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Departamento de Matemática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, 2829-516 Caparica, Portugall

&

Centro de

´

Algebra da Universidade de Lisboa

1649-003 Lisboa, Portugal, malheiro@cii.fc.ul.pt

Abstract

The action of any group on itself by conjugation and the corresponding conjugacy relation

play an important role in group theory. There have been several attempts to extend the

notion of conjugacy to semigroups. In this paper, we present a new definition of conjugacy

that can be applied to an arbitrary semigroup and it does not reduce to the universal relation

in semigroups with a zero. We compare the new notion of conjugacy with existing definitions,

characterize the conjugacy in various semigroups of transformations on a set, and count the

number of conjugacy classes in these semigroups when the set is infinite.

2010 Mathematics Subject Classification. 20M07, 20M20, 20M15.

1 Introduction

Let G be a group. For elements a, b 2 G, we say that a is conjugate to b if there exists g 2 G

such that b = g

�1

ag. It is clear that this relation is an equivalence on G and that a is conjugate
to b if and only if there exists g 2 G such that ag = gb. Using the latter formulation, one may
try to extend the notion of conjugacy to semigroups in the following way: define a relation ⇠

l

on a semigroup S by
a ⇠

l

b , 9
g2S

1
ag = gb, (1.1)

where S1 is S with an identity adjoined. If a ⇠
l

b, we say that a is left conjugate to b [34, 39, 40].
(We will write “⇠” with various subscripts for possible definitions of conjugacy in semigroups.
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The subscript in ⇠
l

comes from the name “left conjugate.”) In a general semigroup S, the relation
⇠

l

is reflexive and transitive, but not symmetric. If S has a zero, then ⇠
l

is the universal relation
S ⇥ S. The relation ⇠

l

is an equivalence in any free semigroup. Lallement [28] has defined the
conjugate elements of a free semigroup S as those related by ⇠

l

and showed that ⇠
l

is equal to
the following equivalence on the free semigroup S:

a ⇠
p

b , 9
u,v2S

1
a = uv and b = vu. (1.2)

In a general semigroup S, the relation ⇠
p

is reflexive and symmetric, but not transitive. If a ⇠
p

b

in a general semigroup, we say that a and b are primarily conjugate [27] (hence the subscript
in ⇠

p

). Kudryavtseva and Mazorchuk [26, 27] have defined the transitive closure ⇠⇤
p

of ⇠
p

as a
conjugacy relation in a general semigroup. (See also [18].)

Otto [34] has studied the relations ⇠
l

and ⇠
p

in the monoids S presented by finite Thue
systems, and introduced a new definition of conjugate elements in such an S:

a ⇠
o

b , 9
g,h2S

1
ag = gb and bh = ha. (1.3)

(Since S is a monoid, S1 = S. However, we wanted to write the definition of ⇠
o

so that it would
apply to any semigroup.) For any semigroup S, ⇠

o

is an equivalence on S, and so it provides
another possible definition of conjugacy in a general semigroup. However, this definition is not
useful for semigroups S with zero since for every such S, we have ⇠

o

= S ⇥ S. Note that ⇠
o

the
largest equivalence contained in ⇠

l

and that ⇠
p

✓ ⇠
o

since if a = uv and b = vu, then au = ub

and bv = va.
The aim of this paper is to introduce a new definition of conjugacy in an arbitrary semigroup,

avoiding the problems of the notions listed above. (That is, ⇠
l

is not symmetric; both ⇠
l

and
⇠
o

reduce to the universal relation in semigroups with zero; and ⇠
p

is not transitive and so it
requires taking the transitive closure.) Our conjugacy will be an equivalence relation ⇠

c

on any
semigroup S, it will not reduce to the universal relation even when S has a zero, and it will be
such that ⇠

c

✓ ⇠
o

✓ ⇠
l

in every semigroup S, ⇠
c

= ⇠
o

if S is a semigroup without zero, and
⇠

c

= ⇠
l

= ⇠
p

= ⇠
o

if S is a group or a free semigroup.
In Section 2 we introduce the new notion of conjugacy and prove some basic results. The

following four sections are devoted to the study of ⇠
c

in several transformation semigroups
on a finite or infinite set X. The tools we use in this study are the characterization of ⇠

c

in transformation semigroups in terms of certain partial homomorphisms of directed graphs
(Section 3) and the concept of a connected partial transformation (Section 4). Conjugacy classes
in the partial transformation monoid P (X) are characterized (for any X) and counted (for an
infinite X) in Section 5; conjugacy in the full transformation monoid T (X) is treated in Section 6;
and Section 7 deals with the monoid �(X) of full injective transformations. The paper ends with
a number of problems for experts in combinatorics, symbolic dynamics, set theory, semigroups,
and matrix theory (Section 8).

2 Definition of Conjugacy

We briefly describe the motivation of our new concept of conjugacy. The starting point was
the relation ⇠

o

introduced by Otto [34]. As we have already pointed out, the relation ⇠
o

is the
universal relation S ⇥ S if a semigroup S has a zero. Our goal has been to retain Otto’s concept
for semigroups without zero but modify his definition in such a way that the resulting conjugacy
would not reduce to triviality for semigroups with zero.

To find a suitable definition, we considered the semigroup P (X) of partial transformations
on X, that is, the set of all mappings whose domain and image are included in X, with function
composition as multiplication. This semigroup has a zero, namely the transformation whose
domain is empty. Let ↵,� 2 P (X). Then ↵ ⇠

o

� if and only if ↵� = �� and � =  ↵ for some
�, 2 P (X). (We write functions on the right and compose from left to right.) Of course, the

2



last two equalities hold for � =  = 0. We could insist that � and  should not be 0 but this
would not solve the problem since then the resulting relation would not be transitive.

The solution is this. In the composition ↵�, it only matters how � is defined on the elements
of im(↵) (the image of ↵). We insist that � be defined for all elements of im(↵), that is,
that im(↵) ✓ dom(�). With the requirement that the transformations � and  come from the
sets {� 2 P (X) : im(↵) ✓ dom(�)} and { 2 P (X) : im(�) ✓ dom( )}, the relation is an
equivalence. Moreover, we will verify that for ↵ 6= 0, im(↵) ✓ dom(�) if and only if (�↵)� 6= 0
for every �↵ 2 P (X)↵ \ {0}, where P (X)↵ \ {0} is the left principal ideal generated by ↵ with 0
removed. Therefore, the requirement that � and  have “large” domains can be expressed in an
abstract semigroup. These considerations motivate the definition below.

Let S be a semigroup with zero. For a 2 S with a 6= 0, consider S1

a \ {0}, the left principal
ideal generated by a with zero removed. We will denote by P(a) the set of all elements g 2 S

such that (ma)g 6= 0 for all ma 2 S

1

a \ {0}. We define P(0) to be {0}. If S has no zero, we agree
that P(a) = S for every a 2 S. We will write P1(a) for P(a) [ {1}, where 1 is the identity in S

1.

Definition 2.1. Define a relation ⇠
c

on a semigroup S by

a ⇠
c

b , 9
g2P1

(a)

9
h2P1

(b)

ag = gb and bh = ha. (2.1)

If a ⇠
c

b, we say that a is conjugate to b.

The relation ⇠
c

will be called the conjugacy on S, which is justified by the following theorem.

Theorem 2.2. Let S be a semigroup. Then:

(1) the relation ⇠
c

is an equivalence relation on S;

(2) if ⇠
l

, ⇠
p

, and ⇠
o

are relations on S defined by (1.1), (1.2), and (1.3), respectively, then:

(a) ⇠
c

✓ ⇠
o

✓ ⇠
l

,

(b) if S is a semigroup without zero, then ⇠
c

= ⇠
o

, and

(c) if S is a group or a free semigroup, then ⇠
c

= ⇠
l

= ⇠
p

= ⇠
o

.

Proof. It is clear that ⇠
c

is reflexive and symmetric. Suppose a ⇠
c

b and b ⇠
c

c. Then there
are g

1

2 P1(a) and g

2

2 P1(b) such that ag

1

= g

1

b and bg

2

= g

2

c. Thus a(g
1

g

2

) = (ag
1

)g
2

=
(g

1

b)g
2

= g

1

(bg
2

) = g

1

(g
2

c) = (g
1

g

2

)c. Let ma 2 S

1

a \ {0}. Since g

1

2 P1(a), we have
(mg

1

)b = m(ag
1

) = (ma)g
1

6= 0. Thus (mg

1

)b 2 S

1

b \ {0}, and so, since g

2

2 P1(b), we have
(ma)(g

1

g

2

) = m(ag
1

)g
2

= m(g
1

b)g
2

= ((mg

1

)b)g
2

6= 0. Hence g

1

g

2

2 P1(a). Similarly, there is
h 2 P1(c) such that ch = ha. Hence a ⇠

c

c, and so ⇠
c

is transitive. We have proved (1).
Statements 2(a) and 2(b) follow immediately from the definitions of⇠

l

, ⇠
o

, and⇠
c

. Statement
2(c) is clearly true if S is a group. Let S be a free semigroup. Then ⇠

l

= ⇠
p

by [28, Corollary 5.2].
Thus, by 2(a) and 2(b), ⇠

c

= ⇠
o

✓ ⇠
l

= ⇠
p

✓ ⇠
o

, which implies ⇠
c

= ⇠
o

= ⇠
l

= ⇠
p

.

For an element a of a semigroup S, the equivalence class of a with respect to ⇠
c

will be called
the conjugacy class of a and denoted [a]

c

.
Let S be a semigroup with 0. In contrast with the fact that ⇠

o

= S ⇥ S, the conjugacy class
of 0 with respect to ⇠

c

is {0}, so we always have ⇠
c

6= S ⇥ S unless S = {0}. Indeed, suppose
a ⇠

c

0. Then ag = g0 = 0 for some g 2 P1(a). If a 6= 0, then ag 6= 0 (since a 2 S

1

a \ {0}). But
ag = 0, and so it follows that a = 0. Hence we have the following lemma.

Lemma 2.3. If S is a semigroup with 0 then [0]
c

= {0}.

For a set A, we denote by �
A

(or � if A is understood) the identity relation on A, that is
�

A

= {(a, a) : a 2 A}. Recall that in any group G, the relation ⇠
c

is the usual group conjugacy,
that is a ⇠

c

b if and only if g�1

ag = b for some g 2 G. It follows that in any group G, we have
⇠

c

= � if and only if G is commutative. This result extends to semigroups as follows.
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Theorem 2.4. Let S be a semigroup without zero. Then ⇠
c

= � if and only if S is commutative
and cancellative.

Proof. Since S has no zero, ⇠
c

=⇠
o

. It is clear that if S is commutative and cancellative, then
⇠

c

= �. Conversely, suppose that ⇠
c

= �. Let a, b 2 S. Since (ab)a = a(ba) and (ba)b = b(ab),
we have (ab) ⇠

c

(ba), and hence ab = ba. We have proved that S is commutative. Let a, b, c 2 S

be such that ac = bc. Since S is commutative, ac = bc implies a ⇠
c

b, which in turn implies
a = b. It follows that S is cancellative.

Theorem 2.4 is not true for semigroups with zero. For example, let S = {a, 0} be a 2-element
semigroup with aa = 0. Then S is not cancellative but we already know that [0]

c

= {0}, so
⇠

c

= �.

3 Restrictive Partial Homomorphisms of Digraphs

The remainder of the paper is devoted to the study of the conjugacy ⇠
c

in several important
semigroups of transformations on a set X (finite or infinite). The main tool in our study will
be the characterization of ⇠

c

in terms of certain partial homomorphisms of directed graphs (see
Theorem 3.8 and Corollary 3.9).

A directed graph (or a digraph) is a pair � = (X,R) where X is a non-empty set (not
necessarily finite) and R is a binary relation on X. Any element x 2 X is called a vertex of �,
and any pair (x, y) 2 R is called an arc of �. We will call a vertex x terminal if there is no y 2 X

such that (x, y) 2 R.
For any mapping f : A ! B, we will denote the domain of f by dom(f) and the image of f

by im(f). For A

1

✓ A, we denote by f |
A1 the restriction of f to A

1

, and by A

1

f the image of
A

1

under f .
Let �

1

= (X
1

, R

1

) and �
2

= (X
2

, R

2

) be digraphs. A mapping � : X

1

! X

2

is called
a homomorphism from �

1

to �
2

if for all x, y 2 X

1

, if (x, y) 2 R

1

, then (x�, y�) 2 R

2

[17].
Generalizing, a partial mapping � from X

1

to X

2

(that is, a mapping � from some subset of X
1

to X

2

) is called a partial homomorphism from �
1

to �
2

if for all x, y 2 X

1

, if (x, y) 2 R

1

and
x, y 2 dom(�), then (x�, y�) 2 R

2

.

Definition 3.1. Let �
1

= (X
1

, R

1

) and �
2

= (X
2

, R

2

) be digraphs. A partial mapping � from
X

1

to X

2

is called a restrictive partial homomorphism (or an rp-homomorphism) from �
1

to �
2

if it satisfies the following conditions for all x, y 2 X

1

:

(a) if (x, y) 2 R

1

, then x, y 2 dom(�) and (x�, y�) 2 R

2

;

(b) if x is a terminal vertex in �
1

and x 2 dom(�), then x� is a terminal vertex in �
2

.

We say that �
1

is rp-homomorphic to �
2

if there is an rp-homomorphism from �
1

to �
2

.

Clearly, every rp-homomorphism from �
1

to �
2

is a partial homomorphism from �
1

to �
2

. It
is also clear that the composition of rp-homomorphisms is an rp-homomorphism.

Remark 3.2. Call a vertex vertex x of a digraph � = (X,R) isolated if there is no y 2 X

such that (x, y) 2 R or (y, x) 2 R. Let � be an rp-homomorphism from �
1

= (X
1

, R

1

) to
�
2

= (X
2

, R

2

). Denote by X

0
1

the set of all vertices in �
1

that are not isolated. Then �0 = �|
X

0
1

is also an rp-homomorphism from �
1

to �
2

.

In picturing directed graphs, we will adopt the convention that the arrows will be deleted with
the understanding that the arrow goes up along the edge, to the right if the edge is horizontal,
and the arrows go counter-clockwise around a cycle. For example, consider the digraphs �

1

=
(X

1

, R

1

), where X

1

= {1, 2, 3, 4} and R

1

= {(2, 3), (3, 4)}, and �
2

= (X
2

, R

2

), where X

2

=
{a, b, c, d} and R

2

= {(a, b), (b, d), (c, d)}. Then a mapping presented in Figure 3.1 is a partial

4



•1

•2

•3

•4

• a

•
b

•
d

• c

@@''

''

Figure 3.1: A partial homomorphism from �
1

to �
2

.

