Conjugation in Semigroups

João Araújo*
Universidade Aberta, R. Escola Politécnica, 147
1269-001 Lisboa, Portugal
\&
Centro de Álgebra da Universidade de Lisboa 1649-003 Lisboa, Portugal, mjoao@lmc.fc.ul.pt
Janusz Konieczny ${ }^{\dagger}$
Department of Mathematics, University of Mary Washington
Fredericksburg, VA 22401, jkoniecz@umw.edu
António Malheiro
Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugall
\&
Centro de Álgebra da Universidade de Lisboa
1649-003 Lisboa, Portugal, malheiro@cii.fc.ul.pt

Abstract

The action of any group on itself by conjugation and the corresponding conjugacy relation play an important role in group theory. There have been several attempts to extend the notion of conjugacy to semigroups. In this paper, we present a new definition of conjugacy that can be applied to an arbitrary semigroup and it does not reduce to the universal relation in semigroups with a zero. We compare the new notion of conjugacy with existing definitions, characterize the conjugacy in various semigroups of transformations on a set, and count the number of conjugacy classes in these semigroups when the set is infinite.

2010 Mathematics Subject Classification. 20M07, 20M20, 20 M 15.

1 Introduction

Let G be a group. For elements $a, b \in G$, we say that a is conjugate to b if there exists $g \in G$ such that $b=g^{-1} a g$. It is clear that this relation is an equivalence on G and that a is conjugate to b if and only if there exists $g \in G$ such that $a g=g b$. Using the latter formulation, one may try to extend the notion of conjugacy to semigroups in the following way: define a relation \sim_{l} on a semigroup S by

$$
\begin{equation*}
a \sim_{l} b \Leftrightarrow \exists_{g \in S^{1}} a g=g b, \tag{1.1}
\end{equation*}
$$

where S^{1} is S with an identity adjoined. If $a \sim_{l} b$, we say that a is left conjugate to $b[34,39,40]$. (We will write " \sim " with various subscripts for possible definitions of conjugacy in semigroups.

[^0]The subscript in \sim_{l} comes from the name "left conjugate.") In a general semigroup S, the relation \sim_{l} is reflexive and transitive, but not symmetric. If S has a zero, then \sim_{l} is the universal relation $S \times S$. The relation \sim_{l} is an equivalence in any free semigroup. Lallement [28] has defined the conjugate elements of a free semigroup S as those related by \sim_{l} and showed that \sim_{l} is equal to the following equivalence on the free semigroup S :

$$
\begin{equation*}
a \sim_{p} b \Leftrightarrow \exists_{u, v \in S^{1}} a=u v \text { and } b=v u \tag{1.2}
\end{equation*}
$$

In a general semigroup S, the relation \sim_{p} is reflexive and symmetric, but not transitive. If $a \sim_{p} b$ in a general semigroup, we say that a and b are primarily conjugate [27] (hence the subscript in \sim_{p}). Kudryavtseva and Mazorchuk $[26,27]$ have defined the transitive closure \sim_{p}^{*} of \sim_{p} as a conjugacy relation in a general semigroup. (See also [18].)

Otto [34] has studied the relations \sim_{l} and \sim_{p} in the monoids S presented by finite Thue systems, and introduced a new definition of conjugate elements in such an S :

$$
\begin{equation*}
a \sim_{o} b \Leftrightarrow \exists_{g, h \in S^{1}} a g=g b \text { and } b h=h a . \tag{1.3}
\end{equation*}
$$

(Since S is a monoid, $S^{1}=S$. However, we wanted to write the definition of \sim_{o} so that it would apply to any semigroup.) For any semigroup S, \sim_{o} is an equivalence on S, and so it provides another possible definition of conjugacy in a general semigroup. However, this definition is not useful for semigroups S with zero since for every such S, we have $\sim_{o}=S \times S$. Note that \sim_{o} the largest equivalence contained in \sim_{l} and that $\sim_{p} \subseteq \sim_{o}$ since if $a=u v$ and $b=v u$, then $a u=u b$ and $b v=v a$.

The aim of this paper is to introduce a new definition of conjugacy in an arbitrary semigroup, avoiding the problems of the notions listed above. (That is, \sim_{l} is not symmetric; both \sim_{l} and \sim_{o} reduce to the universal relation in semigroups with zero; and \sim_{p} is not transitive and so it requires taking the transitive closure.) Our conjugacy will be an equivalence relation \sim_{c} on any semigroup S, it will not reduce to the universal relation even when S has a zero, and it will be such that $\sim_{c} \subseteq \sim_{o} \subseteq \sim_{l}$ in every semigroup $S, \sim_{c}=\sim_{o}$ if S is a semigroup without zero, and $\sim_{c}=\sim_{l}=\sim_{p}=\sim_{o}$ if S is a group or a free semigroup.

In Section 2 we introduce the new notion of conjugacy and prove some basic results. The following four sections are devoted to the study of \sim_{c} in several transformation semigroups on a finite or infinite set X. The tools we use in this study are the characterization of \sim_{c} in transformation semigroups in terms of certain partial homomorphisms of directed graphs (Section 3) and the concept of a connected partial transformation (Section 4). Conjugacy classes in the partial transformation monoid $P(X)$ are characterized (for any X) and counted (for an infinite X) in Section 5; conjugacy in the full transformation monoid $T(X)$ is treated in Section 6; and Section 7 deals with the monoid $\Gamma(X)$ of full injective transformations. The paper ends with a number of problems for experts in combinatorics, symbolic dynamics, set theory, semigroups, and matrix theory (Section 8).

2 Definition of Conjugacy

We briefly describe the motivation of our new concept of conjugacy. The starting point was the relation \sim_{o} introduced by Otto [34]. As we have already pointed out, the relation \sim_{o} is the universal relation $S \times S$ if a semigroup S has a zero. Our goal has been to retain Otto's concept for semigroups without zero but modify his definition in such a way that the resulting conjugacy would not reduce to triviality for semigroups with zero.

To find a suitable definition, we considered the semigroup $P(X)$ of partial transformations on X, that is, the set of all mappings whose domain and image are included in X, with function composition as multiplication. This semigroup has a zero, namely the transformation whose domain is empty. Let $\alpha, \beta \in P(X)$. Then $\alpha \sim_{o} \beta$ if and only if $\alpha \phi=\phi \beta$ and $\beta \psi=\psi \alpha$ for some $\phi, \psi \in P(X)$. (We write functions on the right and compose from left to right.) Of course, the
last two equalities hold for $\phi=\psi=0$. We could insist that ϕ and ψ should not be 0 but this would not solve the problem since then the resulting relation would not be transitive.

The solution is this. In the composition $\alpha \phi$, it only matters how ϕ is defined on the elements of $\operatorname{im}(\alpha)$ (the image of α). We insist that ϕ be defined for all elements of $\operatorname{im}(\alpha)$, that is, that $\operatorname{im}(\alpha) \subseteq \operatorname{dom}(\phi)$. With the requirement that the transformations ϕ and ψ come from the sets $\{\phi \in P(X): \operatorname{im}(\alpha) \subseteq \operatorname{dom}(\phi)\}$ and $\{\psi \in P(X): \operatorname{im}(\beta) \subseteq \operatorname{dom}(\psi)\}$, the relation is an equivalence. Moreover, we will verify that for $\alpha \neq 0, \operatorname{im}(\alpha) \subseteq \operatorname{dom}(\phi)$ if and only if $(\gamma \alpha) \phi \neq 0$ for every $\gamma \alpha \in P(X) \alpha \backslash\{0\}$, where $P(X) \alpha \backslash\{0\}$ is the left principal ideal generated by α with 0 removed. Therefore, the requirement that ϕ and ψ have "large" domains can be expressed in an abstract semigroup. These considerations motivate the definition below.

Let S be a semigroup with zero. For $a \in S$ with $a \neq 0$, consider $S^{1} a \backslash\{0\}$, the left principal ideal generated by a with zero removed. We will denote by $\mathbb{P}(a)$ the set of all elements $g \in S$ such that $(m a) g \neq 0$ for all $m a \in S^{1} a \backslash\{0\}$. We define $\mathbb{P}(0)$ to be $\{0\}$. If S has no zero, we agree that $\mathbb{P}(a)=S$ for every $a \in S$. We will write $\mathbb{P}^{1}(a)$ for $\mathbb{P}(a) \cup\{1\}$, where 1 is the identity in S^{1}.

Definition 2.1. Define a relation \sim_{c} on a semigroup S by

$$
\begin{equation*}
a \sim_{c} b \Leftrightarrow \exists_{g \in \mathbb{P}^{1}(a)} \exists_{h \in \mathbb{P}^{1}(b)} a g=g b \text { and } b h=h a . \tag{2.1}
\end{equation*}
$$

If $a \sim_{c} b$, we say that a is conjugate to b.
The relation \sim_{c} will be called the conjugacy on S, which is justified by the following theorem.
Theorem 2.2. Let S be a semigroup. Then:
(1) the relation \sim_{c} is an equivalence relation on S;
(2) if \sim_{l}, \sim_{p}, and \sim_{o} are relations on S defined by (1.1), (1.2), and (1.3), respectively, then:
(a) $\sim_{c} \subseteq \sim_{o} \subseteq \sim_{l}$,
(b) if S is a semigroup without zero, then $\sim_{c}=\sim_{o}$, and
(c) if S is a group or a free semigroup, then $\sim_{c}=\sim_{l}=\sim_{p}=\sim_{o}$.

Proof. It is clear that \sim_{c} is reflexive and symmetric. Suppose $a \sim_{c} b$ and $b \sim_{c} c$. Then there are $g_{1} \in \mathbb{P}^{1}(a)$ and $g_{2} \in \mathbb{P}^{1}(b)$ such that $a g_{1}=g_{1} b$ and $b g_{2}=g_{2} c$. Thus $a\left(g_{1} g_{2}\right)=\left(a g_{1}\right) g_{2}=$ $\left(g_{1} b\right) g_{2}=g_{1}\left(b g_{2}\right)=g_{1}\left(g_{2} c\right)=\left(g_{1} g_{2}\right) c . \quad$ Let $m a \in S^{1} a \backslash\{0\}$. Since $g_{1} \in \mathbb{P}^{1}(a)$, we have $\left(m g_{1}\right) b=m\left(a g_{1}\right)=(m a) g_{1} \neq 0$. Thus $\left(m g_{1}\right) b \in S^{1} b \backslash\{0\}$, and so, since $g_{2} \in \mathbb{P}^{1}(b)$, we have $(m a)\left(g_{1} g_{2}\right)=m\left(a g_{1}\right) g_{2}=m\left(g_{1} b\right) g_{2}=\left(\left(m g_{1}\right) b\right) g_{2} \neq 0$. Hence $g_{1} g_{2} \in \mathbb{P}^{1}(a)$. Similarly, there is $h \in \mathbb{P}^{1}(c)$ such that $c h=h a$. Hence $a \sim_{c} c$, and so \sim_{c} is transitive. We have proved (1).

Statements 2(a) and 2(b) follow immediately from the definitions of \sim_{l}, \sim_{o}, and \sim_{c}. Statement $2(\mathrm{c})$ is clearly true if S is a group. Let S be a free semigroup. Then $\sim_{l}=\sim_{p}$ by [28, Corollary 5.2]. Thus, by 2(a) and 2(b), $\sim_{c}=\sim_{o} \subseteq \sim_{l}=\sim_{p} \subseteq \sim_{o}$, which implies $\sim_{c}=\sim_{o}=\sim_{l}=\sim_{p}$.

For an element a of a semigroup S, the equivalence class of a with respect to \sim_{c} will be called the conjugacy class of a and denoted $[a]_{c}$.

Let S be a semigroup with 0 . In contrast with the fact that $\sim_{o}=S \times S$, the conjugacy class of 0 with respect to \sim_{c} is $\{0\}$, so we always have $\sim_{c} \neq S \times S$ unless $S=\{0\}$. Indeed, suppose $a \sim_{c} 0$. Then $a g=g 0=0$ for some $g \in \mathbb{P}^{1}(a)$. If $a \neq 0$, then $a g \neq 0$ (since $a \in S^{1} a \backslash\{0\}$). But $a g=0$, and so it follows that $a=0$. Hence we have the following lemma.
Lemma 2.3. If S is a semigroup with 0 then $[0]_{c}=\{0\}$.
For a set A, we denote by Δ_{A} (or Δ if A is understood) the identity relation on A, that is $\Delta_{A}=\{(a, a): a \in A\}$. Recall that in any group G, the relation \sim_{c} is the usual group conjugacy, that is $a \sim_{c} b$ if and only if $g^{-1} a g=b$ for some $g \in G$. It follows that in any group G, we have $\sim_{c}=\Delta$ if and only if G is commutative. This result extends to semigroups as follows.

Theorem 2.4. Let S be a semigroup without zero. Then $\sim_{c}=\Delta$ if and only if S is commutative and cancellative.

Proof. Since S has no zero, $\sim_{c}=\sim_{o}$. It is clear that if S is commutative and cancellative, then $\sim_{c}=\Delta$. Conversely, suppose that $\sim_{c}=\Delta$. Let $a, b \in S$. Since $(a b) a=a(b a)$ and $(b a) b=b(a b)$, we have $(a b) \sim_{c}(b a)$, and hence $a b=b a$. We have proved that S is commutative. Let $a, b, c \in S$ be such that $a c=b c$. Since S is commutative, $a c=b c$ implies $a \sim_{c} b$, which in turn implies $a=b$. It follows that S is cancellative.

Theorem 2.4 is not true for semigroups with zero. For example, let $S=\{a, 0\}$ be a 2 -element semigroup with $a a=0$. Then S is not cancellative but we already know that $[0]_{c}=\{0\}$, so $\sim_{c}=\Delta$.

3 Restrictive Partial Homomorphisms of Digraphs

The remainder of the paper is devoted to the study of the conjugacy \sim_{c} in several important semigroups of transformations on a set X (finite or infinite). The main tool in our study will be the characterization of \sim_{c} in terms of certain partial homomorphisms of directed graphs (see Theorem 3.8 and Corollary 3.9).

A directed graph (or a digraph) is a pair $\Gamma=(X, R)$ where X is a non-empty set (not necessarily finite) and R is a binary relation on X. Any element $x \in X$ is called a vertex of Γ, and any pair $(x, y) \in R$ is called an arc of Γ. We will call a vertex x terminal if there is no $y \in X$ such that $(x, y) \in R$.

For any mapping $f: A \rightarrow B$, we will denote the domain of f by $\operatorname{dom}(f)$ and the image of f by $\operatorname{im}(f)$. For $A_{1} \subseteq A$, we denote by $\left.f\right|_{A_{1}}$ the restriction of f to A_{1}, and by $A_{1} f$ the image of A_{1} under f.

Let $\Gamma_{1}=\left(X_{1}, R_{1}\right)$ and $\Gamma_{2}=\left(X_{2}, R_{2}\right)$ be digraphs. A mapping $\phi: X_{1} \rightarrow X_{2}$ is called a homomorphism from Γ_{1} to Γ_{2} if for all $x, y \in X_{1}$, if $(x, y) \in R_{1}$, then $(x \phi, y \phi) \in R_{2}$ [17]. Generalizing, a partial mapping ϕ from X_{1} to X_{2} (that is, a mapping ϕ from some subset of X_{1} to X_{2}) is called a partial homomorphism from Γ_{1} to Γ_{2} if for all $x, y \in X_{1}$, if $(x, y) \in R_{1}$ and $x, y \in \operatorname{dom}(\phi)$, then $(x \phi, y \phi) \in R_{2}$.

Definition 3.1. Let $\Gamma_{1}=\left(X_{1}, R_{1}\right)$ and $\Gamma_{2}=\left(X_{2}, R_{2}\right)$ be digraphs. A partial mapping ϕ from X_{1} to X_{2} is called a restrictive partial homomorphism (or an rp-homomorphism) from Γ_{1} to Γ_{2} if it satisfies the following conditions for all $x, y \in X_{1}$:
(a) if $(x, y) \in R_{1}$, then $x, y \in \operatorname{dom}(\phi)$ and $(x \phi, y \phi) \in R_{2}$;
(b) if x is a terminal vertex in Γ_{1} and $x \in \operatorname{dom}(\phi)$, then $x \phi$ is a terminal vertex in Γ_{2}.

We say that Γ_{1} is rp-homomorphic to Γ_{2} if there is an rp-homomorphism from Γ_{1} to Γ_{2}.
Clearly, every rp-homomorphism from Γ_{1} to Γ_{2} is a partial homomorphism from Γ_{1} to Γ_{2}. It is also clear that the composition of rp-homomorphisms is an rp-homomorphism.

Remark 3.2. Call a vertex vertex x of a digraph $\Gamma=(X, R)$ isolated if there is no $y \in X$ such that $(x, y) \in R$ or $(y, x) \in R$. Let ϕ be an rp-homomorphism from $\Gamma_{1}=\left(X_{1}, R_{1}\right)$ to $\Gamma_{2}=\left(X_{2}, R_{2}\right)$. Denote by X_{1}^{\prime} the set of all vertices in Γ_{1} that are not isolated. Then $\phi^{\prime}=\left.\phi\right|_{X_{1}^{\prime}}$ is also an rp-homomorphism from Γ_{1} to Γ_{2}.

In picturing directed graphs, we will adopt the convention that the arrows will be deleted with the understanding that the arrow goes up along the edge, to the right if the edge is horizontal, and the arrows go counter-clockwise around a cycle. For example, consider the digraphs $\Gamma_{1}=$ $\left(X_{1}, R_{1}\right)$, where $X_{1}=\{1,2,3,4\}$ and $R_{1}=\{(2,3),(3,4)\}$, and $\Gamma_{2}=\left(X_{2}, R_{2}\right)$, where $X_{2}=$ $\{a, b, c, d\}$ and $R_{2}=\{(a, b),(b, d),(c, d)\}$. Then a mapping presented in Figure 3.1 is a partial

Figure 3.1: A partial homomorphism from Γ_{1} to Γ_{2}.

1

Figure 3.2: An rp-homomorphism from Γ_{1} to Γ_{2}.
homomorphism from Γ_{1} to Γ_{2} (but not a restrictive partial homomorphism), and a mapping from Figure 3.2 is an rp-homomorphism from Γ_{1} to Γ_{2}.

Let $\alpha \in P(X)$. Then α can be represented by the digraph $\Gamma(\alpha)=\left(X, R_{\alpha}\right)$, where for all $x, y \in X,(x, y) \in R_{\alpha}$ if and only if $x \in \operatorname{dom}(\alpha)$ and $x \alpha=y$ [15, Section 1.2]. If $x \in \operatorname{dom}(\alpha)$ and $x \alpha=y$, we will write $x \xrightarrow{\alpha} y$ (or $x \rightarrow y$ if no ambiguity arises). For $\alpha \in P(X)$, the set $\operatorname{dom}(\alpha) \cup \operatorname{im}(\alpha)$ will be called the span of α and denoted $\operatorname{span}(\alpha)$.

For example, the digraph in Figure 3.3 represents the transformation

$$
\alpha=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\
2 & 3 & 1 & 1 & 1 & 5 & 8 & 9 & 10 & \ldots
\end{array}\right) \in T(X),
$$

where $X=\{1,2,3, \ldots\}$ and $T(X)$ is the semigroup of all $\alpha \in P(X)$ such that $\operatorname{dom}(\alpha)=X$.

Figure 3.3: The digraph of a transformation.

Definition 3.3. Any $\alpha \in P(X)$ with $\operatorname{im}(\alpha)=\{x\}$ will be called a constant. A subsemigroup S of $P(X)$ will be called constant rich if for every $x \in X$, there is $\alpha \in S$ such that $\operatorname{im}(\alpha)=\{x\}$.

Among the constant rich subsemigroups of $P(X)$, we have $P(X)$ itself (an all its nonzero ideals), the full transformation semigroup $T(X)$ (and all its ideals), and the symmetric inverse semigroup $\mathcal{I}(X)$ of all injective $\alpha \in P(X)$ (and all its nonzero ideals).

Notation 3.4. From now on, we will fix a nonempty set X and an element $\diamond \notin X$. For $\alpha \in P(X)$ and $x \in X$, we will write $x \alpha=\diamond$ if and only if $x \notin \operatorname{dom}(\alpha)$. We will also assume that $\diamond \alpha=\diamond$. With this notation, it will make sense to write $x \alpha=y \beta$ or $x \alpha \neq y \beta(\alpha, \beta \in P(X), x, y \in X)$ even when $x \notin \operatorname{dom}(\alpha)$ or $y \notin \operatorname{dom}(\beta)$.

We will also denote by $\mathbb{Z}, \mathbb{Z}_{+}$, and \mathbb{N} the set of integers, positive integers, and nonnegative integers, respectively, and for semigroups S and T, write $S \leq T$ to mean that S is a subsemigroup of T.

Lemma 3.5. Let $S \leq P(X)$ such that S is constant rich, let $\alpha \in S$ with $\alpha \neq 0$, and $\phi \in S^{1}$.
(1) $\phi \in \mathbb{P}^{1}(\alpha)$ if and only if $\operatorname{im}(\alpha) \subseteq \operatorname{dom}(\phi)$.
(2) If $\phi \in \mathbb{P}^{1}(\alpha)$ and $\alpha \phi=\phi \beta$ for some $\beta \in S$, then $\operatorname{span}(\alpha) \subseteq \operatorname{dom}(\phi)$ and for all $x, y \in X$, $x \xrightarrow{\alpha} y$ implies $x \phi \xrightarrow{\beta} y \phi$.

