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1. OSCILAÇÕES NO CÉREBRO

A actividade basal no cérebro é caracterizada por oscilações espontâneas a nível

das áreas sensoriais (Gray et al., 1989; Neville and Haberly, 2003), motoras (Raij et al.,

2004) e associativas (Hasselmo et al., 2002a; Montgomery and Buzsáki, 2007). As

interacções entre os diferentes ritmos de oscilação neuronais são utilizadas pelo cérebro

para a realização dinâmica de computações de integração, processamento e

armazenamento de informação. Estas oscilações têm origem no somatório de potenciais

pós-sinápticos excitatórios e inibitórios oriundos da actividade simultânea de centenas

de neurónios. Esta actividade pode ser quantificada com eléctrodos inseridos no espaço

extracelular intracranial (potenciais de campo local ou local field potentials - LFPs) ou de

forma não invasiva com eléctrodos posicionados na superfície do crânio

(electroencefalografia - EEG).

A existência de variações nas oscilações espontâneas nos potenciais eléctricos do

cérebro em bandas de frequência que vão dos 0.5 a 250 Hz, é o argumento definitivo de

que o cérebro possui uma actividade contínua e autónoma, não se limitando a receber

estímulos e a organizar respostas motoras a esses mesmos estímulos. A coexistência e

interacção de diversos ritmos em padrões oscilatórios complexos, mesmo durante

estados de inconsciência, como o sono, coma, anestesia geral e em estados epilépticos,

mostram que a actividade cerebral é incessante e que apenas depende parcialmente da

entrada de informação sensorial (Laureys et al., 2004; Owen et al., 2006). Efectivamente,

algumas das oscilações mais importantes são as decorrentes da transição entre o estado

de vigília e o estado de sono (Steriade and Timofeev, 2003; Gervasoni et al., 2004; Llinás

and Steriade, 2006) ou da transição dos estados de consciência para inconsciência

associados a protocolos de anestesia (Schneider and Kochs, 2007; Velly et al., 2007; Silva

et al., 2010).

1.1. BANDAS DE FREQUÊNCIA DAS OSCILAÇÕES

Hans Berger (1873-1941) é considerado um dos cientistas pioneiros no campo da

electrofisiologia. Foi responsável pelos primeiros registos de EEG em humanos, pela

introdução da nomenclatura actual de classificação dos diferentes ritmos do cérebro

baseada em letras do alfabeto grego, e pelas primeiras descrições de alterações nos

sinais oscilatórios em epilepsia. Berger introduziu o conceito de bandas de frequência ao
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descrever uma oscilação primordial no cérebro a que chamou “ondas alfa” (entre os 9 e

os 12 Hz) que eram suprimidas pelas “ondas beta” (entre os 12 e os 30 hz) quando o

sujeito abria os olhos durante o registo encefalográfico.

Actualmente, consideram-se ainda a existência de uma banda delta (abaixo dos

4Hz), e aquelas que são as bandas de frequência mais estudadas actualmente: as

oscilações theta (4-9 Hz) e as oscilações gamma (acima dos 30 Hz). No caso particular

das oscilações em theta foram muito estudadas ao nível do hipocampo de roedores,

nomeadamente durante a execução de comportamentos (Buzsaki, 2002), navegação

espacial (Skaggs et al., 1996), processos de memória (Hasselmo et al., 2002a; Hasselmo

et al., 2002b) e sono (Louie and Wilson, 2001). Todavia, os ritmos theta também estão

presentes em outras áreas corticais (Lakatos et al., 2005; Canolty et al., 2006) e

subcorticais (DeCoteau et al., 2007). Este padrão de actividade está na génese de uma

teoria que atribuiu a estas oscilações a função da sincronização da actividade entre

diversas estruturas neocorticais e o hipocampo, que por sua vez processaria a

informação e a devolveria ao neocórtex (Miller, 1989).

Após a ênfase inicial atribuída ao ritmo theta originada pelos estudos das

décadas de 60 e 70 (Vanderwolf, 1969; Kramis et al., 1975), a atenção foi voltada para o

estudo das oscilações mais rápidas na banda gamma. As oscilações gamma podem ser

observadas durante a associação sensorial visual (Gray et al., 1989; Singer and Gray,

1995; Rols et al., 2001), olfactiva (Neville and Haberly, 2003) e auditiva (Brosch et al.,

2002), em processos de atenção selectiva (Jensen and Colgin, 2007), actividade

epiléptica (Lévesque et al., 2009) e durante a transmissão de informação e seu

armazenamento (Lisman et al., 2005; Driver et al., 2007; Montgomery and Buzsáki,

2007). No hipocampo os mecanismos de oscilação acima dos 40 Hz envolvem redes de

células inibitórias contendo conexões axónicas por “gap-junctions” (Mann and Paulsen,

2005). Os interneurónios possuem padrões de disparo rápidos, sendo capazes de

disparar continuamente a cada oscilação gamma (Harris et al., 2003; Senior et al., 2008),

exercendo uma inibição cíclica sobre as células piramidais, criando desta forma janelas

temporais nas quais pode ocorrer sincronização do disparo (Klausberger and Somogyi,

2008).