•1

•2

•3

•4

• a

•
b

•
d

• c

//

//

//

Figure 3.2: An rp-homomorphism from �
1

to �
2

.

homomorphism from �
1

to �
2

(but not a restrictive partial homomorphism), and a mapping from
Figure 3.2 is an rp-homomorphism from �

1

to �
2

.
Let ↵ 2 P (X). Then ↵ can be represented by the digraph �(↵) = (X,R

↵

), where for all
x, y 2 X, (x, y) 2 R

↵

if and only if x 2 dom(↵) and x↵ = y [15, Section 1.2]. If x 2 dom(↵)
and x↵ = y, we will write x

↵! y (or x ! y if no ambiguity arises). For ↵ 2 P (X), the set
dom(↵) [ im(↵) will be called the span of ↵ and denoted span(↵).

For example, the digraph in Figure 3.3 represents the transformation

↵ =

✓
1 2 3 4 5 6 7 8 9 . . .

2 3 1 1 1 5 8 9 10 . . .

◆
2 T (X),

where X = {1, 2, 3, . . .} and T (X) is the semigroup of all ↵ 2 P (X) such that dom(↵) = X.

•
1

•2

•3

•5 •4

•6

•
7

•
8

•
9

· · ·•

•

Figure 3.3: The digraph of a transformation.
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Definition 3.3. Any ↵ 2 P (X) with im(↵) = {x} will be called a constant. A subsemigroup S

of P (X) will be called constant rich if for every x 2 X, there is ↵ 2 S such that im(↵) = {x}.

Among the constant rich subsemigroups of P (X), we have P (X) itself (an all its nonzero
ideals), the full transformation semigroup T (X) (and all its ideals), and the symmetric inverse
semigroup I(X) of all injective ↵ 2 P (X) (and all its nonzero ideals).

Notation 3.4. From now on, we will fix a nonempty set X and an element ⇧ /2 X. For ↵ 2 P (X)
and x 2 X, we will write x↵ = ⇧ if and only if x /2 dom(↵). We will also assume that ⇧↵ = ⇧.
With this notation, it will make sense to write x↵ = y� or x↵ 6= y� (↵,� 2 P (X), x, y 2 X)
even when x /2 dom(↵) or y /2 dom(�).

We will also denote by Z, Z
+

, and N the set of integers, positive integers, and nonnegative
integers, respectively, and for semigroups S and T , write S  T to mean that S is a subsemigroup
of T .

Lemma 3.5. Let S  P (X) such that S is constant rich, let ↵ 2 S with ↵ 6= 0, and � 2 S

1.

(1) � 2 P1(↵) if and only if im(↵) ✓ dom(�).

(2) If � 2 P1(↵) and ↵� = �� for some � 2 S, then span(↵) ✓ dom(�) and for all x, y 2 X,

x

↵! y implies x�

�! y�.

Proof. Let S be constant rich. Suppose � 2 P1(↵). Let y 2 im(↵), that is, y = x↵ for some
x 2 dom(↵). Since S is constant rich, there is � 2 S with im(�) = {x}. Then im(�↵) = {y}, and
so �↵ 2 S

1

↵ \ {0}. Thus (�↵)� 6= 0 (since � 2 P1(↵)), which is only possible when y 2 dom(�).
Hence im(↵) ✓ dom(�).

Conversely, suppose im(↵) ✓ dom(�). Let µ↵ 2 S

1

↵ \{0}. Since µ↵ 6= 0, there is x 2 X such
that x(µ↵) 6= 0. But then x(µ↵) = (xµ)↵ 2 im(↵) ✓ dom(�), and so x 2 dom((µ↵)�). Thus
(µ↵)� 6= 0, and so � 2 P1(↵). We have proved (1).

To prove (2), suppose � 2 P1(↵) and ↵� = �� for some � 2 S. Let x, y 2 X and suppose
that x

↵! y. Then, since ↵� = ��, we have

(x�)� = x(��) = x(↵�) = (x↵)� = y�. (3.1)

By (1), im(↵) ✓ dom(�), and so y = x↵ 2 dom(�). Then, by (3.1), x� 6= ⇧, which implies
x 2 dom(�). It follows that span(↵) ✓ dom(�). Moreover, by (3.1) again, (x�)� = y� 6= ⇧, and
so x�

�! y�.

Lemma 3.6. Let ↵,� 2 P (X) and let � be an rp-homomorphism from �(↵) to �(�). Then
span(↵) ✓ dom(�).

Proof. Let x 2 span(↵). If x 2 dom(↵), then x

↵! x↵, and so x, x↵ 2 dom(�) by Definition 3.1. If
x 2 im(↵), then z

↵! x for some z 2 dom(↵), and so z, x 2 dom(�). Hence span(↵) ✓ dom(�).

Lemma 3.7. Let S  P (X) such that S is constant rich, let ↵,� 2 S with ↵ 6= 0, and � 2 S

1.
Then ↵� = �� with � 2 P1(↵) if and only if � is an rp-homomorphism from �(↵) to �(�).

Proof. Suppose ↵� = �� with � 2 P1(↵). Let x, y 2 X and suppose that x
↵! y. Then x�

�! y�

by Lemma 3.5, and so � satisfies (a) of Definition 3.1. Suppose that x is a terminal vertex of �(↵)
and x 2 dom(�). Then x� 2 X and x↵ = ⇧. Since ↵� = ��, we have (x�)� = (x↵)� = ⇧� = ⇧,
and so x� is a terminal vertex in �(�). Hence � satisfies (b) of Definition 3.1. Thus � is an
rp-homomorphism from �(↵) to �(�).

Conversely, suppose that � is an rp-homomorphism from �(↵) to �(�). Let x 2 X. Suppose
x /2 dom(↵). Then x(↵�) = (x↵)� = ⇧� = ⇧. If x /2 dom(�), then x(��) = (x�)� = ⇧� = ⇧.
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If x 2 dom(�), then, by (b) of Definition 3.1, x� is a terminal vertex in �(�), and so x(��) =
(x�)� = ⇧. Hence, in both cases, x(↵�) = x(��).

Suppose x 2 dom(↵) and let y = x↵ 2 X. Then x

↵! y, and so, by Definition 3.1, x, y 2
dom(�) and x�

�! y�. Hence x(↵�) = (x↵)� = y� and x(��) = (x�)� = y�, and so x(↵�) =
x(��). We have proved that ↵� = ��. Finally, since � is an rp-homomorphism from �(↵) to
�(�), we have that span(↵) ✓ dom(�) by Lemma 3.6, and so � 2 P1(↵) by Lemma 3.5.

Theorem 3.8. Let S  P (X) such that S is constant rich, let ↵,� 2 S. Then ↵ ⇠
c

� in S if
and only if there are �, 2 S

1 such that � is an rp-homomorphism from �(↵) to �(�) and  is
an rp-homomorphism from �(�) to �(↵).

Proof. Suppose ↵ ⇠
c

�. If ↵ = 0, then � = 0 (since [0]
c

= {0}), and so � = id
X

2 S

1 is an
rp-homomorphism from �(↵) to �(�). Suppose ↵ 6= 0. Since ↵ ⇠

c

�, there is � 2 P1(↵) such
that ↵� = ��, and so � is an rp-homomorphism from �(↵) to �(�) by Lemma 3.7. A desired
 2 S

1 exists by symmetry.

Conversely, suppose that desired � and  exist. If x
↵! y then x�

�! y�, and if x
�! y then

x 

↵! y . It follows that either ↵ = � = 0 or ↵,� 6= 0. In the former case, we clearly have
↵ ⇠

c

�. Suppose ↵,� 6= 0. Then, by Lemma 3.7, ↵� = �� with � 2 P1(↵) and � =  ↵ with
 2 P1(�), which implies ↵ ⇠

c

�.

Let ↵,� 2 T (X). Then the graph �(↵) has no terminal vertices (if x 2 X, then x

↵! x↵),
and so every homomorphism from �(↵) to �(�) is restrictive. This observation and Theorem 3.8
give us the following corollary.

Corollary 3.9. Let S  T (X) such that S contains all constants, and let ↵,� 2 S. Then ↵ ⇠
c

�

in S if and only if there are �, 2 S

1 such that � is a homomorphism from �(↵) to �(�) and  
is a homomorphism from �(�) to �(↵).

4 Connected Partial Transformations

In this section, we introduce the concept of connected partial transformation. The definitions
and results of this section will be crucial in characterizing conjugacy in various semigroups of
transformations.

Definition 4.1. Let . . . , x�2

, x�1

, x

0

, x

1

, x

2

, . . . be pairwise distinct elements ofX. The following
elements of P (X) will be called basic partial transformations on X.

(1) A cycle of length k (k � 1), written (x
0

x

1

. . . x

k�1

), is an element of P (X) defined by the
digraph x

0

! x

1

! · · · ! x

k�1

! x

0

.

(2) A right ray, written [x
0

x

1

x

2

. . .i, is an element of P (X) defined by the digraph

x

0

! x

1

! x

2

! · · · .

(3) A double ray, written h. . . x�1

x

0

x

1

. . .i, is an element of P (X) defined by the digraph

· · · ! x�1

! x

0

! x

1

! · · · .

(4) A left ray, written h. . . x
2

x

1

x

0

], is an element of P (X) defined by the digraph

· · · ! x

2

! x

1

! x

0

.

(5) A chain of length k (k � 1), written [x
0

x

1

. . . x

k

], is an element of P (X) defined by the
digraph x

0

! x

1

! · · · ! x

k

.

7



By a ray we will mean a double, right, or left ray.

We note the following.

(i) All basic partial transformations are injective.

(ii) The span of a basic partial transformation is exhibited by the notation. For example, the
span of the right ray [1 2 3 . . .i is {1, 2, 3, . . .}.

(iii) The left bracket in “� = [x . . .” indicates that x /2 im(�); while the right bracket in
“� = . . . x]” indicates that x /2 dom(�). For example, for the chain � = [1 2 3 4], dom(�) =
{1, 2, 3} and im(�) = {2, 3, 4}.

(iv) A cycle (x
0

x

1

. . . x

k�1

) di↵ers from the corresponding cycle in the symmetric group of
permutations on X in that the former is undefined for every x 2 X \ {x

0

, x

1

, . . . , x

k�1

}
while the latter is defined on and fixes every such x.

Definition 4.2. An element � 2 P (X) is called connected if � 6= 0 and for all x, y 2 span(�),
x�

k = y�

m 6= ⇧ for some integers k,m � 0 (where �0 = id
X

).

We note that a nonzero � 2 P (X) is connected if and only if the underlying undirected graph
of the digraph �0(�) is connected, where �0(�) is the digraph �(�) with the isolated vertices
removed, and that all basic partial transformations are connected.

Definition 4.3. Let ↵,� 2 P (X). We say that � is contained in ↵ (or ↵ contains or has �),
and write � @ ↵, if dom(�) ✓ dom(↵) and x� = x↵ for every x 2 dom(�). In other words,
� @ ↵ i↵ � = "↵ where " is the identity on the domain of �. We say that ↵ and � are disjoint if
dom(↵) \ dom(�) = ;; they are completely disjoint if span(↵) \ span(�) = ;.

For example, the right ray [3 4 5 6 . . .i and chain [0 1 2 5] in P (Z) are disjoint but not completely
disjoint. Their join [3 4 5 6 . . .i t [0 1 2 5] (see Definition 4.4 below) is connected.

Definition 4.4. Let C be a set of pairwise disjoint elements of P (X). The join of the elements
of C, denoted

F
�2C

�, is an element of P (X) defined by

x

0

@
G

�2C

�

1

A =

⇢
x� if x 2 dom(�) for some � 2 C,
⇧ otherwise.

If C = {�
1

, �

2

, . . . , �

k

} is finite, we may write
F

�2C

� as �
1

t �
2

t · · · t �
k

.

Proposition 4.5. Let ↵ 2 P (X) with ↵ 6= 0. Then there exists a unique set C of pairwise
completely disjoint, connected transformations contained in ↵ such that ↵ =

F
�2C

�.

Proof. Define a relation R on dom(↵) by: (x, y) 2 R if x↵

k = y↵

m 6= ⇧ for some integers
k,m � 0. It is clear that R is an equivalence relation on dom(↵). Let J be a complete set of
representatives of the equivalence classes of R. For every x 2 J , let �

x

= ↵|
xR

, where xR is
the R-equivalence class of x. By the definition of R, each such �

x

is connected, and �
x

and �
y

are completely disjoint for all x, y 2 J with x 6= y. Then the set C = {�
x

: x 2 J} consists of
pairwise completely disjoint, connected transformations contained in ↵, and ↵ =

F
�2C

�.
Suppose D is any set of pairwise completely disjoint, connected transformations contained in

↵ such that ↵ =
F

�2D

�. Let � 2 D and let y 2 dom(�). Then y 2 xR for some x 2 J . We
want to prove that � = �

x

. Let z 2 dom(�). Since � is connected, y�k = z�

m 6= ⇧ for some
k,m � 0. But then, since � is contained in ↵, we have y↵

k = z↵

m 6= ⇧. Hence (y, z) 2 R, and so
z 2 yR = xR = dom(�

x

). We have proved that dom(�) ✓ dom(�
x

).
Suppose to the contrary that dom(�

x

) is not included in dom(�), that is, that there is w 2
dom(�

x

) such that w /2 dom(�). Since �
x

is connected, w�p
x

= y�

q

x

6= ⇧ for some p, q � 0. Let

8



y

i

= y�

i

x

= y↵

i and w

j

= w�

j

x

= w↵

j for i = 0, 1, . . . , p and j = 0, 1, . . . , q. Then y

p

= w

q

and
let u = y

p

= w

q

. With this notation, in the digraph �(↵), we have

y = y

0

! y

1

! · · · ! y

p

= u and w = w

0

! w

1

! · · · ! w

q

= u.

