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Abstract. Highly-ordered TiO2 nanotubes (NTs) were synthesized by the electrochemical 

anodization of Ti foils subjected to electropolishing (EP) pre-treatment. We found that the Ti 

surface roughness plays an important role in the onset of pore nucleation in enhancing the local 

focusing effect of the electrical field. Additionally, EP induces the formation of dimple structures 

on the metal surface, which can work as a pre-pattern prior to the anodization. These shallow 

ripples lead to a preferential ordered pore nucleation, offering an organization improvement of the 

anodic oxide NTs. We found that, depending on the EP applied potential, the roughness and the 

spacial period of the ripple-like structures varies from 8 to 2 nm and from 122 to 30 nm, 

respectively. Such tuning allowed us to focus on the influence of the initial Ti pre-surface 

topography features on the NTs length, organization and hexagonal arrangement quality, NTs 

diameter and density. Our results show that an EP under 10 V is the most suitable to obtain a small 

Ti surface roughness, the largest NT length (40% enhancement) and the effective improvement of 

the ordered hexagonal NTs arrays over larger areas. Furthermore, the NTs dimensions (pore 

diameters and density) were found to also depend on the initial Ti surface topography. The use of 

optimized EP allows to obtain highly hexagonal self-ordered samples at a reduced time and cost. 

 

 
1. Introduction 
The electrochemical anodization of Ti to obtain highly-ordered nanotube (NT) arrays of TiO2 continues to 

gain an increasing importance for a large number of applications, such as photoelectrochemical cells for 

H2 production (water splitting) [1,2] and particularly for dye-sensitized solar cells (DSCs) [2]. TiO2 NTs 
have received great attention due to their one dimensional structure which provides a direct and efficient 
path for electrons [1]. 

TiO2 NTs can be obtained by the electrochemical anodization of Ti in fluoride-based electrolytes. The 

addition of ethylene glycol was later found to lead to longer (hundreds of microns) and more ordered 
arrays of TiO2 NTs [3-9]. Differently from the well-known case of Al anodization, the Ti anodization 
presents a non-steady state, due to the out of equilibrium dissolution and oxidation processes on the NT 
bottom and to the additional chemical dissolution process at the NTs top [5,10-14]. This unbalanced 
anodization leads to a maximum TiO2 NTs length, after a given anodizing time. Besides the length, other 
NT parameters are influenced by factors such as the electrolyte type (e.g. electrolyte concentration and 
pH), anodization temperature and applied potential [3-10,15-18]. 

Aiming a degree of order comparable to that of anodic alumina oxide (AAO) at 10 % porosity [19], 

intense research has been performed on the organization and final ordering of TiO2  NTs in a closed- 
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packed hexagonal array [20-24]. The organization of TiO2 NTs is mainly influenced by the Ti foil purity, 

the anodization voltage [21] and the local initial surface morphology of the Ti substrate [22-25]. Regular 

or periodic dimples in a valve metal surface can lead to an improvement of the organization degree of NT 

arrays, inhibiting their random nucleation [25,26]. In this context, the two-step anodization process was 

found to be mandatory to improve organization in AAO and has been widely used to improve the 

structural order of TiO2 NT arrays [20,21,22,27]. On the other hand, an electropolishing (EP) pre- 

treatment of the metal foil prior to the anodization was shown to be highly suitable to induce  a  high 

degree of organization in AAO [27]. In the case of TiO2 NT arrays, several pre-treatments (such as EP, 

mechanical polishing or chemical etching) were also studied targeting smoother Ti surfaces. This ensures 

that a highly homogeneous electric field distribution is obtained over the Ti surface during the initial 

anodization stages, a crucial condition to reach highly ordered NTs arrays [22,23,24,28]. In particular, EP 

pre-treatments were shown to decrease the Ti foil surface roughness, resulting in more uniform NTs  

length and higher NTs density [22,23,24,28]. 

Electropolishing is a well-known technique [29] for metal removal at the micrometer level [30-34] and 

to obtain smooth and highly reflective surfaces. While (mostly) at the industrial level the process is best 

known for the surface bright polish, at the research level other important benefits, often overlooked, arise. 