No cérebro existem também interacções entre diferentes bandas de frequência

(Chrobak et al., 2000; Lakatos et al., 2005; Canolty et al., 2006). Por exemplo, a fase
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theta é conhecida por influenciar as oscilações em gamma entre o hipocampo e os

circuitos corticais. Este tipo de interacções está envolvido na organização sequencial dos

processos de memória e sua leitura e manutenção (Chrobak et al., 2000; Sederberg et

al., 2003; Lisman and Grace, 2005; Siapas et al., 2005; Izaki and Akema, 2008; Sirota et

al., 2008).

1.2. OSCILAÇÕES E ESTIMULAÇÃO NOCICEPTIVA

As oscilações observadas em diferentes circuitos do cérebro reflectem um estado

funcional global do sistema, sendo utilizadas pelo cérebro como mecanismos de alerta

para perturbações do seu normal funcionamento (Ploner et al., 2006). A dor é um dos

factores conotados com a perturbação destas oscilações espontâneas ao nível dos

diferentes circuitos cortico-subcorticais (Corbetta and Shulman, 2002; Mouraux et al.,

2003; Ohara et al., 2004), através da inibição ou potenciação de ritmos oscilatórios

(Backonja et al., 1991; Veerasarn and Stohler, 1992; Chang et al., 2002; Ploner et al.,

2006). Esta função de alerta para a dor pode estar enquadrada num fenómeno de

facilitação do processamento sensorial (Ploner et al., 2004) e motor (Raij et al., 2004),

como preparação da reacção a estímulos agressivos.

No que respeita ao processamento da informação nociceptiva, encontram-se na

literatura a identificação de padrões de oscilação específicos em algumas áreas do

cérebro. Um dos padrões mais estudado é o de pacientes com dor neurogénica que

exibem um aumento da coerência de oscilação no eixo tálamo-cortical ao nível da banda

de frequência theta (Sarnthein and Jeanmonod, 2008), o qual é um dos argumentos que

suporta o conceito de disritmia tálamo-cortical (DTC) sugerido como responsável desta

patologia (a DTC é abordada em maior detalhe no ponto 2.1.3 desta Introdução). Para

além da banda theta também foram descritas alterações noutros domínios de

frequência induzidas pelo processamento de informação nociceptiva. Registos EEG

provaram existir um aumento da actividade na banda de frequência alpha (9-15 Hz) ao

nível do neocórtex, áreas somatosensitivas (Babiloni et al., 2002; Babiloni et al., 2003) e

córtex insular (Franciotti et al., 2009) durante estimulação nociceptiva. Estes padrões

oscilatórios foram também observados em associação com oscilações do tipo theta ao

nível do córtex somatosensitivo secundário (Hsiao et al., 2008). Em humanos foi

observado um aumento da actividade cortical na banda em beta (15-30 Hz) associada a
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alterações do processamento sensorial (Lalo et al., 2007) e ao nível do córtex cingulado

durante a estimulação dolorosa por laser (Stancák et al., 2010). A banda beta foi

também observada no córtex somatosensitivo primário e secundário, córtex insular e

córtex parietal posterior em pacientes com dor neurogénica (Stern et al., 2006). No que

diz respeito às oscilações do tipo gamma foram identificadas no córtex somatosensitivo

(Gross et al., 2007), córtex cingulado (Legrain et al., 2009) e outras áreas corticais,

estando positivamente correlacionadas com a percepção de estímulos nociceptivos e

com os padrões de atenção decorrentes da dor (Hauck et al., 2007; Tiemann et al.,

2010).

2. A COMPLEXIDADE DA DOR

A percepção da dor é uma experiência essencial para a sobrevivência dos

organismos mais complexos. Com excepção dos indivíduos com insensibilidade

congénita para a dor (Nagasako et al., 2003), todas as pessoas irão experimentar vários

tipos de dor ao longo da sua vida. Na maioria dos pacientes com dor crónica, o síndrome

avança para condições muito para além do mero indicador de estímulos nocivos,

tornando-se uma condição patológica. Nos últimos anos, a dor crónica tem sido inserida

num grupo de patologias que requer especial atenção e tratamento, tendo aumentado o

interesse para a descrição e compreensão dos mecanismos associados à integração da

informação nociceptiva por diversos circuitos do cérebro.