We claim that {y
0

, y

1

, . . . , y

p�1

} ✓ dom(�). If not, then, since y

0

= y 2 dom(�), there would
be i 2 {0, . . . , p � 2} such that y

i

2 dom(�) and y

i+1

/2 dom(�). But y

i+1

2 dom(↵), and so
y

i+1

2 dom(�
1

) for some �
1

2 D. We would then have � 6= �

1

and y

i+1

2 span(�) \ span(�
1

),
which is impossible since � and �

1

are completely disjoint. The claim has been proved. Since
w 2 dom(�

x

) ✓ dom(↵), there is �
2

2 D such that w 2 dom(�
2

). By the foregoing argument
applied to �

2

and {w
0

, w

1

, . . . , w

q�1

}, we obtain {w
0

, w

1

, . . . , w

q�1

} ✓ dom(�
2

). Thus

y

p�1

� = y

p�1

↵ = y

p

= u = w

q

= w

q�1

↵ = w

q�1

�

2

.

Thus we have � 6= �

2

with u 2 im(�) \ im(�
2

), which is a contradiction since � and �

2

are
completely disjoint. We have proved that dom(�

x

) ✓ dom(�), and so dom(�) = dom(�
x

). Now
for all v 2 dom(�) = dom(�

x

), we have v� = v↵ = v�

x

, and so � = �

x

2 C. We have proved that
D ✓ C.

For the reverse inclusion, let �
x

be an arbitrary element of C. Select y 2 dom(�
x

). Then,
there is � 2 D such that y 2 dom(�). By the foregoing argument, we have � = �

x

, and so �
x

2 D.
Hence C ✓ D, and so D = C. We have proved that the set C is unique, which completes the
proof.

Any element of the set C from Proposition 4.5 will be called a connected component of ↵.
We note that the connected components of ↵ correspond to the connected components of the
underlying undirected graph of �(↵) that are not isolated vertices.

Definition 4.6. Let ↵ 2 P (X) and let µ be a basic partial transformation contained in ↵. We
say that µ is maximal in ↵ if for every x 2 span(µ), x /2 dom(µ) implies x /2 dom(↵), and
x /2 im(µ) implies x /2 im(↵). Note that if µ is a cycle or a double ray, then µ is always maximal
in ↵.

For example, consider ↵ = [3 4 5 6 . . .i t [0 1 2 5] 2 P (Z). Then ↵ contains infinitely many
right rays, for example [2 5 6 7 . . .i, but only two of them, namely [3 4 5 6 . . .i and [0 1 2 5 6 7 . . .i
are maximal. Also, ↵ contains infinitely many chains, for example [3 4 5 6], but none of them is
maximal.

We will now establish which combinations of basic partial transformations can occur in a
connected element of P (X).

Lemma 4.7. Let � 2 P (X) be connected.

(1) If � has a cycle (x
0

x

1

. . . x

k�1

), then for every x 2 dom(�), x�m = x

0

for some m � 0.

(2) If � has a right ray [x
0

x

1

x

2

. . . i or a double ray h. . . x�1

x

0

x

1

. . .i, then for every x 2
dom(�), x�m = x

i

for some m, i � 0.

(3) If � has a maximal chain [x
k

. . . x

1

x

0

] or a maximal left ray h. . . x
2

x

1

x

0

], then for every
x 2 span(�), x�m = x

0

for some m � 0.

Proof. Suppose � has a cycle (x
0

x

1

. . . x

k�1

) and let x 2 dom(�). Since � is connected, x�p =
x

0

�

q for some p, q � 0. Since x

0

lies on the cycle (x
0

x

1

. . . x

k�1

), we may assume that 0  q 
k � 1. Thus for m = p+ k � q, we have

x�

m = x�

p+k�q = (x�p)�k�q = (x
0

�

q)�k�q = x

q

�

k�q = x

0

.

Suppose � has a right ray [x
0

x

1

x

2

. . .i and let x 2 dom(�). Since � is connected, x�m =
x

0

�

i = x

i

for some m, i � 0. A proof in the case of a double ray is the same.
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Suppose � has a chain [x
k

. . . x

1

x

0

] and let x 2 span(�). Since � is connected, x�p = x

0

�

q 6= ⇧
for some p, q � 0. Note that q must be 0 (since x

0

�

q = ⇧ for every q � 1). Thus x�p = x

0

�

0 = x

0

.
The proof in the case of a maximal left ray is the same.

Proposition 4.8. Let � 2 P (X) be connected.

(1) If � has a cycle, then the cycle is unique and � does not have any double rays or rights rays
or maximal chains or maximal left rays.

(2) If � has a double ray, then it does not have any maximal chains or maximal left rays.

(3) If � has a right ray, but no double rays, then it has a maximal right ray and it does not
have any left rays or maximal chains.

(4) If � has a chain, but no cycles or rays, then it has a maximal chain.

(5) If � has a left ray, but no cycles or double rays, then it has a maximal left ray.

Proof. Suppose that � has a cycle, and let ✓ and # be cycles in �, say ✓ = (x
0

x

1

. . . x

k�1

). Let
y 2 dom(#). By Lemma 4.7, y�p = x

0

for some p � 0. Thus x

0

lies on #, so we may write
# = (y

0

y

1

. . . y

m�1

) with y

0

= x

0

. We may assume that k  m. But then x

i

= x

0

�

i = y

0

�

i = y

i

for every i 2 {0, . . . , k � 1} and y

k�1

� = x

k�1

� = x

0

= y

0

, that is, ✓ = #.
Suppose that � with a cycle (x

0

x

1

. . . x

k�1

) also has a double ray, say h. . . y�1

y

0

y

1

. . .i. By
Lemma 4.7, y

0

�

m = x

0

for some m � 0. But then y

0

�

m+k = (y
0

�

m)�k = x

0

�

k = x

0

= y

0

, which
is a contradiction since y

0

�

m+k = y

m+k

6= y

0

(since m � 0 and k � 1). Thus � does not have
a double ray. This completes the proof of (1) since a connected � with a cycle cannot have any
terminal vertices, and hence cannot have any maximal chains or maximal left rays. Statement
(2) also follows since a connected � with a double ray cannot have terminal vertices either.

Let ⌘ = [x
0

x

1

x

2

. . .i be a right ray in ↵. If ⌘ is not maximal, then x�1

� = x

0

for some
x�1

2 X \ {x
0

, x

1

, . . .}. (If x�1

= x

i

for some i � 0, then � would have a cycle, which is
impossible by (1).) Thus ⌘

1

= [x�1

x

0

x

1

x

2

. . .i is a right ray in ↵. If ⌘
1

is not maximal, then
x�2

� = x�1

for some x�2

2 X \{x�1

, x

0

, x

1

, . . .}, and so ⌘
2

= [x�2

x�1

x

0

x

1

x

2

. . .i is a right ray
in ↵. Continuing this way, we must arrive at a maximal right ray in ↵ (after finitely many steps)
since otherwise ↵ would have a double ray. This completes the proof of (3) since a connected �
with a right ray cannot have any terminal vertices.

To prove (4), let � = [x
0

x

1

. . . x

k

] be a chain in ↵. If x
0

2 im(↵), then, since ↵ has no
left rays, we can use the argument as in the proof of (3) for a right ray to extend � to a chain
�

0 = [x�m

. . . x�1

x

0

x

1

. . . x

k

] such that x�m

/2 im(↵). Similarly, since ↵ has no right rays or
cycles, we can extend �0 to a chain �00 = [x�m

x�m+1

. . . x�1

x

0

x

1

. . . x

k

x

k+1

. . . x

k+p

] such that
x

k+p

/2 dom(↵). Then �

00 is a maximal chain in ↵. We have proved (4). The proof of (5) is
similar.

Remark 4.9. It follows from Proposition 4.8 that as far as the types of basic transformations
go, a connected � 2 P (X) can contain one of the following.

(1) A single cycle and no double rays or right rays or maximal chains or maximal left rays (see
Figure 4.1);

(2) A double ray but no cycles or maximal chains or maximal left rays (see Figure 4.2);

(3) A maximal right ray but no cycles or double rays or left rays or maximal chains (see
Figure 4.3);

(4) A maximal left ray but no cycles or double rays or right rays (see Figure 4.4 and Defini-
tion 4.10);

(5) A maximal chain but no cycles or rays (see Figure 4.5 and Definition 4.10).
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We note that the uniqueness applies only to a cycle. A connected � can have any number (finite
or infinite) of (maximal) chains or (maximal) rays of any type.

•

•

• ••· · ·

• •

•

•

••

•
.

.

.

•

•

Figure 4.1: A connected partial transformation with a cycle.

.

.

.

.

.

.

•
.

.

.

•

•

•

•

•

•

•

•

•

•

•
•

•

Figure 4.2: A connected partial transformation with a double ray.

For our purposes, it will not be necessary to distinguish connected partial transformations
that have double rays only or left rays only. (In other words, if a connected � 2 P (X) has a
double ray, then it will not matter whether it has a maximal right ray as well; similarly, if it has
a maximal left ray, then it will not matter whether it has a maximal chain as well.) However,
we will need to distinguish connected transformations that have right rays only, and connected
transformations that have chains only.

Definition 4.10. Let � 2 P (X) be connected. If � satisfies (3) of Remark 4.9, we will say that
� is of (or has) type rro (“right rays only”). If � satisfies (5) of Remark 4.9, we will say that �
is of type cho (“chains only”).

Lemma 4.11. Let � 2 P (X) be connected such that � contains a maximal left ray or it is of
type cho. Then � contains a unique terminal vertex.

Proof. Since � contains a maximal left ray or a maximal chain, it contains a terminal vertex.
Suppose x and y are terminal vertices in �. Since � is connected, x�k = y�

m 6= ⇧ for some
k,m � 0. But since x and y are terminal, this is only possible when k = m = 0. Thus x = y.
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.

.

.

••

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

Figure 4.3: A connected partial transformation of type rro.

.

.

.

•
.

.

.

•

•

•

•

•

•

•

•

•

•

•
•

•

Figure 4.4: A connected partial transformation with a maximal left ray.

Definition 4.12. Let � 2 P (X) be connected such that � has a maximal left ray or is of type
cho. The unique terminal vertex of � established by by Lemma 4.11 will be called the root of �.

For integers a and b, we write a | b if a divides b, that is, if b = ak for some integer k. For
integers a and n with n � 1, we denote by mod(a, n) the unique integer r in {0, 1, . . . , n � 1}
such that a ⌘ r (mod n). We note that

mod(a+ 1, n) =

⇢
mod(a, n) + 1 if mod(a, n) 6= n� 1,
0 if mod(a, n) = n� 1.

(4.1)

Proposition 4.13. Let �, � 2 P (X) be connected such that � has a cycle (x
0

x

1

. . . x

k�1

). Then
�(�) is rp-homomorphic to �(�) if and only if � has a cycle (y

0

y

1

. . . y

m�1

) such that m | k.

Proof. Suppose there is an rp-homomorphism � from �(�) to �(�). Let y

i

= x

i

� for i =

0, 1, . . . , k � 1. Then y

0

�! y

1

�! · · · �! y

k�1

�! y

0

, and so y

0

�

k = y

0

. Let m be the small-
est integer in {1, 2, . . . , k} such that y

0

�

m = y

0

. Then (y
0

y

1

. . . y

m�1

) is a cycle in �. By the
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•

Figure 4.5: A connected partial transformation of type cho.

Division Algorithm, k = mq + r for some q, r 2 N with 0  r < m. Since y

0

�

m = y

0

, we have
y

0

�

mq = y

0

, and so y

0

= y

0

�

k = (y
0

�

mq)�r = y

0

�

r. Thus r = 0 by the definition of m, and so
k = mq, that is, m | k.

Conversely suppose that � has a desired cycle. We will define an rp-homomorphism � from
�(�) to �(�) such that dom(�) = dom(�) and im(�) = {y

0

, y

1

, . . . , y

m�1

}. (Note that dom(�) =
span(�) since � has a cycle.) For x 2 dom(�), let p

x

be the smallest nonnegative integer such
that x�px = x

0

(such p

x

exists by Lemma 4.7), and let q
x

= mod(�p

x

,m). Define � on dom(�)

by x� = y

q

x

. Suppose x

�! z. We consider two possible cases.

Case 1. x = x

0

.

Then p

x

= 0, z = x� = x

0

� = x

1

, and p

z

= k � 1. Thus q

x

= mod(0,m) = 0 and

q

z

= mod(�k + 1,m) = 1 (since m | k, and so �k ⌘ 0 (mod m)). Hence x� = y

0

�! y

1

= z�.

Case 2. x 6= x

0

.

Then, since x

�! z, we have p

z

= p

x

� 1, and so

q

z

= mod(�p

z

,m) = mod(�p

x

+ 1,m). (4.2)

Suppose q

x

= mod(�p

x

,m) 6= m � 1. Then, by (4.1) and (4.2), q
z

= mod(�p

x

+ 1,m) =

mod(�p

x

,m) + 1 = q

x

+ 1, and so x� = y

q

x

�! y

q

x

+1

= y

q

z

= z�.
Suppose q

x

= mod(�p

x

,m) = m � 1. Then �p

x

⌘ �1 (mod m), and so p

x

⌘ 1 (mod m).
Thus p

x

= tm + 1 for some integer t, and so p

z

= p

x

� 1 = tm. Hence q

z

= mod(�p

z

,m) =

mod(�tm,m) = 0, and so x� = y

q

x

= y

m�1

�! y

0

= y

q

z

= z�.

Thus, in both cases, x�
�! x�, and so � is an rp-homomorphism. (Condition (b) of Defini-

tion 3.1 is satisfied since �(�) does not have any terminal vertices.)

Lemma 4.14. Let �, � 2 P (X) be connected such that � has a cycle (y
0

y

1

. . . y

m�1

). Suppose �
has a double ray or � is of type rro. Then �(�) is rp-homomorphic to �(�).

Proof. Suppose � has a double ray µ = h. . . x�1

x

0

x

1

. . .i. We will define an rp-homomorphism �

from �(�) to �(�) such that dom(�) = dom(�) and im(�) = {y
0

, y

1

, . . . , y

m�1

}. For x 2 dom(�),
let p

x

be the smallest nonnegative integer such that x�

p

x = x

i

for some i (such p

x

exists by

Lemma 4.7), and let q

x

= mod(i � p

x

,m). Define � on dom(�) by x� = y

q

x

. Suppose x

�! z.
We consider two possible cases.

Case 1. x = x

i

for some i 2 Z.
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Then p

x

= 0, z = x� = x

i

� = x

i+1

, and p

z

= 0. Thus q
x

= mod(i,m) and q

z

= mod(i+1,m).

If q
x

6= m�1, then q

z

= q

x

+1, and so x� = y

q

x

�! y

q

x

+1

= y

q

z

= z�. if q
x

= m�1, then q

z

= 0,

and so x� = y

q

x

= y

m�1

�! y

0

= y

q

z

= z�.

