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Abstract

Let ⌦ be a set of cardinality n, G a permutation group on ⌦,
and f : ⌦ ! ⌦ a map which is not a permutation. We say that G
synchronizes f if the semigroup hG, fi contains a constant map.

The first author has conjectured that a primitive group synchro-
nizes any map whose kernel is non-uniform. Rystsov proved one in-
stance of this conjecture, namely, degree n primitive groups synchro-
nize maps of rank n � 1 (thus, maps with kernel type (2, 1, . . . , 1)).
We prove some extensions of Rystsov’s result, including this: a prim-
itive group synchronizes every map whose kernel type is (k, 1, . . . , 1).
Incidentally this result provides a new characterization of imprimitive
groups. We also prove that the conjecture above holds for maps of
extreme ranks, that is, ranks 3, 4 and n� 2.

These proofs use a graph-theoretic technique due to the second
author: a transformation semigroup fails to contain a constant map
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if and only if it is contained in the endomorphism semigroup of a
non-null (simple undirected) graph.

The paper finishes with a number of open problems, whose solu-
tions will certainly require very delicate graph theoretical considera-
tions.

1 Introduction

In automata theory, the well-known Černý conjecture states that a syn-
chronizing automaton with n states has a synchronizing word of length
(n� 1)2. (For many references on the growing bibliography on this problem
please see the two websites [21, 23].) Solving this conjecture is equivalent
to prove that given a set S = {f1, . . . , fm} of transformations on a finite set
⌦ := {1, . . . , n}, if S generates a constant, then S generates a constant in a
length (n� 1)2 word on its generators. This conjecture has been established
when hSi is a semigroup in which all its subgroups are trivial [24]. So it
remains to prove the conjecture for semigroups containing non trivial sub-
groups; the case in which the semigroup contains a permutation group is a
particular instance of this general problem. In addition, the known examples
witnessing the optimality of the Černý bound contain a permutation among
the given set of generators S, so they make it especially interesting to study
the cases in which a subset of S generates a permutation group.

Let G be a permutation group on a set ⌦ with |⌦| = n. We say that
G synchronizes a map f on ⌦ if the semigroup hG, fi contains a constant
map. G is said to be synchronizing if G synchronizes every non-invertible
transformation on ⌦. The diameter of a group is the largest diameter of
its Cayley graphs. Taking into account the motivation of the considerations
above, the ultimate goal is to find a classification of the synchronizing groups
and then study those with the largest diameter, since they should assist
the generation of a constant with the lowest diligence. But even when we
forget about the automata motivation of these problems, the classification of
synchronizing groups (a class strictly between primitivity and 2-homogeneity)
and the study of their diameters are very interesting questions in themselves,
as well as extremely demanding (please see [6, 10, 11, 20, 18]).

Let f be a map on ⌦. Recall that the rank of f is |⌦f |,and the kernel

of f is the partition of ⌦ into the inverse images of points in the image of f ;
equivalently, the kernel of f is the partition of ⌦ induced by the equivalence
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relation {(x, y) 2 ⌦⇥ ⌦ | xf = yf}. The kernel type of f is the partition of
n given by the sizes of the parts of the kernel. A partition of ⌦ is uniform if
all its parts have the same size. We will call a map uniform if its kernel is
uniform.

We note that, if a transformation semigroup S contains a transitive group
G but not a constant function, then the image I of a map f of minimal rank
in S is a G-section for the kernel of f , in the sense that Ig is a section
for ker(f), for all g 2 G; in addition, the map f has uniform kernel (see
Neumann [20]).

In [6] the conjecture that a primitive group of permutations of ⌦ syn-
chronizes every non-uniform transformation on ⌦ was proposed. In 1995
Rystsov [22] proved the following particular instance of this conjecture.

Theorem 1 A transitive permutation group G of degree n is primitive if and

only if it synchronizes every map of rank n� 1.

The goal of this paper is to use a graph-theoretic approach due to the
second author to prove the conjecture for maps of extreme rank, that is, their
rank either is close to 1 or close to n.

It is worth pointing out that Rystosov’s Theorem 1 in fact characterizes
primitivity in terms of maps of kernel type (2, 1, . . . , 1); our first result pro-
vides a similar characterization of imprimitivity in terms of maps of kernel
type (k, 1, . . . , 1).

Theorem 2 Let G be a transitive permutation group on a finite set ⌦ and

let k be given with k > 1. Then G is imprimitive with a block of imprimitivity

of size at least k if and only if G fails to synchronize some map f with kernel

type (k, 1, 1, . . . , 1).

This result proves, in particular, that primitive groups synchronize every
map with kernel type (k, 1, 1, . . . , 1).

Our next result concerns synchronization of large rank maps.

Theorem 3 Let G be a primitive permutation group on a finite ⌦, with

|⌦| > 2. Then G synchronizes:

(a) every map of rank n� 2;

(b) every idempotent map with kernel type (3, 2, 1, 1, . . . , 1);
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(c) every map f with kernel type (3, 2, 1, 1, . . . , 1), provided there exists

g 2 G such that rank(fgf) = rank(f).

