fits for all cases of each condition. The linear fits of all
signals preceding swimming, triggered as well as spontane-
ous, have positive slopes. Eight of the 13 nonswimming
cases do not.

Using a t test to compare the slopes, we find that the
probability p that the post-stimulus nonswimming and trig-
gered swimming ACN signals come from the same popula-
tion is 9.331027. A similar comparison of the triggered
swimming and spontaneous swimming signals givesp
50.015; nonswimming vs spontaneous swimming givesp
52.231027. In contrast, a comparison of the poststimulus
PCN nonswimming and triggered swimming signals gives
p50.51. Although the slope does not give an unambiguous
classification of each individual signal, it clearly provides a

FIG. 4. Time dependence of the mean, standard deviation,
skewness, and kurtosis of poststimulus ACN signals for a sponta-
neous swim episode.

FIG. 5. Time dependence and linear fit~dashed line! of the
standard deviation of a nonswimming case.

FIG. 6. Time dependence and linear fit~dashed line! of the
standard deviation of a triggered swimming case.

FIG. 7. Time dependence and linear fit~dashed line! of the
standard deviation of a spontaneous swimming case.
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statistically significant distinction between the two classes of
signals.

Figure 9 shows the time dependence of the power spectral
densities~the Gabor transforms, see@14#! of an ACN signal
after stimulation in~a! a case that did not lead to swimming
and~b! one that led to swimming. Investigation of these and
similar figures for the other data sets shows no obvious dif-
ferences that could be used to distinguish one condition from
the other. The autocorrelation function~Fig. 10! is the Fou-
rier transform of the power spectral density~Wiener-
Khinchin theorem, see, e.g., Ref.@15#!, so one should convey
the same information~or lack thereof! as the other. Never-
theless, despite the lack of easily identifiable global features
that may be used to distinguish the signals, there are usable
consistent differences in the time dependence of the autocor-
relation function at small delays. Figure 11~a! shows the time
dependence of the autocorrelation at a delay of 6 points~1.5
ms! for a poststimulus time signal that did not lead to swim-

ming; Figure 11~b! shows the time dependence of the auto-
correlation for one that did.

As was done for the standard deviation, we show in Fig.
12 the slopes of linear fits of graphs such as Fig. 11 for all
three conditions.t test comparisons of these values givep
58.831025 for nonswimming vs triggered swimming,p
52.131025 for nonswimming vs spontaneous swimming,
andp50.15 for triggered vs spontaneous swimming.

B. Nonlinear measures

The standard deviation, like other measures based on sta-
tistical moments, depends only on the distribution of values
and not on their time sequence. It is insensitive to dynamics.
Some time sequence-dependent information is provided by
spectra or autocorrelation functions, but this information can
be mimicked by appropriately filtered noise@see,e.g., Ref.
@16# and Sec. III B 3 below#. In this section we investigate
two nonlinear measures that are capable of eliciting some
dynamical information from the data.

Traditional analyses of scalar time series such as those
done in the preceding section focus their attention on one
measured variable at a time. A system characterized by many
coupled variables is more appropriately described by the si-
multaneous values of all the variables. These are represented
by a point in the multidimensional state space spanned by the
system’s variables, and the system’s dynamics is described
by the trajectory of this representative state space point.

In situations when only values of a scalar quantity
$x1 ,x2 , . . . ,xN% are measured, the state space trajectory may
be reconstructed in anm -dimensional state space by means
of embedding vectors of the form@17–21#,

X~n!5~xn ,xn11 , . . . ,xn1m21!. ~3.1!

Theorems by Takens@17# and Mañé @18# show that for a
sufficiently large number of clean data, and ifm is suffi-
ciently large, the trajectory in the embedding space has the
same geometric and topological properties as that in the
original state space. In the following, we use the method of

FIG. 8. Slopes of the linear fits of the time dependence of the
standard deviation for all non-swimming, triggered swimming, and
spontaneous swimming cases.

FIG. 9. Time dependence of the power spec-
tral density~Gabor transform! of the poststimulus
ACN signal for~a! a nonswimming case and~b! a
triggered swimming case.
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global false nearest neighbors and mutual information to de-
termine embedding parameters@22#.

1. Predictability

If a time series comes from a deterministic system then, in
principle, it is possible to predict its future values from past
ones. One technique that has been particularly effective is the
use of local approximation@11#. In its simplest form, to pre-
dict X(n1t) from X(n), we look for that past stateX(n8),
with n8,n, that is closest toX(n). We then determine where
X(n8) is t time units later and use that state@X(n81t)# as
the prediction forX(n1t).