Case 2. x 6= x

i

for every i 2 Z.
Then, since x

�! z, we have p

z

= p

x

� 1 with x�

p

x = z�

p

z = i, and so

q

z

= mod(i� p

z

,m) = mod(i� p

x

+ 1,m). (4.3)

If q
x

6= m� 1, then, by (4.1) and (4.3), q
z

= mod(i� p

x

+ 1,m) = mod(i� p

x

,m) + 1 = q

x

+ 1,

and so x� = y

q

x

�! y

q

x

+1

= y

q

z

= z�. If q
x

= m� 1, then q

z

= 0, and so again x�

�! z�.
Hence, since �(�) has no terminal vertices, � is an rp-homomorphism. The proof in the case

when � has type rro is similar.

Lemma 4.15. Let �, � 2 P (X) be connected. Suppose that � has a double ray and � either has
a double ray or has type rro. Then �(�) is rp-homomorphic to �(�).

Proof. Suppose � has a double ray, say h. . . x�1

x

0

x

1

. . .i, and let h. . . y�1

y

0

y

1

. . .i be a double
ray in �. We will define an rp-homomorphism � from �(�) to �(�) such that dom(�) = dom(�)
and im(�) = {. . . , y�1

, y

0

, y

1

, . . .}. (Note that dom(�) = span(�) since � has a double ray or it
is of type rro.) For x 2 dom(�), let p

x

be the smallest nonnegative integer such that x�px = x

i

for some integer i. Define � on dom(�) by x� = y

i�p

x

where x�

p

x = x

i

. Suppose x

�! z. We
consider two possible cases.

Case 1. x = x

i

for some integer i.

Then p

x

= 0, z = x� = x

i

� = x

i+1

, and p

z

= 0. Thus

x� = y

i�p

x

= y

i

�! y

i+1

= y

i+1�p

z

= z�.

Case 2. x 6= x

i

for every integer i.

Then, since x

�! z, we have p

z

= p

x

� 1 and x�

p

x = z�

p

z = x

i

for some i. Thus

x� = y

i�p

x

�! y

i�p

x

+1

= y

i�p

z

= z�.

Thus, in both cases, x�
�! z�, and so � is an rp-homomorphism since �(�) does not have any

terminal vertices. The proof in the case when � has type rro is similar.

Lemma 4.16. Let �, � 2 P (X) be connected. Suppose that � has a maximal left ray and � either
has a maximal left ray or is of type cho. Then �(�) is rp-homomorphic to �(�).

Proof. Let h. . . y
2

y

1

y

0

] be a maximal left ray in �. Note that y
0

is the root of �. Let x
0

be the
root of �. We will define an rp-homomorphism � from �(�) to �(�) such that dom(�) = span(�)
and im(�) ✓ {. . . , y

2

, y

1

, y

0

}. For x 2 span(�), let p

x

be the smallest nonnegative integer such

that x�

p

x = x

0

(such p

x

exists by Lemma 4.7). Define � on span(�) by x� = y

p

x

. If x
�! z,

then p

z

= p

x

� 1, and so x� = y

p

x

�! y

p

x

�1

= y

p

z

= z�. Further, the only terminal vertex
in �(�) is x

0

and x

0

� = y

0

(since p

x0 = 0), which is a terminal vertex in �(�). Hence � is an
rp-homomorphism.

Lemma 4.17. Let �, � 2 P (X) be connected such that � is of type rro. Suppose �(�) is rp-
homomorphic to �(�). Then � cannot have a maximal left ray or be of type cho.

Proof. Let � be an rp-homomorphism from �(�) to �(�). Select a right ray [x
0

x

1

x

2

. . .i in �.
Suppose to the contrary that � has a maximal left ray or is of type cho. Let y

0

be the root
of �. By Lemma 4.7, (x

0

�)�k = y

0

for some integer k � 0. By Lemma 3.7, �� = ��, and so
(x

0

�)�k+1 = (x
0

�

k+1)� = x

k+1

�. But (x
0

�)�k+1 = (x
0

�)�k� = y

0

� = ⇧, and so x

k+1

� = ⇧,
which is a contradiction. The result follows.
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Proposition 4.18. Let S  P (X) such that S is constant rich, and let ↵,� 2 S with ↵ 6= 0.
Then there is an rp-homomorphism � 2 S

1 from �(↵) to �(�) with dom(�) = span(↵) if and
only if

(a) for every connected component � of ↵, there exist a connected component � of � and an
rp-homomorphism �

�

2 P (X) from �(�) to �(�) with dom(�
�

) = span(�); and

(b)
F

�2C

�

�

2 S

1, where C is the collection of connected components of ↵.

Proof. Suppose there is an rp-homomorphism � 2 S

1 from �(↵) to �(�) such that dom(�) =
span(↵). Let � be a connected component of ↵ and let x 2 span(�). Then, by Proposition 4.5,
x� 2 � for some connected component � of �. We claim that (span(�))� ✓ span(�). Let
z 2 span(�). Since � is connected, x↵k = x�

k = z�

m = z↵

m 6= ⇧ for some integers k,m � 0. By
Lemma 3.7, we have ↵� = ��, and so (z�)�m = (z↵m)� = (x↵k)� = (x�)�k 6= ⇧, which implies
that z� and x� are in the span of the same connected component of �, that is, z� 2 span(�). The
claim has been proved. Let �

�

= �|
span(�)

. Then �
�

is an rp-homomorphism from �(�) to �(�) (by
the claim and the fact that � is an rp-homomorphism from �(↵) to �(�)), dom(�

�

) = span(�)
(by the definition of �

�

), and
F

�2C

�

�

= � 2 S

1 (by the definition of �
�

and the fact that
dom(�) = span(↵)).

Conversely, suppose that (a) and (b) are satisfied. Let � =
F

�2C

�

�

. Note that � is well

defined since �
�

and �
�

0 are disjoint if � 6= �

0. Suppose y

↵! z. Then y, z 2 span(�) for some

connected component � of ↵. Thus y, z 2 dom(�
�

) and y� = y�

�

�! z�

�

= z�, implying

y�

�! z�. Suppose y is a terminal vertex in �(↵) and y 2 dom(�). Then, there is a unique
connected component � of ↵ such that y is a terminal vertex in �(�). Then y� = y�

�

is a
terminal vertex in �(�), and so a terminal vertex in �(�). Hence � is an rp-homomorphism from
�(↵) to �(�). Moreover, dom(�) = span(↵) (by the definition of �) and � 2 S

1 (by (b)).

Lemma 4.19. Let ↵,� 2 P (X) be such that �(↵) is rp-homomorphic to �(�). If ↵ has a cycle
of length k, then � has a cycle of length m such that m | k.

Proof. It follows immediately from Propositions 4.13 and 4.18.

A binary relation R on a set A is called well founded if every nonempty subset B ✓ A contains
an R-minimal element; that is, a 2 B exists such that there is no y 2 B with (y, a) 2 R [21,
page 25]. Let R be a well-founded relation on A. Then there is a unique function ⇢ defined on
A with ordinals as values such that for every x 2 A,

⇢(x) = sup{⇢(y) + 1 : (y, x) 2 R}. (4.4)

The ordinal ⇢(x) is called the rank of x in hA,Ri [21, Theorem 2.27].
For a mapping f : A ! B and b 2 B, we denote by bf

�1 the preimage of b under f .

Definition 4.20. Let � 2 P (X) be connected of type rro or cho. Recall that R

�

is a binary

relation on span(�) defined by (y, x) 2 R

�

if y� = x. (Note that (y, x) 2 R

�

, y

�! x ,
y 2 x�

�1). The relation R

�

is well founded since there is no sequence hx
0

, x

1

, x

2

, . . .i such that

· · · �! x

2

�! x

1

�! x

0

. (See [21, Lemma 5.5].) For x 2 span(�),we will denote the rank of x in
hspan(�), R

�

i by ⇢
�

(x) (or ⇢(x) if � is clear from the context).
It follows from (4.4) that for every x 2 span(�) with ⇢(x) > 0, we have ⇢(y) < ⇢(x) for every

y 2 x�

�1, and if ⌫ = sup{⇢(y) : y 2 x�

�1} then

⇢(x) =

⇢
⌫ + 1 if ⇢(y) = ⌫ for some y 2 x�

�1

,

⌫ if ⇢(y) < ⌫ for every y 2 x�

�1

.

(4.5)
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Example 4.21. Let X = {x
0

, x

1

, x

2

, . . . , y

0

, y

1

, y

2

, . . .} and let

� = [x
0

x

1

x

2

x

3

. . .i t [y
0

x

2

] t [y
1

y

2

x

2

] t [y
3

y

4

y

5

x

2

] t [y
6

y

7

y

8

y

9

x

2

] t · · · 2 P (X).

Then � is connected of type rro and we have: ⇢(x
0

) = 0, ⇢(x
1

) = 1, and ⇢(x
2+i

) = !+ i for every
i � 0, where ! is the smallest infinite ordinal. We also have: ⇢(y

6

) = 0, ⇢(y
7

) = 1, ⇢(y
8

) = 2,
and ⇢(y

9

) = 3.

Example 4.22. Let X = {y
0

, y

1

, y

2

, . . .} [
S1

i=0

{zi
0

, z

i

1

, z

i

2

, . . .}. For every integer i � 0, let

�

i

= [zi
1

z

i

0

] t [zi
2

z

i

3

z

i

0

] t [zi
4

z

i

5

z

i

6

z

i

0

] t [zi
7

z

i

8

z

i

9

z

i

10

z

i

0

] t · · · 2 P (X).

Then each �
i

is connected of type cho and ⇢
�

i

(zi
0

) = !. Further, let

� = (�
0

t [z0
0

y

0

]) t (�
1

t [z1
0

y

1

y

0

]) t (�
2

t [z2
0

y

2

y

3

y

0

]) t (�
3

t [z3
0

y

4

y

5

y

6

y

0

]) t · · · 2 P (X).

Then � is connected of type cho and ⇢
�

(y
0

) = ! + ! = 2!.

We will need the following lemma from the theory of well-founded relations [22, Appendix B].

Lemma 4.23. Let R
1

and R

2

be well-founded relations on A

1

and A

2

, respectively. Suppose a
function f : A

1

! A

2

is such that for all x, y 2 A

1

, if (x, y) 2 R

1

then (xf, yf) 2 R

2

. The for
all x 2 A

1

, ⇢(x)  ⇢(xf).

Notation 4.24. Let � 2 P (X) be connected and let x 2 span(�). We denote by #x the set of
all y 2 span(�) such that x = y�

m for some m � 0. If x 2 im(�), we denote by �
x

the restriction
of � to #x \ {x}. Note that �

x

is connected and it either contains a maximal left ray or is of type
cho, and that, in either case, x is the root of �

x

.

Lemma 4.25. Let �, � 2 P (X) be connected such that � is of type rro or cho and � is contained
in �. Then for every x 2 span(�):

(1) ⇢
�

(x)  ⇢

�

(x);

(2) if � = �

z

for some z 2 im(�), then ⇢
�

(x) = ⇢

�

(x).

Proof. First note that � must be of type rro or cho. Statement (1) follows from Lemma 4.23
with f : span(�) ! span(�) defined by xf = x. To prove (2), we suppose � = �

z

and proceed by
well-founded induction [21, Theorem 2.6]. Let x 2 span(�). The result is true if x is R

�

-minimal
since then x is also R

�

-minimal. Suppose ⇢
�

(y) = ⇢

�

(y) for all y 2 span(�) such that (y, x) 2 R

�

.
Then

⇢

�

(x) = sup{⇢
�

(y) + 1 : (y, x) 2 R

�

} = sup{⇢
�

(y) + 1 : (y, x) 2 R

�

} = ⇢

�

(x),

where the last but one equality follows from the inductive hypothesis and the fact that for � = �

z

,
x�

�1 = x�

�1 for all x 2 span(�).

Proposition 4.26. Let �, � 2 P (X) be connected of type cho with roots x

0

and y

0

, respectively.
Then �(�) is rp-homomorphic to �(�) if and only if ⇢(x

0

)  ⇢(y
0

).

Proof. Suppose there is an rp-homomorphism � from �(�) to �(�). Then � : span(�) ! span(�)

with x

0

� = y

0

, and for all x, y 2 span(�), if x

�! y then x

�! y. Thus ⇢(x
0

)  ⇢(y
0

) by
Lemma 4.23.

Conversely, suppose ⇢(x
0

)  ⇢(y
0

). We will prove that �(�) is rp-homomorphic to �(�) by

transfinite induction on ⇢(x
0

). Let ⇢(x
0

) = 1. Then for every z 2 dom(�), we have z

�! x

0

.

Since ⇢(y
0

) � ⇢(x
0

) = 1, there is some w 2 dom(�) such that w
�! y

0

. Define � on span(�) by:
x

0

� = y

0

and z� = w for every z 2 dom(�). Then clearly � is an rp-homomorphism from �(�)
to �(�).
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Let ⇢(x
0

) = µ > 1 and suppose that for all connected �
1

, �

1

2 P (X) of type cho with roots z
and w, respectively, if ⇢(z) < µ and ⇢(z)  ⇢(w), then �(�

1

) is rp-homomorphic to �(�
1

).
Let z 2 x

0

�

�1 and note that ⇢(z) < µ. Since ⇢(y
0

) � µ, there is w
z

2 y

0

�

�1 such that ⇢(z) 
⇢(w

z

). If z 2 im(�), then �

z

and �

w

z

are connected with ⇢

�

z

(z) = ⇢(z)  ⇢(w
z

) = ⇢

�

w

z

(w
z

),
and so, by the inductive hypothesis, there is an rp-homomorphism �

z

from �(�
z

) to �(�
w

z

). If
z /2 im(�) (that is, if #z = {z}), we define �

z

on #z = {z} by z�

z

= w

z

.
Define � on span(�) by: x

0

� = y

0

and u� = u�

z

if u 2#z for some z 2 x

0

�

�1. Then � is
well-defined since the collection {#z}

z2x0�
�1 is a partition of dom(�) (= span(�)\{x

0

}). Suppose
u

�! v. If v 2#z for some z 2 x

0

�

�1, then u 2#z as well, and so u� = u�

z

�! v�

z

= v�. If

v = x

0

, then u = z 2 x

0

�

�1, and so u� = z� = z�

z

= w

z

�! y

0

= x

0

� = v�. Hence, since
x

0

� = y

0

and x

0

is the unique terminal vertex of �(�), � is an rp-homomorphism from �(�) to
�(�).