In the second part of the paper, we turn from maps of large rank to
those of small rank, and prove the following theorem. (The first part of this
theorem is due to Neumann [20], but we will provide an alternative proof.)

Theorem 4 Let G be a primitive group of degree n > 2.

(a) G synchronizes every map of rank 2.

(b) G synchronizes every non-uniform map of rank 3 or 4.

The condition that the map is non-uniform in Theorem 4(b) is necessary:
the group S3 wrS2 of degree 9 (the automorphism group of the 3⇥ 3 grid) is
primitive and fails to synchronize a map of rank 3 (for example, the projection
of the grid onto a diagonal whose kernel classes are the rows).

In Section 2 we introduce the graph, and some basic results about it, that
is going to be our main tool throughout the paper. Section 3 is dedicated to
the proof of Theorem 2, Section 4 to the proof of Theorem 3, and Section 5
to the proof of Theorem 4. The paper ends with a number of open problems
whose solution will certainly require delicate considerations on graph theory,
permutations groups and transformation semigroups.

2 Transformation semigroups and graphs

The critical idea used in this paper is a graph associated to a transformation
semigroup, due to the second author. Let S be a transformation semigroup
on ⌦. Form a graph on the vertex set ⌦ by joining two vertices v and w

if and only if there is no element f of S which maps v and w to the same
point. We denote this graph by Gr(S). Now the following result is almost
immediate (cf. [12]).

Theorem 5 Let S be a transformation semigroup on ⌦ and let Gr(S) be as

above.

(a) S contains a map of rank 1 if and only if Gr(S) is null.

(b) S  End(Gr(S)), and Gr(End(Gr(S))) = Gr(S).
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(c) The clique number and chromatic number of Gr(S) are both equal to

the minimum rank of an element of S.

Proof Regarding (a), the forward direction is obvious. Conversely, let f 2
S be a map of minimal rank, and suppose that rank(f) > 1. For every
x, y 2 ⌦f we have xs 6= ys, for all s 2 S (otherwise rank(fs) < rank(f)
contrary to our assumption). Therefore {x, y} is an edge of Gr(S). It is
proved that if S has no constant, then Gr(S) is not null.

Regarding (b), let f 2 S and let {x, y} be any edge in Gr(S); we claim
that {xf, yf} is an edge in Gr(S) and hence f 2 End(Gr(S)). In fact, if
{xf, yf} is not an edge in Gr(S), then there exists f 0 2 S such that xff 0 =
yff

0, that is, {x, y} is not an edge of Gr(S), contradicting our assumptions.
Now we prove that Gr(End(Gr(S))) ✓ Gr(S). Let {x, y} be an edge in

Gr(End(Gr(S))). This means that xf 6= yf , for all f 2 End(Gr(S)). But we
already proved that S  End(Gr(S)); thus xf 6= yf , for all f 2 S and hence
{x, y} is an edge in Gr(S).

Conversely, to prove that Gr(End(Gr(S))) ◆ Gr(S), let {x, y} be an edge
in Gr(S). Then for every f 2 End(Gr(S)) the set {xf, yf} is an edge of
Gr(S), that is, xf 6= yf , for all f 2 End(Gr(S)). Thus {x, y} is an edge of
Gr(End(Gr(S))) and (b) follows.

Now we prove (c). It is clear that the image of any map f of minimum
rank forms a clique of Gr(S); for if not there would be x, y 2 ⌦f and f

0 2 S

such that xf 0 = yf

0; thus rank(ff 0) would be strictly smaller than rank(f)
and hence f would not be of minimum rank. Let � be the complete graph
contained in Gr(S) and whose vertex set is ⌦f (for a map f of minimum
rank). It is clear that f : Gr(S) 7! � is a morphism; conversely, ◆ : � 7! Gr(S)
such that {x, y}◆ = {x, y} is a morphism. Thus the complete graph � is a
core of Gr(S); it is well known that if a graph has complete core, then the
chromatic number of the graph equals its clique number. The result follows.

Note that (a) is a special case of (c), when the minimum rank is 1. ⇤

In particular, if S = hG, fi for some group G, then G  Aut(Gr(S)).
So, for example, if G is primitive and does not synchronize f , then Gr(S) is
non-null and has a primitive automorphism group, and so is connected.

In this situation, assume that f is an element of minimal rank in S; then
the kernel of f is a partition ⇢ of ⌦, and its image A is a G-section for ⇢

(that is, Ag is a section for ⇢, for all g 2 G). Neumann [20], analysing this
situation, defined a graph � on ⌦ whose edges are the images under G of
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the pairs of vertices in the same ⇢-class. Clearly � is a subgraph of the
complement of Gr(S), since edges in � can be collapsed by elements of S.
Sometimes, but not always, � is the complement of Gr(S).