Proof. Let S be constant rich. Suppose $\phi \in \mathbb{P}^{1}(\alpha)$. Let $y \in \operatorname{im}(\alpha)$, that is, $y=x \alpha$ for some $x \in \operatorname{dom}(\alpha)$. Since S is constant rich, there is $\gamma \in S$ with $\operatorname{im}(\gamma)=\{x\}$. Then $\operatorname{im}(\gamma \alpha)=\{y\}$, and so $\gamma \alpha \in S^{1} \alpha \backslash\{0\}$. Thus $(\gamma \alpha) \phi \neq 0$ (since $\left.\phi \in \mathbb{P}^{1}(\alpha)\right)$, which is only possible when $y \in \operatorname{dom}(\phi)$. Hence $\operatorname{im}(\alpha) \subseteq \operatorname{dom}(\phi)$.

Conversely, suppose $\operatorname{im}(\alpha) \subseteq \operatorname{dom}(\phi)$. Let $\mu \alpha \in S^{1} \alpha \backslash\{0\}$. Since $\mu \alpha \neq 0$, there is $x \in X$ such that $x(\mu \alpha) \neq 0$. But then $x(\mu \alpha)=(x \mu) \alpha \in \operatorname{im}(\alpha) \subseteq \operatorname{dom}(\phi)$, and so $x \in \operatorname{dom}((\mu \alpha) \phi)$. Thus $(\mu \alpha) \phi \neq 0$, and so $\phi \in \mathbb{P}^{1}(\alpha)$. We have proved (1).

To prove (2), suppose $\phi \in \mathbb{P}^{1}(\alpha)$ and $\alpha \phi=\phi \beta$ for some $\beta \in S$. Let $x, y \in X$ and suppose that $x \xrightarrow{\alpha} y$. Then, since $\alpha \phi=\phi \beta$, we have

$$
\begin{equation*}
(x \phi) \beta=x(\phi \beta)=x(\alpha \phi)=(x \alpha) \phi=y \phi . \tag{3.1}
\end{equation*}
$$

By (1), $\operatorname{im}(\alpha) \subseteq \operatorname{dom}(\phi)$, and so $y=x \alpha \in \operatorname{dom}(\phi)$. Then, by (3.1), $x \phi \neq \diamond$, which implies $x \in \operatorname{dom}(\phi)$. It follows that $\operatorname{span}(\alpha) \subseteq \operatorname{dom}(\phi)$. Moreover, by (3.1) again, $(x \phi) \beta=y \phi \neq \diamond$, and so $x \phi \xrightarrow{\beta} y \phi$.

Lemma 3.6. Let $\alpha, \beta \in P(X)$ and let ϕ be an rp-homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$. Then $\operatorname{span}(\alpha) \subseteq \operatorname{dom}(\phi)$.

Proof. Let $x \in \operatorname{span}(\alpha)$. If $x \in \operatorname{dom}(\alpha)$, then $x \xrightarrow{\alpha} x \alpha$, and so $x, x \alpha \in \operatorname{dom}(\phi)$ by Definition 3.1. If $x \in \operatorname{im}(\alpha)$, then $z \xrightarrow{\alpha} x$ for some $z \in \operatorname{dom}(\alpha)$, and so $z, x \in \operatorname{dom}(\phi)$. Hence $\operatorname{span}(\alpha) \subseteq \operatorname{dom}(\phi)$.

Lemma 3.7. Let $S \leq P(X)$ such that S is constant rich, let $\alpha, \beta \in S$ with $\alpha \neq 0$, and $\phi \in S^{1}$. Then $\alpha \phi=\phi \beta$ with $\phi \in \mathbb{P}^{1}(\alpha)$ if and only if ϕ is an rp-homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$.

Proof. Suppose $\alpha \phi=\phi \beta$ with $\phi \in \mathbb{P}^{1}(\alpha)$. Let $x, y \in X$ and suppose that $x \xrightarrow{\alpha} y$. Then $x \phi \xrightarrow{\beta} y \phi$ by Lemma 3.5, and so ϕ satisfies (a) of Definition 3.1. Suppose that x is a terminal vertex of $\Gamma(\alpha)$ and $x \in \operatorname{dom}(\phi)$. Then $x \phi \in X$ and $x \alpha=\diamond$. Since $\alpha \phi=\phi \beta$, we have $(x \phi) \beta=(x \alpha) \phi=\diamond \phi=\diamond$, and so $x \phi$ is a terminal vertex in $\Gamma(\beta)$. Hence ϕ satisfies (b) of Definition 3.1. Thus ϕ is an rp-homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$.

Conversely, suppose that ϕ is an rp-homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$. Let $x \in X$. Suppose $x \notin \operatorname{dom}(\alpha)$. Then $x(\alpha \phi)=(x \alpha) \phi=\diamond \phi=\diamond$. If $x \notin \operatorname{dom}(\phi)$, then $x(\phi \beta)=(x \phi) \beta=\diamond \beta=\diamond$.

If $x \in \operatorname{dom}(\phi)$, then, by (b) of Definition 3.1, $x \phi$ is a terminal vertex in $\Gamma(\beta)$, and so $x(\phi \beta)=$ $(x \phi) \beta=\diamond$. Hence, in both cases, $x(\alpha \phi)=x(\phi \beta)$.

Suppose $x \in \operatorname{dom}(\alpha)$ and let $y=x \alpha \in X$. Then $x \xrightarrow{\alpha} y$, and so, by Definition 3.1, $x, y \in$ $\operatorname{dom}(\phi)$ and $x \phi \xrightarrow{\beta} y \phi$. Hence $x(\alpha \phi)=(x \alpha) \phi=y \phi$ and $x(\phi \beta)=(x \phi) \beta=y \phi$, and so $x(\alpha \phi)=$ $x(\phi \beta)$. We have proved that $\alpha \phi=\phi \beta$. Finally, since ϕ is an rp-homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$, we have that $\operatorname{span}(\alpha) \subseteq \operatorname{dom}(\phi)$ by Lemma 3.6 , and so $\phi \in \mathbb{P}^{1}(\alpha)$ by Lemma 3.5.

Theorem 3.8. Let $S \leq P(X)$ such that S is constant rich, let $\alpha, \beta \in S$. Then $\alpha \sim_{c} \beta$ in S if and only if there are $\phi, \psi \in S^{1}$ such that ϕ is an rp-homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$ and ψ is an rp-homomorphism from $\Gamma(\beta)$ to $\Gamma(\alpha)$.

Proof. Suppose $\alpha \sim_{c} \beta$. If $\alpha=0$, then $\beta=0$ (since $[0]_{c}=\{0\}$), and so $\phi=\operatorname{id}_{X} \in S^{1}$ is an rp-homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$. Suppose $\alpha \neq 0$. Since $\alpha \sim_{c} \beta$, there is $\phi \in \mathbb{P}^{1}(\alpha)$ such that $\alpha \phi=\phi \beta$, and so ϕ is an rp-homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$ by Lemma 3.7. A desired $\psi \in S^{1}$ exists by symmetry.

Conversely, suppose that desired ϕ and ψ exist. If $x \xrightarrow{\alpha} y$ then $x \phi \xrightarrow{\beta} y \phi$, and if $x \xrightarrow{\beta} y$ then $x \psi \xrightarrow{\alpha} y \psi$. It follows that either $\alpha=\beta=0$ or $\alpha, \beta \neq 0$. In the former case, we clearly have $\alpha \sim_{c} \beta$. Suppose $\alpha, \beta \neq 0$. Then, by Lemma 3.7, $\alpha \phi=\phi \beta$ with $\phi \in \mathbb{P}^{1}(\alpha)$ and $\beta \psi=\psi \alpha$ with $\psi \in \mathbb{P}^{1}(\beta)$, which implies $\alpha \sim_{c} \beta$.

Let $\alpha, \beta \in T(X)$. Then the graph $\Gamma(\alpha)$ has no terminal vertices (if $x \in X$, then $x \xrightarrow{\alpha} x \alpha$), and so every homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$ is restrictive. This observation and Theorem 3.8 give us the following corollary.

Corollary 3.9. Let $S \leq T(X)$ such that S contains all constants, and let $\alpha, \beta \in S$. Then $\alpha \sim_{c} \beta$ in S if and only if there are $\phi, \psi \in S^{1}$ such that ϕ is a homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$ and ψ is a homomorphism from $\Gamma(\beta)$ to $\Gamma(\alpha)$.

4 Connected Partial Transformations

In this section, we introduce the concept of connected partial transformation. The definitions and results of this section will be crucial in characterizing conjugacy in various semigroups of transformations.

Definition 4.1. Let $\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ be pairwise distinct elements of X. The following elements of $P(X)$ will be called basic partial transformations on X.
(1) A cycle of length $k(k \geq 1)$, written $\left(x_{0} x_{1} \ldots x_{k-1}\right)$, is an element of $P(X)$ defined by the digraph $x_{0} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{k-1} \rightarrow x_{0}$.
(2) A right ray, written $\left[x_{0} x_{1} x_{2} \ldots\right\rangle$, is an element of $P(X)$ defined by the digraph

$$
x_{0} \rightarrow x_{1} \rightarrow x_{2} \rightarrow \cdots
$$

(3) A double ray, written $\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle$, is an element of $P(X)$ defined by the digraph

$$
\cdots \rightarrow x_{-1} \rightarrow x_{0} \rightarrow x_{1} \rightarrow \cdots
$$

(4) A left ray, written $\left\langle\ldots x_{2} x_{1} x_{0}\right.$], is an element of $P(X)$ defined by the digraph

$$
\cdots \rightarrow x_{2} \rightarrow x_{1} \rightarrow x_{0} .
$$

(5) A chain of length $k(k \geq 1)$, written $\left[x_{0} x_{1} \ldots x_{k}\right]$, is an element of $P(X)$ defined by the digraph $x_{0} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{k}$.

By a ray we will mean a double, right, or left ray.
We note the following.
(i) All basic partial transformations are injective.
(ii) The span of a basic partial transformation is exhibited by the notation. For example, the span of the right ray $[123 \ldots\rangle$ is $\{1,2,3, \ldots\}$.
(iii) The left bracket in " $\sigma=[x \ldots$ " indicates that $x \notin \operatorname{im}(\sigma)$; while the right bracket in " $\sigma=\ldots x]$ " indicates that $x \notin \operatorname{dom}(\sigma)$. For example, for the chain $\sigma=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$, $\operatorname{dom}(\sigma)=$ $\{1,2,3\}$ and $\operatorname{im}(\sigma)=\{2,3,4\}$.
(iv) A cycle $\left(x_{0} x_{1} \ldots x_{k-1}\right)$ differs from the corresponding cycle in the symmetric group of permutations on X in that the former is undefined for every $x \in X \backslash\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$ while the latter is defined on and fixes every such x.

Definition 4.2. An element $\gamma \in P(X)$ is called connected if $\gamma \neq 0$ and for all $x, y \in \operatorname{span}(\gamma)$, $x \gamma^{k}=y \gamma^{m} \neq \diamond$ for some integers $k, m \geq 0\left(\right.$ where $\left.\gamma^{0}=\mathrm{id}_{X}\right)$.

We note that a nonzero $\gamma \in P(X)$ is connected if and only if the underlying undirected graph of the digraph $\Gamma^{0}(\gamma)$ is connected, where $\Gamma^{0}(\gamma)$ is the digraph $\Gamma(\gamma)$ with the isolated vertices removed, and that all basic partial transformations are connected.

Definition 4.3. Let $\alpha, \beta \in P(X)$. We say that β is contained in α (or α contains or has β), and write $\beta \sqsubset \alpha$, if $\operatorname{dom}(\beta) \subseteq \operatorname{dom}(\alpha)$ and $x \beta=x \alpha$ for every $x \in \operatorname{dom}(\beta)$. In other words, $\beta \sqsubset \alpha$ iff $\beta=\varepsilon \alpha$ where ε is the identity on the domain of β. We say that α and β are disjoint if $\operatorname{dom}(\alpha) \cap \operatorname{dom}(\beta)=\emptyset$; they are completely disjoint if $\operatorname{span}(\alpha) \cap \operatorname{span}(\beta)=\emptyset$.

For example, the right ray $[3456 \ldots\rangle$ and chain $[0125]$ in $P(\mathbb{Z})$ are disjoint but not completely disjoint. Their join [3456_) $\sqcup[0125$] (see Definition 4.4 below) is connected.

Definition 4.4. Let C be a set of pairwise disjoint elements of $P(X)$. The join of the elements of C, denoted $\bigsqcup_{\gamma \in C} \gamma$, is an element of $P(X)$ defined by

$$
x\left(\bigsqcup_{\gamma \in C} \gamma\right)= \begin{cases}x \gamma & \text { if } x \in \operatorname{dom}(\gamma) \text { for some } \gamma \in C \\ \diamond & \text { otherwise }\end{cases}
$$

If $C=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right\}$ is finite, we may write $\bigsqcup_{\gamma \in C} \gamma$ as $\gamma_{1} \sqcup \gamma_{2} \sqcup \cdots \sqcup \gamma_{k}$.
Proposition 4.5. Let $\alpha \in P(X)$ with $\alpha \neq 0$. Then there exists a unique set C of pairwise completely disjoint, connected transformations contained in α such that $\alpha=\bigsqcup_{\gamma \in C} \gamma$.

Proof. Define a relation R on $\operatorname{dom}(\alpha)$ by: $(x, y) \in R$ if $x \alpha^{k}=y \alpha^{m} \neq \diamond$ for some integers $k, m \geq 0$. It is clear that R is an equivalence relation on $\operatorname{dom}(\alpha)$. Let J be a complete set of representatives of the equivalence classes of R. For every $x \in J$, let $\gamma_{x}=\left.\alpha\right|_{x R}$, where $x R$ is the R-equivalence class of x. By the definition of R, each such γ_{x} is connected, and γ_{x} and γ_{y} are completely disjoint for all $x, y \in J$ with $x \neq y$. Then the set $C=\left\{\gamma_{x}: x \in J\right\}$ consists of pairwise completely disjoint, connected transformations contained in α, and $\alpha=\bigsqcup_{\gamma \in C} \gamma$.

Suppose D is any set of pairwise completely disjoint, connected transformations contained in α such that $\alpha=\bigsqcup_{\delta \in D} \delta$. Let $\delta \in D$ and let $y \in \operatorname{dom}(\delta)$. Then $y \in x R$ for some $x \in J$. We want to prove that $\delta=\gamma_{x}$. Let $z \in \operatorname{dom}(\delta)$. Since δ is connected, $y \delta^{k}=z \delta^{m} \neq \diamond$ for some $k, m \geq 0$. But then, since δ is contained in α, we have $y \alpha^{k}=z \alpha^{m} \neq \diamond$. Hence $(y, z) \in R$, and so $z \in y R=x R=\operatorname{dom}\left(\gamma_{x}\right)$. We have proved that $\operatorname{dom}(\delta) \subseteq \operatorname{dom}\left(\gamma_{x}\right)$.

Suppose to the contrary that $\operatorname{dom}\left(\gamma_{x}\right)$ is not included in $\operatorname{dom}(\delta)$, that is, that there is $w \in$ $\operatorname{dom}\left(\gamma_{x}\right)$ such that $w \notin \operatorname{dom}(\delta)$. Since γ_{x} is connected, $w \gamma_{x}^{p}=y \gamma_{x}^{q} \neq \diamond$ for some $p, q \geq 0$. Let
$y_{i}=y \gamma_{x}^{i}=y \alpha^{i}$ and $w_{j}=w \gamma_{x}^{j}=w \alpha^{j}$ for $i=0,1, \ldots, p$ and $j=0,1, \ldots, q$. Then $y_{p}=w_{q}$ and let $u=y_{p}=w_{q}$. With this notation, in the digraph $\Gamma(\alpha)$, we have

$$
y=y_{0} \rightarrow y_{1} \rightarrow \cdots \rightarrow y_{p}=u \text { and } w=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{q}=u
$$

We claim that $\left\{y_{0}, y_{1}, \ldots, y_{p-1}\right\} \subseteq \operatorname{dom}(\delta)$. If not, then, since $y_{0}=y \in \operatorname{dom}(\delta)$, there would be $i \in\{0, \ldots, p-2\}$ such that $y_{i} \in \operatorname{dom}(\delta)$ and $y_{i+1} \notin \operatorname{dom}(\delta)$. But $y_{i+1} \in \operatorname{dom}(\alpha)$, and so $y_{i+1} \in \operatorname{dom}\left(\delta_{1}\right)$ for some $\delta_{1} \in D$. We would then have $\delta \neq \delta_{1}$ and $y_{i+1} \in \operatorname{span}(\delta) \cap \operatorname{span}\left(\delta_{1}\right)$, which is impossible since δ and δ_{1} are completely disjoint. The claim has been proved. Since $w \in \operatorname{dom}\left(\gamma_{x}\right) \subseteq \operatorname{dom}(\alpha)$, there is $\delta_{2} \in D$ such that $w \in \operatorname{dom}\left(\delta_{2}\right)$. By the foregoing argument applied to δ_{2} and $\left\{w_{0}, w_{1}, \ldots, w_{q-1}\right\}$, we obtain $\left\{w_{0}, w_{1}, \ldots, w_{q-1}\right\} \subseteq \operatorname{dom}\left(\delta_{2}\right)$. Thus

$$
y_{p-1} \delta=y_{p-1} \alpha=y_{p}=u=w_{q}=w_{q-1} \alpha=w_{q-1} \delta_{2}
$$

Thus we have $\delta \neq \delta_{2}$ with $u \in \operatorname{im}(\delta) \cap \operatorname{im}\left(\delta_{2}\right)$, which is a contradiction since δ and δ_{2} are completely disjoint. We have proved that $\operatorname{dom}\left(\gamma_{x}\right) \subseteq \operatorname{dom}(\delta)$, and so $\operatorname{dom}(\delta)=\operatorname{dom}\left(\gamma_{x}\right)$. Now for all $v \in \operatorname{dom}(\delta)=\operatorname{dom}\left(\gamma_{x}\right)$, we have $v \delta=v \alpha=v \gamma_{x}$, and so $\delta=\gamma_{x} \in C$. We have proved that $D \subseteq C$.

For the reverse inclusion, let γ_{x} be an arbitrary element of C. Select $y \in \operatorname{dom}\left(\gamma_{x}\right)$. Then, there is $\delta \in D$ such that $y \in \operatorname{dom}(\delta)$. By the foregoing argument, we have $\delta=\gamma_{x}$, and so $\gamma_{x} \in D$. Hence $C \subseteq D$, and so $D=C$. We have proved that the set C is unique, which completes the proof.

Any element of the set C from Proposition 4.5 will be called a connected component of α. We note that the connected components of α correspond to the connected components of the underlying undirected graph of $\Gamma(\alpha)$ that are not isolated vertices.
Definition 4.6. Let $\alpha \in P(X)$ and let μ be a basic partial transformation contained in α. We say that μ is maximal in α if for every $x \in \operatorname{span}(\mu), x \notin \operatorname{dom}(\mu)$ implies $x \notin \operatorname{dom}(\alpha)$, and $x \notin \operatorname{im}(\mu)$ implies $x \notin \operatorname{im}(\alpha)$. Note that if μ is a cycle or a double ray, then μ is always maximal in α.

For example, consider $\alpha=[3456 \ldots\rangle \sqcup[0125] \in P(\mathbb{Z})$. Then α contains infinitely many right rays, for example $[2567 \ldots\rangle$, but only two of them, namely [3456..) and [012567..) are maximal. Also, α contains infinitely many chains, for example [3456], but none of them is maximal.

We will now establish which combinations of basic partial transformations can occur in a connected element of $P(X)$.
Lemma 4.7. Let $\gamma \in P(X)$ be connected.
(1) If γ has a cycle $\left(x_{0} x_{1} \ldots x_{k-1}\right)$, then for every $x \in \operatorname{dom}(\gamma), x \gamma^{m}=x_{0}$ for some $m \geq 0$.
(2) If γ has a right ray $\left[x_{0} x_{1} x_{2} \ldots\right\rangle$ or a double ray $\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle$, then for every $x \in$ $\operatorname{dom}(\gamma), x \gamma^{m}=x_{i}$ for some $m, i \geq 0$.
(3) If γ has a maximal chain $\left[x_{k} \ldots x_{1} x_{0}\right]$ or a maximal left ray $\left\langle\ldots x_{2} x_{1} x_{0}\right]$, then for every $x \in \operatorname{span}(\gamma), x \gamma^{m}=x_{0}$ for some $m \geq 0$.