Definition 4.27. Let ha
n

i
n�0

and hb
n

i
n�0

be sequences of ordinals (indexed by nonnegative
integers n). We say that hb

n

i dominates ha
n

i if there is k � 0 such that

b

k+n

� a

n

for every n � 0.

Notation 4.28. Let � 2 P (X) be connected of type rro and let ⌘ = [x
0

x

1

x

2

. . .i be a maximal
right ray in �. We denote by h⌘�

n

i
n�0

the sequence of ordinals such that

⌘

�

n

= ⇢

�

(x
n

) for every n � 0.

For example, for � from Example 4.21 and the right ray ⌘ = [x
0

x

1

x

2

. . .i in �, the sequence
h⌘�

n

i is h0, 1, !, ! + 1, ! + 2, ! + 3, . . .i.

Proposition 4.29. Let �, � 2 P (X) be connected of type rro. Then �(�) is rp-homomorphic to
�(�) if and only if there are maximal right rays ⌘ in � and ⇠ in � such that h⇠�

n

i dominates h⌘�
n

i.

Proof. Suppose there is an rp-homomorphism � from �(�) to �(�). Select a maximal right ray

⌘ = [x
0

x

1

x

2

. . .i in � (possible by Proposition 4.8.) Then x

0

�

�! x

1

�

�! x

2

�

�! · · · , and so,
since � does not have any double rays, there is w 2 dom(�) � im(�) such that w�

k = x

0

� for
some k � 0. Thus

⇠ = [y
0

= w y

1

= w� . . . y

k�1

= w�

k�1

y

k

= w�

k = x

0

� y

k+1

= x

1

� y

k+2

= x

2

� . . .i

is a maximal right ray in �. For every n � 0, the mapping �|#x
n

is an rp-homomorphism from
�(�

x

n

) to �(�
y

k+n

) (see Notation 4.24). Thus for every n � 0, we have ⇢
�

x

n

(x
n

)  ⇢

�

y

k+n

(y
k+n

)

by Proposition 4.26, and so ⇢(x
n

)  ⇢(y
k+n

) by Lemma 4.25. Hence h⇠�
n

i dominates h⌘�
n

i.
Conversely, suppose there are maximal right rays ⌘ = [x

0

x

1

x

2

. . .i in � and ⇠ = [y
0

y

1

y

2

. . .i
in � such that h⇠�

n

i dominates h⌘�
n

i, that is, there is k � 0 such that ⇠�
k+n

� ⌘

�

n

for every n � 0.
We define a collection {B

n

}
n�0

of subsets of span(�) by

B

0

= {x
0

}, B

n

=#x
n

� #x
n�1

for n � 1.

Since � is connected, {B
n

}
n�0

is a partition of span(�).
We will now define an rp-homomorphism � from �(�) to �(�) by defining � on B

n

for every
n � 0. First, we set x

0

� = y

k

. Let n � 1. If B
n

= {x
n

}, we set x
n

� = y

k+n

. Suppose |B
n

| � 2.
Let �

n

= �|
B

n

\{x
n

} and �
n

= �

y

k+n

. Then �
n

and �
n

are connected of type cho with roots x

n

and y

k+n

, respectively. By Lemma 4.25,

⇢

�

n

(x
n

)  ⇢

�

(x
n

) = ⌘

�

n

 ⇠

�

k+n

= ⇢

�

(y
k+n

) = ⇢

�

n

(y
k+n

).

Thus, by Proposition 4.26, there is an rp-homomorphism �

n

from �(�
n

) to �(�
n

). Note that
x

n

�

n

= y

k+n

. We define � on B

n

by x� = x�

n

.

17



Suppose x

�! z. Then z 2 B

n

for some n � 0. If x 2 B

n

, then x� = x�

n

�! z�

n

= z� since
�

n

is an rp-homomorphism from �(�
n

) to �(�
n

). If x /2 B

n

, then we must have x = x

n�1

and

z = x

n

, and so x� = x

n�1

� = y

k+n�1

�! y

k+n

= x

n

� = z�.

Hence, in all cases, if x
�! z then x�

�! z�. Thus, since �(�) does not have any terminal
vertices, � is an rp-homomorphism from �(�) to �(�).

The following lemma will be needed in the next section.

Lemma 4.30. Let �, � 2 P (X) be of type rro. Let ⌘ be a maximal right ray in � and ⇠ be a
maximal right ray in � such that h⇠�

n

i dominates h⌘�
n

i. Then for every maximal right ray ⌘
1

in �
and every maximal right ray ⇠

1

in � h(⇠
1

)�
n

i dominates h(⌘
1

)�
n

i.

Proof. Since h⇠�
n

i dominates h⌘�
n

i, there is an integer k � 0 such that

⇠

�

k+n

� ⌘

�

n

for every n � 0.

Let ⌘ = [x
0

x

1

x

2

. . .i and ⇠ = [y
0

y

1

y

2

. . .i. Let ⌘
1

= [w
0

w

1

w

2

. . .i and ⇠

1

= [z
0

z

1

z

2

. . .i be
arbitrary maximal right rays in � and �, respectively. Since � and � are connected, there are
integers l, q,m, p � 0 such that x

l

= x

0

�

l = w

0

�

q = w

q

and y

m

= y

0

�

m = z

0

�

p = z

p

. We may
assume that m � k. Then for every n � 0,

(⇠
1

)�
(p+l)+n

= ⇢

�

(z
p+(l+n)

) = ⇢

�

(y
m+(l+n)

) � ⇢

�

(y
k+(l+n)

) = ⇠

�

k+(l+n)

� ⌘

�

l+n

, and

⌘

�

l+n

= ⇢

�

(x
l+n

) = ⇢

�

(w
q+n

) � ⇢

�

(w
n

) = (⌘
1

)�
n

.

Hence h(⇠
1

)�
n

i dominates h(⌘
1

)�
n

i.

5 Conjugacy in P (X)

In this section we characterize the conjugacy ⇠
c

in the semigroup P (X) of partial transformations
on any nonempty set X (finite or infinite).

In P(X) and, more generally, in any a constant rich subsemigroup S of P (X), the conjugacy
relation ⇠

c

can be reformulated, as a consequence of Lemma 3.5(1), in the following way: given
any ↵,� 2 S, we have ↵ ⇠

c

� in S if and only if there exist �, 2 S

1 such that ↵� = ��

and � =  ↵, with dom(↵�) = dom(↵) and dom(� ) = dom(�). Notice that the semigroup
P (X) can be regarded as a left restriction semigroup with respect to the set of partial identities
E = {id

Y

: Y ✓ X} (see [19] for a survey). Hence P (X) is equipped with a unary operation
+ assigning to any ↵ 2 P (X) the element ↵+ = id

dom(↵)

. Any subsemigroup S of P (X) closed
under + is called a left restriction semigroup. If S is a left restriction semigroup that is also
constant rich, then for all ↵,� 2 S,

↵⇠
c

� , 9�, 2 S

1 : ↵� = �� and � =  ↵,with (↵�)+ = ↵

+ and (� )+ = �

+

.

We now proceed to characterize the conjugacy relation ⇠
c

in P (X) in terms of the basic
partial transformations.

Definition 5.1. Let M be a nonempty subset of the set Z
+

of positive integers. Then M is
partially ordered by the relation | (divides). Order the elements of M according to the usual
“less than” relation: m

1

< m

2

< m

3

< . . .. We define a subset sac(M) of M as follows: for every
integer n, 1  n < |M |+ 1,

m

n

2 sac(M) , (8
i<n

)m
n

is not a multiple of m
i

.

The set sac(M) is a maximal antichain of the poset (M, |). We will call sac(M) the standard
antichain of M .
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For example, if M = {4, 6, 8, 10, 18} then sac(M) = {4, 6, 10}; if M = {1, 2, 4, 8, 16, 32, . . .}
then sac(M) = {1}.

Definition 5.2. Let ↵ 2 P (X) such that ↵ contains a cycle. Let

M = {n 2 Z
+

: (9
x2dom(↵)

) x↵n = x and x↵

i 6= x for every i, 1  i < n}.

Note that M is the set of the lengths of cycles in ↵. The standard antichain of (M, |) will be
called the cycle set of ↵ and denoted by cs(↵). We agree that cs(↵) = ; if ↵ has no cycles.

Theorem 5.3. Let ↵,� 2 P (X). Then ↵⇠
c

� in P (X) if and only if ↵ = � = 0 or ↵,� 6= 0
and the following conditions are satisfied:

(1) cs(↵) = cs(�);

(2) ↵ has a double ray but not a cycle , � has a double ray but not a cycle;

(3a) if ↵ has a connected component � of type rro, but no cycles or double rays, then � has a
connected component � of type rro, but no cycles or double rays, and h⇠�

n

i dominates h⌘�
n

i
for some maximal right rays ⌘ in � and ⇠ in �;

(3b) if � has a connected component � of type rro, but no cycles or double rays, then ↵ has a
connected component � of type rro, but no cycles or double rays, and h⌘�

n

i dominates h⇠�
n

i
for some maximal right rays ⇠ in � and ⌘ in �;

(4) ↵ has a maximal left ray , � has a maximal left ray;

(5a) if ↵ has a connected component � of type cho with root x
0

, but no maximal left rays, then
� has a connected component � of type cho with root y

0

, but no maximal left rays, and
⇢

�

(x
0

)  ⇢

�

(y
0

);

(5b) if � has a connected component � of type cho with root y
0

, but no maximal left rays, then
↵ has a connected component � of type cho with root x

0

, but no maximal left rays, and
⇢

�

(y
0

)  ⇢

�

(x
0

).

Proof. Suppose ↵⇠
c

�. Then, since [0]⇠
c

= {0} in every semigroup with 0, either ↵ = � = 0 or
↵,� 6= 0. Suppose ↵,� 6= 0. Then, by Theorem 3.8, there is an rp-homomorphism � from �(↵)
to �(�). We may assume that dom(�) = span(↵) (see Remark 3.2).

Suppose ↵ has a cycle. Then, by Lemma 4.19, � also has a cycle. Let n 2 cs(↵). Then ↵ has
a cycle of length n, and so � has a cycle of length m such that m |n. By the definition of cs(�),
there is m

1

2 cs(�) such that m
1

|m. Thus � has a cycle of length m

1

, and so ↵ has a cycle of
length n

1

such that n

1

|m
1

, so n

1

|m
1

|m |n. Since cs(↵) is an antichain, n
1

|n and n 2 cs(↵)
implies n

1

= n. Thus n = m

1

, and so n 2 cs(�). We have proved that cs(↵) ✓ cs(�). Similarly,
cs(�) ✓ cs(↵), and so cs(↵) = cs(�). By symmetry, if � has a cycle, then ↵ also has a cycle and
cs(�) = cs(↵). If neither ↵ nor � has a cycle, then cs(↵) = cs(�) = ;. We have proved (1).

Suppose ↵ has a double ray, say h. . . x�1

x

0

x

1

. . .i, but no cycles. Then � does not have a

cycle either by Lemma 4.19, and . . .

�! x�1

�

�! x

0

�

�! x

1

�

�! . . ., where � is a homomorphism
from �(↵) to �(�). The elements . . . , x�1

�, x

0

�, x

1

�, . . . are pairwise disjoint (since otherwise �
would have a cycle), and so h. . . x�1

� x

0

� x

1

� . . .i is a double ray in �. The converse is true by
symmetry. This proves (2).

Suppose that ↵ has a connected component � of type rro, but neither a cycle nor a double ray.
By Proposition 4.18, there is a connected component � of � such that �(�) is rp-homomorphic
to �(�). By (1) and (2), � does not have a cycle or a double ray. By Lemma 4.17, � does not
have a maximal left ray and it is not of type cho. Hence � has type rro. By Proposition 4.29,
there are maximal right rays ⌘ in � and ⇠ in � such that h⇠�

n

i dominates h⌘�
n

i. We have proved
(3a). Condition (3b) holds by symmetry.
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Suppose ↵ has a maximal left ray, say h. . . x
2

x

1

x

0

]. Then . . .

�! x

2

�

�! x

1

�

�! x

0

� and x

0

�

is a terminal vertex in �(�), which implies that h. . . x
2

�x

1

�x

0

�] is a maximal left ray in �. The
converse is true by symmetry. This proves (4).

Suppose ↵ has a connected component � of type cho with root x
0

, but not a maximal left ray.
By Proposition 4.18 and its proof, there is a connected component � of � such that �

�

= �|
span(�)

is an rp-homomorphism from �(�) to �(�). Since x

0

is a terminal vertex in �, y
0

= x

0

�

�

is a
terminal vertex in �. Since � has no maximal left ray (by (3)), � is of type cho and y

0

is the
root of �. By Proposition 4.26, ⇢

�

(x
0

)  ⇢

�

(y
0

). We have proved (5a). Condition (5b) holds by
symmetry.

Conversely, if ↵ = � = 0 then ↵ ⇠
c

�. Suppose that ↵,� 6= 0 and that (1)–(5b) hold. Let
� be a connected component of ↵. We will prove that �(�) is rp-homomorphic to �(�) for some
connected component � of �.

Suppose � has a cycle of length k. Since, by (1), cs(↵) = cs(�), � has a cycle # of lengthm such
that m | k. Let � be the connected component of � containing #. Then �(�) is rp-homomorphic
to �(�) by Proposition 4.13.

Suppose � has a double ray. If some connected component � of � has a cycle, then �(�) is
rp-homomorphic to �(�) by Lemma 4.14. Suppose � does not have a cycle. Then, by (1) and (2),
both ↵ and � have a double ray but not a cycle. Let � be a connected component of � containing
a double ray. Then �(�) is rp-homomorphic to �(�) by Lemma 4.15.

Suppose � is of type rro. If � has some connected component � with a cycle or a double ray,
then �(�) is rp-homomorphic to �(�) by Lemmas 4.14 and 4.15. Suppose � does not have a cycle
or a double ray. Then, by (3a), there is a connected component � in � of type rro such that h⇠�

n

i
dominates h⌘�

n

i for some maximal right rays ⌘ in � and ⇠ in �. Hence �(�) is rp-homomorphic
to �(�) by Proposition 4.29.

Suppose � has a maximal left ray. Then, by (4), some connected component � of � has a
maximal left ray. Then �(�) is rp-homomorphic to �(�) by Lemma 4.16.