Melzack e Casey (1968) propuseram a repartição dos circuitos de processamento

da dor em dois sistemas paralelos: o lateral e o medial. O sistema lateral - constituído

pelo córtex somatosensitivo (primário e secundário), núcleos laterais e mediais do

tálamo e medula espinhal - está envolvido na componente sensorial e discriminativa da

dor, isto é, na detecção e percepção da origem, intensidade, duração e modalidade do

estímulo nociceptivo (Casey and Morrow, 1983b; Casey et al., 1996; Urban and Gebhart,

1999). O sistema medial - constituído por várias estruturas do sistema límbico como o

hipocampo, córtex frontal, córtex cingulado, ínsula, amígdala e vários núcleos do tronco

cerebral - está relacionado com os aspectos cognitivos e afectivos da dor, ou seja, a

relação entre a dor e a memória, a capacidade de tolerância à dor, bem como a

racionalização e interpretação afectiva da dor (Willis, 1985; Rainville, 2002; Baliki et al.,

2006; Apkarian et al., 2009).
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A visão actual é que estes dois sistemas não são activados isoladamente, mas

que estão interligados a diversos níveis de modo a interactuarem recíproca e

interactivamente (Besson, 1999; Melzack, 1999; Neugebauer et al., 2009). A apoiar essa

hipótese, diversos estudos de neuroimagiologia funcional demonstraram o

envolvimento em simultâneo de diversas regiões do cérebro na resposta à estimulação

dolorosa (Ploghaus et al., 2001; Bantick et al., 2002; Tracey, 2005; Dick and Rashiq, 2007;

Ploner et al., 2011). Esses estudos estão na base do conceito de “neuromatriz da dor”,

que propõe a existência de um processamento multidimensional dependente da

geração de padrões de actividade distribuídos por vários circuitos no cérebro (Legrain et

al., 2011). Esta teoria põe de parte a ideia de um sistema reduzido ao conceito

cartesiano, de dor como uma sensação produzida por uma lesão, inflamação ou outro

tipo de patologia no tecido, e introduz o conceito de dor como um reflexo de

experiências resultantes da influência de múltiplos factores decorrentes da integração

da informação sensorial-discriminativa, afecto-motivacional e cognitiva-evaluativa

(Price, 2000; Rainville, 2002; Apkarian, 2008). É habitualmente assumido que a dor

crónica não causa apenas perturbações sensoriais (dor espontânea, hiperalgesia e

alodínea), mas está também envolvida em diversas alterações funcionais do cérebro

(estados de ansiedade, amnésia, insónia ou depressão) (Lautenbacher et al., 2006;

Moriarty et al., 2011). Partindo deste pressuposto é necessário não limitar o estudo dos

mecanismos associados à dor crónica, a apenas os baixos níveis da neuromatriz e

amplia-los até outras estruturas a nível cortical e subcortical. A seguir serão abordados

em detalhe dois dos circuitos que servem como suporte à valência multidimensional da

dor: o circuito tálamo-cortical e o circuito fronto-hipocampal.

2.1. O CIRCUITO TÁLAMO-CORTICAL

O sistema tálamo-cortical é por excelência um circuito envolvido na integração

de informação e na interconexão com outros circuitos (Contreras et al., 1996; Llinás et

al., 1998). As áreas corticais e talâmicas são densamente e reciprocamente

interconectadas (Steriade, 1999; Jones, 2001; Castro-Alamancos, 2004), embora as

projecções descendentes do córtex para o tálamo sejam sete a dez vezes superiores às

projecções ascendentes do tálamo para o córtex (Bourassa and Deschênes, 1995;

Bourassa et al., 1995; Liu and Sandk hler, 1995).



8 | I n t r o d u ç ã o

Diversos estudos aplicando técnicas in vivo em animais anestesiados e acordados

têm abordado o papel funcional do sistema tálamo-cortical (Llinás and Jahnsen, 1982;

Llinás, 1988; Contreras et al., 1996; Fanselow and Nicolelis, 1999; Steriade, 1999, 2001).