Our use of predictability differs from our use of the other
measures in that we calculate a value that characterizes an
entire time series rather than a sequence of values that tracks
its time dependence. We take nonstationarity into account by
using a moving window for the prediction. That is, to predict

X(n11), we start by locatingX(n)’s nearest neighbor
X(n8) from among the previous 2500 vectors,X(n
22500), X(n22499),. . . ,X(n21). We then take as our
prediction, Xp(n11)5X(n811)5(xn8 ,xn811 , . . . ,
xn81m21). This is done forn52501 until the end of the time
series.

As a measure of the predictability, we use the root-mean-
square~RMS! difference between the predicted and actual
values scaled to the signal standard deviation. We used the
median value of the RMS errors to compare time series since
it is much less sensitive to outliers. In Fig. 13 we see a large
difference between the predictability of ACN and PCN sig-
nals in the cases that did not lead to swimming. This differ-
ence is not as pronounced in the triggered and spontaneous
swimming cases~Fig. 14!. Since we cannot ascribe a signifi-
cance to isolated values of the median prediction error for the
individual signals, we use the differences between the ACN

FIG. 10. Time dependence of the autocorrela-
tion function of the poststimulus ACN signal for
~top! a nonswimming case and~bottom! a trig-
gered swimming case.

FIG. 11. Time dependence of the autocorrelation function for a
time delay of 6 time units~1.5 ms! for ~a! a nonswimming case and
~b! a triggered swimming case.

FIG. 12. Slopes of the linear fits of the time dependence of the
autocorrelation function for a time delay of 6 time units~1.5 ms! for
all nonswimming, triggered swimming, and spontaneous swimming
cases.
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and PCN values to compare the different cases. Using a
pairedt test, we find that the probability that the poststimulus
nonswimming ACN and PCN are equally predictable isp
59.331023. The corresponding probabilities for the trig-
gered swimming and spontaneous swimming cases are 0.75
and 0.16, respectively. In the nonswimming case, the concur-
rent ACN and PCN signals differ significantly in predictabil-
ity; in the swimming cases, they do not.

2. Mean interpoint distance

For this measure we use a very simple characterization of
the embedded trajectory, namely the average distance^r &,
between embedded vectors. We use^r & to investigate the
time evolution of the ACN and PCN signals individually as
separate univariate data, as well as together as elements of a
bivariate data set. In the former case, we formm-dimensional
embeddings using each signal separately; in the latter case,
we use values of both ACN and PCN in the embedding.

Figure 15~a! shows the^r & vs time graph for an ACN

signal embedded in two dimensions in a nonswimming case.
Figure 15~b! shows a triggered swimming case. Slopes of the
linear fits of the time dependence of^r & for all data sets are
shown in Fig. 16. All signals that preceded swimming,
whether triggered or spontaneous, are characterized by posi-
tive slopes. All but 3 of the 13 nonswimming signals have
negative slopes.t -test comparisons show that the probabil-
ity, p, that the 13 nonswimming and the 7 triggered swim-
ming ACN signals come from the same population is 1.5
31024. The distinction is even sharper in higher embedding
dimensions ~a five-dimensional calculation givesp53.2
31026).

To compare the time evolution of the ACN and PCN sig-
nals as separate univariate data with their behavior as ele-
ments of a bivariate data set, we combine the first seven
nonswimming trials with the seven swimming trials. Figure

FIG. 13. Median prediction errors for poststimulus nonswim-
ming ~nacn and npcn! and triggered~tacn and tpcn! swimming sig-
nals.

FIG. 14. Median prediction errors for poststimulus triggered
~tacn and tpcn! and spontaneous~sacn and spcn! swimming signals.

FIG. 15. Mean interpoint distancêr &, vs time for ~a! a non-
swimming and~b! a triggered swimming ACN signal embedded in
two dimensions.

FIG. 16. Slopes of the linear fits of the time dependence of^r &
for all non-swimming, triggered swimming, and spontaneous swim-
ming cases for embedding dimension5 2 ~top!, and embedding
dimension5 5 ~bottom!.
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17 shows results obtained by using simultaneous values of
the ACN and PCN signals as coordinates of a two-
dimensional embedding. At-test comparison of the first
seven ACN nonswimming signals with the seven triggered
swimming signals givesp58.231024. A similar compari-
son of the PCN signals givesp50.54, indicating that the
PCN signals in the nonswimming and triggered swimming
cases are indistinguishable. Nevertheless, comparing the re-
sults shown in Fig. 17 in which we use a two-dimensional
embedding using both ACN and PCN signals givesp51.7
31024, a slightly better discrimination than that obtained
using just the ACN signal. This suggests some correlation
between the two data streams, but not enough to make more
than an insignificant difference. Using a six-dimensional em-
bedding gives a slightly worse discrimination, with
p54.431024.