Besides usual advantages, like microfinishing improvement or size control, the EP surface “waviness” 

offers great promise to improve the organization of anodic oxide nanopores or nanotubes. A new 

overriding application of EP arises to create nanopatterns in the surface of aluminum, titanium,  

zirconium, tantalum and tungsten [32,33], working as a pre-pattern prior to the anodization and ultimately 

leading to highly ordered oxide nanostructures. In fact, the EP of Al foils was shown to be a simple and 

efficient method to induce a high degree of organization in AAO templates, since the produced shallow 

ripple-like structures favor a preferential ordered pore nucleation [27,33,34,36-40]. In Al, the EP process 

has been widely studied and optimized and EP parameters, such as temperature, time, stirring, distance to 

the electrode and electrolyte type, were found to play an important role in the process [35,36]. 

Nevertheless, a parameter of crucial important is the EP applied voltage since its variation can result in 

features like stripes or hexagonally ordered dimples (from 50 to 150 nm) [33-36,40]. However, the 

nanopatterning of a Ti foil by varying the EP potential has been overlooked so far. EP of Ti is usually 

performed using sulphuric acid-based electrolytes, which results in smooth surfaces [31], although other 

EP conditions (e.g. H2SO4/HF electrolyte under an applied voltage of 15 V) lead to organized dimple- 

pattern structure at the Ti surface [33]. 

In this work the growth of TiO2  NTs is optimized by tuning the Ti foil surface roughness using  

different EP conditions, in particular adjusting the EP applied potential (VEP). An integrated approach, 

based on previously optimized anodization parameters [3-18,20-26] and directly focused on the effect of 
the Ti surface roughness and topographic features on the length and organization of the obtained NT  

arrays was here followed. By varying VEP, and comparing with an as-rolled (AR) Ti foil, our results show 
the critical role played by the Ti surface topography and roughness prior to the anodization on the 

maximum NT length and their organization in a regular hexagonal pattern. By tuning VEP, adequate EP 

conditions were found that enables highly ordered hexagonal closed-packed arrays of TiO2 NTs with 

lengths above 100 µm. 

 

 
2. Materials and methods 

 

Ti foils (0.127 mm thick, 99.99+ % purity from AlfaAesar) pieces (1cm2) were ultrasonically cleaned in 

ethanol and deionized water for 10 minutes. Prior to the anodization, the pieces of the as-rolled Ti foil 

were pre-treated by an EP in a H2SO4/HF (8:3) solution, under applied potentials (VEP) between the Ti foil 

and an inert Pt mesh (at a distance of 2.5 cm) for 4 min. Several samples were fabricated with different 

VEP of 5, 10, 15, 18 and 20 V; the solution was mechanically stirred (300 rpm) and kept at room 

temperature [33,41]. The Ti surfaces of all electropolished samples, as well as an as-rolled Ti sample,  

were  analyzed  using  a  Nanoscope  Multimode  Atomic  Force  Microscope  from  Veeco  Instruments. 
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Subsequently, the samples were electrochemically anodized in a home-made anodization cell (two- 

electrodes), where the Ti foil acted as the anode and an inert Pt mesh was used as cathode. The time 

evolution of the current density [j(t)] was monitored during the anodization using a Keithley 2004 

Sourcemeter remotely controlled by a LabView application. The electrochemical anodization was carried 

out for all samples at a constant potential of 60 V for 17 h, in a freshly prepared ethylene glycol solution 

containing NH4F (0.3 wt %) and H2O (2 wt %) at room temperature with mechanical stirring [11]. The 

NTs morphology was evaluated by a FEI Quanta 400FEG Field Emission Scanning Electron Microscopy 

(SEM) using surface top and bottom views and cross-sections for the NTs length calculation. The bottom 

views were obtained by natural peeling-off originating free-standing and non-curling membranes. Using 

SEM images, a statistical analysis (with the ImageJ image processing software) [42] was performed, 

enabling an evaluation of the organization pattern and NT structure dimensions (diameters and density). 