Os padrões temporais e espaciais da actividade cortico-talâmica demonstraram uma

grande variabilidade, sugerindo que o circuito suporta uma vasta gama de interacções

que são necessárias para a análise da informação sensorial, programação motora e

funções cognitivas (Mogilner et al., 1993; Steriade et al., 1993; Alitto and Usrey, 2003;

Ribary, 2005). Um dos aspectos funcionais mais relevantes é a transição constante que

existe no tálamo entre um estado fisiológico de actividade em disparo tónico (em que os

potenciais de acção originam uma alternação entre despolarização e hiperpolarização

neuronal) e um estado fisiológico de disparo em burst (em que os neurónios

permanecem num regime hiperpolarizado que leva à geração autoperpetuada de

potenciais de acção cálcio-dependentes). Alguns investigadores defendem que a

informação sensorial é transmitida do tálamo para o córtex unicamente durante

padrões de actividade tónica, e que nenhuma informação é transmitida durante o

padrão de actividade em burst (Steriade et al., 1993). Esta ideia foi recentemente posta

em causa com dados experimentais, que demonstraram que neurónios talâmicos podem

transmitir informação sensorial durante os dois estados fisiológicos de actividade (Guido

and Weyand, 1995; Weyand et al., 2001). No entanto a natureza do sinal transmitido

difere entre os dois modos de actividade. Fanselow e colaboradores (2001)

demonstraram que os burst talâmicos podem ocorrer durante os estados de vigília,

todavia a sua prevalência é menor quando comparada com o estado de sono

denominado por slow-wave-sleep (SWS). Este padrão foi encontrado no sistema tálamo-

cortical na sequência das oscilações na banda 7-12 Hz durante o movimento rítmico dos

bigodes do rato (“whisker-twitching”) (Fanselow and Nicolelis, 1999). Durante o modo

de disparo em burst os neurónios talâmicos estão afinados para detecção de alterações

rápidas dos sinais sensoriais e transmissão da informação da sua presença para o córtex

(Fanselow and Nicolelis, 1999; Fanselow et al., 2001; Nicolelis and Fanselow, 2002a, b;

Wiest and Nicolelis, 2003).

Apesar de nas últimas duas décadas se terem dado passos significativos no

conhecimento do papel do eixo tálamo-cortical no processamento da informação

sensorial, ainda estão pendentes várias questões ao nível da compreensão da relação
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entre a dinâmica das oscilações exibidas e as condições de plasticidade deste circuito

durante os quadros de dor crónica.

2.1.1. CICLO DE VIGÍLIA-SONO

A actividade eléctrica talâmica e cortical reflecte os diferentes estados comportamentais

inseridos no ciclo de vigília-sono dos vertebrados (ritmo circadiano) (Steriade et al., 1993;

Destexhe et al., 1999). Em particular, a transição do estado de vigília para o sono, que é

caracterizada por oscilações a nível dos padrões de actividade dos neurónios talâmicos que

alternam entre um modo de actividade tónico e um modo de actividade em burst (Ribeiro et al.,

2010).

Durante o estado de vigília (awake state - WK), o eixo tálamo-cortical apresenta

oscilações na banda de frequência theta e oscilações rápidas de menor amplitude (bandas de

frequência beta e gamma, superiores a 15 Hz) (Steriade et al., 1993; Destexhe et al., 1999). O

estado de vigília pode ser subdividido em dois padrões comportamentais distintos (Gervasoni et

al., 2004). O primeiro é o estado de exploração activa, durante a qual o animal está envolvido

em comportamentos exploratórios (locomoção, identificação de texturas com as vibrissas e

olfacção), e é caracterizado por oscilações de baixa-amplitude nos LFPs corticais e elevada

potência espectral em theta e gamma. O segundo é um estado de baixa actividade no qual o

animal se apresenta parado mas desperto, ou absolutamente imóvel ou a executar

comportamentos estereotipados, como por exemplo movimentos de grooming. Neste caso, os

comportamentos são caracterizados por oscilações de baixa-amplitude nos LFPs corticais e uma

relativa elevada potência espectral em theta e também em gamma, embora inferior ao padrão

de exploração activa. Nos roedores foi também descrito um terceiro padrão durante o estado de

vigília que é caracterizado pelo movimento rítmico das vibrissas associado à exploração activa

do espaço (“whisker-twitching”, WT), e que apresenta oscilações cortico-talâmicas de grande

amplitude na gama de frequência entre os 7 e 12 Hz (Nicolelis et al., 1995; Fanselow and

Nicolelis, 1999).

Ao contrário do estado de vigília, a entrada no período de sono é marcada por oscilações

corticais lentas de baixa amplitude (ondas delta 1-4 Hz e “spindles” – eventos curtos de oscilação

a 7-14 Hz) (Steriade et al., 1993; Achermann and Borbely, 1997; Destexhe et al., 1999),

caracterizando um estado denominado por slow-wave-sleep (SWS). A nível comportamental

durante o estado de SWS os animais permanecem imóveis, com os olhos fechados e exibem

movimentos respiratórios lentos e regulares. Os primeiros estudos de sono com registo de EEG

associaram o estado SWS a uma redução drástica da actividade cerebral e consequente
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desconexão das aferências sensoriais (Davis et al., 1937), isto devido à predominância de

oscilações corticais de baixa amplitude que deram precisamente o nome a este estado. Todavia,

essa ideia foi rapidamente posta de parte, quando se verificou que as oscilações do estado SWS

coexistem com oscilações em frequências mais elevadas, como por exemplo na banda gamma