For the sake of completeness we include here a general lemma on primitive
groups.

Lemma 6 Let G be a primitive group:

(a) if G contains a transposition (v, w), then G is the symmetric group;

(b) if G has degree greater than 5 and contains a double transposition

(v, w)(x, y), then G is 2-transitive.

Proof Regarding (a), suppose G is a primitive group of permutations of
⌦ := {1, . . . , n}. Define a relation on ⌦ as follows: for all x, y 2 ⌦,

x ⇠ y , x = y or (x, y) 2 G.

It is clear that ⇠ is reflexive and symmetric. In addition, if x ⇠ y ⇠ z,
then (x, y), (y, z) 2 G and hence (x, z) = (y, z)(x, y)(y, z) 2 G; thus ⇠ is an
equivalence relation on ⌦. The transpositions generate the symmetric groups
on the equivalence classes. We claim that there is only one equivalence class;
for suppose not and let (x, y) 2 G and A ⇢ ⌦ be an equivalence class. Since
G is primitive there exists g 2 G such that xg 2 A and yg 62 A. Thus
g

�1(x, y)g = (xg, yg) 2 G; thus xg ⇠ yg, a contradiction. It is proved that
there is only one equivalence class and it was already shown above that the
transpositions generate the symmetric group inside each equivalence class.

Regarding (b), we refer the reader to Example 3.3.1 on p.82 of [14]. ⇤

The next lemma has some interest in itself, but it is very important for the
techniques it introduces and that will be used later.

Lemma 7 Let X be a nontrivial graph and let G  Aut(X) be primitive.

Then no two vertices of X can have the same neighbourhood.

Proof For a 2 X denote its neighbourhood by N(a). Suppose that a, b 2
X, with a 6= b, and N(a) = N(b). We are going to use two di↵erent tech-
niques to prove that this leads to a contradiction. The first uses the fact that
the graph has at least one edge; the second uses the fact that the graph is
not complete.
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First technique. Define the following relation on the vertices of the graph:
for all x, y 2 X,

x ⌘ y , N(x) = N(y).

This is an equivalence relation and we claim that ⌘ is neither the universal
relation nor the identity. The latter follows from the fact that by assumption
a and b are di↵erent and N(a) = N(b). Regarding the former, there exist
adjacent vertices c and d (because X is non-null); now c 2 N(d) but c /2
N(c), so c 6⌘ d. As G is a group of automorphisms of X it follows that G

preserves ⌘, a non-trivial equivalence relation, and hence G is imprimitive,
a contradiction.

Second technique. Assume as above that we have a, b 2 X such that
N(a) = N(b). Then the transposition (a, b) is an automorphism of the
graph. By the previous lemma, a primitive group containing a transposition
is the symmetric group and hence X is the complete graph, a contradiction.
⇤

The two techniques in the previous proof are important because we will
use variants on them later.

We conclude this section with a general result about primitive graphs

(those admitting a vertex-primitive automorphism group), which we will use
later in the paper.

Lemma 8 Let � be a non-null graph with primitive automorphism group

G, and having chromatic number r. Then � does not contain a subgraph

isomorphic to the complete graph on r + 1 vertices with an edge removed.

Proof Let c be a colouring of � with r colours. Suppose, by contradiction,
that the set {1, 2, . . . , r, r + 1} of vertices contains all possible edges except
for {r, r+1}. Then {1, . . . , r} is a clique, and so contains one vertex of each
colour; similarly for {1, . . . , r � 1, r + 1}. Since the colors of r and r + 1
are di↵erent from the colors of 1, . . . , r � 1, we conclude that vertices r and
r+1 have the same colour. The same conclusion holds for the image of these
vertices under any element of G.

Now let � be the graph whose edge set is the G-orbit containing {r, r+1}.
Then � is G-invariant and non-empty, but is disconnected, since all its edges
lie within colour classes of the colouring c. This contradicts the primitivity
of G. ⇤
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We note that the hypotheses are both necessary: the complete r-partite
graph with parts of constant size is vertex-transitive and containsKr+1 minus
an edge; and every graph occurs as an induced subgraph of some primitive
graph as proved in the next result.

Proposition 9 Every graph is isomorphic to an induced subgraph of a graph

with primitive automorphism group.

Proof First represent the graph as an intersection graph, that is, the ver-
tices are subsets of a set E, and two vertices are adjacent if the sets are
not disjoint. This was first observed by Szpilrajn-Marczewski [25]; it is most
easily done by taking E to be the edge set of the graph, and identifying each
vertex with the set of edges incident with it.

Now, by adding extra points each in at most one of the sets, we may
assume that all the sets have the same cardinality k.