Proof. Suppose γ has a cycle $\left(x_{0} x_{1} \ldots x_{k-1}\right)$ and let $x \in \operatorname{dom}(\gamma)$. Since γ is connected, $x \gamma^{p}=$ $x_{0} \gamma^{q}$ for some $p, q \geq 0$. Since x_{0} lies on the cycle ($x_{0} x_{1} \ldots x_{k-1}$), we may assume that $0 \leq q \leq$ $k-1$. Thus for $m=p+k-q$, we have

$$
x \gamma^{m}=x \gamma^{p+k-q}=\left(x \gamma^{p}\right) \gamma^{k-q}=\left(x_{0} \gamma^{q}\right) \gamma^{k-q}=x_{q} \gamma^{k-q}=x_{0} .
$$

Suppose γ has a right ray $\left[x_{0} x_{1} x_{2} \ldots\right\rangle$ and let $x \in \operatorname{dom}(\gamma)$. Since γ is connected, $x \gamma^{m}=$ $x_{0} \gamma^{i}=x_{i}$ for some $m, i \geq 0$. A proof in the case of a double ray is the same.

Suppose γ has a chain $\left[x_{k} \ldots x_{1} x_{0}\right]$ and let $x \in \operatorname{span}(\gamma)$. Since γ is connected, $x \gamma^{p}=x_{0} \gamma^{q} \neq \diamond$ for some $p, q \geq 0$. Note that q must be 0 (since $x_{0} \gamma^{q}=\diamond$ for every $q \geq 1$). Thus $x \gamma^{p}=x_{0} \gamma^{0}=x_{0}$. The proof in the case of a maximal left ray is the same.

Proposition 4.8. Let $\gamma \in P(X)$ be connected.
(1) If γ has a cycle, then the cycle is unique and γ does not have any double rays or rights rays or maximal chains or maximal left rays.
(2) If γ has a double ray, then it does not have any maximal chains or maximal left rays.
(3) If γ has a right ray, but no double rays, then it has a maximal right ray and it does not have any left rays or maximal chains.
(4) If γ has a chain, but no cycles or rays, then it has a maximal chain.
(5) If γ has a left ray, but no cycles or double rays, then it has a maximal left ray.

Proof. Suppose that γ has a cycle, and let θ and ϑ be cycles in γ, say $\theta=\left(x_{0} x_{1} \ldots x_{k-1}\right)$. Let $y \in \operatorname{dom}(\vartheta)$. By Lemma 4.7, $y \gamma^{p}=x_{0}$ for some $p \geq 0$. Thus x_{0} lies on ϑ, so we may write $\vartheta=\left(y_{0} y_{1} \ldots y_{m-1}\right)$ with $y_{0}=x_{0}$. We may assume that $k \leq m$. But then $x_{i}=x_{0} \gamma^{i}=y_{0} \gamma^{i}=y_{i}$ for every $i \in\{0, \ldots, k-1\}$ and $y_{k-1} \gamma=x_{k-1} \gamma=x_{0}=y_{0}$, that is, $\theta=\vartheta$.

Suppose that γ with a cycle $\left(x_{0} x_{1} \ldots x_{k-1}\right)$ also has a double ray, say $\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle$. By Lemma 4.7, $y_{0} \gamma^{m}=x_{0}$ for some $m \geq 0$. But then $y_{0} \gamma^{m+k}=\left(y_{0} \gamma^{m}\right) \gamma^{k}=x_{0} \gamma^{k}=x_{0}=y_{0}$, which is a contradiction since $y_{0} \gamma^{m+k}=y_{m+k} \neq y_{0}$ (since $m \geq 0$ and $k \geq 1$). Thus γ does not have a double ray. This completes the proof of (1) since a connected γ with a cycle cannot have any terminal vertices, and hence cannot have any maximal chains or maximal left rays. Statement (2) also follows since a connected γ with a double ray cannot have terminal vertices either.

Let $\eta=\left[x_{0} x_{1} x_{2} \ldots\right\rangle$ be a right ray in α. If η is not maximal, then $x_{-1} \gamma=x_{0}$ for some $x_{-1} \in X \backslash\left\{x_{0}, x_{1}, \ldots\right\}$. (If $x_{-1}=x_{i}$ for some $i \geq 0$, then γ would have a cycle, which is impossible by (1).) Thus $\eta_{1}=\left[x_{-1} x_{0} x_{1} x_{2} \ldots\right\rangle$ is a right ray in α. If η_{1} is not maximal, then $x_{-2} \gamma=x_{-1}$ for some $x_{-2} \in X \backslash\left\{x_{-1}, x_{0}, x_{1}, \ldots\right\}$, and so $\eta_{2}=\left[x_{-2} x_{-1} x_{0} x_{1} x_{2} \ldots\right\rangle$ is a right ray in α. Continuing this way, we must arrive at a maximal right ray in α (after finitely many steps) since otherwise α would have a double ray. This completes the proof of (3) since a connected γ with a right ray cannot have any terminal vertices.

To prove (4), let $\lambda=\left[x_{0} x_{1} \ldots x_{k}\right]$ be a chain in α. If $x_{0} \in \operatorname{im}(\alpha)$, then, since α has no left rays, we can use the argument as in the proof of (3) for a right ray to extend λ to a chain $\lambda^{\prime}=\left[x_{-m} \ldots x_{-1} x_{0} x_{1} \ldots x_{k}\right]$ such that $x_{-m} \notin \operatorname{im}(\alpha)$. Similarly, since α has no right rays or cycles, we can extend λ^{\prime} to a chain $\lambda^{\prime \prime}=\left[x_{-m} x_{-m+1} \ldots x_{-1} x_{0} x_{1} \ldots x_{k} x_{k+1} \ldots x_{k+p}\right]$ such that $x_{k+p} \notin \operatorname{dom}(\alpha)$. Then $\lambda^{\prime \prime}$ is a maximal chain in α. We have proved (4). The proof of (5) is similar.

Remark 4.9. It follows from Proposition 4.8 that as far as the types of basic transformations go, a connected $\gamma \in P(X)$ can contain one of the following.
(1) A single cycle and no double rays or right rays or maximal chains or maximal left rays (see Figure 4.1);
(2) A double ray but no cycles or maximal chains or maximal left rays (see Figure 4.2);
(3) A maximal right ray but no cycles or double rays or left rays or maximal chains (see Figure 4.3);
(4) A maximal left ray but no cycles or double rays or right rays (see Figure 4.4 and Definition 4.10);
(5) A maximal chain but no cycles or rays (see Figure 4.5 and Definition 4.10).

We note that the uniqueness applies only to a cycle. A connected γ can have any number (finite or infinite) of (maximal) chains or (maximal) rays of any type.

Figure 4.1: A connected partial transformation with a cycle.

Figure 4.2: A connected partial transformation with a double ray.
For our purposes, it will not be necessary to distinguish connected partial transformations that have double rays only or left rays only. (In other words, if a connected $\gamma \in P(X)$ has a double ray, then it will not matter whether it has a maximal right ray as well; similarly, if it has a maximal left ray, then it will not matter whether it has a maximal chain as well.) However, we will need to distinguish connected transformations that have right rays only, and connected transformations that have chains only.
Definition 4.10. Let $\gamma \in P(X)$ be connected. If γ satisfies (3) of Remark 4.9, we will say that γ is of (or has) type rro ("right rays only"). If γ satisfies (5) of Remark 4.9, we will say that γ is of type cho ("chains only").

Lemma 4.11. Let $\gamma \in P(X)$ be connected such that γ contains a maximal left ray or it is of type cho. Then γ contains a unique terminal vertex.
Proof. Since γ contains a maximal left ray or a maximal chain, it contains a terminal vertex. Suppose x and y are terminal vertices in γ. Since γ is connected, $x \gamma^{k}=y \gamma^{m} \neq \diamond$ for some $k, m \geq 0$. But since x and y are terminal, this is only possible when $k=m=0$. Thus $x=y$.

Figure 4.3: A connected partial transformation of type rro.

Figure 4.4: A connected partial transformation with a maximal left ray.

Definition 4.12. Let $\gamma \in P(X)$ be connected such that γ has a maximal left ray or is of type cho. The unique terminal vertex of γ established by by Lemma 4.11 will be called the root of γ.

For integers a and b, we write $a \mid b$ if a divides b, that is, if $b=a k$ for some integer k. For integers a and n with $n \geq 1$, we denote by $\bmod (a, n)$ the unique integer r in $\{0,1, \ldots, n-1\}$ such that $a \equiv r(\bmod n)$. We note that

$$
\bmod (a+1, n)= \begin{cases}\bmod (a, n)+1 & \text { if } \bmod (a, n) \neq n-1 \tag{4.1}\\ 0 & \text { if } \bmod (a, n)=n-1\end{cases}
$$

Proposition 4.13. Let $\gamma, \delta \in P(X)$ be connected such that γ has a cycle $\left(x_{0} x_{1} \ldots x_{k-1}\right)$. Then $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$ if and only if δ has a cycle $\left(y_{0} y_{1} \ldots y_{m-1}\right)$ such that $m \mid k$.

Proof. Suppose there is an rp-homomorphism ϕ from $\Gamma(\gamma)$ to $\Gamma(\delta)$. Let $y_{i}=x_{i} \phi$ for $i=$ $0,1, \ldots, k-1$. Then $y_{0} \xrightarrow{\delta} y_{1} \xrightarrow{\delta} \cdots \xrightarrow{\delta} y_{k-1} \xrightarrow{\delta} y_{0}$, and so $y_{0} \delta^{k}=y_{0}$. Let m be the smallest integer in $\{1,2, \ldots, k\}$ such that $y_{0} \delta^{m}=y_{0}$. Then $\left(y_{0} y_{1} \ldots y_{m-1}\right)$ is a cycle in δ. By the

Figure 4.5: A connected partial transformation of type cho.

Division Algorithm, $k=m q+r$ for some $q, r \in \mathbb{N}$ with $0 \leq r<m$. Since $y_{0} \delta^{m}=y_{0}$, we have $y_{0} \delta^{m q}=y_{0}$, and so $y_{0}=y_{0} \delta^{k}=\left(y_{0} \delta^{m q}\right) \delta^{r}=y_{0} \delta^{r}$. Thus $r=0$ by the definition of m, and so $k=m q$, that is, $m \mid k$.

Conversely suppose that δ has a desired cycle. We will define an rp-homomorphism ϕ from $\Gamma(\gamma)$ to $\Gamma(\delta)$ such that $\operatorname{dom}(\phi)=\operatorname{dom}(\gamma)$ and $\operatorname{im}(\phi)=\left\{y_{0}, y_{1}, \ldots, y_{m-1}\right\}$. (Note that dom $(\gamma)=$ $\operatorname{span}(\gamma)$ since γ has a cycle.) For $x \in \operatorname{dom}(\gamma)$, let p_{x} be the smallest nonnegative integer such that $x \gamma^{p_{x}}=x_{0}$ (such p_{x} exists by Lemma 4.7), and let $q_{x}=\bmod \left(-p_{x}, m\right)$. Define ϕ on $\operatorname{dom}(\gamma)$ by $x \phi=y_{q_{x}}$. Suppose $x \xrightarrow{\gamma} z$. We consider two possible cases.
Case 1. $x=x_{0}$.
Then $p_{x}=0, z=x \gamma=x_{0} \gamma=x_{1}$, and $p_{z}=k-1$. Thus $q_{x}=\bmod (0, m)=0$ and $q_{z}=\bmod (-k+1, m)=1($ since $m \mid k$, and so $-k \equiv 0(\bmod m))$. Hence $x \phi=y_{0} \xrightarrow{\delta} y_{1}=z \phi$.
Case 2. $x \neq x_{0}$.
Then, since $x \xrightarrow{\gamma} z$, we have $p_{z}=p_{x}-1$, and so

$$
\begin{equation*}
q_{z}=\bmod \left(-p_{z}, m\right)=\bmod \left(-p_{x}+1, m\right) \tag{4.2}
\end{equation*}
$$

Suppose $q_{x}=\bmod \left(-p_{x}, m\right) \neq m-1$. Then, by (4.1) and (4.2), $q_{z}=\bmod \left(-p_{x}+1, m\right)=$ $\bmod \left(-p_{x}, m\right)+1=q_{x}+1$, and so $x \phi=y_{q_{x}} \xrightarrow{\delta} y_{q_{x}+1}=y_{q_{z}}=z \phi$.

Suppose $q_{x}=\bmod \left(-p_{x}, m\right)=m-1$. Then $-p_{x} \equiv-1(\bmod m)$, and so $p_{x} \equiv 1(\bmod m)$. Thus $p_{x}=t m+1$ for some integer t, and so $p_{z}=p_{x}-1=t m$. Hence $q_{z}=\bmod \left(-p_{z}, m\right)=$ $\bmod (-t m, m)=0$, and so $x \phi=y_{q_{x}}=y_{m-1} \xrightarrow{\delta} y_{0}=y_{q_{z}}=z \phi$.

Thus, in both cases, $x \phi \xrightarrow{\delta} x \phi$, and so ϕ is an rp-homomorphism. (Condition (b) of Definition 3.1 is satisfied since $\Gamma(\gamma)$ does not have any terminal vertices.)

Lemma 4.14. Let $\gamma, \delta \in P(X)$ be connected such that δ has a cycle $\left(y_{0} y_{1} \ldots y_{m-1}\right)$. Suppose γ has a double ray or γ is of type rro. Then $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$.
Proof. Suppose γ has a double ray $\mu=\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle$. We will define an rp-homomorphism ϕ from $\Gamma(\gamma)$ to $\Gamma(\delta)$ such that $\operatorname{dom}(\phi)=\operatorname{dom}(\gamma)$ and $\operatorname{im}(\phi)=\left\{y_{0}, y_{1}, \ldots, y_{m-1}\right\}$. For $x \in \operatorname{dom}(\gamma)$, let p_{x} be the smallest nonnegative integer such that $x \gamma^{p_{x}}=x_{i}$ for some i (such p_{x} exists by Lemma 4.7), and let $q_{x}=\bmod \left(i-p_{x}, m\right)$. Define ϕ on $\operatorname{dom}(\gamma)$ by $x \phi=y_{q_{x}}$. Suppose $x \xrightarrow{\gamma} z$. We consider two possible cases.
Case 1. $x=x_{i}$ for some $i \in \mathbb{Z}$.

Then $p_{x}=0, z=x \gamma=x_{i} \gamma=x_{i+1}$, and $p_{z}=0$. Thus $q_{x}=\bmod (i, m)$ and $q_{z}=\bmod (i+1, m)$. If $q_{x} \neq m-1$, then $q_{z}=q_{x}+1$, and so $x \phi=y_{q_{x}} \xrightarrow{\delta} y_{q_{x}+1}=y_{q_{z}}=z \phi$. if $q_{x}=m-1$, then $q_{z}=0$, and so $x \phi=y_{q_{x}}=y_{m-1} \xrightarrow{\delta} y_{0}=y_{q_{z}}=z \phi$.
Case 2. $x \neq x_{i}$ for every $i \in \mathbb{Z}$.
Then, since $x \xrightarrow{\gamma} z$, we have $p_{z}=p_{x}-1$ with $x \gamma^{p_{x}}=z \gamma^{p_{z}}=i$, and so

$$
\begin{equation*}
q_{z}=\bmod \left(i-p_{z}, m\right)=\bmod \left(i-p_{x}+1, m\right) . \tag{4.3}
\end{equation*}
$$

If $q_{x} \neq m-1$, then, by (4.1) and (4.3), $q_{z}=\bmod \left(i-p_{x}+1, m\right)=\bmod \left(i-p_{x}, m\right)+1=q_{x}+1$, and so $x \phi=y_{q_{x}} \xrightarrow{\delta} y_{q_{x}+1}=y_{q_{z}}=z \phi$. If $q_{x}=m-1$, then $q_{z}=0$, and so again $x \phi \xrightarrow{\delta} z \phi$.

Hence, since $\Gamma(\gamma)$ has no terminal vertices, ϕ is an rp-homomorphism. The proof in the case when γ has type rro is similar.

Lemma 4.15. Let $\gamma, \delta \in P(X)$ be connected. Suppose that δ has a double ray and γ either has a double ray or has type rro. Then $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$.
Proof. Suppose γ has a double ray, say $\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle$, and let $\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle$ be a double ray in δ. We will define an rp-homomorphism ϕ from $\Gamma(\gamma)$ to $\Gamma(\delta)$ such that $\operatorname{dom}(\phi)=\operatorname{dom}(\gamma)$ and $\operatorname{im}(\phi)=\left\{\ldots, y_{-1}, y_{0}, y_{1}, \ldots\right\}$. (Note that $\operatorname{dom}(\gamma)=\operatorname{span}(\gamma)$ since γ has a double ray or it is of type rro.) For $x \in \operatorname{dom}(\gamma)$, let p_{x} be the smallest nonnegative integer such that $x \gamma^{p_{x}}=x_{i}$ for some integer i. Define ϕ on $\operatorname{dom}(\gamma)$ by $x \phi=y_{i-p_{x}}$ where $x \gamma^{p_{x}}=x_{i}$. Suppose $x \xrightarrow{\gamma} z$. We consider two possible cases.
Case 1. $x=x_{i}$ for some integer i.
Then $p_{x}=0, z=x \gamma=x_{i} \gamma=x_{i+1}$, and $p_{z}=0$. Thus

$$
x \phi=y_{i-p_{x}}=y_{i} \xrightarrow{\delta} y_{i+1}=y_{i+1-p_{z}}=z \phi .
$$

Case 2. $x \neq x_{i}$ for every integer i.
Then, since $x \xrightarrow{\gamma} z$, we have $p_{z}=p_{x}-1$ and $x \gamma^{p_{x}}=z \gamma^{p_{z}}=x_{i}$ for some i. Thus

$$
x \phi=y_{i-p_{x}} \xrightarrow{\delta} y_{i-p_{x}+1}=y_{i-p_{z}}=z \phi .
$$

Thus, in both cases, $x \phi \xrightarrow{\delta} z \phi$, and so ϕ is an rp-homomorphism since $\Gamma(\gamma)$ does not have any terminal vertices. The proof in the case when γ has type rro is similar.

Lemma 4.16. Let $\gamma, \delta \in P(X)$ be connected. Suppose that δ has a maximal left ray and γ either has a maximal left ray or is of type cho. Then $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$.
Proof. Let $\left\langle\ldots y_{2} y_{1} y_{0}\right.$] be a maximal left ray in δ. Note that y_{0} is the root of δ. Let x_{0} be the root of γ. We will define an rp-homomorphism ϕ from $\Gamma(\gamma)$ to $\Gamma(\delta)$ such that $\operatorname{dom}(\phi)=\operatorname{span}(\gamma)$ and $\operatorname{im}(\phi) \subseteq\left\{\ldots, y_{2}, y_{1}, y_{0}\right\}$. For $x \in \operatorname{span}(\gamma)$, let p_{x} be the smallest nonnegative integer such that $x \gamma^{p_{x}}=x_{0}$ (such p_{x} exists by Lemma 4.7). Define ϕ on $\operatorname{span}(\gamma)$ by $x \phi=y_{p_{x}}$. If $x \xrightarrow{\gamma} z$, then $p_{z}=p_{x}-1$, and so $x \phi=y_{p_{x}} \xrightarrow{\delta} y_{p_{x}-1}=y_{p_{z}}=z \phi$. Further, the only terminal vertex in $\Gamma(\gamma)$ is x_{0} and $x_{0} \phi=y_{0}$ (since $p_{x_{0}}=0$), which is a terminal vertex in $\Gamma(\delta)$. Hence ϕ is an rp-homomorphism.

Lemma 4.17. Let $\gamma, \delta \in P(X)$ be connected such that γ is of type rro. Suppose $\Gamma(\gamma)$ is rphomomorphic to $\Gamma(\delta)$. Then δ cannot have a maximal left ray or be of type cho.
Proof. Let ϕ be an rp-homomorphism from $\Gamma(\gamma)$ to $\Gamma(\delta)$. Select a right ray $\left[x_{0} x_{1} x_{2} \ldots\right\rangle$ in γ. Suppose to the contrary that δ has a maximal left ray or is of type cho. Let y_{0} be the root of δ. By Lemma 4.7, $\left(x_{0} \phi\right) \delta^{k}=y_{0}$ for some integer $k \geq 0$. By Lemma 3.7, $\gamma \phi=\phi \delta$, and so $\left(x_{0} \phi\right) \delta^{k+1}=\left(x_{0} \gamma^{k+1}\right) \phi=x_{k+1} \phi$. But $\left(x_{0} \phi\right) \delta^{k+1}=\left(x_{0} \phi\right) \delta^{k} \delta=y_{0} \delta=\diamond$, and so $x_{k+1} \phi=\diamond$, which is a contradiction. The result follows.

Proposition 4.18. Let $S \leq P(X)$ such that S is constant rich, and let $\alpha, \beta \in S$ with $\alpha \neq 0$. Then there is an rp-homomorphism $\phi \in S^{1}$ from $\Gamma(\alpha)$ to $\Gamma(\beta)$ with $\operatorname{dom}(\phi)=\operatorname{span}(\alpha)$ if and only if
(a) for every connected component γ of α, there exist a connected component δ of β and an rp-homomorphism $\phi_{\gamma} \in P(X)$ from $\Gamma(\gamma)$ to $\Gamma(\delta)$ with $\operatorname{dom}\left(\phi_{\gamma}\right)=\operatorname{span}(\gamma)$; and
(b) $\bigsqcup_{\gamma \in C} \phi_{\gamma} \in S^{1}$, where C is the collection of connected components of α.