 
 

3. Results and discussion 

1.1. AFM imaging analyses: surface topography and roughness characterization 
The surface topography of the Ti samples with EP pre-treatments at different VEP and one as-rolled was 

investigated by AFM imaging. 1 x 1 µm2 topographic images of Ti surfaces were obtained for each  

sample and then analyzed in terms of surface roughness (Rq), defined as the root-mean-square value of  

the images pixel height. Figure 1 shows illustrative AFM images of the Ti surfaces of each sample, as  

well as the Rq values extracted from the measured topography. For the unpolished sample (AR) we 

observe an irregular surface with a roughness of 8.3 nm, that is slightly increased upon a 5 V EP [Figs. 

1(a) and (b)]. Nonetheless, the latter shows broad random topographic features (hills), whereas the former 

shows steeper hills. In contrast, a significantly smoother surface was obtained in other EP samples, 

particularly the 10 V sample with a Rq of 2.4 nm [Fig. 1 (c)]. By increasing VEP, the Ti foil surface 

became slightly rougher: Rq = 3.4, 4.7 and 3.1 nm measured for samples 15, 18 and 20 V, respectively. 

Additionally, the Ti surface after EP revealed a periodic dimple-pattern structure whenever VEP was no 

smaller than 10 V. This shallow ripple-like structure is an EP characteristic of metals [33,41] and can be 

used as a pre-pattern prior to the anodization to obtain highly ordered oxide nanostructures, as profusely 

shown in the case of Al [27,33-36,40]. In fact, studies in Al foils demonstrated that, by combining 

adequate EP voltage and time, dimple-patterns from striped to hexagonal arrangements can be obtained 

[27,33-36,40]. However, EP of Ti is usually performed in sulphuric acid-based electrolytes that leads to 

smooth and plane surfaces [31]. Nonetheless, EP with HF-electrolytes can also result in organized dimple 

patterns under certain conditions (time, temperature, voltage) [33,41]. 

Our results clearly demonstrate that the EP voltage also determines the ripple-like structures of the Ti 

surface, particularly the inter-ripple spacial period (SP). Figure 1(e) shows AFM images profiles of each 

VEP sample, giving the mean inter-ripple spacial periods: SP5V = 122 nm, SP10V = 97 nm, SP15V = 194 nm, 

SP18V = 30 nm and SP20V = 73 nm. The variation of the Ti surface waviness with VEP allows its adequate 
tuning for particular purposes; in our case we will demonstrate that it makes possible the creation of self- 

organized hexagonal and long TiO2  NTs by a single electrochemical anodization. Ti pre-pattern can be  
the vehicle to achieve in an easy way ordered hexagonally arranged NTs and to enhance the NTs growth 

rate, avoiding the later chemical effects that limit the NTs growth. 

 

1.2. Anodization curves 
1.2.1. Typical growth mechanism. The evaluation of the mechanisms that lead to the formation and growth 

of the NTs can be studied using current density (j) curves [41]. For the samples AR, 5 V and 10 V, these 
curves present the typical behaviour for Ti anodization and the successful formation of TiO2 nanotubes 
(Fig. 2) [3,4,11,20,23]. After applying the anodization potential (60 V), a continuous TiO2 layer is rapidly 
formed increasing the resistance (rapid j decrease). The following slight j-decrease marks the onset of NT 
nucleation, likely on the surface valley-type irregularities where the higher electric field enhances oxide 

dissolution and hole formation (dissolution promoted by F- ions in favourable spots of the TiO2 

surface)[41]. Consequently, the TiO2 layer thickness starts to decrease, while the pores (tubes) formation 
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accelerates. This is evidenced by the increase of j until a maximum is reached (jmax), forming a barrier 

layer at the NTs bottom. Afterwards, the emerging NTs will adjust and compete with each other in a self- 

organization process. 

As the anodization proceeds, the formed NTs grow at a constant rate and the barrier layer thickness (δb) 
would remain constant if Ti oxidation balanced oxide dissolution [3,4,8,10]. However, at this stage, the 

oxidation/dissolution processes are not in equilibrium, being the TiO2 dissolution lower than  its  

formation, resulting in a slow decay of j(t) during the anodization. This is associated with the progressive 
depletion of F- ions (which are crucial to the electrolyte/oxide interface dissolution process) at the NT 
bottoms during the anodization. Given the high viscosity of the electrolyte and increasing length of the 
NTs (diffusion limited process) such ions are difficult to replace by new ones at the NT bottom. As a 
result, the oxidation process is faster than dissolution (j slowly decrease with time), leading to a 

progressive increase of the oxide δb at the NTs’ bottom. Thus, the ionic migration path along the oxide 

barrier [8] significantly extends, inhibiting the transport of F-, Ti4+ and O2- ions across δb (Ti4+ and O2- for 

oxidation, F- for dissolution) which subsequently limits further NT growth. 