Now the graph is an induced subgraph of the graph whose vertices are
the k-element subsets of an n-set (where we may assume that n > 2k), two
vertices adjacent if they are not disjoint. The automorphism group of this
graph is the symmetric group Sn, in its primitive action on k-sets. ⇤

3 A characterization of imprimitivity

Rystsov’s Theorem says that every primitive group synchronizes a map of
kernel type (2, 1, . . . , 1). The next theorem generalizes this result by proving
that every primitive group synchronizes a map of kernel type (k, 1, . . . , 1),
for every k such that |⌦| � k � 2.

In fact, using the graph-theoretic techniques of the preceding section we
prove the following characterization of imprimitivity.

Theorem 2 Let G be a transitive permutation group on a finite set ⌦ and

let k be given with k > 1. Then G is imprimitive with a block of imprimitivity

of size at least k if and only if G fails to synchronize some map f with kernel

type (k, 1, 1, . . . , 1).

Proof To prove the theorem in the forward direction, suppose that G is
imprimitive, with blocks of size at least k. LetX be the complete multipartite
graph whose partite classes are the blocks. Then G  Aut(X). Let A be a
subset of a block, with |A| = k, and choose a 2 A. Define f so that bf = a
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for all b 2 A and xf = x for x /2 A. Then f is an endomorphism of X (so
that f cannot be synchronized by G) with kernel type (k, 1, 1, . . . , 1).

Conversely, let G and f be as given, and let A be the kernel class of size
k of G.

By the general observations of the previous section we know that there is
a non-null graph X = Gr(hG, fi) with hG, fi  End(X).

Observe that A is an independent set in X, since A is collapsed to a point
by the endomorphism f . Thus X is not the complete graph and hence, since
X is also not null, we conclude that X is not trivial.

We claim that any two points in A have the same neighbourhood. To see
that letN(x) denote the neighbourhood of x. SinceG  Aut(X) is transitive,
all vertices have the same number of neighbours. Now let Af = {z}. Then,
for any a 2 A, as f 2 End(X) it follows that f maps N(a) to N(z); since
N(a) \ A = ;, f is injective on N(a), and so maps it bijectively to N(z)
(recall from above that the transitivity of G implies that |N(a)| = |N(z)|).
Similarly for another point b 2 A. But z /2 N(z), so f

�1|N(z) is a well defined
bijective map from N(z) to N(a), and also to N(b); so these two sets are
equal. By Lemma 7 this immediately implies that G is imprimitive.

Now recall the G-congruence ⌘ on ⌦ defined in the proof of Lemma 7:
x ⌘ y if and only if N(x) = N(y). Since all elements in A have the same
neighbourhood, we conclude that A is contained in a single ⌘-class. So G is
imprimitive, with a system of blocks (the ⌘-classes) of size at least k. ⇤

4 Primitive groups and large rank maps

The aim of this section is to prove the following theorem.

Theorem 3 Let G be a primitive permutation group on a finite ⌦, with

|⌦| > 2. Then G synchronizes:

(a) every map of rank n� 2;

(b) every idempotent map with kernel type (3, 2, 1, 1, . . . , 1);

(c) every map f with kernel type (3, 2, 1, 1, . . . , 1), provided there exists

g 2 G such that rank(fgf) = rank(f).

The proof of this theorem will be carried out in a sequence of subsections.
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4.1 Proof of Theorem 3(a)

The kernel type of a map of rank n�2 is either (3, 1, 1, . . . , 1) or (2, 2, 1, . . . , 1).
By Theorem 2, a primitive group synchronizes a map with the first kernel
type.

We begin with some general remarks about the case where f is a map
with exactly two non-singleton kernel classes A and B, and G is a primitive
group which fails to synchronize f .

We start with a general lemma.

Lemma 10 Given a primitive group G that does not synchronize a map of

kernel type (p, q, 1, . . . , 1), with p, q � 2. Let A and B be the non-singleton

kernel classes, and K := A [ B. Let S = hG, fi and X = G(S). Then there

must be at least a path or a cycle of length 4 contained in the non-singleton

kernel classes A and B. Moreover, let S = hG, fi and X = Gr(S). Then in

the graph X we have that

(a) there are no isolated points in K;

(b) there cannot be two points of A which each have a single neighbour in

B, these neighbours being equal.

Proof The rank of f must be larger than 2 since, by [20] and/or Theorem
4, G synchronizes every rank 2 map; therefore, A [ B is a proper subset of
⌦. We let S = hG, fi and X = Gr(S). Suppose that Af = x and Bf = y.

...

•

•

A

...

•

B

...

•

•

A

...

•

B

...

•

•

A

...

•

•

B

...

•

•

A

...

•

•

B

...

•

•

A

...

•

•

B

Figure 1: The five possible configurations of the edges in K
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The graph X is non-trivial and has the primitive group G contained in
Aut(X); so X is connected, and hence there exists at least one edge from
A [ B to its complement (recall that A [B is a proper subset of ⌦).

Certainly neither A nor B contain edges of X, since f collapses each one
of them. So X is not complete.