(Steriade, 2006a), e que a actividade de neurónios durante o SWS em diversas regiões do

cérebro, aumenta após experiências relevantes decorridas durante o período de vigília

antecedente (Wilson and McNaughton, 1994; Ribeiro and Nicolelis, 2004). Sabe-se ainda que as

oscilações lentas do estado SWS actuam como mecanismos de sincronização da actividade

dispersa em diversas áreas cerebrais, em especial no circuito tálamo-cortical (Steriade, 2006a,

b). As oscilações do estado SWS variam consoante o nível de profundidade do sono: numa fase

inicial é caracterizado pela exibição de “spindles” sobrepostas a ondas delta, mas numa fase

mais avançada as oscilações em delta tornam-se mais proeminentes.

Um terceiro estado do ciclo vigília-sono é o estado REM (de rapid-eye-movement), que é

um estado de sono superficial, caracterizado por movimentos rápidos dos globos oculares e

grande actividade de sonhos. No estado REM o córtex e estruturas subcorticais apresentam

oscilações gamma rápidas similares às observadas no estado de vigília (Vanderwolf, 1969;

Steriade et al., 1993), e o hipocampo apresenta oscilações características em theta denominadas

por ritmo theta hipocampal (Vanderwolf, 1969; Buzsaki, 2002).

O estado de SWS é seguido por um estado intermédio de transição (TS) caracterizado

por oscilações instáveis entre as bandas delta, theta e alpha. Este estado foi observado no rato

(Gottesmann, 1992; Benington et al., 1994) durante as transições entre o estado SWS e o estado

REM. Mais recentemente, Mandile e colaboradores utilizando métodos computacionais de alta

resolução temporal para a análise de padrões de EEG, identificaram também este tipo de

oscilação durante as transições entre o estado SWS e o estado de vigília (Mandile et al., 1996;

Mandile et al., 2000; Piscopo et al., 2001), embora apresente neste caso uma duração superior

aos episódios observados na transição entre SWS e REM.

A importância das oscilações do eixo cortico-talâmico durante o ciclo circadiano não se

restringe à identificação do estado de vigília correspondente. Diversos autores têm proposto que

as oscilações cerebrais observadas durante o sono, podem desempenhar um importante papel

no fortalecimento de processos de memória. A ideia central é de que, após os períodos de

vigília, os estímulos sensoriais são fortalecidos, armazenados e consolidados através das

oscilações que ocorrem nos ciclos sucessivos de SWS e REM, durante os quais não há a

interferência de novos estímulos sensoriais, permitindo a livre reverberação dos eventos
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ocorridos durante o período de vigília (Ribeiro and Nicolelis, 2004; Born, 2010; Born and

Wilhelm, 2011).

Um último ponto de interesse para esta dissertação está relacionado com a relação que

pode estabelecer entre o ciclo de vigília-sono e a processamento de informação dolorosa.

Diversos estudos realizados em humanos (Moldofsky and Scarisbrick, 1976; Lentz et al., 1999;

Lautenbacher et al., 2006) e em modelos animais (Carli et al., 1987; Landis et al., 1988; Onen et

al., 2001; Kontinen et al., 2003; Mendelson et al., 2003; Monassi et al., 2003; Schutz et al., 2003;

Keay et al., 2004; Millecamps et al., 2005) têm abordado essa interacção entre dor e

perturbações no ciclo de vigília-sono. Em humanos, dados clínicos referenciam um aumento do

nível de sensibilidade à dor em patologias associadas à privação do sono (Moldofsky and

Scarisbrick, 1976; Drewes et al., 1998; Lentz et al., 1999; Kundermann et al., 2004a; Kundermann

et al., 2004b; Lautenbacher et al., 2006). Por outro lado, modelos animais ilustram o

envolvimento da privação do estado REM na diminuição do limiar necessário para a percepção

de dor (Hicks and Sawrey, 1978; Onen et al., 2001).

É importante assinalar que em animais a maior parte do conhecimento da relação entre

a dor e as perturbações do sono advém de modelos de estimulação aguda. No que diz respeito a

modelos de dor de cariz neuropático ainda são escassos os estudos e os que existem com base

na análise da actividade cerebral são centrados numa abordagem comportamental e limitados a

períodos curtos ou a uma única sessão de registo da actividade cerebral (Andersen and Tufik,

2003; Kontinen et al., 2003; Monassi et al., 2003; Keay et al., 2004). Por outro lado, não existem

estudos a descrever quais as alterações na dinâmica tálamo-cortical após a instalação de uma

condição de dor neuropática em função do ciclo de vigília-sono, apesar de alguns estudos

abordarem as alterações nesse circuito durante a estimulação dolorosa aguda ou imediatamente

a seguir à injecção de formol (Wang et al., 2003; Huang et al., 2006). Partindo destes

prossupostos, um dos pontos de interesse da presente dissertação está relacionado com a

compreensão da relação entre os diferentes regimes de oscilação do circuito tálamo-cortical e o

processamento da informação nociceptiva num quadro de dor neuropática.