Proof. Suppose there is an rp-homomorphism $\phi \in S^{1}$ from $\Gamma(\alpha)$ to $\Gamma(\beta)$ such that $\operatorname{dom}(\phi)=$ $\operatorname{span}(\alpha)$. Let γ be a connected component of α and let $x \in \operatorname{span}(\gamma)$. Then, by Proposition 4.5, $x \phi \in \delta$ for some connected component δ of β. We claim that $(\operatorname{span}(\gamma)) \phi \subseteq \operatorname{span}(\delta)$. Let $z \in \operatorname{span}(\gamma)$. Since γ is connected, $x \alpha^{k}=x \gamma^{k}=z \gamma^{m}=z \alpha^{m} \neq \diamond$ for some integers $k, m \geq 0$. By Lemma 3.7, we have $\alpha \phi=\phi \beta$, and so $(z \phi) \beta^{m}=\left(z \alpha^{m}\right) \phi=\left(x \alpha^{k}\right) \phi=(x \phi) \beta^{k} \neq \diamond$, which implies that $z \phi$ and $x \phi$ are in the span of the same connected component of β, that is, $z \phi \in \operatorname{span}(\delta)$. The claim has been proved. Let $\phi_{\gamma}=\left.\phi\right|_{\operatorname{span}(\gamma)}$. Then ϕ_{γ} is an rp-homomorphism from $\Gamma(\gamma)$ to $\Gamma(\delta)$ (by the claim and the fact that ϕ is an rp-homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta))$, $\operatorname{dom}\left(\phi_{\gamma}\right)=\operatorname{span}(\gamma)$ (by the definition of ϕ_{γ}), and $\bigsqcup_{\gamma \in C} \phi_{\gamma}=\phi \in S^{1}$ (by the definition of ϕ_{γ} and the fact that $\operatorname{dom}(\phi)=\operatorname{span}(\alpha))$.

Conversely, suppose that (a) and (b) are satisfied. Let $\phi=\bigsqcup_{\gamma \in C} \phi_{\gamma}$. Note that ϕ is well defined since ϕ_{γ} and $\phi_{\gamma^{\prime}}$ are disjoint if $\gamma \neq \gamma^{\prime}$. Suppose $y \xrightarrow{\alpha} z$. Then $y, z \in \operatorname{span}(\gamma)$ for some connected component γ of α. Thus $y, z \in \operatorname{dom}\left(\phi_{\gamma}\right)$ and $y \phi=y \phi_{\gamma} \stackrel{\delta}{\rightarrow} z \phi_{\gamma}=z \phi$, implying $y \phi \xrightarrow{\beta} z \phi$. Suppose y is a terminal vertex in $\Gamma(\alpha)$ and $y \in \operatorname{dom}(\phi)$. Then, there is a unique connected component γ of α such that y is a terminal vertex in $\Gamma(\gamma)$. Then $y \phi=y \phi_{\gamma}$ is a terminal vertex in $\Gamma(\delta)$, and so a terminal vertex in $\Gamma(\beta)$. Hence ϕ is an rp-homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$. Moreover, $\operatorname{dom}(\phi)=\operatorname{span}(\alpha)$ (by the definition of ϕ) and $\phi \in S^{1}$ (by (b)).

Lemma 4.19. Let $\alpha, \beta \in P(X)$ be such that $\Gamma(\alpha)$ is rp-homomorphic to $\Gamma(\beta)$. If α has a cycle of length k, then β has a cycle of length m such that $m \mid k$.

Proof. It follows immediately from Propositions 4.13 and 4.18.
A binary relation R on a set A is called well founded if every nonempty subset $B \subseteq A$ contains an R-minimal element; that is, $a \in B$ exists such that there is no $y \in B$ with $(y, a) \in R[21$, page 25]. Let R be a well-founded relation on A. Then there is a unique function ρ defined on A with ordinals as values such that for every $x \in A$,

$$
\begin{equation*}
\rho(x)=\sup \{\rho(y)+1:(y, x) \in R\} \tag{4.4}
\end{equation*}
$$

The ordinal $\rho(x)$ is called the rank of x in $\langle A, R\rangle$ [21, Theorem 2.27].
For a mapping $f: A \rightarrow B$ and $b \in B$, we denote by $b f^{-1}$ the preimage of b under f.
Definition 4.20. Let $\gamma \in P(X)$ be connected of type rro or cho. Recall that R_{γ} is a binary relation on $\operatorname{span}(\gamma)$ defined by $(y, x) \in R_{\gamma}$ if $y \gamma=x$. (Note that $(y, x) \in R_{\gamma} \Leftrightarrow y \xrightarrow{\gamma} x \Leftrightarrow$ $y \in x \gamma^{-1}$). The relation R_{γ} is well founded since there is no sequence $\left\langle x_{0}, x_{1}, x_{2}, \ldots\right\rangle$ such that $\cdots \xrightarrow{\gamma} x_{2} \xrightarrow{\gamma} x_{1} \xrightarrow{\gamma} x_{0} .($ See [21, Lemma 5.5].) For $x \in \operatorname{span}(\gamma)$, we will denote the rank of x in $\left\langle\operatorname{span}(\gamma), R_{\gamma}\right\rangle$ by $\rho_{\gamma}(x)$ (or $\rho(x)$ if γ is clear from the context).

It follows from (4.4) that for every $x \in \operatorname{span}(\gamma)$ with $\rho(x)>0$, we have $\rho(y)<\rho(x)$ for every $y \in x \gamma^{-1}$, and if $\nu=\sup \left\{\rho(y): y \in x \gamma^{-1}\right\}$ then

$$
\rho(x)= \begin{cases}\nu+1 & \text { if } \rho(y)=\nu \text { for some } y \in x \gamma^{-1} \tag{4.5}\\ \nu & \text { if } \rho(y)<\nu \text { for every } y \in x \gamma^{-1}\end{cases}
$$

Example 4.21. Let $X=\left\{x_{0}, x_{1}, x_{2}, \ldots, y_{0}, y_{1}, y_{2}, \ldots\right\}$ and let

$$
\gamma=\left[x_{0} x_{1} x_{2} x_{3} \ldots\right\rangle \sqcup\left[y_{0} x_{2}\right] \sqcup\left[y_{1} y_{2} x_{2}\right] \sqcup\left[y_{3} y_{4} y_{5} x_{2}\right] \sqcup\left[y_{6} y_{7} y_{8} y_{9} x_{2}\right] \sqcup \cdots \in P(X) .
$$

Then γ is connected of type rro and we have: $\rho\left(x_{0}\right)=0, \rho\left(x_{1}\right)=1$, and $\rho\left(x_{2+i}\right)=\omega+i$ for every $i \geq 0$, where ω is the smallest infinite ordinal. We also have: $\rho\left(y_{6}\right)=0, \rho\left(y_{7}\right)=1, \rho\left(y_{8}\right)=2$, and $\rho\left(y_{9}\right)=3$.
Example 4.22. Let $X=\left\{y_{0}, y_{1}, y_{2}, \ldots\right\} \cup \bigcup_{i=0}^{\infty}\left\{z_{0}^{i}, z_{1}^{i}, z_{2}^{i}, \ldots\right\}$. For every integer $i \geq 0$, let

$$
\delta_{i}=\left[z_{1}^{i} z_{0}^{i}\right] \sqcup\left[z_{2}^{i} z_{3}^{i} z_{0}^{i}\right] \sqcup\left[z_{4}^{i} z_{5}^{i} z_{6}^{i} z_{0}^{i}\right] \sqcup\left[z_{7}^{i} z_{8}^{i} z_{9}^{i} z_{10}^{i} z_{0}^{i}\right] \sqcup \cdots \in P(X) .
$$

Then each δ_{i} is connected of type cho and $\rho_{\delta_{i}}\left(z_{0}^{i}\right)=\omega$. Further, let

$$
\gamma=\left(\delta_{0} \sqcup\left[z_{0}^{0} y_{0}\right]\right) \sqcup\left(\delta_{1} \sqcup\left[z_{0}^{1} y_{1} y_{0}\right]\right) \sqcup\left(\delta_{2} \sqcup\left[z_{0}^{2} y_{2} y_{3} y_{0}\right]\right) \sqcup\left(\delta_{3} \sqcup\left[z_{0}^{3} y_{4} y_{5} y_{6} y_{0}\right]\right) \sqcup \cdots \in P(X)
$$

Then γ is connected of type cho and $\rho_{\gamma}\left(y_{0}\right)=\omega+\omega=2 \omega$.
We will need the following lemma from the theory of well-founded relations [22, Appendix B].
Lemma 4.23. Let R_{1} and R_{2} be well-founded relations on A_{1} and A_{2}, respectively. Suppose a function $f: A_{1} \rightarrow A_{2}$ is such that for all $x, y \in A_{1}$, if $(x, y) \in R_{1}$ then $(x f, y f) \in R_{2}$. The for all $x \in A_{1}, \rho(x) \leq \rho(x f)$.
Notation 4.24. Let $\gamma \in P(X)$ be connected and let $x \in \operatorname{span}(\gamma)$. We denote by $\downarrow x$ the set of all $y \in \operatorname{span}(\gamma)$ such that $x=y \gamma^{m}$ for some $m \geq 0$. If $x \in \operatorname{im}(\gamma)$, we denote by γ_{x} the restriction of γ to $\downarrow x \backslash\{x\}$. Note that γ_{x} is connected and it either contains a maximal left ray or is of type cho, and that, in either case, x is the root of γ_{x}.

Lemma 4.25. Let $\gamma, \delta \in P(X)$ be connected such that γ is of type rro or cho and δ is contained in γ. Then for every $x \in \operatorname{span}(\delta)$:
(1) $\rho_{\delta}(x) \leq \rho_{\gamma}(x)$;
(2) if $\delta=\gamma_{z}$ for some $z \in \operatorname{im}(\gamma)$, then $\rho_{\delta}(x)=\rho_{\gamma}(x)$.

Proof. First note that δ must be of type rro or cho. Statement (1) follows from Lemma 4.23 with $f: \operatorname{span}(\delta) \rightarrow \operatorname{span}(\gamma)$ defined by $x f=x$. To prove (2), we suppose $\delta=\gamma_{z}$ and proceed by well-founded induction [21, Theorem 2.6]. Let $x \in \operatorname{span}(\delta)$. The result is true if x is R_{δ}-minimal since then x is also R_{γ}-minimal. Suppose $\rho_{\delta}(y)=\rho_{\gamma}(y)$ for all $y \in \operatorname{span}(\delta)$ such that $(y, x) \in R_{\delta}$. Then

$$
\rho_{\delta}(x)=\sup \left\{\rho_{\delta}(y)+1:(y, x) \in R_{\delta}\right\}=\sup \left\{\rho_{\gamma}(y)+1:(y, x) \in R_{\gamma}\right\}=\rho_{\gamma}(x),
$$

where the last but one equality follows from the inductive hypothesis and the fact that for $\delta=\gamma_{z}$, $x \delta^{-1}=x \gamma^{-1}$ for all $x \in \operatorname{span}(\delta)$.

Proposition 4.26. Let $\gamma, \delta \in P(X)$ be connected of type cho with roots x_{0} and y_{0}, respectively. Then $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$ if and only if $\rho\left(x_{0}\right) \leq \rho\left(y_{0}\right)$.
Proof. Suppose there is an rp-homomorphism ϕ from $\Gamma(\gamma)$ to $\Gamma(\delta)$. Then $\phi: \operatorname{span}(\gamma) \rightarrow \operatorname{span}(\delta)$ with $x_{0} \phi=y_{0}$, and for all $x, y \in \operatorname{span}(\gamma)$, if $x \xrightarrow{\gamma} y$ then $x \xrightarrow{\delta} y$. Thus $\rho\left(x_{0}\right) \leq \rho\left(y_{0}\right)$ by Lemma 4.23.

Conversely, suppose $\rho\left(x_{0}\right) \leq \rho\left(y_{0}\right)$. We will prove that $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$ by transfinite induction on $\rho\left(x_{0}\right)$. Let $\rho\left(x_{0}\right)=1$. Then for every $z \in \operatorname{dom}(\gamma)$, we have $z \xrightarrow{\gamma} x_{0}$. Since $\rho\left(y_{0}\right) \geq \rho\left(x_{0}\right)=1$, there is some $w \in \operatorname{dom}(\delta)$ such that $w \xrightarrow{\delta} y_{0}$. Define ϕ on span (γ) by: $x_{0} \phi=y_{0}$ and $z \phi=w$ for every $z \in \operatorname{dom}(\gamma)$. Then clearly ϕ is an rp-homomorphism from $\Gamma(\gamma)$ to $\Gamma(\delta)$.

Let $\rho\left(x_{0}\right)=\mu>1$ and suppose that for all connected $\gamma_{1}, \delta_{1} \in P(X)$ of type cho with roots z and w, respectively, if $\rho(z)<\mu$ and $\rho(z) \leq \rho(w)$, then $\Gamma\left(\gamma_{1}\right)$ is rp-homomorphic to $\Gamma\left(\delta_{1}\right)$.

Let $z \in x_{0} \gamma^{-1}$ and note that $\rho(z)<\mu$. Since $\rho\left(y_{0}\right) \geq \mu$, there is $w_{z} \in y_{0} \delta^{-1}$ such that $\rho(z) \leq$ $\rho\left(w_{z}\right)$. If $z \in \operatorname{im}(\gamma)$, then γ_{z} and $\delta_{w_{z}}$ are connected with $\rho_{\gamma_{z}}(z)=\rho(z) \leq \rho\left(w_{z}\right)=\rho_{\delta_{w_{z}}}\left(w_{z}\right)$, and so, by the inductive hypothesis, there is an rp-homomorphism ϕ_{z} from $\Gamma\left(\gamma_{z}\right)$ to $\Gamma\left(\delta_{w_{z}}\right)$. If $z \notin \operatorname{im}(\gamma)$ (that is, if $\downarrow z=\{z\}$), we define ϕ_{z} on $\downarrow z=\{z\}$ by $z \phi_{z}=w_{z}$.

Define ϕ on $\operatorname{span}(\gamma)$ by: $x_{0} \phi=y_{0}$ and $u \phi=u \phi_{z}$ if $u \in \downarrow z$ for some $z \in x_{0} \gamma^{-1}$. Then ϕ is well-defined since the collection $\{\downarrow z\}_{z \in x_{0} \gamma^{-1}}$ is a partition of $\operatorname{dom}(\gamma)\left(=\operatorname{span}(\gamma) \backslash\left\{x_{0}\right\}\right)$. Suppose $u \xrightarrow{\gamma} v$. If $v \in \downarrow z$ for some $z \in x_{0} \gamma^{-1}$, then $u \in \downarrow z$ as well, and so $u \phi=u \phi_{z} \xrightarrow{\delta} v \phi_{z}=v \phi$. If $v=x_{0}$, then $u=z \in x_{0} \gamma^{-1}$, and so $u \phi=z \phi=z \phi_{z}=w_{z} \xrightarrow{\delta} y_{0}=x_{0} \phi=v \phi$. Hence, since $x_{0} \phi=y_{0}$ and x_{0} is the unique terminal vertex of $\Gamma(\gamma), \phi$ is an rp-homomorphism from $\Gamma(\gamma)$ to $\Gamma(\delta)$.

Definition 4.27. Let $\left\langle a_{n}\right\rangle_{n \geq 0}$ and $\left\langle b_{n}\right\rangle_{n \geq 0}$ be sequences of ordinals (indexed by nonnegative integers n). We say that $\left\langle b_{n}\right\rangle$ dominates $\left\langle\bar{a}_{n}\right\rangle$ if there is $k \geq 0$ such that

$$
b_{k+n} \geq a_{n} \text { for every } n \geq 0 .
$$

Notation 4.28. Let $\gamma \in P(X)$ be connected of type rro and let $\eta=\left[x_{0} x_{1} x_{2} \ldots\right\rangle$ be a maximal right ray in γ. We denote by $\left\langle\eta_{n}^{\gamma}\right\rangle_{n \geq 0}$ the sequence of ordinals such that

$$
\eta_{n}^{\gamma}=\rho_{\gamma}\left(x_{n}\right) \text { for every } n \geq 0
$$

For example, for γ from Example 4.21 and the right ray $\eta=\left[x_{0} x_{1} x_{2} \ldots\right\rangle$ in γ, the sequence $\left\langle\eta_{n}^{\gamma}\right\rangle$ is $\langle 0,1, \omega, \omega+1, \omega+2, \omega+3, \ldots\rangle$.

Proposition 4.29. Let $\gamma, \delta \in P(X)$ be connected of type rro. Then $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$ if and only if there are maximal right rays η in γ and ξ in δ such that $\left\langle\xi_{n}^{\delta}\right\rangle$ dominates $\left\langle\eta_{n}^{\gamma}\right\rangle$.

Proof. Suppose there is an rp-homomorphism ϕ from $\Gamma(\gamma)$ to $\Gamma(\delta)$. Select a maximal right ray $\eta=\left[x_{0} x_{1} x_{2} \ldots\right\rangle$ in γ (possible by Proposition 4.8.) Then $x_{0} \phi \xrightarrow{\delta} x_{1} \phi \xrightarrow{\delta} x_{2} \phi \xrightarrow{\delta} \cdots$, and so, since δ does not have any double rays, there is $w \in \operatorname{dom}(\delta)-\operatorname{im}(\delta)$ such that $w \delta^{k}=x_{0} \phi$ for some $k \geq 0$. Thus

$$
\xi=\left[y_{0}=w y_{1}=w \delta \ldots y_{k-1}=w \delta^{k-1} \quad y_{k}=w \delta^{k}=x_{0} \phi \quad y_{k+1}=x_{1} \phi \quad y_{k+2}=x_{2} \phi \ldots\right\rangle
$$

is a maximal right ray in δ. For every $n \geq 0$, the mapping $\left.\phi\right|_{\downarrow x_{n}}$ is an rp-homomorphism from $\Gamma\left(\gamma_{x_{n}}\right)$ to $\Gamma\left(\delta_{y_{k+n}}\right)$ (see Notation 4.24). Thus for every $n \geq 0$, we have $\rho_{\gamma_{x_{n}}}\left(x_{n}\right) \leq \rho_{\delta_{y_{k+n}}}\left(y_{k+n}\right)$ by Proposition 4.26, and so $\rho\left(x_{n}\right) \leq \rho\left(y_{k+n}\right)$ by Lemma 4.25. Hence $\left\langle\xi_{n}^{\delta}\right\rangle$ dominates $\left\langle\eta_{n}^{\gamma}\right\rangle$.

Conversely, suppose there are maximal right rays $\eta=\left[x_{0} x_{1} x_{2} \ldots\right\rangle$ in γ and $\xi=\left[y_{0} y_{1} y_{2} \ldots\right\rangle$ in δ such that $\left\langle\xi_{n}^{\delta}\right\rangle$ dominates $\left\langle\eta_{n}^{\gamma}\right\rangle$, that is, there is $k \geq 0$ such that $\xi_{k+n}^{\delta} \geq \eta_{n}^{\gamma}$ for every $n \geq 0$. We define a collection $\left\{B_{n}\right\}_{n \geq 0}$ of subsets of $\operatorname{span}(\gamma)$ by

$$
B_{0}=\left\{x_{0}\right\}, \quad B_{n}=\downarrow x_{n}-\downarrow x_{n-1} \text { for } n \geq 1
$$

Since γ is connected, $\left\{B_{n}\right\}_{n \geq 0}$ is a partition of $\operatorname{span}(\gamma)$.
We will now define an rp-homomorphism ϕ from $\Gamma(\gamma)$ to $\Gamma(\delta)$ by defining ϕ on B_{n} for every $n \geq 0$. First, we set $x_{0} \phi=y_{k}$. Let $n \geq 1$. If $B_{n}=\left\{x_{n}\right\}$, we set $x_{n} \phi=y_{k+n}$. Suppose $\left|B_{n}\right| \geq 2$. Let $\gamma_{n}=\left.\gamma\right|_{B_{n} \backslash\left\{x_{n}\right\}}$ and $\delta_{n}=\delta_{y_{k+n}}$. Then γ_{n} and δ_{n} are connected of type cho with roots x_{n} and y_{k+n}, respectively. By Lemma 4.25,

$$
\rho_{\gamma_{n}}\left(x_{n}\right) \leq \rho_{\gamma}\left(x_{n}\right)=\eta_{n}^{\gamma} \leq \xi_{k+n}^{\delta}=\rho_{\delta}\left(y_{k+n}\right)=\rho_{\delta_{n}}\left(y_{k+n}\right)
$$

Thus, by Proposition 4.26, there is an rp-homomorphism ϕ_{n} from $\Gamma\left(\gamma_{n}\right)$ to $\Gamma\left(\delta_{n}\right)$. Note that $x_{n} \phi_{n}=y_{k+n}$. We define ϕ on B_{n} by $x \phi=x \phi_{n}$.

Suppose $x \xrightarrow{\gamma} z$. Then $z \in B_{n}$ for some $n \geq 0$. If $x \in B_{n}$, then $x \phi=x \phi_{n} \xrightarrow{\delta} z \phi_{n}=z \phi$ since ϕ_{n} is an rp-homomorphism from $\Gamma\left(\gamma_{n}\right)$ to $\Gamma\left(\delta_{n}\right)$. If $x \notin B_{n}$, then we must have $x=x_{n-1}$ and $z=x_{n}$, and so $x \phi=x_{n-1} \phi=y_{k+n-1} \xrightarrow{\delta} y_{k+n}=x_{n} \phi=z \phi$.