We claim that the set K := A [ B must contain an edge of X. For
suppose not. Take a1, a2 2 A. Then N(a1) ✓ X \ (A [ B) and f is injective
on X \ (A [B). Thus f maps N(a1) injectively into N(x). The transitivity
of G implies that all neighbourhoods have the same size and hence N(a1)f =
N(x); so does N(a2). Thus N(a1) = N(x)f�1 = N(a2), which is impossible
in a primitive group (Lemma 7). It follows that K contains an edge and
hence {x, y} is an edge (since f is an endomorphism of X). Therefore the
edges in K must contain one of the five configurations in figure 1. We are
going to show that only the last two configurations can happen.

First, we claim that any point of K lies on an edge within this set. For
suppose that a 2 A does not; then all its neighbours are outside K, and so
are mapped bijectively by f ; but they are mapped onto N(x) \ {y}, which is
smaller than N(a). It is proved that the first configuration in figure 1 cannot
occur.

Next we claim that there cannot be two points of A which each have a
single neighbour in B, these neighbours being equal. For suppose that a1

and a2 are two such points. Then the sets N(a1) \ B and N(a2) \ B are
mapped injectively, and hence bijectively, to N(x) \ {y}; so we must have
N(a1) \ B = N(a2) \ B. But a1 and a2 have the same neighbour in B;
so their neighbourhoods are equal, which again is impossible in a primitive
group (Lemma 7). It is proved that the second configuration in figure 1
cannot occur.

Also, the induced subgraph on K cannot have two connected components
each consisting of a single edge. For suppose that {a1, b1} and {a2, b2} were
such components. As above, we would have N(a1) \ B = N(a2) \ B and,
similarly, N(b1) \A = N(b2) \A. But then the permutation (a1, a2)(b1, b2) is
an automorphism of the graph. However, a primitive group of degree greater
than 5 containing such an element must be 2-transitive (by Lemma 6) whereas
a non-trivial graph cannot have a 2-transitive automorphism group. ⇤

Now we can prove Theorem 3(a). The kernel type of a map of rank n� 2
is either (3, 1, 1, . . . , 1) or (2, 2, 1, . . . , 1). By Theorem 2, a primitive group
synchronizes a map with the first kernel type.
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Let f be a map of kernel type (2, 2, 1, . . . , 1) and let S = hG, fi and
X = Gr(S). Suppose that Af = x and Bf = y. By the previous result we
already know that K := A [ B must contain a path or a cycle of length 4.
In order to finish the proof we must consider those two cases for the induced
subgraph on K: a path or cycle of length 4, when |A| = 2 = |B|.

Since G  Aut(X) is transitive, X is regular of valency, say, k. Observe
that in each case, the k�1 or k�2 vertices ofN(ai)\K are mapped injectively
to the vertices of N(x) \ {y}, and the k � 1 or k � 2 vertices of N(bi) \K to
the vertices of N(y) \ {x}.

Now the graph Xf is a subgraph of the induced subgraph of X on ⌦f ,
call it X 0, say. Then in X

0 we have removed two vertices, which are incident
with either 2k � 1 or 2k edges, according as they are adjacent or not. So X

0

has at most e� 2k+1 edges, where e is the number of edges of X. We show
that this is incompatible with each of our cases except in one situation.

To get a lower bound for the number of edges of Xf , we simply have to
calculate the size of the image of the edge set of X under f . (Each edge of
X maps to an edge of Xf .) We do this by counting edges collapsed by f .

Consider the case where K induces a path of length 3, say (a1, b1, a2, b2).
Now f collapses the three edges within K to the single edge {x, y}. It maps
the k�1 vertices of N(a1)\K bijectively to N(x)\{y}, and the k�2 vertices
of N(a2) \K injectively inside this set; so k � 2 pairs of edges of this form
collapse. Similarly k � 2 pairs of edges through bi collapse. So the number
of edges of Xf is at least e� (2 + 2(k � 2)) = e� 2k + 2, a contradiction.

Now consider the case where K induces a 4-cycle. The neighbours of
both a1 and a2 outside K are mapped injectively to N(x) \ {y}, so either
k� 2 or k� 3 edges are collapsed, depending on whether the images of these
two sets are equal or not. Similarly for b1 and b2. Moreover, four edges
within K are collapsed to one. So the number of edges of Xf is at least
e� 3� 2(k � 2) = e� 2k + 1. This is just possible, but we see that the sets
N(a1)\K and N(a2)\K must be equal, and similarly N(b1)\K = N(b2)\K.

Now, if we assume that A = {a1, a2} and B = {b1, b2}, the equality of
the neighbourhoods just proved shows that the permutation (a1, a2)(b1, b2)
is an automorphism of X, a contradiction as before. This finishes the proof
of Theorem 3(a). ⇤
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4.2 Proof of Theorem 3(b)

As in the previous subsection, we begin with a more general result. Let f

be a map with kernel type (p, q, 1, . . . , 1) (with p, q > 1) non synchronized
by a primitive group G; let S = hG, fi and X = Gr(S). Suppose, further,
that f is an idempotent. We claim that the induced subgraph on K = A[B

(where A and B are the non-trivial kernel classes) cannot have all possible
edges between A and B.