 

1.2.2. Dependence of the anodization curves on different electropolishing voltages. According to the j(t) 
behaviours shown in Fig. 2, we can divide the produced samples into two groups: the AR sample and 
samples with lower VEP (5 V and 10 V) present lower j-values and the initial transient regime typical of 
valve metals anodization; and samples with VEP ≥ 15 V that have higher j-values and an absence of initial 
j-transients. 

For the first group of samples the j(t) curves show the typical behaviour [3,4,11,20,23] of mild- 

anodizations (MA; anodizations under low potentials, < 60 V) [20,43,44]. Within this group, samples with 

higher Rq (5 V, 9.13 nm and AR, 8.3 nm), have lower j-values indicating lower ionic current during the 

anodization. Thus, high Rq hinders F- to reach the surface and causes an inhomogeneous electric field  

over the samples area, which is a crucial parameter for a proper oxide dissolution. At this point, the 

oxidation/dissolution processes are not in equilibrium (non-steady-state anodization), being the TiO2 

dissolution lower than its formation, which limits further NT growth. The AR and 5 V samples present 

similar Rq (although Rq of the 5 V sample is slightly higher since HF works as a chemical etcher of the Ti 

surface) [41,45] but different topographic features that cause the differences in the j values and initial 

transient period. As showed in the AFM results, the 5 V sample presents higher and broader random 

topographic features than the AR sample that in turn shows much steeper hills. This allows the formation 

of a thicker initial oxide layer (lower j) and longer transient period (nucleation, oxide dissolution, tube- 

formation stages). On the other hand, the AR sample presents steep nucleation spots that allow a faster 

nucleation and oxide dissolution and thus a more rapid formation of the NTs. 

The 10 V sample shows the lowest surface Rq (2.4 nm), a reduction of 70% when compared to that of 

AR. Its anodization curve reveals a more stable j(t) which is fundamental for a longer balance of the 

oxidation/dissolution processes and indicates higher NTs growth rate and thus longer NTs. Besides, this 

sample reveals unique periodical rippled structures [Fig. 1(c)] that are a key characteristic for pore 

formation since they act as nucleation points (valleys) making the overall nucleation time short. This 

allows rapid oxide dissolution, leading to a pronounced jmax (inset of Fig. 2), a shoulder-like trend which  

is usually ascribed to an optimized hexagonal arrangement of the network. Thus, the ripples of the 10 V 

sample lead to earlier and more rapidly organized NT nucleation than the random valleys of the AR and 5 

V samples, explaining the shorter nucleation and dissolution stages. 

For the second group of samples (15, 18 and 20 V), the j(t) curves show a different behaviour from 

those previously discussed due to topography effects. The main differences in j(t) focuses on two critical 

aspects: i) a stronger monotonic decrease of j(t) along the whole anodization period; (ii) the absence of  

the typical j(t) transient related with the initial growth mechanisms of the TiO2 NTs. 

Regarding the first point, the almost exponential j(t) decay is typical of hard-anodization (HA) curves 

(anodizations under high potentials, > 60 V) and indicates a predominance of oxidation over dissolution 

[20,43,44]. This HA behaviour can be ascribed to local burning defects on the Ti surface caused by the 

high EP potentials (15 - 20 V; Fig. 3)[46]. Under these conditions, the current will flow predominantly 
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through the local-features resulting in a rapid growth of the oxide layer. The migration path of the ionic 

species along the barrier is then significantly extended and a non-steady state anodization occurs from the 

very beginning. Therefore, the stronger oxidation ionic current seen in the j(t) curve decay of these 

samples encourages this type of HA behaviour. 