Hence, in all cases, if $x \xrightarrow{\gamma} z$ then $x \phi \xrightarrow{\delta} z \phi$. Thus, since $\Gamma(\gamma)$ does not have any terminal vertices, ϕ is an rp-homomorphism from $\Gamma(\gamma)$ to $\Gamma(\delta)$.

The following lemma will be needed in the next section.
Lemma 4.30. Let $\gamma, \delta \in P(X)$ be of type rro. Let η be a maximal right ray in γ and ξ be a maximal right ray in δ such that $\left\langle\xi_{n}^{\delta}\right\rangle$ dominates $\left\langle\eta_{n}^{\gamma}\right\rangle$. Then for every maximal right ray η_{1} in γ and every maximal right ray ξ_{1} in $\delta\left\langle\left(\xi_{1}\right)_{n}^{\delta}\right\rangle$ dominates $\left\langle\left(\eta_{1}\right)_{n}^{\gamma}\right\rangle$.

Proof. Since $\left\langle\xi_{n}^{\delta}\right\rangle$ dominates $\left\langle\eta_{n}^{\gamma}\right\rangle$, there is an integer $k \geq 0$ such that

$$
\xi_{k+n}^{\delta} \geq \eta_{n}^{\gamma} \text { for every } n \geq 0
$$

Let $\eta=\left[x_{0} x_{1} x_{2} \ldots\right\rangle$ and $\xi=\left[y_{0} y_{1} y_{2} \ldots\right\rangle$. Let $\eta_{1}=\left[w_{0} w_{1} w_{2} \ldots\right\rangle$ and $\xi_{1}=\left[z_{0} z_{1} z_{2} \ldots\right\rangle$ be arbitrary maximal right rays in γ and δ, respectively. Since γ and δ are connected, there are integers $l, q, m, p \geq 0$ such that $x_{l}=x_{0} \gamma^{l}=w_{0} \gamma^{q}=w_{q}$ and $y_{m}=y_{0} \delta^{m}=z_{0} \delta^{p}=z_{p}$. We may assume that $m \geq k$. Then for every $n \geq 0$,

$$
\begin{aligned}
\left(\xi_{1}\right)_{(p+l)+n}^{\delta} & =\rho_{\delta}\left(z_{p+(l+n)}\right)=\rho_{\delta}\left(y_{m+(l+n)}\right) \geq \rho_{\delta}\left(y_{k+(l+n)}\right)=\xi_{k+(l+n)}^{\delta} \geq \eta_{l+n}^{\gamma}, \text { and } \\
\eta_{l+n}^{\gamma} & =\rho_{\gamma}\left(x_{l+n}\right)=\rho_{\gamma}\left(w_{q+n}\right) \geq \rho_{\gamma}\left(w_{n}\right)=\left(\eta_{1}\right)_{n}^{\gamma} .
\end{aligned}
$$

Hence $\left\langle\left(\xi_{1}\right)_{n}^{\delta}\right\rangle$ dominates $\left\langle\left(\eta_{1}\right)_{n}^{\gamma}\right\rangle$.

5 Conjugacy in $P(X)$

In this section we characterize the conjugacy \sim_{c} in the semigroup $P(X)$ of partial transformations on any nonempty set X (finite or infinite).

In $\mathrm{P}(\mathrm{X})$ and, more generally, in any a constant rich subsemigroup S of $P(X)$, the conjugacy relation \sim_{c} can be reformulated, as a consequence of Lemma 3.5(1), in the following way: given any $\alpha, \beta \in S$, we have $\alpha \sim_{c} \beta$ in S if and only if there exist $\phi, \psi \in S^{1}$ such that $\alpha \phi=\phi \beta$ and $\beta \psi=\psi \alpha$, with $\operatorname{dom}(\alpha \phi)=\operatorname{dom}(\alpha)$ and $\operatorname{dom}(\beta \psi)=\operatorname{dom}(\beta)$. Notice that the semigroup $P(X)$ can be regarded as a left restriction semigroup with respect to the set of partial identities $E=\left\{\operatorname{id}_{Y}: Y \subseteq X\right\}$ (see [19] for a survey). Hence $P(X)$ is equipped with a unary operation + assigning to any $\alpha \in P(X)$ the element $\alpha^{+}=\operatorname{id}_{\text {dom }(\alpha)}$. Any subsemigroup S of $P(X)$ closed under ${ }^{+}$is called a left restriction semigroup. If S is a left restriction semigroup that is also constant rich, then for all $\alpha, \beta \in S$,

$$
\alpha \sim_{c} \beta \Leftrightarrow \exists \phi, \psi \in S^{1}: \alpha \phi=\phi \beta \text { and } \beta \psi=\psi \alpha \text {, with }(\alpha \phi)^{+}=\alpha^{+} \text {and }(\beta \psi)^{+}=\beta^{+} .
$$

We now proceed to characterize the conjugacy relation \sim_{c} in $P(X)$ in terms of the basic partial transformations.

Definition 5.1. Let M be a nonempty subset of the set \mathbb{Z}_{+}of positive integers. Then M is partially ordered by the relation \mid (divides). Order the elements of M according to the usual "less than" relation: $m_{1}<m_{2}<m_{3}<\ldots$. We define a subset $\operatorname{sac}(M)$ of M as follows: for every integer $n, 1 \leq n<|M|+1$,

$$
m_{n} \in \operatorname{sac}(M) \Leftrightarrow\left(\forall_{i<n}\right) m_{n} \text { is not a multiple of } m_{i} \text {. }
$$

The set $\operatorname{sac}(M)$ is a maximal antichain of the poset (M, \mid). We will call $\operatorname{sac}(M)$ the $\operatorname{standard}$ antichain of M.

For example, if $M=\{4,6,8,10,18\}$ then $\operatorname{sac}(M)=\{4,6,10\}$; if $M=\{1,2,4,8,16,32, \ldots\}$ then $\operatorname{sac}(M)=\{1\}$.

Definition 5.2. Let $\alpha \in P(X)$ such that α contains a cycle. Let

$$
M=\left\{n \in \mathbb{Z}_{+}:\left(\exists_{x \in \operatorname{dom}(\alpha)}\right) x \alpha^{n}=x \text { and } x \alpha^{i} \neq x \text { for every } i, 1 \leq i<n\right\}
$$

Note that M is the set of the lengths of cycles in α. The standard antichain of (M, \mid) will be called the cycle set of α and denoted by $\operatorname{cs}(\alpha)$. We agree that $\operatorname{cs}(\alpha)=\emptyset$ if α has no cycles.
Theorem 5.3. Let $\alpha, \beta \in P(X)$. Then $\alpha \sim_{c} \beta$ in $P(X)$ if and only if $\alpha=\beta=0$ or $\alpha, \beta \neq 0$ and the following conditions are satisfied:
(1) $\operatorname{cs}(\alpha)=\operatorname{cs}(\beta)$;
(2) α has a double ray but not a cycle $\Leftrightarrow \beta$ has a double ray but not a cycle;
(3a) if α has a connected component γ of type rro, but no cycles or double rays, then β has a connected component δ of type rro, but no cycles or double rays, and $\left\langle\xi_{n}^{\delta}\right\rangle$ dominates $\left\langle\eta_{n}^{\gamma}\right\rangle$ for some maximal right rays η in γ and ξ in δ;
(3b) if β has a connected component δ of type rro, but no cycles or double rays, then α has a connected component γ of type rro, but no cycles or double rays, and $\left\langle\eta_{n}^{\gamma}\right\rangle$ dominates $\left\langle\xi_{n}^{\delta}\right\rangle$ for some maximal right rays ξ in δ and η in γ;
(4) α has a maximal left ray $\Leftrightarrow \beta$ has a maximal left ray;
(5a) if α has a connected component γ of type cho with root x_{0}, but no maximal left rays, then β has a connected component δ of type cho with root y_{0}, but no maximal left rays, and $\rho_{\gamma}\left(x_{0}\right) \leq \rho_{\delta}\left(y_{0}\right) ;$
(5b) if β has a connected component δ of type cho with root y_{0}, but no maximal left rays, then α has a connected component γ of type cho with root x_{0}, but no maximal left rays, and $\rho_{\delta}\left(y_{0}\right) \leq \rho_{\gamma}\left(x_{0}\right)$.

Proof. Suppose $\alpha \sim_{c} \beta$. Then, since $[0]_{\sim_{c}}=\{0\}$ in every semigroup with 0 , either $\alpha=\beta=0$ or $\alpha, \beta \neq 0$. Suppose $\alpha, \beta \neq 0$. Then, by Theorem 3.8, there is an rp-homomorphism ϕ from $\Gamma(\alpha)$ to $\Gamma(\beta)$. We may assume that $\operatorname{dom}(\phi)=\operatorname{span}(\alpha)$ (see Remark 3.2).

Suppose α has a cycle. Then, by Lemma $4.19, \beta$ also has a cycle. Let $n \in \operatorname{cs}(\alpha)$. Then α has a cycle of length n, and so β has a cycle of length m such that $m \mid n$. By the definition of $\operatorname{cs}(\beta)$, there is $m_{1} \in \operatorname{cs}(\beta)$ such that $m_{1} \mid m$. Thus β has a cycle of length m_{1}, and so α has a cycle of length n_{1} such that $n_{1} \mid m_{1}$, so $n_{1}\left|m_{1}\right| m \mid n$. Since $\operatorname{cs}(\alpha)$ is an antichain, $n_{1} \mid n$ and $n \in \operatorname{cs}(\alpha)$ implies $n_{1}=n$. Thus $n=m_{1}$, and so $n \in \operatorname{cs}(\beta)$. We have proved that $\operatorname{cs}(\alpha) \subseteq \operatorname{cs}(\beta)$. Similarly, $\operatorname{cs}(\beta) \subseteq \operatorname{cs}(\alpha)$, and so $\operatorname{cs}(\alpha)=\operatorname{cs}(\beta)$. By symmetry, if β has a cycle, then α also has a cycle and $\operatorname{cs}(\beta)=\operatorname{cs}(\alpha)$. If neither α nor β has a cycle, then $\operatorname{cs}(\alpha)=\operatorname{cs}(\beta)=\emptyset$. We have proved (1).

Suppose α has a double ray, say $\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle$, but no cycles. Then β does not have a cycle either by Lemma 4.19 , and $\ldots \xrightarrow{\beta} x_{-1} \phi \xrightarrow{\beta} x_{0} \phi \xrightarrow{\beta} x_{1} \phi \xrightarrow{\beta} \ldots$, where ϕ is a homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$. The elements $\ldots, x_{-1} \phi, x_{0} \phi, x_{1} \phi, \ldots$ are pairwise disjoint (since otherwise β would have a cycle), and so $\left\langle\ldots x_{-1} \phi x_{0} \phi x_{1} \phi \ldots\right\rangle$ is a double ray in β. The converse is true by symmetry. This proves (2).

Suppose that α has a connected component γ of type rro, but neither a cycle nor a double ray. By Proposition 4.18, there is a connected component δ of β such that $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$. By (1) and (2), δ does not have a cycle or a double ray. By Lemma $4.17, \delta$ does not have a maximal left ray and it is not of type cho. Hence δ has type rro. By Proposition 4.29, there are maximal right rays η in γ and ξ in δ such that $\left\langle\xi_{n}^{\delta}\right\rangle$ dominates $\left\langle\eta_{n}^{\gamma}\right\rangle$. We have proved (3a). Condition (3b) holds by symmetry.

Suppose α has a maximal left ray, say $\left\langle\ldots x_{2} x_{1} x_{0}\right]$. Then $\ldots \xrightarrow{\beta} x_{2} \phi \xrightarrow{\beta} x_{1} \phi \xrightarrow{\beta} x_{0} \phi$ and $x_{0} \phi$ is a terminal vertex in $\Gamma(\beta)$, which implies that $\left\langle\ldots x_{2} \phi x_{1} \phi x_{0} \phi\right]$ is a maximal left ray in β. The converse is true by symmetry. This proves (4).

Suppose α has a connected component γ of type cho with root x_{0}, but not a maximal left ray. By Proposition 4.18 and its proof, there is a connected component δ of β such that $\phi_{\gamma}=\left.\phi\right|_{\operatorname{span}(\gamma)}$ is an rp-homomorphism from $\Gamma(\gamma)$ to $\Gamma(\delta)$. Since x_{0} is a terminal vertex in $\gamma, y_{0}=x_{0} \phi_{\gamma}$ is a terminal vertex in δ. Since β has no maximal left ray (by (3)), δ is of type cho and y_{0} is the root of δ. By Proposition 4.26, $\rho_{\gamma}\left(x_{0}\right) \leq \rho_{\delta}\left(y_{0}\right)$. We have proved (5a). Condition (5b) holds by symmetry.

Conversely, if $\alpha=\beta=0$ then $\alpha \sim_{c} \beta$. Suppose that $\alpha, \beta \neq 0$ and that (1)-(5b) hold. Let γ be a connected component of α. We will prove that $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$ for some connected component δ of β.

Suppose γ has a cycle of length k. Since, by (1), $\operatorname{cs}(\alpha)=\operatorname{cs}(\beta), \beta$ has a cycle ϑ of length m such that $m \mid k$. Let δ be the connected component of β containing ϑ. Then $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$ by Proposition 4.13.

Suppose γ has a double ray. If some connected component δ of β has a cycle, then $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$ by Lemma 4.14. Suppose β does not have a cycle. Then, by (1) and (2), both α and β have a double ray but not a cycle. Let δ be a connected component of β containing a double ray. Then $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$ by Lemma 4.15.

Suppose γ is of type rro. If β has some connected component δ with a cycle or a double ray, then $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$ by Lemmas 4.14 and 4.15. Suppose β does not have a cycle or a double ray. Then, by (3a), there is a connected component δ in β of type rro such that $\left\langle\xi_{n}^{\delta}\right\rangle$ dominates $\left\langle\eta_{n}^{\gamma}\right\rangle$ for some maximal right rays η in γ and ξ in δ. Hence $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$ by Proposition 4.29.

Suppose γ has a maximal left ray. Then, by (4), some connected component δ of β has a maximal left ray. Then $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$ by Lemma 4.16.

Suppose γ is of type cho with root x_{0}. If β has some connected component δ with a maximal left ray, then $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$ by Lemma 4.16. Suppose β does not have a maximal left ray. Then, by (4), α does not have a maximal left ray, and so, by (5a), there is a connected component δ in β of type cho with root y_{0} such that $\rho_{\gamma}\left(x_{0}\right) \leq \rho_{\delta}\left(y_{0}\right)$. Hence $\Gamma(\gamma)$ is rp-homomorphic to $\Gamma(\delta)$ by Proposition 4.26.

We have proved that for every connected component γ of α, there exists a connected component δ of β and an rp-homomorphism $\phi_{\gamma} \in P(X)$ from $\Gamma(\gamma)$ to $\Gamma(\delta)$. We may assume that for every $\gamma \in C(\alpha), \operatorname{dom}\left(\phi_{\gamma}\right)=\operatorname{span}(\gamma)$. Hence $\Gamma(\alpha)$ is rp-homomorphic to $\Gamma(\beta)$ by Proposition 4.18. By symmetry, $\Gamma(\beta)$ is rp-homomorphic to $\Gamma(\alpha)$, and so $\alpha \sim_{c} \beta$ by Theorem 3.8.

Example 5.4. Let X be an infinite set containing $x_{0}, y_{1}, y_{2}, y_{3}, \ldots$ and let $\alpha, \beta \in P(X)$ be the partial transformations whose digraphs are presented in Figure 5.1. Then α is connected of type cho with root x_{0}, and $\beta=\delta_{1} \sqcup \delta_{2} \sqcup \delta_{3} \sqcup \delta_{4} \sqcup \cdots$, where δ_{i} is a chain with root y_{i}. We have $\rho_{\gamma}\left(x_{0}\right)=\omega$, where $\gamma=\alpha$, and for every integer $i \geq 1, \rho_{\delta_{i}}\left(y_{i}\right)=i$. Hence α and β are not conjugate by (5a) of Theorem 5.3.

Definition 5.5. For $\alpha \in P(X)$, we define

$$
s(\alpha)=\sup \left\{\rho_{\gamma}\left(x_{0}\right): \gamma \text { is a connected component of } \alpha \text { of type cho with root } x_{0}\right\}
$$

where we agree that $s(\alpha)=0$ if α has no connected component of type cho.
Suppose $\alpha, \beta \in P(X)$ have a connected component of type cho, but no cycles or rays. Then, by Theorem 5.3, if $\alpha \sim_{c} \beta$ then $s(\alpha)=s(\beta)$. However, the converse is not true. Indeed, consider $\alpha, \beta \in P(X)$ from Example 5.4 (see Figure 5.1). Then α is connected of type cho with the root of order ω, and β is a join of connected components of type cho (chains) whose roots have orders $1,2,3,4, \ldots$ Thus $s(\alpha)=s(\beta)=\omega$, but $(\alpha, \beta) \notin \sim_{c}$ by (5a) of Theorem 5.3. However, if X is finite and $\alpha, \beta \in P(X)$ have no cycles, then $s(\alpha)=s(\beta)$ does imply $\alpha \sim_{c} \beta$.

Figure 5.1: The digraphs of α and β from Example 5.4.

The transformations of a finite $P(X)$ have no rays. Hence, Theorem 5.3 gives us the following corollary.

Corollary 5.6. Let X be finite, and let $\alpha, \beta \in P(X)$. Then $\alpha \sim_{c} \beta$ if and only if $\operatorname{cs}(\alpha)=\operatorname{cs}(\beta)$ and $s(\alpha)=s(\beta)$.

Example 5.7. Let α and β be partial transformations whose digraphs are presented in Figures 5.2 and 5.3, respectively. Then $\operatorname{cs}(\alpha)=\operatorname{cs}(\beta)=\{2,3\}$ and $s(\alpha)=s(\beta)=3$. Thus $\alpha \sim_{c} \beta$ by Corollary 5.6.

Figure 5.2: The digraph of α from Example 5.7.

Figure 5.3: The digraph of β from Example 5.7.
Using Theorem 5.3, we will count the conjugacy classes in $P(X)$ for an infinite set X (Theorem 5.16). We will use the aleph notation for the infinite cardinals, that is, for an ordinal ε, we will write \aleph_{ε} for the cardinal indexed by ε. If \aleph_{ε} is viewed as an ordinal, we will consistently write ω_{ε}. This is important because we will need to distinguish between ordinal and cardinal
arithmetic. For example, $\omega_{0}<\omega_{0}+1$ (ordinal arithmetic) but $\aleph_{0}=\aleph_{0}+1$ (cardinal arithmetic). It will be always clear from the context which arithmetic is used.

A cardinal \aleph_{ε} is called singular if there is a limit ordinal $\vartheta<\omega_{\varepsilon}$ and there is an increasing transfinite sequence $\left\langle\lambda_{\nu}\right\rangle_{\nu<\vartheta}$ of ordinals $\lambda_{\nu}<\omega_{\varepsilon} \operatorname{such}$ that $\omega_{\varepsilon}=\sup \left\{\lambda_{\nu}: \nu<\vartheta\right\}$ [20, page 160, Definition 2.1]. (As in [20], "increasing" means "strictly increasing.") If \aleph_{ε} is not singular, then it is called regular.

For any cardinal \aleph_{ε}, the cardinal $\aleph_{\varepsilon+1}$ is called the successor cardinal of \aleph_{ε}. Every successor cardinal is regular [20, page 162, Theorem 2.4]. The following lemma follows immediately from this fact and the definition of a regular cardinal.

Lemma 5.8. Let $\aleph_{\varepsilon+1}$ be a successor cardinal and let A be a set of ordinals such that $|A|<\aleph_{\varepsilon+1}$ and $\lambda<\omega_{\varepsilon+1}$ for every $\lambda \in A$. Then $\sup \{\lambda: \lambda \in A\}<\omega_{\varepsilon+1}$.

To prove the counting theorem, we need a series of lemmas.
Lemma 5.9. Let $|X|=\aleph_{\varepsilon}$ and let $\gamma \in P(X)$ be of type cho with root x_{0}. Then $\rho\left(x_{0}\right)<\omega_{\varepsilon+1}$.
Proof. Let $x \in \operatorname{span}(\gamma)$. We will prove that $\rho(x)<\omega_{\varepsilon+1}$ by well-founded induction. If x is R_{γ}-minimal, then $\rho(x)=0<\omega_{\varepsilon+1}$. Suppose $\rho(y)<\omega_{\varepsilon+1}$ for every $y \in x \gamma^{-1}$. Then $\rho(x)=\sup \left\{\rho_{\delta}(y)+1:(y, x) \in R_{\gamma}\right\}$ by Lemma 5.8, and the result follows.

Lemma 5.10. Let $|X|=\aleph_{\varepsilon}$. Then for every nonzero ordinal $\mu<\omega_{\varepsilon+1}$, there is $\gamma \in P(X)$ of type cho with root x_{0} such that $\rho\left(x_{0}\right)=\mu$.