As in the preceding section, we use the fact that Xf is a subgraph of the
restriction X

0 of X to the image of f . Now the fact that f is an idempotent
means that the points not in the image of f must consist of p � 1 points of
A and q� 1 points of B; by assumption, the induced subgraph on this set is
complete bipartite.

Let e be the number of edges, and k the valency, of X.
In the subgraph X

0, we lose p � 1 vertices of A and q � 1 of B, and so
k(p � q + 2) edges; but of these, (p � 1)(q � 1) are counted twice. So the
number of edges in this graph is

e� k(p+ q � 2) + (p� 1)(q � 1) (1)

Now we consider Xf , and count how many edges collapse to the same
place. The pq edges within K collapse to a single edge, so we lose pq � 1
edges. The p vertices of A each lie on k � q edges outside K, so at most
(p � 1)(k � q) edges are lost; and similarly at most (q � 1)(k � p) edges
through vertices in B. Thus the number of edges in Xf is at least

e� (pq�1)� (p�1)(k�1)� (q�1)(k�p) = e� (p+ q�2)k� (p�1)(q�1),

and this number equals the value found in (1). So all the neighbours of A
outside K are mapped to the same set of k�q vertices. This means that any
two vertices in A have the same neighbours. Therefore any transposition of
two elements in A is an automorphism of X and hence G is the symmetric
group (by Lemma 6); but this is impossible, since G does not synchronize f

while the symmetric group synchronizes every map.

Now we return to the proof of Theorem 3(b), the case p = 2, q = 3.
Lemma 10, (a) and (b), in the preceding section, shows that there are at
least four edges between A and B. One case with four edges is ruled out by
having an isolated vertex in B, and another by having two vertices in B each
with a single common neighbour in A, these neighbours being the same. The
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remarks above rule out the complete bipartite graph. The two cases that
remain are shown in figure 2.

Case 1

•

•

A

•

•

•

B

Case 2

•

•

A

•

•

•

B

Figure 2: The two (im)possible configurations of the edges in K

Now we count some edges, along the same lines as earlier. The graph
induced on ⌦f by X omits three vertices, and so, if e denotes the number of
edges of X, it has at most e�3k+3 edges (with equality if the three vertices
form a triangle).

We count the edges of Xf by seeing how many edges are identified by
f . All the edges within K collapse to a single edge, so we lose 3 or 4 edges.
The other collapsed edges are those with one end in K. The neighbours of
a vertex in A are mapped injectively to N(x) \ {y}, and the neighbours of a
vertex of B to N(y) \ {x}.

Case 1: at most k�2 edges through A, and (k�1)+(k�2) edges through
B; thus at most 3k � 2 identified, at least e� 3k + 2 remain.

Case 2: at most k � 3 through A, and (k � 2) + (k � 2) through B; thus
at most 3k � 3 identified, at least e� 3k + 3 remain.

In Case 2, the fact that we have equality means that the neighbours
outside K of the middle and bottom points of B map to the same k � 2
points of N(y) \ {x}, so these sets are equal. Thus these two points of B
have identical neighbour sets, contradicting primitivity (Lemma 7). So this
case cannot occur.
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Now consider Case 1. Since the bounds di↵er by one, there are two
subcases:

Subcase 1A The number of edges of Xf is e � 3k + 2, which means
that the neighbours outside K of the two vertices in A map to the same k�2
neighbours of x, and so these two neighbour sets are equal. In this case,
the permutation interchanging the two vertices of A and the top and bottom
vertices of B is an automorphism, contradicting proper primitivity.

Subcase 1B The number of edges of Xf is e � 3k + 3, so the bound
is tight. In this case, the three vertices outside the image of f must form
a triangle. This cannot happen if f is an idempotent, since then the three
vertices outside the image of f lie in K, and cannot form a triangle.

The proof of Theorem 3(b) is complete. ⇤

4.3 Proof of Theorem 3(c)

The following result is the main observation underlying Theorem 3(c).

Lemma 11 Let f be a transformation on a finite set ⌦ and let G be a group

of permutations of ⌦. If there exists g 2 G such that rank(fgf) = rank(f),
then there exists an idempotent e 2 hf,Gi such that e and f have the same

kernel.

Proof Pick g 2 G such that rank(fgf) = rank(f), that is, |⌦fgf | = |⌦f |.
Since hf,Gi is finite it follows that there exists a smallest natural n such

that (fg)n belongs to {fg, (fg)2, (fg)3, . . . , (fg)n�1}. Say (fg)n = (fg)m,
with m < n. We claim that (fg)n�m is idempotent.