Suppose � is of type cho with root x
0

. If � has some connected component � with a maximal
left ray, then �(�) is rp-homomorphic to �(�) by Lemma 4.16. Suppose � does not have a
maximal left ray. Then, by (4), ↵ does not have a maximal left ray, and so, by (5a), there is a
connected component � in � of type cho with root y

0

such that ⇢
�

(x
0

)  ⇢

�

(y
0

). Hence �(�) is
rp-homomorphic to �(�) by Proposition 4.26.

We have proved that for every connected component � of ↵, there exists a connected compo-
nent � of � and an rp-homomorphism �

�

2 P (X) from �(�) to �(�). We may assume that for
every � 2 C(↵), dom(�

�

) = span(�). Hence �(↵) is rp-homomorphic to �(�) by Proposition 4.18.
By symmetry, �(�) is rp-homomorphic to �(↵), and so ↵ ⇠

c

� by Theorem 3.8.

Example 5.4. Let X be an infinite set containing x

0

, y

1

, y

2

, y

3

, . . . and let ↵,� 2 P (X) be the
partial transformations whose digraphs are presented in Figure 5.1. Then ↵ is connected of type
cho with root x

0

, and � = �

1

t �

2

t �

3

t �

4

t · · · , where �
i

is a chain with root y

i

. We have
⇢

�

(x
0

) = !, where � = ↵, and for every integer i � 1, ⇢
�

i

(y
i

) = i. Hence ↵ and � are not
conjugate by (5a) of Theorem 5.3.

Definition 5.5. For ↵ 2 P (X), we define

s(↵) = sup{⇢
�

(x
0

) : � is a connected component of ↵ of type cho with root x
0

},

where we agree that s(↵) = 0 if ↵ has no connected component of type cho.

Suppose ↵,� 2 P (X) have a connected component of type cho, but no cycles or rays. Then,
by Theorem 5.3, if ↵⇠

c

� then s(↵) = s(�). However, the converse is not true. Indeed, consider
↵,� 2 P (X) from Example 5.4 (see Figure 5.1). Then ↵ is connected of type cho with the root
of order !, and � is a join of connected components of type cho (chains) whose roots have orders
1, 2, 3, 4, . . .. Thus s(↵) = s(�) = !, but (↵,�) /2⇠

c

by (5a) of Theorem 5.3. However, if X is
finite and ↵,� 2 P (X) have no cycles, then s(↵) = s(�) does imply ↵⇠

c

�.
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Figure 5.1: The digraphs of ↵ and � from Example 5.4.

The transformations of a finite P (X) have no rays. Hence, Theorem 5.3 gives us the following
corollary.

Corollary 5.6. Let X be finite, and let ↵,� 2 P (X). Then ↵⇠
c

� if and only if cs(↵) = cs(�)
and s(↵) = s(�).

Example 5.7. Let ↵ and � be partial transformations whose digraphs are presented in Fig-
ures 5.2 and 5.3, respectively. Then cs(↵) = cs(�) = {2, 3} and s(↵) = s(�) = 3. Thus ↵⇠

c

� by
Corollary 5.6.

•

• •

•

•

•

•

•

•

•

• •
•

•

• • •
•
•

•

••

•

Figure 5.2: The digraph of ↵ from Example 5.7.
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•
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•

• •
•

•
•

•
•

•

• •

•

•

•

•

•

•

Figure 5.3: The digraph of � from Example 5.7.

Using Theorem 5.3, we will count the conjugacy classes in P (X) for an infinite set X (The-
orem 5.16). We will use the aleph notation for the infinite cardinals, that is, for an ordinal ",
we will write @

"

for the cardinal indexed by ". If @
"

is viewed as an ordinal, we will consistently
write !

"

. This is important because we will need to distinguish between ordinal and cardinal
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arithmetic. For example, !
0

< !

0

+1 (ordinal arithmetic) but @
0

= @
0

+1 (cardinal arithmetic).
It will be always clear from the context which arithmetic is used.

A cardinal @
"

is called singular if there is a limit ordinal # < !

"

and there is an increasing
transfinite sequence h�

⌫

i
⌫<#

of ordinals �
⌫

< !

"

such that !
"

= sup{�
⌫

: ⌫ < #} [20, page 160,
Definition 2.1]. (As in [20], “increasing” means “strictly increasing.”) If @

"

is not singular, then
it is called regular.

For any cardinal @
"

, the cardinal @
"+1

is called the successor cardinal of @
"

. Every successor
cardinal is regular [20, page 162, Theorem 2.4]. The following lemma follows immediately from
this fact and the definition of a regular cardinal.

Lemma 5.8. Let @
"+1

be a successor cardinal and let A be a set of ordinals such that |A| < @
"+1

and � < !

"+1

for every � 2 A. Then sup{� : � 2 A} < !

"+1

.

To prove the counting theorem, we need a series of lemmas.

Lemma 5.9. Let |X| = @
"

and let � 2 P (X) be of type cho with root x
0

. Then ⇢(x
0

) < !

"+1

.

Proof. Let x 2 span(�). We will prove that ⇢(x) < !

"+1

by well-founded induction. If x

is R

�

-minimal, then ⇢(x) = 0 < !

"+1

. Suppose ⇢(y) < !

"+1

for every y 2 x�

�1. Then
⇢(x) = sup{⇢

�

(y) + 1 : (y, x) 2 R

�

} by Lemma 5.8, and the result follows.

Lemma 5.10. Let |X| = @
"

. Then for every nonzero ordinal µ < !

"+1

, there is � 2 P (X) of
type cho with root x

0

such that ⇢(x
0

) = µ.

Proof. Let 0 < µ < !

"+1

. We proceed by transfinite induction. The result is clearly true if µ = 1.
Let µ > 1 and suppose that the result is true for every ordinal � such that 0 < � < µ.

Fix x

0

2 X, let X
0

= X \ {x
0

}, and note that |X
0

| = @
"

. Since µ < !

"+1

, we have |µ|  @
"

.
Thus, since @

"

· @
"

= @
"

and µ = {� : � is an ordinal such that � < µ}, there is a collection
{X

�

}
0<�<µ

of pairwise disjoint subsets of X
0

such that |X
�

| = @
"

for every �.
Let 0 < � < µ. By the inductive hypothesis, there is �

�

2 P (X
�

) of type cho with root x

�

such that ⇢(x
�

) = �. We define � 2 P (X) as follows. Set dom(�) =
S

0<�<µ

span(�
�

). For every
x 2 dom(�), define

x� =

⇢
x�

�

if x 2 dom(�
�

),
x

0

if x = x

�

.

Then � is of type cho, x
0

is the root of �, and x

0

�

�1 = {x
�

: 0 < � < µ}. Let ⌫ = sup{⇢(y) :
y 2 x

0

�

�1}. Then
⌫ = sup{⇢(x

�

) : 0 < � < µ} = sup{� : 0 < � < µ},

where the last equality is true since ⇢(x
�

) = � for every nonzero � < µ. Hence, either µ = ⌫ (if
µ is a limit ordinal) or µ = ⌫ + 1 (if ⌫ = � for some nonzero � < µ). It follows by (4.5) that
⇢(x

0

) = µ.

Lemma 5.11. Let |X| = @
"

and let ha
n

i be an increasing sequence of ordinals a

n

< !

"+1

such
that a

0

= 0. Then there is � 2 T (X) of type rro with a maximal right ray ⌘ such that h⌘�
n

i = ha
n

i.

Proof. Since |X| = @
"

, there is a collection {X
n

}
n�0

of pairwise disjoint subsets of X such that
X

0

= {x
0

} and |X
n

| = @
"

for every n � 1. Let n � 1. By Lemma 5.10, there is �
n

2 P (X
n

) of
type cho with root x

n

such that ⇢
�

n

(x
n

) = a

n

. Define � 2 T (X) by

x� =

8
<

:

x�

n

if x 2 dom(�
n

),
x

n+1

if x = x

n

,

x

1

for any other x.

(See Figure 5.4.) Then � is of type rro (since every �
n

is of type cho). By the definition of �, we
have that ⇢

�

(x
0

) = 0 and ⌘ = [x
0

x

1

x

2

. . .i is a maximal right ray in �. We have already noticed
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that ⇢
�

(x
0

) = 0 = a

0

. We will prove by induction on n that ⇢
�

(x
n

) = a

n

for every n � 1. Let
n = 1. Then, since a

1

� 1,

⇢

�

(x
1

) = max{1, ⇢
�1(x1

)} = max{1, a
1

} = a

1

.

Let n � 1 and suppose ⇢
�

(x
n

) = a

n

. Then

⇢

�

(x
n+1

) = max{⇢
�

(x
n

) + 1, ⇢
�

n+1(xn+1

)} = max{a
n

+ 1, a
n+1

} = a

n+1

,

where the last equality is true since ha
n

i is increasing, and so a

n+1

> a

n

. This concludes the
inductive argument. Thus ⌘�

n

= ⇢

�

(x
n

) = a

n

for every n � 0, which completes the proof.

x
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•
.

.

.

•
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.

.

.

.
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. . .
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.
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Figure 5.4: The digraph of � from Lemma 5.11.

Lemma 5.12. Let @
"+1

be a successor cardinal. Then there is a collection {haµ
n

i}
µ<!

"+1 of
increasing sequences haµ

n

i of ordinals a

µ

n

< !

"+1

such that for all ordinals µ,� < !

"+1

, aµ
0

= 0
and if � < µ then a

�

m

< a

µ

n

for all m,n � 1.

Proof. We construct such a collection by transfinite recursion. We define ha0
n

i = h0, 1, 2, 3, . . .i.
Let µ be an ordinal such that 0 < µ < !

"+1

and suppose ha�
n

i satisfying the hypotheses has
been defined for every ordinal � < µ. Let A = {a�

n

: � < µ and n � 0} and ⌧ = supA. Then
|A| = |µ| ·@

0

< @
"+1

, and so ⌧ < !

"+1

by Lemma 5.8. Define haµ
n

i = h0, ⌧+1, ⌧+2, ⌧+3, . . .i and
note that haµ

n

i is an increasing sequence of ordinals aµ
n

< !

"+1

with a

µ

0

= 0. The construction has
been completed. It is clear from the construction that a

�

m

< a

µ

n

for all �, µ < !

"+1

with � < µ

and all m,n � 1.

Remark 5.13. Let {haµ
n

i}
µ<!

"+1 be a collection from Lemma 5.12. Then it is clear that for all
ordinals �, µ < !

"+1

, if � < µ then ha�
n

i does not dominate haµ
n

i.

Definition 5.14. Let @
"+1

be a successor cardinal. Denote by IS
!

"+1 the set of all increasing
sequences ha

n

i of ordinals a
n

< !

"+1

such that a
0

= 0. Define a relation ⇡ on IS
!

"+1 by

ha
n

i ⇡ hb
n

i if hb
n

i dominates ha
n

i and ha
n

i dominates hb
n

i.

It is straightforward to show that ⇡ is an equivalence relation on IS
!

"+1 . We denote by [ha
n

i]⇡
the equivalence class of ha

n

i, and by IS⇡
!

"+1
the set of all equivalence classes of ⇡.
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Lemma 5.15. For any successor cardinal @
"+1

, |IS
!

"+1 | = @@0
"+1

and @
"+1

 |IS⇡
!

"+1
|  @@0

"+1

.

Proof. Denote by S

!

"+1 the set of all sequences hs
n

i of ordinals s

n

< !

"+1

. Then S

!

"+1 is

the set of all functions from N to !
"+1

, and so |S
!

"+1 | = |!
"+1

||N| = @@0
"+1

. Since IS
!

"+1 is a

subset of S
!

"+1 , we have |IS
!

"+1 |  @@0
"+1

. Let S

0

!

"+1
be the subset of S

!

"+1 consisting of all

sequences hs
n

i such that s
n

> 0 for all n � 0. Then |S0

!

"+1
| = |S

!

"+1 | = @@0
"+1

. Define a function

f : S0

!

"+1
! IS

!

"+1 by hs
n

if = ha
n

i, where

a

0

= 0 and a

n+1

= a

n

+ s

n

for all n � 0.

Then f is injective (since for all ordinals µ,�
1

,�

2

, if µ+�

1

= µ+�

2

then �
1

= �

2

[20, page 120,
Lemma 5.4]), and so |IS

!

"+1 | � |S0

!

"+1
| = @@0

"+1

. We have proved that |IS
!

"+1 | = @@0
"+1

.

We have |IS⇡
!

"+1
|  |IS

!

"+1 | = @@0
"+1

. Let {haµ
n

i}
µ<!

"+1 be a collection of sequences constructed

as in Lemma 5.12. Then for all ordinals �, µ < !

"+1

, haµ
n

i 2 IS
!

"+1 and if � < µ then ha�
n

i does
not dominate haµ

n

i (see Remark 5.13). It follows that any two di↵erent sequences from the
collection {haµ

n

i}
µ<!

"+1 are in di↵erent equivalence classes of ⇡. Since there are @
"+1

sequences
in the collection, it follows that |IS⇡

!

"+1
| � @

"+1

. This concludes the proof.

We can now prove the counting theorem. For a set A, we denote by P(A) the power set of A.

Theorem 5.16. Let X be an infinite set with |X| = @
"

. Then in P (X) there are:

(1) max{2@0
,@

"+1

} conjugacy classes containing a representative with a cycle, of which @
0

have
a connected representative;

(2) 2@" conjugacy classes containing a representative with a connected component of type rro,
but no cycles, of which at least @

"+1

and at most @@0
"+1

have a connected representative.

(3) @
"+1

conjugacy classes containing a representative with a connected component of type
cho, but no cycles or connected components of type rro, of which @

"+1

have a connected
representative.

In total, there are 2@" conjugacy classes in P (X), of which at least @
"+1

and at most @@0
"+1

have
a connected representative.

Proof. For ↵ 2 P (X), we define i

↵

, j

↵

2 {0, 1} by i

↵

= 1 if ⇢
�

(x
0

) = s(↵) for some connected
component of ↵ of type cho with root x

0

(and i

↵

= 0 otherwise); and j

↵

2 {0, 1} by j

↵

= 1 if ↵
has a double ray (and j

↵

= 0 otherwise).
To prove (1), let A = {[↵]

c

: ↵ 2 P (X) has a cycle}. Let

A

0 = {[↵]
c

2 A : ↵ has no maximal left rays} and A

00 = {[↵]
c

2 A : ↵ has a maximal left ray}.

By Theorem 5.3(4), {A0
, A

00} is a partition of A. Define f 0 : A0 ! P(Z
+

)⇥ (!
"+1

+1)⇥{0, 1} by
([↵)]

c

)f 0 = (cs(↵), s(↵), i
↵

). Then f

0 is well defined and injective by Theorem 5.3 and Lemma 5.9.
(See Definition 5.5 and the discussion following the definition to see why i

↵

is needed.) Similarly,
the mapping f

00 : A00 ! P(Z
+

) ⇥ (!
"+1

+ 1) ⇥ {0, 1} defined by ([↵)]
c

)f 00 = (cs(↵), s(↵), i
↵

) is
well defined and injective. Thus

|A0|  |P(Z
+

)| · |!
"+1

+ 1| · 2 = 2@0 · @
"+1

· 2 = max{2@0
,@

"+1

},

and the same holds for |A00|. Hence

|A| = |A0|+ |A00| = 2|A0|  2max{2@0
,@

"+1

} = max{2@0
,@

"+1

}.