It was recently reported [41] that a chemical etching pre-treatment also gives rise to anodization curves 

without the initial typical transient (NTs nucleation and growth). The severe chemical etching effects 

observed in that case damaged the surface, creating areas of different heights and NTs growth rate (higher 

at the valleys). The obtained macroscopic j(t) curve is then the sum of the microscopic j contributions  

from the different anodization zones. In this way, we may realize that the 15, 18 and 20 V samples 

(presenting lower Rq and ripples) have a non-homogeneous surface topography over the total area. In 

particular, the lower Rq and ripples that promote rapid nucleation (as in the 10 V case) are masked by the 

anodization areas where the Ti surface was damaged by the high EP potentials. 

 

1.3. NTs length and organization 

1.3.1. Lenght. Figure 4 shows SEM cross-section and top view images of the NT templates for all samples 

after 17 h of anodization. The resulting template thicknesses (L) are shown in Table 1. The AR sample  

has a mean NT template thickness of 89 µm, while the 5 V sample has a slighter smaller thickness, L = 83 

µm. On the other hand, for VEP = 10 and 15 V a rapid NT growth occurs, leading to a length increase of 
over 40 % (L = 125 and 101 µm, respectively) when compared with the AR or 5 V samples. Nonetheless, 
by further increasing VEP, L decreases to 88.7 and 76.4 µm for 18 and 20 V, respectively. 

Comparing L with the Rq results, one can infer that the NTs growth and template thickness is directly 
correlated with the surface topography (Fig. 5). By decreasing Rq, as for the 10 and 15 V samples, we 

achieved an enhancement of the growth rate (and L). In fact, the pre-anodization surface conditions with 
the lowest Rq of 2.4 nm and the presence of small nucleation sites are crucial to reach higher growth rates 
and thicker NTs (125 µm). For samples with lower Rq, we obtain a more homogeneous electric field 
distribution over the whole sample surface, causing a slower δb increase during the anodization. Such 

thinner δb then promotes an easier ionic electromigration (F- and O2-) through the oxide  layer,  
fundamental for the existence of balanced dissolution/oxidation processes and thus of steady state 
anodization. Also, smoother surface favours the mobility of the ions involved in the dominant anodization 

processes, promoting the availability of F- at the Ti surface (thus favouring dissolution). On the  other 

hand, the additional chemical effects occurring later in the anodization (namely the pH decrease) are 
delayed since the anodization growth limit caused by the too thick δb is also belated. 

As discussed before, further increasing VEP to 18 V and 20 V, besides decreasing the Rq values and 

causing topographic ripple-like structures, also leads to areas with defects (burning) and cracks (Fig. 3). 

These defects relentlessly influence the anodization rate, decreasing the NTs growth rate and lowering the 

final L compared to the AR sample. The anodizing current is, in this case, preferentially directed toward 

those defect and cracked areas, discouraging NTs growth on the rest of the surface sample. The current is 

thus not homogeneous in the whole sample resulting in a slower NT growth rate with final thinner and 

inhomogeneous [increase of standard deviation (SD) in the 20 V sample] thicknesses. 

After 17 h of anodization the oxide nucleation layer of the 10 V sample remains almost intact, while 
those with larger VEP have been partially dissolved (top view SEM images shown in Fig. 4) [41]. As the 
anodization proceeds, a local pH decrease occurs at the NTs bottom [11], with the electric field driving 

the H+ ions towards the NTs top (V-shaped NTs) [11,21,45], resulting in the oxide nucleation layer 

dissolution [41]. Consequently, the F- ions can again easily reach the bottom of the tubes, being more 
readily available to increase the NTs growth rate. This is clearly seen in the 15 and 20 V j(t) curves 
presented in the inset of Fig. 2, where a j-increase is observed at instants 820 min and 940 min 
respectively, indicating an upsurge in the NTs template thickness. Note that the smaller SP of the 18 V 
sample led to a rather homogeneous template. Nevertheless, top-view images revealed that the NTs top of 

this sample was also dissolved after 17 h. 
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Table 1. TiO2 NTs template thickness results: mean <L>, maximum Lmax length and SD. 