First, observe that for all natural l we have rank((fg)l) = rank(f). To
see this suppose not and pick the smallest i such that rank(fg)i = rank(f),
but rank(fg)i+1

< rank(f). Observe that if rank(fg)i = rank(f), then we
also have rank(f) = rank(fg)i = rank((fg)i�1

f) (as a permutation in the
end does not change the rank) and hence ⌦(fg)i�1

f = ⌦f . Now

|⌦(fg)i+1| = |⌦(fg)ifg| = |⌦(fg)if | = |⌦(fg)i�1
fgf | = |⌦fgf |.

Thus |⌦f | = |⌦(fg)i| > |⌦(fg)i+1| = |⌦fgf |, a contradiction with the first
sentence of this proof. Thus rank(fg)l = rank(f), for all natural l. In
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particular, rank(fg)m = rank(fg)n�m = rank(f). In addition, ker(fu) ◆
ker(f), for every transformation u. Thus ker(fg)m and ker(fg)m�n both
contain ker(f). As their ranks are equal and we are dealing with finite sets,
it follows that ker(fg)m = ker(fg)n�m = ker(f).

Now, (fg)m = (fg)n = (fg)m(fg)n�m implies that for all x 2 ⌦(fg)m

we have x(fg)n�m = x. In addition, it is obvious that if u = uv, then
⌦u ✓ ⌦v; as (fg)m = (fg)m(fg)n�m we get that ⌦(fg)m ✓ ⌦(fg)n�m and
hence equality follows because rank(fg)m = rank(fg)n�m. It is proved that
⌦(fg)m = ⌦(fg)n�m and we already know that (fg)n�m is the identity on
⌦(fg)m = ⌦(fg)n�m. It follows that (fg)n�m is idempotent. In addition,
since we already proved that ker(fg)n�m = ker f the result follows. ⇤

Now the proof of Theorem 3(c) is immediate. If we have a group G and a
transformation f under the hypothesis of the theorem, then, by the previous
lemma, there exists an idempotent e 2 hf,Gi such that ker(f) = ker(e). By
Theorem 3(b) there exists a constant transformation t such that

t 2 he,Gi(✓ hf,Gi),

so that G synchronizes f .

5 Proof of Theorem 4

The aim of this section is to prove the following theorem.

Theorem 4 Let G be a primitive group of degree n > 2.

(a) G synchronizes every map of rank 2.

(b) G synchronizes every non-uniform map of rank 3 or 4.

Let S be a transformation semigroup on a set of cardinality n which
contains a transitive group G. If f is an element of S of minimum rank r,
then the image of f is an r-clique in Gr(S), and the kernel partition is a
colouring with r colours, and is uniform (so each part has size n/r).

If h is any element of S, then the rank of h is at least r; we can assume
(replacing f by hf if necessary) that the kernel partition of h refines that of
f . We begin with a general result asserting that, if G is primitive, then it is
not possible for just one part of f to be split by the kernel partition of h.
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Theorem 12 Let S be a transformation semigroup containing a primitive

group G, and suppose that the minimum rank of an element of S is r, where

r > 1. Then there cannot be an element of S with rank greater than r whose

kernel partition has r � 1 parts of size n/r.

Proof Let f be an element of rank r in S, and assume that h is an element
whose kernel partition consists of r� 1 parts of the kernel partition of f and
splits the remaining part into at least two.

Let � = Gr(S). We need one further observation about �. We know that
it has clique number r, so the independence number is at most n/r (since �
is vertex-transitive). So, if B is a part of the kernel partition of f , and v a
vertex not in B, then v has at least one neighbour in B (else B [ {v} would
be an independent set).

Let A2, . . . , Ar be the kernel classes of h of size n/r, and A1,1, . . . , A1,m

be the kernel classes into which the class A1 of f is split. Let aj = Ajh and
a1,i = A1,ih.

For j, k > 1, there is an edge between Aj and Ak; and for j > 1 and any
i, there is an edge between A1,i and Aj. Since h is an endomorphism of �,
there are edges between aj and ak for j, k > 1, and between a1,i and aj for
j > 1 and all i. Thus the subgraph on {a1,1, a1,2, a2, . . . , ar} is a complete
graph on r + 1 vertices with an edge removed, contradicting Lemma 8. ⇤

Let S be a transformation semigroup containing a primitive group G, and
suppose that the minimum rank of an element of S is r, where r > 1. If
S contains a map h of rank r + 1, then either rank(hgh) = rank(h), for all
g 2 G, or there exists g 2 G such that rank(hgh) = r. The latter case cannot
happen since only two kernel blocks of h collapse, and hence h would have
r�1 kernel blocks of size n/r, in contradiction with the previous result. The
former case implies that h is uniform (by [20]). But, for r > 1 it is impossible
to have (a1, . . . , ar�1, b1, b2) and (a1, . . . , ar�1, b1+b2) both uniform. We have
proved the following corollary.

Corollary 13 Let S be a transformation semigroup containing a primitive

group G, and suppose that the minimum rank of an element of S is r, where

r > 1. Then S cannot contain an element of rank r + 1.