2.1.2. TRANSIÇÃO DA CONSCIÊNCIA PARA INCONSCIÊNCIA

Um segundo processo em que as oscilações do eixo tálamo-cortical

desempenham um papel relevante, é o da transição entre estados de consciência e

inconsciência aquando da aplicação de anestésicos centrais. O que ocorre na interacção

funcional entre o tálamo e córtex durante a anestesia profunda, e qual destas áreas é

primordialmente afectada pelos anestésicos de uso comum, gera ainda bastante
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controvérsia (Schneider and Kochs, 2007; Zhou et al., 2011). A maior parte das teorias

enuncia que a redução do nível de consciência ocorre por uma redução gradual da

quantidade de informação ou por uma diminuição da capacidade de integração sensorial

do eixo cortico-talâmico (Tononi, 2004; Alkire et al., 2008; Kim et al., 2012), ou mesmo

pela interrupção da transferência de informação no circuito TC (Alkire et al., 2007; Zhou

et al., 2011). Este paradigma tem gerado alguma controvérsia nos últimos anos por

existirem dois modelos conceptuais para as transições de consciência. Alguns

investigadores apontam o córtex como o principal alvo envolvido no processo de

transição para o estado de inconsciência (Velly et al., 2007), enquanto outros sugerem

que o tálamo é o principal alvo da anestesia geral (Alkire et al., 2007). O tálamo

desempenha um papel importante no suporte do nível de consciência a dois níveis

(Llinás et al., 1998; Ribary, 2005). Primeiro, na integração da informação sensorial e

motora, componente importante do estado de consciência; e em segundo, no controlo

da actividade cortical originada na formação reticular. Todavia, qual a importância das

oscilações dinâmicas que ocorrem entre os circuitos corticais e talâmicos durante as

transições de consciência, e de que forma essas oscilações podem representar padrões

sinalizadores dessas transições ainda permanece pouco estudado. Na literatura, alguns

estudos demonstraram existir uma redução da conectividade funcional tálamo-cortical

durante a perda de consciência (Mhuircheartaigh et al., 2010; Borsook and Becerra,

2011) e em estados vegetativos (Zhou et al., 2011). A maior parte dos modelos indica

que essa redução acontece por uma supressão da actividade tálamo-cortical em

frequências mais rápidas (Ching et al., 2010; Kreuzer et al., 2010; Hudetz et al., 2011;

Silva et al., 2011).

Um dos problemas que existe actualmente é a falta de bons métodos

quantitativos para analisar as oscilações em pacientes, e por outro lado a escassez de

trabalhos em animais ao nível da optimização de índices para a monitorização da

profundidade da anestesia. Os monitores comerciais disponíveis para a análise do nível

de anestesia são baseados na análise superficial do sinal EEG espontâneo. Todos eles

utilizam eléctrodos na cabeça do paciente, registando maioritariamente a actividade

cortical (lobo frontal). O mais popular dos monitores de anestesia é o “Bispectral Index”

(BIS), e tem vindo a ser utilizado de forma generalizada na prática anestésica como um

potencial utensílio para reduzir a incidência de sensibilização durante a anestesia (Myles
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et al., 2004). Vários estudos de performance de monitores de anestesia demonstram

que o BIS é o mais eficiente na análise das transições entre os estados de consciência e

inconsciência (Glass et al., 1997; Struys et al., 2003), enquanto outros demonstraram

que não é o mais indicado para a monitorização da administração de anestesia gasosa

volátil (Avidan et al., 2008), aumentando desta forma a controvérsia da sua utilização.

Novos métodos têm vindo a ser implementados para aumentar a eficiência dos

algoritmos utilizados pelos monitores de anestesia. Algumas das melhorias passam pela

recolha de sinais mais robustos do que a actividade EEG, que permitam a análise das

oscilações que ocorrem em frequências mais elevadas e consequente correcção dos

algoritmos dos índices utilizados para monitorizar a profundidade da anestesia (Ching et

al., 2010; Silva et al., 2010; Hudetz et al., 2011).