  

AR 
 

5 V 
 

10 V 
 

15 V 
 

18 V 
 

20 V 

 

<L> (µm) 
 

88.93 
 

82.50 
 

124.2 
 

101.6 
 

85.70 
 

76.40 

Lmax (µm) 91.50 89.84 125.0 114.5 88.70 82.75 

SD (µm) 4.012 8.772 1.217 4.865 2.372 15.24 

 

1.3.2. NTs Organization, Diameter and Density. The degree of organization of the obtained NT arrays can 

be evaluated by the study of the NTs bottom. Since top analyses shows the first oxide nucleation pore 

distribution (that follows the initial non-optimized topography), the bottom analyses arises as the best 

method to evaluate organization [20,23,41]. The order-degree was evaluated as a function of the NTs 

hexagonal arrangement [ideal Hexagonal Closed-Packed Array (HCPA) structure] and their individual 

shape [21,41]. The NTs organization increases as they pack themselves in a closed-packed hexagonal 

arrangement, leading to tubes with a hexagonal section. The deviations from this shape due to Ti defects 

and grain boundaries result in pentagons, heptagons or circular shapes [21,41]. 

Our results show that only the 10 and 18 V samples present both HCPA structure and NT of hexagonal 

shape (Fig. 6). Therefore, the samples with highest Rq (AR, 5 V) and the 15 and 20 V samples present a 

smaller degree of organization since, although having some HCPA domains, the NTs shape is not a 

perfect hexagon. 

The NTs organization is also related with the surface parameters. The combination between Rq and 

topographic periodic ripples, leads to an almost perfect organization. The 10 V sample presents the lowest 

Rq (2.4 nm) with a SP of 97 nm, while the 18 V sample has a Rq ~ 5 nm and SP = 30 nm. These small 

topographic features lead to a more uniform electric field distribution causing a much easier NT 

nucleation and inducing an ideal NT arrays distribution from the beginning of the anodization. Thus, the 

smallest SP could be considered as an important advantage in terms of NTs organization. 

The 20 V sample, although having a similar SP to that of the 10 V and a lower Rq than that of the 18 V, 

shows worse organization (and smaller L) since these factors are shadowed by the EP potential-induced 

catastrophic defects. This leads to a non-efficient anodization due to the focusing of the electric field on 

these defects. 

Based on the bottom NTs analysis, the NTs diameter (D) and NTs density (number of NTs per unit 

area) were also quantified (Fig. 7). The average diameter was estimated from the size-histogram, which 

was then fitted to a log-normal distribution (the inset of Fig. 7 presents an example for the 10 V sample). 

The NTs density was calculated by counting the NTs in the same single domain area where D was 

estimated. 

A correlation between Rq and D (and consequently with the density) could then be determined: by 

decreasing the surface Rq, the NTs diameter increases and the corresponding density decreases. The 

lowest Rq achieved under 10 V leads to the highest and more uniform (standard deviation of 0.2 nm) 

diameter obtained after the anodization. Accordingly, the slight Rq increase (for the 15 and 18 V samples) 

was also reflected in a slight decrease of the NTs diameter. The same correlation is followed by the 20 V 

sample, in which a Rq decrease leads to a D increase. 
The same parameters were also determined for the AR sample (D = 144.7 nm and density = 55.03 

NTs/µm2). According to these relations, the NTs D and density are determined by the Ti Rq prior to the 
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anodization. However, no direct relation between SP and the NTs diameter was obtained (Fig. 7). The 10 

V sample has periodical ripple–like structures with a SP of 97 nm that causes a final diameter of 157 nm. 

Both doubling the ripples SP (15 V sample) and decreasing SP to 30 nm (18 V sample) lead to a D 

decrease. However, notice that both 15 and 18 V samples present higher Rq than the 10 V sample, which 

leads us to conclude that an accurate balance between these two features (Rq and SP) affects D and the 

NTs organization. Such balance results in a higher and more uniform D and more organized NTs 

distribution for VEP = 10 V. As discussed before, the patterned Ti with small ripple-like structures, which 

act as nucleation points, forces nucleation to occur on those topographic minima. Since this periodical 

structure for 10 V has SP = 97 nm, each valley behaves as a single nucleation site, forcing NTs nucleation 

to occur simultaneously in an organized manner (see Fig. 4(c); the 10 V sample a shows more ordered 

pore distribution in the initial nucleation layer) and leading to NTs with diameters of the same order (D 

~157 nm). The NTs are then more packed and with slightly higher diameters due to an increase of the 

current flowing through these sites (almost no competition exists between the NTs). 