It is worth observing that this corollary immediately implies the result (proved
by Rystsov) that the degree n > 1 primitive groups on ⌦ synchronize the
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rank n � 1 transformations of ⌦. In fact, if n = 2, every rank n � 1 map
is already a constant and the result holds. If n > 2, then a rank n � 1
map f cannot be uniform and hence, by [20], there exists g 2 G such that
rank(fgf) < rank(f) = n � 1. Thus let n > n � 1 > rk > . . . > r1 be the
possible ranks of the elements in hG, fi. It is clear that for every t 2 hG, fi
and every g 2 G we have rank(tgf) 2 {rank(t), rank(t)� 1}, since the kernel
of f does not allow to collapse more than two elements at once. This implies
that r2 = r1+1. Thus, by Corollary 13, r1 cannot be larger that 1 and hence
hG, fi contains a constant, as claimed.

Proof of Theorem 4 As we have noted, the first part of the theorem is due
to P.M. Neumann [20]. But that result can be easily shown using the graph
Gr(S). If the minimal rank of an element in a transformation semigroup S is
2, then Gr(S) is bipartite, and its automorphism group cannot be primitive
(if n > 2).

Since an element of minimal rank is uniform, we see that if f is non-
uniform of rank 3 then the minimum rank in hG, fi is either 1 (so G synchro-
nizes f) or 2 (so G is imprimitive, since primitive groups synchronize rank 2
maps).

Similarly, if f is non-uniform of rank 4 , then the minimum rank in hG, fi
is 1 (so G synchronizes f), 2 (so G is imprimitive), or 3 (so the preceding
corollary gives a contradiction). ⇤

6 Problems

The major open question regarding the content of this paper is the following
problem.

Problem 1 Is it true that every primitive group of permutations of a finite
set ⌦ synchronizes a non-uniform transformation on ⌦?

Assuming the previous question has an a�rmative answer (as we believe),
an intermediate step in order to prove it would be to solve the following set
of connected problems:

Problem 2 (a) Remove the word idempotent in Theorem 3(b).

(b) Extend Theorem 3(a) to rank n� 3.
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(c) Prove that a primitive group synchronizes every non-uniform map of
rank 5.

(d) Prove that if S = hf,Gi contains a map of minimal rank r, with
rank(f) > r > 1, there can be no map in S of rank r + 2.

Observe that if this conjecture is true, then the previous question is
immediately also true. To see that, assume the conjecture holds and
suppose that f is a rank 5 map. By [20], if r > 1, then r � 3; thus
r 2 {3, 4}. Now the conjecture (if true) implies that r + 2 6= 5, thus
r 6= 3; on the other hand, Corollary 13 implies that r 6= 4. This
implies (modulo the conjecture) that a rank 5 map f either satisfies
rank(fgf) = 5, for all g 2 G, (and hence f is uniform by [20]), or f is
synchronized by any primitive group.

The next class of groups lies strictly between primitive and synchronizing.

Problem 3 Is it possible to classify the primitive groups which synchronize
every rank 3 map?

Note that there are primitive groups that do not synchronize a rank 3
map (see the example immediately before Section 2). And there are non-
synchronizing groups which synchronize every rank 3 map. Take for example
PGL(2, 7) of degree 28; this group is non-synchronizing, but synchronizes
every rank 3 map since 28 is not divided by 3.

Let ⌦ be a finite set of size n and let G be a non-synchronizing primitive
group on ⌦. Let s1 < s2 < . . . < sm be the sequence of all the possible sizes
of the G-regular partitions of ⌦ (that is, for every si there exists a partition
P of ⌦, with |P | = si, and a set S ✓ ⌦, such that Sg is a section for P , for
all g 2 G). The depth of a group is

d(G) :=

⇢
s2 � s1 if m > 1
1 otherwise.

Let n be a natural number. If there exist non-synchronizing groups of degree
n, then define the depth of n as

d(n) := min{d(G) | G is a degree n non-synchronizing primitive group}.

Problem 4 (a) Compute d(n), for every natural number n admitting de-
gree n primitive non-synchronizing groups.
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(b) Let G be a degree n non-synchronizing primitive group with sequence
s1 < s2 < . . . < sm as above. Prove that G synchronizes every rank
s1 + e map (acting on the same set as G), where

e 2 {1, . . . , d(n)} \ {1, . . . , n� 1}.

(Observe that Corollary 13 already implies that this is true for e = 1.)

There are very fast algorithms to decide if a given set of permutations
generate a primitive group.

Problem 5 Find an e�cient algorithm to decide if a given set of permuta-
tions generate a synchronizing group.

Problem 6 Formulate and prove analogues of our results for semigroups of
linear maps on a vector space. Note that linear maps cannot be non-uniform,
but we could ask for linear analogues of results expressed in terms of rank,
such as Theorems 1 and 3(a).

Problem 7 Solve the analogue of Problem 6 for independence algebras (for
definitions and fundamental results see [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 17]).
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