Let P be the set of prime positive integers. For any nonempty subset Q ✓ P , let {✓
q

}
q2Q

be a collection of completely disjoint cycles ✓
q

such that ✓
q

has length q for every q 2 Q. (Such

24



a collection exists since X is infinite.) Define �
Q

2 P (X) by �
Q

=
F

q2Q

✓

q

. For all nonempty
subsets Q

1

, Q

2

✓ P with Q

1

6= Q

2

, we have (�
Q1
,�

Q2
) /2⇠

c

by Theorem 5.3(1). It follows that
|A| � P(P ) = 2@0 . By Lemma 5.10, for every nonzero ordinal µ < !

"+1

, there is �
µ

2 P (X)
of type cho with root x

0

such that ⇢(x
0

) = µ. For all nonzero ordinals �, µ < !

"+1

with
� 6= µ, we have (�

�

, �

µ

) /2⇠
c

by Theorem 5.3(5). It follows that |A| � |!
"+1

| = @
"+1

. Hence
|A| � max{2@0

,@
"+1

}, and so |A| = max{2@0
,@

"+1

}.
Let A

1

= {[�]
c

: � 2 P (X) has a cycle and � is connected}. Fix a subset X

0

= {x
0

, x

1

, . . .}
of X, and for every integer n � 0, define a cycle �

n

= (x
0

x

1

. . . x

n�1

) 2 P (X). Then, by
Proposition 4.8 and Theorem 5.3, A

1

= {[�
0

]
c

, [�
1

]
c

, [�
2

]
c

, . . .}, and so |A
1

| = @
0

. We have
proved (1).

To prove (2), let

B = {[↵]
c

: ↵ 2 P (X) has a connected component of type rro, but no cycles},

and let B
1

be the subset of B consisting of all conjugacy classes [�]
c

2 B such that � is connected.
Fix a double ray ! = h. . . x�1

x

0

x

1

. . .i 2 P (X) and note that

B

1

= {[�]
c

: � 2 P (X) is of type rro} [ {[!]
c

}.

Let B0
1

= {[�]
c

: � 2 P (X) is of type rro}. For every � 2 P (X) of type rro, we fix a maximal right
ray ⌘� in �. Define a function g : B0

1

! IS⇡
!

"+1
by ([�]

c

)g = [h⌘�
n

i]⇡. Note that h⌘�
n

i 2 IS
!

"+1

by Lemma 5.9. Suppose [�
1

]
c

, [�
2

]
c

2 B

0
1

with [�
1

]
c

= [�
2

]
c

. Then, by Theorem 5.3(3) and
Lemma 4.30, the sequences h⌘�1

n

i and h⌘�2
n

i dominate each other, and so [h⌘�1
n

i]⇡ = [h⌘�2
n

i]⇡. We
have proved that g is well defined. The function g is also injective (by Theorem 5.3(3)) and
surjective (by Lemma 5.11). Thus |B0

1

| = |IS⇡
!

"+1
|, and so, by Lemma 5.15, @

"+1

 |B0
1

|  @@0
"+1

.

Then @
"+1

 |B
1

|  @@0
"+1

since |B
1

| = |B0
1

|+ 1.
As to the cardinality of B, clearly |B|  |P (X)| = (@

"

+ 1)@" = 2@" . Let

B

0 = {[↵]
c

2 B : ↵ has no maximal left rays or double rays},
B

00 = {[↵]
c

2 B : ↵ has a maximal left ray but no double rays}.

By Theorem 5.3(3)(4), {B0
, B

00
, {[!]

c

}} is a partition of B.
We will now prove that |B0| � 2@" . Since |B0

1

| � @
"+1

, there is a collection {�
µ

}
µ<!

"+1 of
transformations �

µ

2 P (X) of type rro such that (�
µ

, �

�

) /2 ⇠
c

if µ 6= �. Since |!
"

| = @
"

and
@
"

· @
"

= @
"

, there is a partition {X
µ

}
µ<!

"

of X such that |X
µ

| = |X| = @
"

for every µ < !

"

.
Let µ < !

"

. Since |X
µ

| = |X|, there is a bijection h

µ

: X
µ

! X. We can use h

µ

to obtain a
“copy” of �

µ

in P (X
µ

): define �0
µ

2 P (X
µ

) by

x�

0
µ

= y , (xh
µ

)�
µ

= yh

µ

(for all x, y 2 X

µ

).

Let µ,� < !

"

with µ 6= �. Then (�
µ

, �

�

) /2 ⇠
c

, and so, by Theorem 5.3(3) and Lemma 4.30,
(h⌘

n

i, h⇠
n

i) /2 ⇡ for every maximal right ray ⌘ in �

µ

and every maximal right ray ⇠ in �

�

. It
follows that

(h⌘0
n

i, h⇠0
n

i) /2 ⇡ (5.1)

for every maximal right ray ⌘0 in �0
µ

and every maximal right ray ⇠0 in �0
�

. Let K be a nonempty
subset of !

"

. Select ⌫ = ⌫

K

2 K and a maximal right ray [x
0

x

1

x

2

. . .i in �0
⌫

. Define ↵
K

2 P (X)
by ↵

K

=
F

µ2K

�

0
µ

, and note that ↵
K

does not have a cycle or a double ray. Let K,L be nonempty
subsets of !

"

such that K 6= L. We may assume that there is µ 2 K such that µ /2 L. Consider
�

0
µ

, which is a connected component of ↵
K

. Let �0
�

be any connected component of ↵
L

. Then, by
(5.1), (h⌘0

n

i, h⇠0
n

i) /2 ⇡ for every maximal right ray ⌘0 in �0
µ

and every maximal right ray ⇠0 in �0
�

.
(Note that, by the definition of ↵

K

, this is also true when µ = ⌫

K

or � = ⌫

L

.) Thus (↵
K

,↵

L

) /2 ⇠
c

by Theorem 6.1(3). Hence any two di↵erent transformations from the collection {↵
K

};6=K✓!

"

are in di↵erent equivalence classes of ⇠
c

. Since there are 2@" transformations in the collection,
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it follows that |B0| � 2@" . Hence |B| = |B0|+ |B00|+ |{[!]
c

}| � |B0| � 2@" , and so |B| = 2@" . We
have proved (2).

To prove (3), let C be the set of all [↵]
c

such that ↵ 2 P (X) has a connected compo-
nent of type cho, but no cycles or connected components of type rro. Let C

0 = {[↵]
c

2
C : ↵ has no maximal left rays} and C

00 = {[↵]
c

2 C : ↵ has a maximal left ray}. By Theo-
rem 5.3(4), {C 0

, C

00} is a partition of C. Fix a maximal left ray � = h. . . x
2

x

1

x

0

] 2 P (X) and note
that C 00 = {[�]

c

}. Define h : C 0 ! (!
"+1

+ 1)⇥ {0, 1}⇥ {0, 1} by ([↵)]
c

)h = (s(↵), i
↵

, j

↵

). Then
h is well defined and injective by Theorem 5.3 and Lemma 5.9, and so |C 0|  @

"+1

· 2 · 2 = @
"+1

.
Thus |C| = |C 0|+ |C 00| = |C 0|+ 1  @

"+1

+ 1 = @
"+1

.
Let C

1

be the subset of C consisting of all [�]
c

2 C such that � is connected. Note that
C

1

= {[�]
c

: � 2 P (X) is of type cho} [ {[�]
c

}. As in the proof of (1), we can construct a
collection {�

µ

}
0<µ<!

"+1 of connected elements of P (X) of type cho such that (�
�

, �

µ

) /2⇠
c

if
� 6= µ. Thus |C

1

| � @
"+1

, and so @
"+1

 |C
1

|  |C|  @
"+1

. Hence |C| = |C
1

| = @
"+1

, which
concludes the proof of (3).

The conjugacy classes considered in (1)–(3) cover all conjugacy classes in P (X). Thus, there
are at most max{2@0

,@
"+1

}+2@"+@
"+1

= 2@" conjugacy classes in P (X) (which also follows from
the fact that |P (X)| = 2@"). By (2), there are at least 2@" conjugacy classes, so the number of
conjugacy classes in P (X) is 2@" . By (1)–(3), at least @

"+1

and at most @
0

+@@0
"+1

+@
"+1

= @@0
"+1

of these conjugacy classes have a connected representative. (We point out that if a conjugacy
class has a connected representative, it does not imply that all representatives of this class are
connected.)

6 Conjugacy in T (X)

A characterization of the conjugacy ⇠
c

in the monoid T (X) of full transformations onX is simpler
than that of the conjugacy in P (X) (see Section 5). The reason is that a connected component of
↵ 2 T (X) cannot have a maximal left ray or a maximal chain. Suppose ↵,� 2 T (X) and ↵ ⇠

c

�

in P (X). Then ↵� = �� and � =  ↵ for some rp-homomorphisms � and  . By Lemma 3.5,
X = span(↵) ✓ dom(�) and X = span(�) ✓ dom( ). Therefore, �, 2 T (X), and so ↵ ⇠

c

� in
T (X). In other words, ⇠

c

in T (X) is the restriction of ⇠
c

in P (X) to T (X)⇥ T (X).
These observations and Theorem 5.3 give a characterization of ⇠

c

in T (X)

Theorem 6.1. Let ↵,� 2 T (X). Then ↵⇠
c

� in T (X) if and only if exactly one of the following
conditions is satisfied:

(1) both ↵ and � have a cycle and cs(↵) = cs(�);

(2) both ↵ and � have a double ray but no cycles;

(3) all connected components of both ↵ and � have type rro and:

(a) for every connected component � of ↵, there is a connected component � of � such
that h⇠�

n

i dominates h⌘�
n

i for some maximal right ray ⌘ in � and some maximal right
ray ⇠ in �, and

(b) for every connected component � of �, there is a connected component � of ↵ such
that h⌘�

n

i dominates h⇠�
n

i for some maximal right ray ⇠ in � and some maximal right
ray ⌘ in �.

Example 6.2. Let X = {x
0

, x

1

, x

2

, . . . , y

1

, y

2

, y

3

, . . .} and consider

↵ = [x
0

y

0

x

1

y

1

x

2

y

2

. . .i,
� = [x

0

y

0

x

1

y

1

x

2

y

2

. . .i t [y
1

y

2

x

1

] t [y
3

y

4

y

5

y

6

x

2

] t [y
7

y

8

y

9

y

10

y

11

y

12

x

3

] t · · ·
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in T (X) (see Figure 6.1). We will argue that ↵ and � are not conjugate. Both ↵ and � are
connected of type rro. The only maximal right ray in ↵ is ⌘ = [x

0

y

0

x

1

y

1

x

2

y

2

. . .i with h⌘�
n

i =
hni (where � = ↵). If ↵ and � were conjugate, then h⌘

n

i would dominate h⇠�
n

i (where � = �) for
some maximal right ray ⇠ in �, and so for all maximal right rays ⇠ in � (see Lemma 4.30 below).
The right chain ⇠ = [x

0

y

0

x

1

y

1

x

2

y

2

. . .i is a maximal right chain in � with h⇠�
n

i = h2ni. It is
clear that the sequence hni does not dominate the sequence h2ni. Hence, by Theorem 6.1, ↵ and
� are not conjugate.

�(↵)

•

•

•

•

•
.

.

.

�(�)

•

•

•

•

•
.

.

.

• • • •
• • • •

• • •
• • •

• •
• •

•
•

Figure 6.1: The digraphs of ↵ and � from Example 6.2.

If X is a finite set, then every ↵ 2 T (X) has a cycle. Hence, Theorem 6.1 gives us the
following corollary.

Corollary 6.3. Let X be finite, and let ↵,� 2 T (X). Then ↵⇠
c

� if and only if cs(↵) = cs(�).

Modifying the proof of Theorem 5.16, we can count the number of conjugacy classes in an
infinite T (X).

Theorem 6.4. Let X be an infinite set with |X| = @
"

. Then in T (X) there are:

(1) 2@0 conjugacy classes consisting of transformations with a cycle, of which @
0

have a con-
nected representative;

(2) one conjugacy class consisting of transformations with a double ray but not a cycle;

(3) 2@" conjugacy classes consisting of transformations without a cycle or a double ray, of which
at least @

"+1

and at most @@0
"+1

have a connected representative.

In total, there are 2@" conjugacy classes in T (X), of which at least @
"+1

and at most @@0
"+1

have
a connected representative.

The reason for (1) is that ↵ 2 T (X) does not have any maximal left rays or components of
type cho. Thus, the set A = A

0 [ A

00 from the proof of (1) of Theorem 5.16 reduces to A

0, and
the function f

0 : A0 ! P(Z
+

)⇥ (!
"+1

+ 1)⇥ {0, 1} reduces to f

0 : A0 ! P(Z
+

). The reason for
(2) is that if ↵ 2 T (X) has a double ray but not a cycle, then each component of ↵ either has a
double ray or is of type rro. Any two such transformations are then conjugate by Lemma 4.15
and Proposition 4.18.
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7 Conjugacy in �(X)

By �(X) we mean the subsemigroup of T (X) consisting of injective transformations. IfX is finite,
then �(X) = Sym(X) but this is not the case for an infinite X. The semigroup �(X) is universal
for right cancellative semigroups with no idempotents (except possibly the identity): that is, any
such semigroup can be embedded in �(X) for some X [11, Lemma 1.0]. The semigroup �(X) has
been studied mainly in the context of: ideals and congruences [31, 37]; G(X)-normal semigroups
[29, 30, 35]; Baer-Levi semigroups [32, 33]; BQ-semigroups [23, 36], and centralizers [24, 25]. In
this section, we characterize the conjugacy ⇠

c

in �(X) for an arbitrary set X.
We note that every connected transformation in P (X) that is also injective is a cycle, a ray,

or a chain. Since transformations in �(X) are full, ↵ 2 �(X) cannot contain a maximal left ray
or a maximal chain. These observations give the following lemma.