3. Surrogate data and dynamical information.

Results obtained above using the standard deviation de-
pend only on statistical information that is insensitive to the
time order of the data. Differences found using nonlinear
predictability and mean interpoint distance suggest that there
may be dynamical differences as well. Here we use surrogate
data to seek further corroboration of the presence of dynami-
cal differences.

The method of surrogate data has become an important
tool for dynamical analysis@16,23–25#. Given a data set, the
method consists of creating other data sets that share some
properties of the original but which are otherwise random.
Similarities, or lack thereof, of the values of dynamical mea-
sures applied to the original and to the surrogates are then
used to test the null hypothesis that the original data belong
to the same class of random data as the surrogates.

The two types of surrogates we use are~1! a random
shuffle of the elements of each epoch, and~2! a phase-
randomized surrogate of each epoch. The latter is obtained

by calculating the finite Fourier transform of the original
data, randomizing the phases of the transform, symmetrizing
the randomized transform to assure a real inverse, and then
taking the inverse transform to generate the surrogate@19#.
Shuffled surrogates have the same distributions and therefore
the same standard deviations as the originals. Random phase
surrogates have the same power spectral densities~and there-
fore the same autocorrelations! but not the same standard
deviations. Thus, for instance, at-test comparison of the au-
tocorrelation functions~at delay 6! of the ACN nonswim-
ming data with a single shuffled surrogate data set givesp
50.33, while a similar comparison with a random phase sur-
rogate givesp50.93.

To study how surrogate data affect the behavior of^r &,
each ACN signal is partitioned into nonoverlapping 400-
point epochs as above. Each epoch is used to generate a
surrogate and the time dependence of^r & is calculated in five
dimensions for the sequence of surrogate epochs. The proce-
dure is implemented five times for each of the two types of
surrogates. A pairedt -test comparison of the slopes of the
^r & vs time curves for the nonswimming ACN signals with
the averages of their shuffled surrogates givesp50.66 while
a similar comparison of the triggered swimming ACN sig-
nals givesp58.631025. The corresponding values for com-
parisons with random phase surrogates arep50.46 for non-
swimming andp52.531025 for triggered swimming. A
comparison using spontaneous swimming givesp51.37
31025 for shuffled data andp5 1.7531025 for random
phase surrogates. These results suggest the absence of dy-
namical information in the signals that do not lead to swim-
ming and their presence in signals that do lead to swimming.
The statistical differences, which are significant, between the
original triggered swimming signals and their surrogates in-
dicate that there is information in the original that is de-
stroyed in the process of creating the surrogates even if these
surrogates preserved the standard deviation in one case and
the power spectrum in the other.

IV. CONCLUDING REMARKS

The physiological observations show that both the ACN
and PCN signals behave differently when the leech is about
to swim from when it is not. The discrimination between
signals that precede swimming from those that do not can be
made in a statistically significant manner using linear as well
as nonlinear dynamical measures. Surprisingly, this can be
done more clearly for ACN than for PCN signals. These
measures, however, can only distinguish different classes;
they do not unambiguously classify individual signals. Use
of surrogate data suggests that the two classes of signals
differ not only statistically, but dynamically as well.

Using linear fits to characterize time dependence is an
oversimplification that is clearly insensitive to much of the
complexity of the computed measures. This oversimplifica-
tion may underlie the inability to identify statistical differ-
ences between PCN signals. More sophisticated analysis
would likely reveal details that may enable unambiguous
classification of individual signals or lead more directly to
the underlying biology.

Even with these limitations, the linear and nonlinear

FIG. 17. Slopes of the linear fits of the time dependence of^r &
for nonswimming and triggered swimming using simultaneous val-
ues of the ACN and PCN signals as coordinates of a two-
dimensional embedding.
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analyses, along with the analysis of surrogate data, highlight
the importance of understanding the temporal characteristics
of neuronal activity in the leech ventral nerve cord to deter-
mine the underlying physiology controlling swim initiation.

Changes in the total amount of activity in the nerve cord,
although important, clearly do not adequately describe the
pattern of neuronal activity in the leech nerve cord that pre-
dicts whether a given stimulus will initiate swimming.
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