Proof. Let $0<\mu<\omega_{\varepsilon+1}$. We proceed by transfinite induction. The result is clearly true if $\mu=1$. Let $\mu>1$ and suppose that the result is true for every ordinal λ such that $0<\lambda<\mu$.

Fix $x_{0} \in X$, let $X_{0}=X \backslash\left\{x_{0}\right\}$, and note that $\left|X_{0}\right|=\aleph_{\varepsilon}$. Since $\mu<\omega_{\varepsilon+1}$, we have $|\mu| \leq \aleph_{\varepsilon}$. Thus, since $\aleph_{\varepsilon} \cdot \aleph_{\varepsilon}=\aleph_{\varepsilon}$ and $\mu=\{\lambda: \lambda$ is an ordinal such that $\lambda<\mu\}$, there is a collection $\left\{X_{\lambda}\right\}_{0<\lambda<\mu}$ of pairwise disjoint subsets of X_{0} such that $\left|X_{\lambda}\right|=\aleph_{\varepsilon}$ for every λ.

Let $0<\lambda<\mu$. By the inductive hypothesis, there is $\gamma_{\lambda} \in P\left(X_{\lambda}\right)$ of type cho with root x_{λ} such that $\rho\left(x_{\lambda}\right)=\lambda$. We define $\gamma \in P(X)$ as follows. Set $\operatorname{dom}(\gamma)=\bigcup_{0<\lambda<\mu} \operatorname{span}\left(\gamma_{\lambda}\right)$. For every $x \in \operatorname{dom}(\gamma)$, define

$$
x \gamma= \begin{cases}x \gamma_{\lambda} & \text { if } x \in \operatorname{dom}\left(\gamma_{\lambda}\right) \\ x_{0} & \text { if } x=x_{\lambda}\end{cases}
$$

Then γ is of type cho, x_{0} is the root of γ, and $x_{0} \gamma^{-1}=\left\{x_{\lambda}: 0<\lambda<\mu\right\}$. Let $\nu=\sup \{\rho(y)$: $\left.y \in x_{0} \gamma^{-1}\right\}$. Then

$$
\nu=\sup \left\{\rho\left(x_{\lambda}\right): 0<\lambda<\mu\right\}=\sup \{\lambda: 0<\lambda<\mu\}
$$

where the last equality is true since $\rho\left(x_{\lambda}\right)=\lambda$ for every nonzero $\lambda<\mu$. Hence, either $\mu=\nu$ (if μ is a limit ordinal) or $\mu=\nu+1$ (if $\nu=\lambda$ for some nonzero $\lambda<\mu$). It follows by (4.5) that $\rho\left(x_{0}\right)=\mu$.

Lemma 5.11. Let $|X|=\aleph_{\varepsilon}$ and let $\left\langle a_{n}\right\rangle$ be an increasing sequence of ordinals $a_{n}<\omega_{\varepsilon+1}$ such that $a_{0}=0$. Then there is $\gamma \in T(X)$ of type rro with a maximal right ray η such that $\left\langle\eta_{n}^{\gamma}\right\rangle=\left\langle a_{n}\right\rangle$.

Proof. Since $|X|=\aleph_{\varepsilon}$, there is a collection $\left\{X_{n}\right\}_{n>0}$ of pairwise disjoint subsets of X such that $X_{0}=\left\{x_{0}\right\}$ and $\left|X_{n}\right|=\aleph_{\varepsilon}$ for every $n \geq 1$. Let $n \geq 1$. By Lemma 5.10, there is $\gamma_{n} \in P\left(X_{n}\right)$ of type cho with root x_{n} such that $\rho_{\gamma_{n}}\left(x_{n}\right)=a_{n}$. Define $\gamma \in T(X)$ by

$$
x \gamma= \begin{cases}x \gamma_{n} & \text { if } x \in \operatorname{dom}\left(\gamma_{n}\right) \\ x_{n+1} & \text { if } x=x_{n} \\ x_{1} & \text { for any other } x\end{cases}
$$

(See Figure 5.4.) Then γ is of type rro (since every γ_{n} is of type cho). By the definition of γ, we have that $\rho_{\gamma}\left(x_{0}\right)=0$ and $\eta=\left[x_{0} x_{1} x_{2} \ldots\right\rangle$ is a maximal right ray in γ. We have already noticed
that $\rho_{\gamma}\left(x_{0}\right)=0=a_{0}$. We will prove by induction on n that $\rho_{\gamma}\left(x_{n}\right)=a_{n}$ for every $n \geq 1$. Let $n=1$. Then, since $a_{1} \geq 1$,

$$
\rho_{\gamma}\left(x_{1}\right)=\max \left\{1, \rho_{\gamma_{1}}\left(x_{1}\right)\right\}=\max \left\{1, a_{1}\right\}=a_{1} .
$$

Let $n \geq 1$ and suppose $\rho_{\gamma}\left(x_{n}\right)=a_{n}$. Then

$$
\rho_{\gamma}\left(x_{n+1}\right)=\max \left\{\rho_{\gamma}\left(x_{n}\right)+1, \rho_{\gamma_{n+1}}\left(x_{n+1}\right)\right\}=\max \left\{a_{n}+1, a_{n+1}\right\}=a_{n+1},
$$

where the last equality is true since $\left\langle a_{n}\right\rangle$ is increasing, and so $a_{n+1}>a_{n}$. This concludes the inductive argument. Thus $\eta_{n}^{\gamma}=\rho_{\gamma}\left(x_{n}\right)=a_{n}$ for every $n \geq 0$, which completes the proof.

Figure 5.4: The digraph of γ from Lemma 5.11.

Lemma 5.12. Let $\aleph_{\varepsilon+1}$ be a successor cardinal. Then there is a collection $\left\{\left\langle a_{n}^{\mu}\right\rangle\right\}_{\mu<\omega_{\varepsilon+1}}$ of increasing sequences $\left\langle a_{n}^{\mu}\right\rangle$ of ordinals $a_{n}^{\mu}<\omega_{\varepsilon+1}$ such that for all ordinals $\mu, \lambda<\omega_{\varepsilon+1}, a_{0}^{\mu}=0$ and if $\lambda<\mu$ then $a_{m}^{\lambda}<a_{n}^{\mu}$ for all $m, n \geq 1$.

Proof. We construct such a collection by transfinite recursion. We define $\left\langle a_{n}^{0}\right\rangle=\langle 0,1,2,3, \ldots\rangle$. Let μ be an ordinal such that $0<\mu<\omega_{\varepsilon+1}$ and suppose $\left\langle a_{n}^{\lambda}\right\rangle$ satisfying the hypotheses has been defined for every ordinal $\lambda<\mu$. Let $A=\left\{a_{n}^{\lambda}: \lambda<\mu\right.$ and $\left.n \geq 0\right\}$ and $\tau=\sup A$. Then $|A|=|\mu| \cdot \aleph_{0}<\aleph_{\varepsilon+1}$, and so $\tau<\omega_{\varepsilon+1}$ by Lemma 5.8. Define $\left\langle a_{n}^{\mu}\right\rangle=\langle 0, \tau+1, \tau+2, \tau+3, \ldots\rangle$ and note that $\left\langle a_{n}^{\mu}\right\rangle$ is an increasing sequence of ordinals $a_{n}^{\mu}<\omega_{\varepsilon+1}$ with $a_{0}^{\mu}=0$. The construction has been completed. It is clear from the construction that $a_{m}^{\lambda}<a_{n}^{\mu}$ for all $\lambda, \mu<\omega_{\varepsilon+1}$ with $\lambda<\mu$ and all $m, n \geq 1$.

Remark 5.13. Let $\left\{\left\langle a_{n}^{\mu}\right\rangle\right\}_{\mu<\omega_{\varepsilon+1}}$ be a collection from Lemma 5.12. Then it is clear that for all ordinals $\lambda, \mu<\omega_{\varepsilon+1}$, if $\lambda<\mu$ then $\left\langle a_{n}^{\lambda}\right\rangle$ does not dominate $\left\langle a_{n}^{\mu}\right\rangle$.

Definition 5.14. Let $\aleph_{\varepsilon+1}$ be a successor cardinal. Denote by $\mathrm{IS}_{\omega_{\varepsilon+1}}$ the set of all increasing sequences $\left\langle a_{n}\right\rangle$ of ordinals $a_{n}<\omega_{\varepsilon+1}$ such that $a_{0}=0$. Define a relation \approx on $\mathrm{IS}_{\omega_{\varepsilon+1}}$ by

$$
\left\langle a_{n}\right\rangle \approx\left\langle b_{n}\right\rangle \text { if }\left\langle b_{n}\right\rangle \text { dominates }\left\langle a_{n}\right\rangle \text { and }\left\langle a_{n}\right\rangle \text { dominates }\left\langle b_{n}\right\rangle \text {. }
$$

It is straightforward to show that \approx is an equivalence relation on $\operatorname{IS}_{\omega_{\varepsilon+1}}$. We denote by $\left[\left\langle a_{n}\right\rangle\right]_{\approx}$ the equivalence class of $\left\langle a_{n}\right\rangle$, and by $\mathrm{IS}_{\hat{\omega}_{\varepsilon+1}}$ the set of all equivalence classes of \approx.

Lemma 5.15. For any successor cardinal $\aleph_{\varepsilon+1},\left|\operatorname{IS}_{\omega_{\varepsilon+1}}\right|=\aleph_{\varepsilon+1}^{\aleph_{0}}$ and $\aleph_{\varepsilon+1} \leq\left|\operatorname{IS}_{\tilde{\omega}_{\varepsilon+1}}\right| \leq \aleph_{\varepsilon+1}^{\aleph_{0}}$.
Proof. Denote by $S_{\omega_{\varepsilon+1}}$ the set of all sequences $\left\langle s_{n}\right\rangle$ of ordinals $s_{n}<\omega_{\varepsilon+1}$. Then $S_{\omega_{\varepsilon+1}}$ is the set of all functions from \mathbb{N} to $\omega_{\varepsilon+1}$, and so $\left|S_{\omega_{\varepsilon+1}}\right|=\left|\omega_{\varepsilon+1}\right|^{|\mathbb{N}|}=\aleph_{\varepsilon+1}^{\aleph_{0}}$. Since $\mathrm{IS}_{\omega_{\varepsilon+1}}$ is a subset of $S_{\omega_{\varepsilon+1}}$, we have $\left|\mathrm{IS}_{\omega_{\varepsilon+1}}\right| \leq \aleph_{\varepsilon+1}^{\aleph_{0}}$. Let $S_{\omega_{\varepsilon+1}}^{0}$ be the subset of $S_{\omega_{\varepsilon+1}}$ consisting of all sequences $\left\langle s_{n}\right\rangle$ such that $s_{n}>0$ for all $n \geq 0$. Then $\left|S_{\omega_{\varepsilon+1}}^{0}\right|=\left|S_{\omega_{\varepsilon+1}}\right|=\aleph_{\varepsilon+1}^{\aleph_{0}}$. Define a function $f: S_{\omega_{\varepsilon+1}}^{0} \rightarrow \mathrm{IS}_{\omega_{\varepsilon+1}}$ by $\left\langle s_{n}\right\rangle f=\left\langle a_{n}\right\rangle$, where

$$
a_{0}=0 \text { and } a_{n+1}=a_{n}+s_{n} \text { for all } n \geq 0
$$

Then f is injective (since for all ordinals $\mu, \lambda_{1}, \lambda_{2}$, if $\mu+\lambda_{1}=\mu+\lambda_{2}$ then $\lambda_{1}=\lambda_{2}[20$, page 120, Lemma 5.4]), and so $\left|\mathrm{IS}_{\omega_{\varepsilon+1}}\right| \geq\left|S_{\omega_{\varepsilon+1}}^{0}\right|=\aleph_{\varepsilon+1}^{\aleph_{0}}$. We have proved that $\left|\mathrm{IS}_{\omega_{\varepsilon+1}}\right|=\aleph_{\varepsilon+1}^{\aleph_{0}}$.

We have $\left|\mathrm{IS}_{\omega_{\varepsilon+1}}^{\approx_{1}}\right| \leq\left|\mathrm{IS}_{\omega_{\varepsilon+1}}\right|=\aleph_{\varepsilon+1}^{\aleph_{0}}$. Let $\left\{\left\langle a_{n}^{\mu}\right\rangle\right\}_{\mu<\omega_{\varepsilon+1}}$ be a collection of sequences constructed as in Lemma 5.12. Then for all ordinals $\lambda, \mu<\omega_{\varepsilon+1},\left\langle a_{n}^{\mu}\right\rangle \in \mathrm{IS}_{\omega_{\varepsilon+1}}$ and if $\lambda<\mu$ then $\left\langle a_{n}^{\lambda}\right\rangle$ does not dominate $\left\langle a_{n}^{\mu}\right\rangle$ (see Remark 5.13). It follows that any two different sequences from the collection $\left\{\left\langle a_{n}^{\mu}\right\rangle\right\}_{\mu<\omega_{\varepsilon+1}}$ are in different equivalence classes of \approx. Since there are $\aleph_{\varepsilon+1}$ sequences in the collection, it follows that $\left|\mathrm{IS}_{\tilde{\omega}_{\varepsilon+1}}\right| \geq \aleph_{\varepsilon+1}$. This concludes the proof.

We can now prove the counting theorem. For a set A, we denote by $\mathcal{P}(A)$ the power set of A.
Theorem 5.16. Let X be an infinite set with $|X|=\aleph_{\varepsilon}$. Then in $P(X)$ there are:
(1) $\max \left\{2^{\aleph_{0}}, \aleph_{\varepsilon+1}\right\}$ conjugacy classes containing a representative with a cycle, of which \aleph_{0} have a connected representative;
(2) $2^{\aleph_{\varepsilon}}$ conjugacy classes containing a representative with a connected component of type rro, but no cycles, of which at least $\aleph_{\varepsilon+1}$ and at most $\aleph_{\varepsilon+1}^{\aleph_{0}}$ have a connected representative.
(3) $\aleph_{\varepsilon+1}$ conjugacy classes containing a representative with a connected component of type cho, but no cycles or connected components of type rro, of which $\aleph_{\varepsilon+1}$ have a connected representative.

In total, there are $2^{\aleph_{\varepsilon}}$ conjugacy classes in $P(X)$, of which at least $\aleph_{\varepsilon+1}$ and at most $\aleph_{\varepsilon+1}^{\aleph_{0}}$ have a connected representative.

Proof. For $\alpha \in P(X)$, we define $i_{\alpha}, j_{\alpha} \in\{0,1\}$ by $i_{\alpha}=1$ if $\rho_{\gamma}\left(x_{0}\right)=s(\alpha)$ for some connected component of α of type cho with root x_{0} (and $i_{\alpha}=0$ otherwise); and $j_{\alpha} \in\{0,1\}$ by $j_{\alpha}=1$ if α has a double ray (and $j_{\alpha}=0$ otherwise).

To prove (1), let $A=\left\{[\alpha]_{c}: \alpha \in P(X)\right.$ has a cycle $\}$. Let
$A^{\prime}=\left\{[\alpha]_{c} \in A: \alpha\right.$ has no maximal left rays $\}$ and $A^{\prime \prime}=\left\{[\alpha]_{c} \in A: \alpha\right.$ has a maximal left ray $\}$.
By Theorem 5.3(4), $\left\{A^{\prime}, A^{\prime \prime}\right\}$ is a partition of A. Define $f^{\prime}: A^{\prime} \rightarrow \mathcal{P}\left(\mathbb{Z}_{+}\right) \times\left(\omega_{\varepsilon+1}+1\right) \times\{0,1\}$ by $\left.([\alpha)]_{c}\right) f^{\prime}=\left(\operatorname{cs}(\alpha), s(\alpha), i_{\alpha}\right)$. Then f^{\prime} is well defined and injective by Theorem 5.3 and Lemma 5.9. (See Definition 5.5 and the discussion following the definition to see why i_{α} is needed.) Similarly, the mapping $f^{\prime \prime}: A^{\prime \prime} \rightarrow \mathcal{P}\left(\mathbb{Z}_{+}\right) \times\left(\omega_{\varepsilon+1}+1\right) \times\{0,1\}$ defined by $\left.([\alpha)]_{c}\right) f^{\prime \prime}=\left(\operatorname{cs}(\alpha), s(\alpha), i_{\alpha}\right)$ is well defined and injective. Thus

$$
\left|A^{\prime}\right| \leq\left|\mathcal{P}\left(\mathbb{Z}_{+}\right)\right| \cdot\left|\omega_{\varepsilon+1}+1\right| \cdot 2=2^{\aleph_{0}} \cdot \aleph_{\varepsilon+1} \cdot 2=\max \left\{2^{\aleph_{0}}, \aleph_{\varepsilon+1}\right\},
$$

and the same holds for $\left|A^{\prime \prime}\right|$. Hence

$$
|A|=\left|A^{\prime}\right|+\left|A^{\prime \prime}\right|=2\left|A^{\prime}\right| \leq 2 \max \left\{2^{\aleph_{0}}, \aleph_{\varepsilon+1}\right\}=\max \left\{2^{\aleph_{0}}, \aleph_{\varepsilon+1}\right\} .
$$

Let P be the set of prime positive integers. For any nonempty subset $Q \subseteq P$, let $\left\{\theta_{q}\right\}_{q \in Q}$ be a collection of completely disjoint cycles θ_{q} such that θ_{q} has length q for every $q \in Q$. (Such
a collection exists since X is infinite.) Define $\beta_{Q} \in P(X)$ by $\beta_{Q}=\bigsqcup_{q \in Q} \theta_{q}$. For all nonempty subsets $Q_{1}, Q_{2} \subseteq P$ with $Q_{1} \neq Q_{2}$, we have $\left(\beta_{Q_{1}}, \beta_{Q_{2}}\right) \notin \sim_{c}$ by Theorem 5.3(1). It follows that $|A| \geq \mathcal{P}(P)=2^{\aleph_{0}}$. By Lemma 5.10, for every nonzero ordinal $\mu<\omega_{\varepsilon+1}$, there is $\gamma_{\mu} \in P(X)$ of type cho with root x_{0} such that $\rho\left(x_{0}\right)=\mu$. For all nonzero ordinals $\lambda, \mu<\omega_{\varepsilon+1}$ with $\lambda \neq \mu$, we have $\left(\gamma_{\lambda}, \gamma_{\mu}\right) \notin \sim_{c}$ by Theorem 5.3(5). It follows that $|A| \geq\left|\omega_{\varepsilon+1}\right|=\aleph_{\varepsilon+1}$. Hence $|A| \geq \max \left\{2^{\aleph_{0}}, \aleph_{\varepsilon+1}\right\}$, and so $|A|=\max \left\{2^{\aleph_{0}}, \aleph_{\varepsilon+1}\right\}$.

Let $A_{1}=\left\{[\gamma]_{c}: \gamma \in P(X)\right.$ has a cycle and γ is connected $\}$. Fix a subset $X_{0}=\left\{x_{0}, x_{1}, \ldots\right\}$ of X, and for every integer $n \geq 0$, define a cycle $\gamma_{n}=\left(x_{0} x_{1} \ldots x_{n-1}\right) \in P(X)$. Then, by Proposition 4.8 and Theorem 5.3, $A_{1}=\left\{\left[\gamma_{0}\right]_{c},\left[\gamma_{1}\right]_{c},\left[\gamma_{2}\right]_{c}, \ldots\right\}$, and so $\left|A_{1}\right|=\aleph_{0}$. We have proved (1).

To prove (2), let

$$
B=\left\{[\alpha]_{c}: \alpha \in P(X) \text { has a connected component of type rro, but no cycles }\right\}
$$

and let B_{1} be the subset of B consisting of all conjugacy classes $[\gamma]_{c} \in B$ such that γ is connected. Fix a double ray $\omega=\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle \in P(X)$ and note that

$$
B_{1}=\left\{[\gamma]_{c}: \gamma \in P(X) \text { is of type } \operatorname{rro}\right\} \cup\left\{[\omega]_{c}\right\} .
$$

Let $B_{1}^{\prime}=\left\{[\gamma]_{c}: \gamma \in P(X)\right.$ is of type $\left.r r o\right\}$. For every $\gamma \in P(X)$ of type $r r o$, we fix a maximal right ray η^{γ} in γ. Define a function $g: B_{1}^{\prime} \rightarrow \operatorname{IS}_{\omega_{\varepsilon+1}}^{\approx}$ by $\left([\gamma]_{c}\right) g=\left[\left\langle\eta_{n}^{\gamma}\right\rangle\right] \approx$. Note that $\left\langle\eta_{n}^{\gamma}\right\rangle \in \operatorname{IS}_{\omega_{\varepsilon+1}}$ by Lemma 5.9. Suppose $\left[\gamma_{1}\right]_{c},\left[\gamma_{2}\right]_{c} \in B_{1}^{\prime}$ with $\left[\gamma_{1}\right]_{c}=\left[\gamma_{2}\right]_{c}$. Then, by Theorem $5.3(3)$ and Lemma 4.30, the sequences $\left\langle\eta_{n}^{\gamma_{1}}\right\rangle$ and $\left\langle\eta_{n}^{\gamma_{2}}\right\rangle$ dominate each other, and so $\left[\left\langle\eta_{n}^{\gamma_{1}}\right\rangle\right]_{\approx}=\left[\left\langle\eta_{n}^{\gamma_{2}}\right\rangle\right]_{\approx}$. We have proved that g is well defined. The function g is also injective (by Theorem 5.3(3)) and surjective (by Lemma 5.11). Thus $\left|B_{1}^{\prime}\right|=\left|\mathrm{IS}_{\tilde{\omega}_{\varepsilon+1}}\right|$, and so, by Lemma $5.15, \aleph_{\varepsilon+1} \leq\left|B_{1}^{\prime}\right| \leq \aleph_{\varepsilon+1}^{\aleph_{0}}$. Then $\aleph_{\varepsilon+1} \leq\left|B_{1}\right| \leq \aleph_{\varepsilon+1}^{\aleph_{0}}$ since $\left|B_{1}\right|=\left|B_{1}^{\prime}\right|+1$.