Notice that increasing SP (15 V sample) leads to a less optimized electric field on the resulting large 

valleys and thus in NTs competition during the anodization. This in turn decreases the degree of 

organization (NTs with no hexagonal shape) and the NTs diameter. On the other hand, by just decreasing 

SP, but increasing Rq (18 V sample), we obtain highly organized NTs but with much lower D. 

A direct correlation between Rq and D was determined, refining the usually stated linear relation 

between the anodization potential and D [43,47,48]. Using the same anodization potential of 60 V we can 

obtain different diameters just by tuning Rq and SP using different electropolishing potentials. 

 

4. Conclusions 

The influence of the Ti surface topography on the anodization quality and organization was evaluated. We 

found that by optimizing the EP potential, the Ti surface roughness can be decrease by about 70%. The 

combination of a lower roughness and the ripples-like structures patterned by the EP leads to the 

enhancement of both the degree of order and NT length. An EP under 10 V led to thick TiO2 NT  

templates and to NTs bottoms with highly hexagonal array distribution. 

The analysis of the anodization curves revealed the importance of the surface roughness and  

topography (such as SP ripple-like structures), where the valleys promote effective nucleation spots and 

thus the earlier emergence of NT nucleation. It was shown that Ti surfaces with lower Rq and adequate  

SP (VEP =10 V) lead to more homogeneous electric field over the sample surface. This causes a thinner δb 

that facilitates ionic electromigration, leading to an optimized steady state anodization. In fact, the use of 

adequate electropolishing electrochemical conditions allow a larger potential window for NT optimized 

formation and enhances the rate of migration of the metal/oxide interface into the substrate. 

Electropolishing under a potential of 10 V is the pre-determined parameter best suited for 60 V 

anodization since, besides decreasing Rq leads to the appropriated ripples spatial period. Higher EP 

voltages (above 10 V) cause local-burning of the Ti surface originating areas with defects. 

Additionally, one of the main achievements of this study is the experimental demonstration that the  

NTs diameter is not only associated with the anodization potential but also with the Ti surface conditions. 

This work revealed new overriding anodization parameters, the Ti surface roughness and SP dimples 

topography, that can be tuned to accomplishing higher growth rate, longer NTs length and improved self- 

organization. It is also important to emphasize that a single anodization step was used in this method 

making it a straightforward application on Ti foils. 
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Figure 1. Ti surface topography prior to the anodization obtained using AFM and correspondent Rq: (a) 
as-rolled, (b) 5 V, (c) 10 V, (d) 15 V, (e) 18 V and (f) 20 V of VEP; (g) profile height of each sample with 

different VEP; table with the Rq and SP results for each VEP 
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Figure 2. Current density anodization curves during the 17 h of anodization [inset shows the transient 

period (5 min)] for the AR, 5 V, 10 V, 15 V, 18 V and 20 V samples. 
 

 
 

Figure 3. Top view SEM image of the Ti surfaces of the (a) AR Ti foil and electropolishing 

samples under (b) 5 V, (c) 10 V, (d) 15 V, (e) 18 V and (f) 20 V. The images of samples with  

VEP  > 10 V show representative areas of the whole sample surface. 
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Figure 4. Top view and cross-section (insets) of the TiO2 NT templates from the different samples after  
17 h of anodization: (a) AR Ti foil, (b) 5 V, (c) 10 V, (d) 15 V, (e) 18 V and (f) 20 V. 

 

 
10 

130 

9 

120 

8 

110 
7 

 

100 
6 

 

5 
90 

4 80 

 

3 70 

 

2 60 
 

5 10 15 20 

V   (V) 

 
 

Figure 5. TiO2 NT template thickness average (L) and Ti surface roughness (Rq) as a function of VEP. 
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Figure 6. SEM images of the TiO2 NT bottoms of the different sample: (a) AR Ti foil and after an EP of 
(b) 5 V, (c) 10 V , (d) 15 V, (e) 18V and (f) 20 V . 
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Figure7. Density [number of NTs per area (NTs/µm2)], NTs diameter (D), Ti electropolished ripples 

spacial period (SP) and the Rq as a function of the VEP. D and σ (standard deviation) were calculated by 

performing an histogram of the NTs diameter distribution and a log-normal fit for each sample; the upper 

inset shows the NTs D histogram and log-normal fit of the 10V sample. 
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