Lemma 7.1. Let ↵ 2 �(X). Then every connected component of ↵ is a right ray, a double ray,
or a cycle.

The following proposition follows from Lemma 7.1 and Proposition 4.5.

Proposition 7.2. Let ↵ 2 �(X). Then there exist unique sets: A of right rays, B of double
rays, and C of cycles such that the transformations in A[B [C are pairwise completely disjoint
and

↵ =

0

@
G

⌘2A

⌘

1

A t
 
G

!2B

!

!
t
 
G

✓2C

✓

!
.

Let ↵ 2 �(X). We will denote the unique sets A, B, and C from Proposition 7.2 by A

↵

, B
↵

,
and C

↵

, respectively. For n � 1, we will denote by C

n

↵

the subset of C
↵

consisting of cycles of
length n. Note that:

A

↵

= the set of maximal right rays contained in ↵,

B

↵

= the set of double rays contained in ↵,

C

↵

= the set of cycles contained in ↵.

For ⌘ = [x
0

x

1

x

2

. . .i, ! = h. . . x�1

x

0

x

1

. . .i, ✓ = (x
0

x

1

. . . x

k�1

), and any � in �(X), we
define:

⌘�

⇤ = [x
0

� x

1

� x

2

� . . .i, !�⇤ = h. . . x�1

� x

0

� x

1

� . . .i, ✓�⇤ = (x
0

� x

1

� . . . x

k�1

�).

Proposition 7.3. Let ↵,�,� 2 �(X). Then � is a homomorphism from �(↵) to �(�) if and
only if for all ⌘ 2 A

↵

, ! 2 B

↵

, and ✓ 2 C

↵

:

(1) either there is a unique ⌘
1

2 A

�

such that ⌘�⇤ @ ⌘

1

or there is a unique !
1

2 B

�

such that
⌘�

⇤ @ !

1

;

(2) !�⇤ 2 B

�

and ✓�⇤ 2 C

�

.

Proof. Suppose � is a homomorphism from �(↵) to �(�). Let ⌘ = [x
0

x

1

x

2

. . .i 2 A

↵

. Then, since
� is an injective homomorphism, ⌘�⇤ = [x

0

� x

1

� x

2

� . . .i is a right ray in �(�). By the proof of
Proposition 4.18, �|

span(⌘)

is a homomorphism from �(⌘) to �(�) for some connected component �
of �. By Lemma 7.1, either � = ⌘

1

= (y
0

y

1

y

2

. . .i is a right ray in � or � = !

1

= h. . . y�1

y

0

y

1

. . .i
is a double ray in � (� cannot be a cycle since � is injective). In the former case, ⌘�⇤ @ ⌘

1

, and
in the latter case, ⌘�⇤ @ !

1

. The uniqueness of ⌘
1

and !
1

follows from the fact that the elements
of A

�

[B

�

are pairwise completely disjoint. We have proved (1). The proof of (2) is similar.
Conversely, suppose that � satisfies (1) and (2). Then it follows immediately that for all

x, y 2 X, x
↵! y implies x�

�! y�, and so � is a homomorphism from �(↵) to �(�).
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Definition 7.4. Let ↵,� 2 �(X). For a homomorphism � 2 �(X) from �(↵) to �(�), we define
a mapping h

�

: A
↵

[B

↵

[ C

↵

! A

�

[B

�

[ C

�

by:

�h

�

=

8
<

:

⌘ if � 2 A

↵

and ��⇤ @ ⌘ for some ⌘ 2 A

�

,
! if � 2 A

↵

and ��⇤ @ ! for some ! 2 B

�

,
��

⇤ if � 2 B

↵

[ C

↵

.

Note that h
�

is well defined (by Proposition 7.3) and injective (since � is injective).

We will need the following lemma from set theory (whose proof is straightforward).

Lemma 7.5. Let A
1

, B
1

, A
2

, and B

2

be sets such that A
1

\B

1

= ;, A
2

\B

2

= ;, |A
1

|+ |B
1

| 
|A

2

| + |B
2

|, and |B
1

|  |B
2

|. Then there is an injective mapping f : A
1

[ B

1

! A

2

[ B

2

such
that xf 2 B

2

for every x 2 B

1

.

We can now characterize the conjugacy ⇠
c

in �(X).

Theorem 7.6. Let ↵,� 2 �(X). Then ↵⇠
c

� in �(X) if and only if |A
↵

|+ |B
↵

| = |A
�

|+ |B
�

|,
|B

↵

| = |B
�

|, and |Cn

↵

| = |Cn

�

| for every n � 1.

Proof. Suppose ↵ ⇠
c

� in �(X). Then, by Corollary 3.9, there is � 2 �(X) such that � is a
homomorphism from �(↵) to �(�). Define f : A

↵

[ B

↵

! A

�

[ B

�

by �f = �h

�

. (By the
definitions of h

�

and �⇤, �f is indeed in A

�

[ B

�

if � 2 A

↵

[ B

↵

.) The mapping f is injective
(since h

�

is injective), A
↵

\B

↵

= ;, and A

�

\B

�

= ;. Thus

|A
↵

|+B

↵

| = |A
↵

[B

↵

|  |A
�

[B

�

| = |A
�

|+ |B
�

|.

Similarly, |B
↵

|  |B
�

| since g : B
↵

! B

�

defined by !g = !h

�

is well defined and injective.
Let n � 1. Define h : C

n

↵

! C

n

�

by ✓h = ✓h

�

. (If ✓ = (x
0

. . . x

n�1

) 2 C

n

↵

, then ✓h

�

=
✓�

⇤ = (x
0

� . . . x

n�1

�) 2 C

n

�

.) The mapping h is injective, and so |Cn

↵

|  |Cn

�

|. By symmetry,
|A

�

|+ |B
�

|  |A
↵

|+ |B
↵

|, |B
�

|  |B
↵

|, and |Cn

�

|  |Cn

↵

|. Hence the stated equalities hold.
Conversely, suppose |A

↵

|+ |B
↵

| = |A
�

|+ |B
�

|, |B
↵

| = |B
�

|, and |Cn

↵

| = C

n

�

| for every n � 1.
We will define an injective homomorphism � from �(↵) to �(�). By Lemma 7.5, there is an
injective mapping f : A

↵

[B

↵

! A

�

[B

�

such that !f 2 B

�

for every ! 2 B

↵

. For every n � 1,
fix a bijection g

n

: Cn

↵

! C

n

�

. Let n � 1. For all ⌘ 2 A

↵

, ! 2 B

↵

, and ✓ 2 C

n

↵

, we define � on
dom(⌘) [ dom(!) [ dom(✓) in such a way that ⌘�⇤ @ ⌘f , !�⇤ = !f , and ✓�⇤ = ✓g

n

. Note that
this defines � for every x 2 X. By the definition of � and Proposition 7.3, � 2 �(X) and � is a
homomorphism from �(↵) to �(�). By symmetry, there is an injective homomorphism  from
�(�) to �(↵). Hence ↵⇠

c

� by Corollary 3.9.

Example 7.7. Let ↵ and � be partial transformations on an infinite set whose digraphs are
presented in Figures 7.1 and 7.2, respectively. Then |A

↵

| = 1, |B
↵

| = @
0

, |A
↵

|+ |B
↵

| = @
0

, and
|Cn

↵

| = 0 for every n � 1. Also, |A
�

| = 2, |B
�

| = @
0

, |A
�

| + |B
�

| = @
0

, and |Cn

�

| = 0 for every
n � 1. Thus ↵⇠

c

� by Theorem 7.6.

Using Theorem 7.6, we can count the conjugacy classes in �(X). First, we need the following
lemma.

Lemma 7.8. Let X be an infinite set with |X| = @
"

, let ↵ 2 �(X). Then |A
↵

|  @
"

, |B
↵

|  @
"

,
and |Cn

↵

|  @
"

for every n � 1.

Proof. Let Y =
S

⌘2A

↵

dom(⌘) ✓ X. Since the elements of A
↵

are pairwise completely disjoint
and | dom(⌘)| = @

0

for every ⌘ 2 A

↵

, we have

@
"

= |X| � |Y | = |
[

⌘2A

↵

dom(⌘)| = |A
↵

| · @
0

� |A
↵

|.

Thus |A
↵

|  @
"

. The proofs for B
↵

and C

n

↵

(n � 1) are similar.

29



•

•

•

•
.

.

.

.

.

.

•

•

•

•
.

.

.

.

.

.

•

•

•

•
.

.

.

.

.

.

•

•

•

•
.

.

.

· · ·

Figure 7.1: The digraph of ↵ from Example 7.7.
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Figure 7.2: The digraph of � from Example 7.7.

For sets A and B, we denote by A

B the set of all functions from B to A.

Theorem 7.9. Let X be an infinite set with |X| = @
"

. Let  = @
0

+ |"|. Then there are @0

conjugacy classes in �(X), of which two have a connected representative if @
"

= @
0

, and none
has a connected representative if @

"

> @
0

.

Proof. Let K be the set of all cardinals ⌧ such that ⌧  @
"

. Then K contains @
0

finite cardinals
and |"|+ 1 infinite cardinals, hence |K| = @

0

+ |"|+ 1 = @
0

+ |"| = . Let �(X)/⇠
c

be the set of
conjugacy classes of �(X). Define a function f : �(X)/⇠

c

! K

N, where N = {0, 1, 2, . . .}, by

([↵)]
c

)f = (|A
↵

|+ |B
↵

|, |B
↵

|, |C1

↵

|, |C2

↵

|, |C3

↵

|, . . .).

By Theorem 7.6, f is well defined and injective. Thus |�(X)/⇠
c

|  |KN| = |K||N| = 

@0 .
We next define an injective mapping g : KN ! �(X)/⇠

c

. Let

⇠ = (⌧
2

, ⌧

3

, ⌧

4

, . . .) 2 K

N
.

(It will be clear from the definition of g why we begin the indexing with n = 2.) Let ⌧ =
P1

n=2

n⌧

n

(see [20, Chapter 9]). For every n � 2, n⌧
n

 @
"

(since ⌧
n

 @
"

and @
"

is infinite). Thus

⌧ =
1X

n=2

n⌧

n

 @
0

· @
"

= @
"

,

and so @
"

+ ⌧ = @
"

. Hence, there is a collection {X
n

}
n�1

of pairwise disjoint subsets of X such
that

S1
n=1

X

n

= X, |X
1

| = @
"

, and |X
n

| = n⌧

n

for every n � 2. Let n � 2. Since |X
n

| = n⌧

n

,

30



there is a collection C

n

of n-cycles in �(X) such that |C
n

| = ⌧

n

and dom(
F

✓2C

n

✓) = X

n

. Let
↵

n

=
F

✓2C

n

✓. Define a transformation ↵
⇠

on X by

↵

⇠

=
G

n�2

↵

n

t
G

x2X1

(x).

Then ↵ 2 �(X), A
↵

= B

↵

= ;, and C

n

↵

= C

n

for all n � 2. Thus

(|C1

↵

|, |C2

↵

|, |C3

↵

|, |C4

↵

|, . . .) = (@
"

, ⌧

2

, ⌧

3

, ⌧

4

, . . .),

and it follows from Theorem 7.6 that the mapping g : KN ! �(X)/⇠
c

defined by ⇠g = ↵

⇠

is
injective. Hence |�(X)/⇠

c

| � |KN| = |K||N| = 

@0 .
Suppose |X| = @

0

, say X = {x
1

, x

2

, x

3

, . . .}. Then, by Theorem 7.6 and Lemma 7.1,
the only conjugacy classes in �(X) with a connected representative are [(x

1

x

2

x

3

. . .i] and
[h. . . x

6

x

4

x

2

x

1

x

3

x

5

. . .i]. (There is no single cycle in ✓ in �(X) since dom(✓) is finite.)
If |X| > @

0

, then no element ↵ 2 �(X) is connected since dom(↵) = X and the domain of
any right ray, double ray, or cycle has cardinality at most @

0

. The result follows.

8 Problems

The results of this paper prompt a number of problems in combinatorics, semigroups, matrix
theory, and set theory. The first problem asks for the number of conjugacy classes in some
important finite semigroups.

Problem 8.1. Let X be a finite set. Is it possible to find a closed formula that gives the
number of conjugacy classes in T (X), P (X) or I(X) (where I(X) denotes the symmetric inverse
semigroup on X)?

The second problem might attract the attention of experts in set theory.

Problem 8.2. Let X be an infinite set with |X| = @
"

. According to Theorem 6.4, the number
of conjugacy classes in T (X) that have a connected representative is in the interval [@

"+1

,@@0
"+1

].
Is it possible to be more precise and reduce the length of this interval?

In this paper we characterized the conjugate elements in some well-known transformation
semigroups, but there are many other transformation semigroups, or endomorphism monoids of
some relational algebras that may be considered.

Problem 8.3. Characterize ⇠
c

, and calculate the number of conjugacy classes, in other trans-
formation semigroups such as, for example, those appearing in the problem list of [7, Section 6]
or those appearing in the large list of transformation semigroups included in [12]. Especially in-
teresting would be a characterization of the conjugacy classes in the centralizers of idempotents
[5, 6].

The theorems and problems in this paper have natural linear counter-parts.

Problem 8.4. Characterize ⇠
c

in the endomorphism monoid of a (finite or infinite dimensional)
vector space.

Whenever some result holds for both sets and vector spaces the natural step forward is to
prove those results for independence algebras.

Problem 8.5. Characterize ⇠
c

in the endomorphism monoid of a (finite or infinite dimensional)
independence algebra. (For historical notes on the importance of these algebras, see [3, 4]; for
definitions and basic results, see [1, 2, 8, 9, 10, 13, 14, 16]).
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Problem 8.6. The notion of conjugation ⇠
p

defined in (1.2) is very important in symbolic
dynamics in connection with the Williams Conjecture [38]. Characterize ⇠

p

in T (X), P (X)
and I(X) for an infinite set X. (Kudryavtseva and Mazorchuk [26] have characterized ⇠⇤

p

(the
transitive closure of ⇠

p

) in T (X), P (X) and I(X) for a finite X, and in I(X) for a countably
infinite X.)
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[3] J. Araújo, M. Edmundo, and S. Givant, v⇤-Algebras, independence algebras and logic, In-
ternat. J. Algebra Comput. 21 (2011), 1237–1257.
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