As to the cardinality of B, clearly $|B| \leq|P(X)|=\left(\aleph_{\varepsilon}+1\right)^{\aleph_{\varepsilon}}=2^{\aleph_{\varepsilon}}$. Let

$$
\begin{aligned}
B^{\prime} & =\left\{[\alpha]_{c} \in B: \alpha \text { has no maximal left rays or double rays }\right\} \\
B^{\prime \prime} & =\left\{[\alpha]_{c} \in B: \alpha \text { has a maximal left ray but no double rays }\right\}
\end{aligned}
$$

By Theorem 5.3(3)(4), $\left\{B^{\prime}, B^{\prime \prime},\left\{[\omega]_{c}\right\}\right\}$ is a partition of B.
We will now prove that $\left|B^{\prime}\right| \geq 2^{\aleph_{\varepsilon}}$. Since $\left|B_{1}^{\prime}\right| \geq \aleph_{\varepsilon+1}$, there is a collection $\left\{\gamma_{\mu}\right\}_{\mu<\omega_{\varepsilon+1}}$ of transformations $\gamma_{\mu} \in P(X)$ of type rro such that $\left(\gamma_{\mu}, \gamma_{\lambda}\right) \notin \sim_{c}$ if $\mu \neq \lambda$. Since $\left|\omega_{\varepsilon}\right|=\aleph_{\varepsilon}$ and $\aleph_{\varepsilon} \cdot \aleph_{\varepsilon}=\aleph_{\varepsilon}$, there is a partition $\left\{X_{\mu}\right\}_{\mu<\omega_{\varepsilon}}$ of X such that $\left|X_{\mu}\right|=|X|=\aleph_{\varepsilon}$ for every $\mu<\omega_{\varepsilon}$. Let $\mu<\omega_{\varepsilon}$. Since $\left|X_{\mu}\right|=|X|$, there is a bijection $h_{\mu}: X_{\mu} \rightarrow X$. We can use h_{μ} to obtain a "copy" of γ_{μ} in $P\left(X_{\mu}\right)$: define $\gamma_{\mu}^{\prime} \in P\left(X_{\mu}\right)$ by

$$
x \gamma_{\mu}^{\prime}=y \Leftrightarrow\left(x h_{\mu}\right) \gamma_{\mu}=y h_{\mu}\left(\text { for all } x, y \in X_{\mu}\right) .
$$

Let $\mu, \lambda<\omega_{\varepsilon}$ with $\mu \neq \lambda$. Then $\left(\gamma_{\mu}, \gamma_{\lambda}\right) \notin \sim_{c}$, and so, by Theorem 5.3(3) and Lemma 4.30, $\left(\left\langle\eta_{n}\right\rangle,\left\langle\xi_{n}\right\rangle\right) \notin \approx$ for every maximal right ray η in γ_{μ} and every maximal right ray ξ in γ_{λ}. It follows that

$$
\begin{equation*}
\left(\left\langle\eta_{n}^{\prime}\right\rangle,\left\langle\xi_{n}^{\prime}\right\rangle\right) \notin \approx \tag{5.1}
\end{equation*}
$$

for every maximal right ray η^{\prime} in γ_{μ}^{\prime} and every maximal right ray ξ^{\prime} in $\gamma_{\lambda}^{\prime}$. Let K be a nonempty subset of ω_{ε}. Select $\nu=\nu_{K} \in K$ and a maximal right ray $\left[x_{0} x_{1} x_{2} \ldots\right\rangle$ in γ_{ν}^{\prime}. Define $\alpha_{K} \in P(X)$ by $\alpha_{K}=\bigsqcup_{\mu \in K} \gamma_{\mu}^{\prime}$, and note that α_{K} does not have a cycle or a double ray. Let K, L be nonempty subsets of ω_{ε} such that $K \neq L$. We may assume that there is $\mu \in K$ such that $\mu \notin L$. Consider γ_{μ}^{\prime}, which is a connected component of α_{K}. Let $\gamma_{\lambda}^{\prime}$ be any connected component of α_{L}. Then, by (5.1), $\left(\left\langle\eta_{n}^{\prime}\right\rangle,\left\langle\xi_{n}^{\prime}\right\rangle\right) \notin \approx$ for every maximal right ray η^{\prime} in γ_{μ}^{\prime} and every maximal right ray ξ^{\prime} in $\gamma_{\lambda}^{\prime}$. (Note that, by the definition of α_{K}, this is also true when $\mu=\nu_{K}$ or $\lambda=\nu_{L}$.) Thus (α_{K}, α_{L}) $\notin \sim_{c}$ by Theorem 6.1(3). Hence any two different transformations from the collection $\left\{\alpha_{K}\right\}_{\emptyset \neq K \subseteq \omega_{\varepsilon}}$ are in different equivalence classes of \sim_{c}. Since there are $2^{\aleph_{\varepsilon}}$ transformations in the collection,
it follows that $\left|B^{\prime}\right| \geq 2^{\aleph_{\varepsilon}}$. Hence $|B|=\left|B^{\prime}\right|+\left|B^{\prime \prime}\right|+\left|\left\{[\omega]_{c}\right\}\right| \geq\left|B^{\prime}\right| \geq 2^{\aleph_{\varepsilon}}$, and so $|B|=2^{\aleph_{\varepsilon}}$. We have proved (2).

To prove (3), let C be the set of all $[\alpha]_{c}$ such that $\alpha \in P(X)$ has a connected component of type cho, but no cycles or connected components of type rro. Let $C^{\prime}=\left\{[\alpha]_{c} \in\right.$ $C: \alpha$ has no maximal left rays $\}$ and $C^{\prime \prime}=\left\{[\alpha]_{c} \in C: \alpha\right.$ has a maximal left ray $\}$. By Theorem 5.3(4), $\left\{C^{\prime}, C^{\prime \prime}\right\}$ is a partition of C. Fix a maximal left ray $\lambda=\left\langle\ldots x_{2} x_{1} x_{0}\right] \in P(X)$ and note that $C^{\prime \prime}=\left\{[\lambda]_{c}\right\}$. Define $h: C^{\prime} \rightarrow\left(\omega_{\varepsilon+1}+1\right) \times\{0,1\} \times\{0,1\}$ by $\left.([\alpha)]_{c}\right) h=\left(s(\alpha), i_{\alpha}, j_{\alpha}\right)$. Then h is well defined and injective by Theorem 5.3 and Lemma 5.9, and so $\left|C^{\prime}\right| \leq \aleph_{\varepsilon+1} \cdot 2 \cdot 2=\aleph_{\varepsilon+1}$. Thus $|C|=\left|C^{\prime}\right|+\left|C^{\prime \prime}\right|=\left|C^{\prime}\right|+1 \leq \aleph_{\varepsilon+1}+1=\aleph_{\varepsilon+1}$.

Let C_{1} be the subset of C consisting of all $[\gamma]_{c} \in C$ such that γ is connected. Note that $C_{1}=\left\{[\gamma]_{c}: \gamma \in P(X)\right.$ is of type cho $\} \cup\left\{[\lambda]_{c}\right\}$. As in the proof of (1), we can construct a collection $\left\{\gamma_{\mu}\right\}_{0<\mu<\omega_{\varepsilon+1}}$ of connected elements of $P(X)$ of type cho such that $\left(\gamma_{\lambda}, \gamma_{\mu}\right) \notin \sim_{c}$ if $\lambda \neq \mu$. Thus $\left|C_{1}\right| \geq \aleph_{\varepsilon+1}$, and so $\aleph_{\varepsilon+1} \leq\left|C_{1}\right| \leq|C| \leq \aleph_{\varepsilon+1}$. Hence $|C|=\left|C_{1}\right|=\aleph_{\varepsilon+1}$, which concludes the proof of (3).

The conjugacy classes considered in (1)-(3) cover all conjugacy classes in $P(X)$. Thus, there are at most $\max \left\{2^{\aleph_{0}}, \aleph_{\varepsilon+1}\right\}+2^{\aleph_{\varepsilon}}+\aleph_{\varepsilon+1}=2^{\aleph_{\varepsilon}}$ conjugacy classes in $P(X)$ (which also follows from the fact that $\left.|P(X)|=2^{\aleph_{\varepsilon}}\right)$. By (2), there are at least $2^{\aleph_{\varepsilon}}$ conjugacy classes, so the number of conjugacy classes in $P(X)$ is $2^{\aleph_{\varepsilon}}$. By (1)-(3), at least $\aleph_{\varepsilon+1}$ and at most $\aleph_{0}+\aleph_{\varepsilon+1}^{\aleph_{0}}+\aleph_{\varepsilon+1}=\aleph_{\varepsilon+1}^{\aleph_{0}}$ of these conjugacy classes have a connected representative. (We point out that if a conjugacy class has a connected representative, it does not imply that all representatives of this class are connected.)

6 Conjugacy in $T(X)$

A characterization of the conjugacy \sim_{c} in the monoid $T(X)$ of full transformations on X is simpler than that of the conjugacy in $P(X)$ (see Section 5). The reason is that a connected component of $\alpha \in T(X)$ cannot have a maximal left ray or a maximal chain. Suppose $\alpha, \beta \in T(X)$ and $\alpha \sim_{c} \beta$ in $P(X)$. Then $\alpha \phi=\phi \beta$ and $\beta \psi=\psi \alpha$ for some rp-homomorphisms ϕ and ψ. By Lemma 3.5, $X=\operatorname{span}(\alpha) \subseteq \operatorname{dom}(\phi)$ and $X=\operatorname{span}(\beta) \subseteq \operatorname{dom}(\psi)$. Therefore, $\phi, \psi \in T(X)$, and so $\alpha \sim_{c} \beta$ in $T(X)$. In other words, \sim_{c} in $T(X)$ is the restriction of \sim_{c} in $P(X)$ to $T(X) \times T(X)$.

These observations and Theorem 5.3 give a characterization of \sim_{c} in $T(X)$
Theorem 6.1. Let $\alpha, \beta \in T(X)$. Then $\alpha \sim_{c} \beta$ in $T(X)$ if and only if exactly one of the following conditions is satisfied:
(1) both α and β have a cycle and $\operatorname{cs}(\alpha)=\operatorname{cs}(\beta)$;
(2) both α and β have a double ray but no cycles;
(3) all connected components of both α and β have type rro and:
(a) for every connected component γ of α, there is a connected component δ of β such that $\left\langle\xi_{n}^{\delta}\right\rangle$ dominates $\left\langle\eta_{n}^{\gamma}\right\rangle$ for some maximal right ray η in γ and some maximal right ray ξ in δ, and
(b) for every connected component δ of β, there is a connected component γ of α such that $\left\langle\eta_{n}^{\gamma}\right\rangle$ dominates $\left\langle\xi_{n}^{\delta}\right\rangle$ for some maximal right ray ξ in δ and some maximal right ray η in γ.

Example 6.2. Let $X=\left\{x_{0}, x_{1}, x_{2}, \ldots, y_{1}, y_{2}, y_{3}, \ldots\right\}$ and consider

```
\(\alpha=\left[x_{0} y_{0} x_{1} y_{1} x_{2} y_{2} \ldots\right\rangle\),
\(\beta=\left[x_{0} y_{0} x_{1} y_{1} x_{2} y_{2} \ldots\right\rangle \sqcup\left[y_{1} y_{2} x_{1}\right] \sqcup\left[y_{3} y_{4} y_{5} y_{6} x_{2}\right] \sqcup\left[y_{7} y_{8} y_{9} y_{10} y_{11} y_{12} x_{3}\right] \sqcup \ldots\)
```

in $T(X)$ (see Figure 6.1). We will argue that α and β are not conjugate. Both α and β are connected of type rro. The only maximal right ray in α is $\eta=\left[x_{0} y_{0} x_{1} y_{1} x_{2} y_{2} \ldots\right\rangle$ with $\left\langle\eta_{n}^{\gamma}\right\rangle=$ $\langle n\rangle$ (where $\gamma=\alpha$). If α and β were conjugate, then $\left\langle\eta_{n}\right\rangle$ would dominate $\left\langle\xi_{n}^{\delta}\right\rangle$ (where $\delta=\beta$) for some maximal right ray ξ in β, and so for all maximal right rays ξ in β (see Lemma 4.30 below). The right chain $\xi=\left[x_{0} y_{0} x_{1} y_{1} x_{2} y_{2} \ldots\right\rangle$ is a maximal right chain in β with $\left\langle\xi_{n}^{\delta}\right\rangle=\langle 2 n\rangle$. It is clear that the sequence $\langle n\rangle$ does not dominate the sequence $\langle 2 n\rangle$. Hence, by Theorem $6.1, \alpha$ and β are not conjugate.

Figure 6.1: The digraphs of α and β from Example 6.2.
If X is a finite set, then every $\alpha \in T(X)$ has a cycle. Hence, Theorem 6.1 gives us the following corollary.

Corollary 6.3. Let X be finite, and let $\alpha, \beta \in T(X)$. Then $\alpha \sim{ }_{c} \beta$ if and only if $\operatorname{cs}(\alpha)=\operatorname{cs}(\beta)$.
Modifying the proof of Theorem 5.16, we can count the number of conjugacy classes in an infinite $T(X)$.

Theorem 6.4. Let X be an infinite set with $|X|=\aleph_{\varepsilon}$. Then in $T(X)$ there are:
(1) $2^{\aleph_{0}}$ conjugacy classes consisting of transformations with a cycle, of which \aleph_{0} have a connected representative;
(2) one conjugacy class consisting of transformations with a double ray but not a cycle;
(3) $2^{\aleph_{\varepsilon}}$ conjugacy classes consisting of transformations without a cycle or a double ray, of which at least $\aleph_{\varepsilon+1}$ and at most $\aleph_{\varepsilon+1}^{\aleph_{0}}$ have a connected representative.

In total, there are $2^{\aleph_{\varepsilon}}$ conjugacy classes in $T(X)$, of which at least $\aleph_{\varepsilon+1}$ and at most $\aleph_{\varepsilon+1}^{\aleph_{0}}$ have a connected representative.

The reason for (1) is that $\alpha \in T(X)$ does not have any maximal left rays or components of type cho. Thus, the set $A=A^{\prime} \cup A^{\prime \prime}$ from the proof of (1) of Theorem 5.16 reduces to A^{\prime}, and the function $f^{\prime}: A^{\prime} \rightarrow \mathcal{P}\left(\mathbb{Z}_{+}\right) \times\left(\omega_{\varepsilon+1}+1\right) \times\{0,1\}$ reduces to $f^{\prime}: A^{\prime} \rightarrow \mathcal{P}\left(\mathbb{Z}_{+}\right)$. The reason for (2) is that if $\alpha \in T(X)$ has a double ray but not a cycle, then each component of α either has a double ray or is of type rro. Any two such transformations are then conjugate by Lemma 4.15 and Proposition 4.18.

7 Conjugacy in $\Gamma(X)$

By $\Gamma(X)$ we mean the subsemigroup of $T(X)$ consisting of injective transformations. If X is finite, then $\Gamma(X)=\operatorname{Sym}(X)$ but this is not the case for an infinite X. The semigroup $\Gamma(X)$ is universal for right cancellative semigroups with no idempotents (except possibly the identity): that is, any such semigroup can be embedded in $\Gamma(X)$ for some X [11, Lemma 1.0]. The semigroup $\Gamma(X)$ has been studied mainly in the context of: ideals and congruences [31, 37]; $\mathcal{G}(X)$-normal semigroups [29, 30, 35]; Baer-Levi semigroups [32, 33]; $B Q$-semigroups [23, 36], and centralizers [24, 25]. In this section, we characterize the conjugacy \sim_{c} in $\Gamma(X)$ for an arbitrary set X.

We note that every connected transformation in $P(X)$ that is also injective is a cycle, a ray, or a chain. Since transformations in $\Gamma(X)$ are full, $\alpha \in \Gamma(X)$ cannot contain a maximal left ray or a maximal chain. These observations give the following lemma.

Lemma 7.1. Let $\alpha \in \Gamma(X)$. Then every connected component of α is a right ray, a double ray, or a cycle.

The following proposition follows from Lemma 7.1 and Proposition 4.5.
Proposition 7.2. Let $\alpha \in \Gamma(X)$. Then there exist unique sets: A of right rays, B of double rays, and C of cycles such that the transformations in $A \cup B \cup C$ are pairwise completely disjoint and

$$
\alpha=\left(\bigsqcup_{\eta \in A} \eta\right) \sqcup\left(\bigsqcup_{\omega \in B} \omega\right) \sqcup\left(\bigsqcup_{\theta \in C} \theta\right) .
$$

Let $\alpha \in \Gamma(X)$. We will denote the unique sets A, B, and C from Proposition 7.2 by A_{α}, B_{α}, and C_{α}, respectively. For $n \geq 1$, we will denote by C_{α}^{n} the subset of C_{α} consisting of cycles of length n. Note that:
$A_{\alpha}=$ the set of maximal right rays contained in α,
$B_{\alpha}=$ the set of double rays contained in α,
$C_{\alpha}=$ the set of cycles contained in α.

For $\eta=\left[x_{0} x_{1} x_{2} \ldots\right\rangle, \omega=\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle, \theta=\left(x_{0} x_{1} \ldots x_{k-1}\right)$, and any ϕ in $\Gamma(X)$, we define:

$$
\eta \phi^{*}=\left[x_{0} \phi x_{1} \phi x_{2} \phi \ldots\right\rangle, \omega \phi^{*}=\left\langle\ldots x_{-1} \phi x_{0} \phi x_{1} \phi \ldots\right\rangle, \theta \phi^{*}=\left(x_{0} \phi x_{1} \phi \ldots x_{k-1} \phi\right) .
$$

Proposition 7.3. Let $\alpha, \beta, \phi \in \Gamma(X)$. Then ϕ is a homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$ if and only if for all $\eta \in A_{\alpha}, \omega \in B_{\alpha}$, and $\theta \in C_{\alpha}$:
(1) either there is a unique $\eta_{1} \in A_{\beta}$ such that $\eta \phi^{*} \sqsubset \eta_{1}$ or there is a unique $\omega_{1} \in B_{\beta}$ such that $\eta \phi^{*} \sqsubset \omega_{1}$;
(2) $\omega \phi^{*} \in B_{\beta}$ and $\theta \phi^{*} \in C_{\beta}$.

Proof. Suppose ϕ is a homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$. Let $\eta=\left[x_{0} x_{1} x_{2} \ldots\right\rangle \in A_{\alpha}$. Then, since ϕ is an injective homomorphism, $\eta \phi^{*}=\left[x_{0} \phi x_{1} \phi x_{2} \phi \ldots\right\rangle$ is a right ray in $\Gamma(\beta)$. By the proof of Proposition 4.18, $\left.\phi\right|_{\operatorname{span}(\eta)}$ is a homomorphism from $\Gamma(\eta)$ to $\Gamma(\gamma)$ for some connected component γ of β. By Lemma 7.1, either $\gamma=\eta_{1}=\left(y_{0} y_{1} y_{2} \ldots\right\rangle$ is a right ray in β or $\gamma=\omega_{1}=\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle$ is a double ray in β (γ cannot be a cycle since ϕ is injective). In the former case, $\eta \phi^{*} \sqsubset \eta_{1}$, and in the latter case, $\eta \phi^{*} \sqsubset \omega_{1}$. The uniqueness of η_{1} and ω_{1} follows from the fact that the elements of $A_{\beta} \cup B_{\beta}$ are pairwise completely disjoint. We have proved (1). The proof of (2) is similar.

Conversely, suppose that ϕ satisfies (1) and (2). Then it follows immediately that for all $x, y \in X, x \xrightarrow{\alpha} y$ implies $x \phi \xrightarrow{\beta} y \phi$, and so ϕ is a homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$.

Definition 7.4. Let $\alpha, \beta \in \Gamma(X)$. For a homomorphism $\phi \in \Gamma(X)$ from $\Gamma(\alpha)$ to $\Gamma(\beta)$, we define a mapping $h_{\phi}: A_{\alpha} \cup B_{\alpha} \cup C_{\alpha} \rightarrow A_{\beta} \cup B_{\beta} \cup C_{\beta}$ by:

$$
\delta h_{\phi}= \begin{cases}\eta & \text { if } \delta \in A_{\alpha} \text { and } \delta \phi^{*} \sqsubset \eta \text { for some } \eta \in A_{\beta}, \\ \omega & \text { if } \delta \in A_{\alpha} \text { and } \delta \phi^{*} \sqsubset \omega \text { for some } \omega \in B_{\beta}, \\ \delta \phi^{*} & \text { if } \delta \in B_{\alpha} \cup C_{\alpha} .\end{cases}
$$

Note that h_{ϕ} is well defined (by Proposition 7.3) and injective (since ϕ is injective).
We will need the following lemma from set theory (whose proof is straightforward).
Lemma 7.5. Let A_{1}, B_{1}, A_{2}, and B_{2} be sets such that $A_{1} \cap B_{1}=\emptyset, A_{2} \cap B_{2}=\emptyset,\left|A_{1}\right|+\left|B_{1}\right| \leq$ $\left|A_{2}\right|+\left|B_{2}\right|$, and $\left|B_{1}\right| \leq\left|B_{2}\right|$. Then there is an injective mapping $f: A_{1} \cup B_{1} \rightarrow A_{2} \cup B_{2}$ such that $x f \in B_{2}$ for every $x \in B_{1}$.