2.1.3. A DISRITMIA TÁLAMO-CORTICAL

São diversas as propostas de modelos conceptuais para explicar a neurofisiologia

da dor e dos mecanismos aliados à sua cronicidade (Treede et al., 1999; Peyron et al.,

2000; Apkarian et al., 2005). Um destes modelos é o da disritmia tálamo-cortical (DTC)

que sugere que a perturbação do equilíbrio nas interacções tálamo-corticais está na

origem da cronicidade dolorosa associada à maioria das lesões neuropáticas (Llinás et

al., 1998; Llinás et al., 1999). A DTC pode ser sumarizada por uma sequência de eventos

(Llinás et al., 1999). A lesão desencadeia uma desaferenciação dos estímulos excitatórios

ao nível dos neurónios talâmicos que resulta numa hiperpolarização da sua membrana

celular. No estado hiperpolarizado, a desactivação dos canais “T” de cálcio leva os

neurónios talâmicos a um padrão de actividade em burst que funciona como um

amplificador não especifico da actividade nas bandas de frequência theta e gamma a

nível dos módulos tálamo-corticais (Llinás and Jahnsen, 1982; Llinás and Steriade, 2006).

Em particular este modelo propõe que a alteração nessas duas bandas de actividade

oscilatória funciona como sintoma positivo do síndrome doloroso, e são o suporte

fisiológico para a sua manutenção (Walton et al., 2010).

Este modelo é baseado em múltiplos aspectos: por um lado, dados clínicos

demonstraram que intervenções cirúrgicas de lesão terapêutica do núcleo central-lateral

do tálamo aliviam a dor neurogénica (Jeanmonod et al., 2001); por outro lado, muitos

pacientes com dor central neuropática apresentam padrões de actividade em burst que
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estão conotados com potenciais de cálcio de baixo limiar no tálamo (Lenz et al., 1989;

Jeanmonod et al., 1993; Jeanmonod et al., 1996); finalmente, em registos de EEG/EMG

de pacientes com dor central neuropática, foi observado um aumento da actividade na

banda de frequência theta e gamma, bem como um desvio do pico da banda theta para

frequências mais baixas que o habitual (Llinás et al., 1999; Sarnthein et al., 2006; Stern

et al., 2006).

Um dos aspectos mais interessantes do modelo da DTC é a proposta de que a dor

central se origina por um “edge effect” que resulta da interacção entre neurónios

tálamo-corticais com diferentes níveis tónicos de actividade nas bandas theta e gamma

(Llinás et al., 2005). Habitualmente, um foco cortical de actividade gamma impede a

propagação dessa mesma actividade para outras populações corticais adjacentes, por

um processo de inibição lateral mediado por interneurónios GABAérgicos. O modelo

propõe que o aumento de actividade theta talâmica de baixa frequência vai induzir uma

diminuição da inibição lateral cortical, levando a uma propagação de picos de actividade

em gamma que estão associadas ao processamento doloroso (Chen and Rappelsberger,

1994). Este aumento da actividade gamma cortical em pacientes com dor crónica foi já

descrito em registos de MEG (Llinás et al., 1999) e em pacientes com dor neurogénica

(Sarnthein et al., 2006).

2.2. O CIRCUITO FRONTO-HIPOCAMPAL

A formação hipocampal recebe a maior parte do fluxo de informação neocortical

directamente por uma via cortico-hipocampal e indirectamente por uma via septo-

hipocampal (Vertes, 2006). A via directa cortico-hipocampal faz chegar ao hipocampo

uma grande quantidade de informação sensorial vinda de áreas associativas do

neocórtex e em menor quantidade vinda de áreas sensoriais primárias (Liu and Chen,

2009). Este circuito extende-se desde o córtex SI e SII, até às estruturas insulares e

corticais, e depois até à amigdala, córtex entorrinal e hipocampo, e converge finalmente

nas mesmas estruturas que são directamente activadas pelas vias do tracto espinho-

talâmico (Friedman et al., 1986; Liu and Chen, 2009). Ao nível funcional este circuito é

um dos pontos de convergência entre a via lateral e medial de processamento da dor e
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permite a integração de informação relativa às características sensoriais da dor com

informação de processos de aprendizagem e memória (Price, 2000; Klossika et al., 2006).

A via indirecta septo-hipocampal representa uma  via alternativa de chegada da

informação nociceptiva à formação hipocampal, e é responsável pela maior parte da

informação de natureza colinérgica (Khanna and Zheng, 1999; Zheng and Khanna, 1999).

Esta via apresenta diversas conecções funcionais com outras áreas do cérebro, entre as

quais o hipotálamo, o locus coeruleus, substância cinzenta periaqueductal (PAG), os

núcleos da rafe e também o córtex cerebral (Vertes, 2006).

A primeira grande evidência do papel do hipocampo na integração da informação

nociceptiva surgiu com os estudos de Khanna e colaboradores, que provaram existir

uma activação de neurónios do hipocampo após a indução do modelo animal de dor

inflamatória por injecção periférica de formol (Khanna, 1997; Zheng and Khanna, 1999).