We can now characterize the conjugacy \sim_{c} in $\Gamma(X)$.
Theorem 7.6. Let $\alpha, \beta \in \Gamma(X)$. Then $\alpha \sim_{c} \beta$ in $\Gamma(X)$ if and only if $\left|A_{\alpha}\right|+\left|B_{\alpha}\right|=\left|A_{\beta}\right|+\left|B_{\beta}\right|$, $\left|B_{\alpha}\right|=\left|B_{\beta}\right|$, and $\left|C_{\alpha}^{n}\right|=\left|C_{\beta}^{n}\right|$ for every $n \geq 1$.

Proof. Suppose $\alpha \sim_{c} \beta$ in $\Gamma(X)$. Then, by Corollary 3.9, there is $\phi \in \Gamma(X)$ such that ϕ is a homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$. Define $f: A_{\alpha} \cup B_{\alpha} \rightarrow A_{\beta} \cup B_{\beta}$ by $\delta f=\delta h_{\phi}$. (By the definitions of h_{ϕ} and $\phi^{*}, \delta f$ is indeed in $A_{\beta} \cup B_{\beta}$ if $\delta \in A_{\alpha} \cup B_{\alpha}$.) The mapping f is injective (since h_{ϕ} is injective), $A_{\alpha} \cap B_{\alpha}=\emptyset$, and $A_{\beta} \cap B_{\beta}=\emptyset$. Thus

$$
\left|A_{\alpha}\right|+B_{\alpha}\left|=\left|A_{\alpha} \cup B_{\alpha}\right| \leq\left|A_{\beta} \cup B_{\beta}\right|=\left|A_{\beta}\right|+\left|B_{\beta}\right| .\right.
$$

Similarly, $\left|B_{\alpha}\right| \leq\left|B_{\beta}\right|$ since $g: B_{\alpha} \rightarrow B_{\beta}$ defined by $\omega g=\omega h_{\phi}$ is well defined and injective. Let $n \geq 1$. Define $h: C_{\alpha}^{n} \rightarrow C_{\beta}^{n}$ by $\theta h=\theta h_{\phi}$. (If $\theta=\left(x_{0} \ldots x_{n-1}\right) \in C_{\alpha}^{n}$, then $\theta h_{\phi}=$ $\theta \phi^{*}=\left(x_{0} \phi \ldots x_{n-1} \phi\right) \in C_{\beta}^{n}$.) The mapping h is injective, and so $\left|C_{\alpha}^{n}\right| \leq\left|C_{\beta}^{n}\right|$. By symmetry, $\left|A_{\beta}\right|+\left|B_{\beta}\right| \leq\left|A_{\alpha}\right|+\left|B_{\alpha}\right|,\left|B_{\beta}\right| \leq\left|B_{\alpha}\right|$, and $\left|C_{\beta}^{n}\right| \leq\left|C_{\alpha}^{n}\right|$. Hence the stated equalities hold.

Conversely, suppose $\left|A_{\alpha}\right|+\left|B_{\alpha}\right|=\left|A_{\beta}\right|+\left|B_{\beta}\right|,\left|B_{\alpha}\right|=\left|B_{\beta}\right|$, and $\left|C_{\alpha}^{n}\right|=C_{\beta}^{n} \mid$ for every $n \geq 1$. We will define an injective homomorphism ϕ from $\Gamma(\alpha)$ to $\Gamma(\beta)$. By Lemma 7.5, there is an injective mapping $f: A_{\alpha} \cup B_{\alpha} \rightarrow A_{\beta} \cup B_{\beta}$ such that $\omega f \in B_{\beta}$ for every $\omega \in B_{\alpha}$. For every $n \geq 1$, fix a bijection $g_{n}: C_{\alpha}^{n} \rightarrow C_{\beta}^{n}$. Let $n \geq 1$. For all $\eta \in A_{\alpha}, \omega \in B_{\alpha}$, and $\theta \in C_{\alpha}^{n}$, we define ϕ on $\operatorname{dom}(\eta) \cup \operatorname{dom}(\omega) \cup \operatorname{dom}(\theta)$ in such a way that $\eta \phi^{*} \sqsubset \eta f, \omega \phi^{*}=\omega f$, and $\theta \phi^{*}=\theta g_{n}$. Note that this defines ϕ for every $x \in X$. By the definition of ϕ and Proposition 7.3, $\phi \in \Gamma(X)$ and ϕ is a homomorphism from $\Gamma(\alpha)$ to $\Gamma(\beta)$. By symmetry, there is an injective homomorphism ψ from $\Gamma(\beta)$ to $\Gamma(\alpha)$. Hence $\alpha \sim_{c} \beta$ by Corollary 3.9.

Example 7.7. Let α and β be partial transformations on an infinite set whose digraphs are presented in Figures 7.1 and 7.2 , respectively. Then $\left|A_{\alpha}\right|=1,\left|B_{\alpha}\right|=\aleph_{0},\left|A_{\alpha}\right|+\left|B_{\alpha}\right|=\aleph_{0}$, and $\left|C_{\alpha}^{n}\right|=0$ for every $n \geq 1$. Also, $\left|A_{\beta}\right|=2,\left|B_{\beta}\right|=\aleph_{0},\left|A_{\beta}\right|+\left|B_{\beta}\right|=\aleph_{0}$, and $\left|C_{\beta}^{n}\right|=0$ for every $n \geq 1$. Thus $\alpha \sim_{c} \beta$ by Theorem 7.6.

Using Theorem 7.6, we can count the conjugacy classes in $\Gamma(X)$. First, we need the following lemma.

Lemma 7.8. Let X be an infinite set with $|X|=\aleph_{\varepsilon}$, let $\alpha \in \Gamma(X)$. Then $\left|A_{\alpha}\right| \leq \aleph_{\varepsilon},\left|B_{\alpha}\right| \leq \aleph_{\varepsilon}$, and $\left|C_{\alpha}^{n}\right| \leq \aleph_{\varepsilon}$ for every $n \geq 1$.

Proof. Let $Y=\bigcup_{\eta \in A_{\alpha}} \operatorname{dom}(\eta) \subseteq X$. Since the elements of A_{α} are pairwise completely disjoint and $|\operatorname{dom}(\eta)|=\aleph_{0}$ for every $\eta \in A_{\alpha}$, we have

$$
\aleph_{\varepsilon}=|X| \geq|Y|=\left|\bigcup_{\eta \in A_{\alpha}} \operatorname{dom}(\eta)\right|=\left|A_{\alpha}\right| \cdot \aleph_{0} \geq\left|A_{\alpha}\right|
$$

Thus $\left|A_{\alpha}\right| \leq \aleph_{\varepsilon}$. The proofs for B_{α} and $C_{\alpha}^{n}(n \geq 1)$ are similar.

Figure 7.1: The digraph of α from Example 7.7.

Figure 7.2: The digraph of β from Example 7.7.

For sets A and B, we denote by A^{B} the set of all functions from B to A.
Theorem 7.9. Let X be an infinite set with $|X|=\aleph_{\varepsilon}$. Let $\kappa=\aleph_{0}+|\varepsilon|$. Then there are $\kappa^{\aleph_{0}}$ conjugacy classes in $\Gamma(X)$, of which two have a connected representative if $\aleph_{\varepsilon}=\aleph_{0}$, and none has a connected representative if $\aleph_{\varepsilon}>\aleph_{0}$.

Proof. Let K be the set of all cardinals τ such that $\tau \leq \aleph_{\varepsilon}$. Then K contains \aleph_{0} finite cardinals and $|\varepsilon|+1$ infinite cardinals, hence $|K|=\aleph_{0}+|\varepsilon|+1=\aleph_{0}+|\varepsilon|=\kappa$. Let $\Gamma(X) / \sim_{c}$ be the set of conjugacy classes of $\Gamma(X)$. Define a function $f: \Gamma(X) / \sim_{c} \rightarrow K^{\mathbb{N}}$, where $\mathbb{N}=\{0,1,2, \ldots\}$, by

$$
\left.([\alpha)]_{c}\right) f=\left(\left|A_{\alpha}\right|+\left|B_{\alpha}\right|,\left|B_{\alpha}\right|,\left|C_{\alpha}^{1}\right|,\left|C_{\alpha}^{2}\right|,\left|C_{\alpha}^{3}\right|, \ldots\right)
$$

By Theorem 7.6, f is well defined and injective. Thus $\left|\Gamma(X) / \sim_{c}\right| \leq\left|K^{\mathbb{N}}\right|=|K|^{|\mathbb{N}|}=\kappa^{\aleph_{0}}$.
We next define an injective mapping $g: K^{\mathbb{N}} \rightarrow \Gamma(X) / \sim_{c}$. Let

$$
\xi=\left(\tau_{2}, \tau_{3}, \tau_{4}, \ldots\right) \in K^{\mathbb{N}}
$$

(It will be clear from the definition of g why we begin the indexing with $n=2$.) Let $\tau=\sum_{n=2}^{\infty} n \tau_{n}$ (see [20, Chapter 9]). For every $n \geq 2, n \tau_{n} \leq \aleph_{\varepsilon}\left(\right.$ since $\tau_{n} \leq \aleph_{\varepsilon}$ and \aleph_{ε} is infinite). Thus

$$
\tau=\sum_{n=2}^{\infty} n \tau_{n} \leq \aleph_{0} \cdot \aleph_{\varepsilon}=\aleph_{\varepsilon}
$$

and so $\aleph_{\varepsilon}+\tau=\aleph_{\varepsilon}$. Hence, there is a collection $\left\{X_{n}\right\}_{n \geq 1}$ of pairwise disjoint subsets of X such that $\bigcup_{n=1}^{\infty} X_{n}=X,\left|X_{1}\right|=\aleph_{\varepsilon}$, and $\left|X_{n}\right|=n \tau_{n}$ for every $n \geq 2$. Let $n \geq 2$. Since $\left|X_{n}\right|=n \tau_{n}$,
there is a collection C_{n} of n-cycles in $\Gamma(X)$ such that $\left|C_{n}\right|=\tau_{n}$ and $\operatorname{dom}\left(\bigsqcup_{\theta \in C_{n}} \theta\right)=X_{n}$. Let $\alpha_{n}=\bigsqcup_{\theta \in C_{n}} \theta$. Define a transformation α_{ξ} on X by

$$
\alpha_{\xi}=\bigsqcup_{n \geq 2} \alpha_{n} \sqcup \bigsqcup_{x \in X_{1}}(x) .
$$

Then $\alpha \in \Gamma(X), A_{\alpha}=B_{\alpha}=\emptyset$, and $C_{\alpha}^{n}=C_{n}$ for all $n \geq 2$. Thus

$$
\left(\left|C_{\alpha}^{1}\right|,\left|C_{\alpha}^{2}\right|,\left|C_{\alpha}^{3}\right|,\left|C_{\alpha}^{4}\right|, \ldots\right)=\left(\aleph_{\varepsilon}, \tau_{2}, \tau_{3}, \tau_{4}, \ldots\right),
$$

and it follows from Theorem 7.6 that the mapping $g: K^{\mathbb{N}} \rightarrow \Gamma(X) / \sim_{c}$ defined by $\xi g=\alpha_{\xi}$ is injective. Hence $\left|\Gamma(X) / \sim_{c}\right| \geq\left|K^{\mathbb{N}}\right|=|K|^{|\mathbb{N}|}=\kappa^{\aleph_{0}}$.

Suppose $|X|=\aleph_{0}$, say $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$. Then, by Theorem 7.6 and Lemma 7.1, the only conjugacy classes in $\Gamma(X)$ with a connected representative are $\left[\left(x_{1} x_{2} x_{3} \ldots\right)\right]$ and [$\left.\left\langle\ldots x_{6} x_{4} x_{2} x_{1} x_{3} x_{5} \ldots\right\rangle\right]$. (There is no single cycle in θ in $\Gamma(X)$ since $\operatorname{dom}(\theta)$ is finite.)

If $|X|>\aleph_{0}$, then no element $\alpha \in \Gamma(X)$ is connected since $\operatorname{dom}(\alpha)=X$ and the domain of any right ray, double ray, or cycle has cardinality at most \aleph_{0}. The result follows.

8 Problems

The results of this paper prompt a number of problems in combinatorics, semigroups, matrix theory, and set theory. The first problem asks for the number of conjugacy classes in some important finite semigroups.

Problem 8.1. Let X be a finite set. Is it possible to find a closed formula that gives the number of conjugacy classes in $T(X), P(X)$ or $\mathcal{I}(X)$ (where $\mathcal{I}(X)$ denotes the symmetric inverse semigroup on X)?

The second problem might attract the attention of experts in set theory.
Problem 8.2. Let X be an infinite set with $|X|=\aleph_{\varepsilon}$. According to Theorem 6.4, the number of conjugacy classes in $T(X)$ that have a connected representative is in the interval $\left[\aleph_{\varepsilon+1}, \aleph_{\varepsilon+1}^{\aleph_{0}}\right]$. Is it possible to be more precise and reduce the length of this interval?

In this paper we characterized the conjugate elements in some well-known transformation semigroups, but there are many other transformation semigroups, or endomorphism monoids of some relational algebras that may be considered.

Problem 8.3. Characterize \sim_{c}, and calculate the number of conjugacy classes, in other transformation semigroups such as, for example, those appearing in the problem list of [7, Section 6] or those appearing in the large list of transformation semigroups included in [12]. Especially interesting would be a characterization of the conjugacy classes in the centralizers of idempotents $[5,6]$.

The theorems and problems in this paper have natural linear counter-parts.
Problem 8.4. Characterize \sim_{c} in the endomorphism monoid of a (finite or infinite dimensional) vector space.

Whenever some result holds for both sets and vector spaces the natural step forward is to prove those results for independence algebras.

Problem 8.5. Characterize \sim_{c} in the endomorphism monoid of a (finite or infinite dimensional) independence algebra. (For historical notes on the importance of these algebras, see [3, 4]; for definitions and basic results, see $[1,2,8,9,10,13,14,16])$.

Problem 8.6. The notion of conjugation \sim_{p} defined in (1.2) is very important in symbolic dynamics in connection with the Williams Conjecture [38]. Characterize \sim_{p} in $T(X), P(X)$ and $\mathcal{I}(X)$ for an infinite set X. (Kudryavtseva and Mazorchuk [26] have characterized \sim_{p}^{*} (the transitive closure of \sim_{p}) in $T(X), P(X)$ and $\mathcal{I}(X)$ for a finite X, and in $\mathcal{I}(X)$ for a countably infinite X.)

9 Acknowledgments

The authors would like to thank the referee for the very carefuful reading of our paper and excellent suggestions, especially the one regarding Definition 4.20.

References

[1] J. Araújo, Normal semigroups of endomorphisms of proper independence algebras are idempotent generated, Proc. Edinburgh Math. Soc. (2) 45 (2002), 205-217.
[2] J. Araújo, Idempotent generated endomorphisms of an independence algebra, Semigroup Forum 67 (2003), 464-467.
[3] J. Araújo, M. Edmundo, and S. Givant, v^{*}-Algebras, independence algebras and logic, Internat. J. Algebra Comput. 21 (2011), 1237-1257.
[4] J. Araújo and J. Fountain, The origins of independence algebras, Semigroups and languages, 54-67, World Sci. Publ., River Edge, NJ, 2004.
[5] J. Araújo and J. Konieczny, Automorphisms groups of centralizers of idempotents , J. Algebra 269 (2003), 227-239.
[6] J. Araújo and J. Konieczny, Semigroups of transformations preserving an equivalence relation and a cross-section, Comm. Algebra 32 (2004), 1917-1935.
[7] J. Araújo and J. Konieczny, Centralizers in the full transformation semigroup, Semigroup Forum 86 (2013), 1-31.
[8] J. Araújo and J. M. Mitchell, Relative ranks in the monoid of endomorphisms of an independence algebra, Monatsh. Math. 151 (2007), 1-10.
[9] J. Araújo and F. Wehrung, Embedding properties of endomorphism semigroups, Fund. Math. 202 (2009), 125-146.
[10] P. J. Cameron and C. Szabó, Independence algebras, J. London Math. Soc. 61 (2000), 321-334.
[11] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, Mathematical Surveys, No. 7, American Mathematical Society, Providence, Rhode Island, 1964 (Vol. I) and 1967 (Vol. II).
[12] V.H. Fernandes, Presentations for some monoids of partial transformations on a finite chain: a survey, Semigroups, algorithms, automata and languages (Coimbra, 2001), 363-378, World Sci. Publ., River Edge, NJ, 2002.
[13] J. Fountain and A. Lewin, Products of idempotent endomorphisms of an independence algebra of finite rank, Proc. Edinburgh Math. Soc. 35 (1992), 493-500.
[14] J. Fountain and A. Lewin, Products of idempotent endomorphisms of an independence algebra of infinite rank, Math. Proc. Cambridge Philos. Soc. 114 (1993), 303-319.
[15] O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups: An Introduction, Algebra and Applications, Volume 9, Springer-Verlag, London, 2010.
[16] V. Gould, Independence algebras, Algebra Universalis 33 (1995), 294-318.
[17] P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, New York, 2004.
[18] P.M. Higgins, The semigroup of conjugates of a word, Internat. J. Algebra Comput. 16 (2006), 1015-1029.
[19] C. Hollings, From right PP monoids to restriction semigroups: a survey, European J. Pure Appl. Math. 2 (2009), 21--57.
[20] K. Hrbacek and T. Jech, Introduction to Set Theory, Third Edition, Taylor \& Francis, New York, 1999.
[21] T. Jech, Set Theory, Third Edition, Springer-Verlag, New York, 2006.
[22] A.S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.
[23] Y. Kemprasit, Some transformation semigroups whose sets of bi-ideals and quasi-ideals coincide, Comm. Algebra 30 (2002), 4499-4506.
[24] J. Konieczny, Centralizers in the semigroup of injective transformations on an infinite set, Bull. Austral. Math. Soc. 82 (2010), 305-321.
[25] J.Konieczny, Infinite injective transformations whose centralizers have simple structure, Cent. Eur. J. Math. 9 (2011), 23-35.
[26] G. Kudryavtseva and V. Mazorchuk, On conjugation in some transformation and Brauertype semigroups, Publ. Math. Debrecen 70 (2007), 19-43.
[27] G. Kudryavtseva and V. Mazorchuk, On three approaches to conjugacy in semigroups, Semigroup Forum 78 (2009), 14-20.
[28] G. Lallement, Semigroups and Combinatorial Applications, John Wiley \& Sons, New York, 1979.
[29] I. Levi, Green's relations on \mathcal{G}_{X}-normal semigroups, Math. Japon. 39 (1994), 19-28.
[30] I. Levi, Group closures of one-to-one transformations, Bull. Austral. Math. Soc. 64 (2001), 177-188.
[31] I. Levi and B.M. Schein, The semigroup of one-to-one transformations with finite defects, Glasgow Math. J. 31 (1989), 243-249.
[32] I. Levi, B.M. Schein, R.P. Sullivan, and G.R. Wood, Automorphisms of Baer-Levi semigroups, J. London Math. Soc. 28 (1983), 492-495.
[33] D. Lindsey and B. Madison, The lattice of congruences on a Baer-Levi semigroup, Semigroup Forum 12 (1976), 63-70.
[34] F. Otto, Conjugacy in monoids with a special Church-Rosser presentation is decidable, Semigroup Forum 29 (1984), 223-240.
[35] R.P. Sullivan, Automorphisms of injective transformation semigroups, Studia Sci. Math. Hungar. 15 (1980), 1-4.
[36] R.P. Sullivan, BQ-semigroups of transformations, Acta Sci. Math. (Szeged) 75 (2009), 59-74.
[37] È.G. Šutov, Semigroups of one-to-one transformations, Dokl. Akad. Nauk SSSR 140 (1961), 1026-1028 (Russian); translated as Soviet Math. Dokl. 2 (1961) 1319-1321.
[38] R.F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120153.
[39] L. Zhang, Conjugacy in special monoids, J. Algebra 143 (1991), 487-497.
[40] L. Zhang, On the conjugacy problem for one-relator monoids with elements of finite order, Internat. J. Algebra Comput. 2 (1992), 209-220.

[^0]: *Partially supported by FCT through the following projects: PEst-OE/MAT/UI1043/2011, Strategic Project of Centro de Álgebra da Universidade de Lisboa; and PTDC/MAT/101993/2008, Project Computations in groups and semigroups .
 †Supported by the 2011-12 University of Mary Washington Faculty Research Grant.