Por outro lado, a hipocampoctomia parcial ou total em primatas e humanos provou

resultar em alterações da percepção da dor (Gol et al., 1963; Gol and Faibish, 1967),

enquanto no rato lesões eléctricas do hipocampo medial e dorsal, reduziram a sua

capacidade de evitar a aplicação de estímulos nociceptivos (Teitelbaum and Milner,

1963; Blanchard and Fial, 1968). Algumas abordagens farmacológicas demonstraram

ainda uma redução dos comportamentos nociceptivos após a aplicação no hipocampo

de lidocaína ou de um antagonista dos receptores de NMDA (McKenna and Melzack,

1992, 2001), serotonina (Soleimannejad et al., 2006), GABAA (Favaroni Mendes and

Menescal-de-Oliveira, 2008), óxido nitrico (Echeverry et al., 2004), e após a modulação

noradrenérgica da via septo-hipocampal (Aloisi, 1997; Aloisi et al., 1997).

O córtex pré-frontal (PFC) está associado a diversas funções cognitivas e

emocionais incluindo a atenção, a decisão, a recompensa e a “working memory”

(Gusnard et al., 2001; Phelps et al., 2004). Em humanos, diversos estudos demonstraram

que as diversas subregiões do PFC desempenham um papel importante na dor aguda; o

córtex prefrontal medial (mPFC) está envolvido na sinalização do aspecto desagradável

da dor (Lorenz et al., 2002); o córtex anterior cingulado (ACC) medeia a componente

afectiva das respostas à dor (Rainville et al., 1997) e o efeito placebo (Wager et al.,

2004); e que as respostas de anticipação à dor estão positivamente correlacionadas com

a actividade do ACC e do mPFC (Porro et al., 2002). Pacientes com o sindrome doloroso

complexo regional do tipo I (CRPS, complex regional pain syndrome) e dor crónica
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manifestam a existência de défices na performance de tarefas emocionais de decisão

com risco associado como o teste Iowa Gambling (Apkarian et al., 2004b), o qual implica

o envolvimento do mPFC. Neste caso, os pacientes com CRPS-1 apresentam uma

performance muito próxima da obtida por pacientes com lesões no PFC. Por outro lado,

em pacientes com dor crónica a extensão da activação do mPFC durante a dor

espontânea, componente emocional e disfunções cognitivas estão também

correlacionadas com a intensidade e a duração da dor (Baliki et al., 2006). Estudos de

ressonância magnética demonstraram ainda que a dor crónica está associada a uma

redução da densidade de matéria cinzenta em várias regiões do PFC (Apkarian et al.,

2004a; Kuchinad et al., 2007), e que  pacientes com CRPS-1 apresentam uma

reorganização do quadro de actividade dessa região (Baliki et al., 2006; Schweinhardt et

al., 2008).

Em animais, alguns estudos têm fornecido também evidências do envolvimento

das áreas corticais pré-frontais na nocicepção aguda e inflamatória. Registos

electrofisiológicos no rato (Fuchs et al., 1996; Yamamura et al., 1996; Zhang et al., 2004)

e no coelho (Sikes and Vogt, 1992) demonstraram que existem neurónios nociceptivos

na região ventral do mPFC, e que esta região é activada por estimulação nociceptiva

(Traub et al., 1996; Albutaihi et al., 2004). Por outro lado, a modulação da

neurotransmissão desta região provou contribuir para uma redução da sensibilidade

táctil em animais com lesão periférica do nervo ciático (Millecamps et al., 2007; Centeno

et al., 2009). Mais recentemente foi também identificada a existência de uma

reorganização morfológica e funcional de base celular no mPFC durante condições de

dor neuropática (Metz et al., 2009), e que estas alterações poderão estar associadas à

manifestação de défices na performance cognitiva.

Apesar de já serem conhecidos alguns aspectos referentes à acção da dor na

formação hipocampal e nas regiões corticais pré-frontais, ainda é desconhecida sua

acção em termos dos circuitos de interligação entre essas regiões, aos quais se sabe,

desempenham um papel crucial ao nível dos processos mnemónicos. Um último ponto

de interesse para esta dissertação está relacionado com a relação que a dor pode ter na

alteração da eficiência da conectividade do circuito fronto-hipocampal, a qual poderá

explicar em parte a ocorrência de défices na componente cognitiva exibida por

pacientes com dor crónica.



17 | I n t r o d u ç ã o

2.2.1. A DOR E A COMPONENTE COGNITIVA

A dor e a atenção interagem reciprocamente (Eccleston, 1995; Dick et al., 2002).

É usualmente assumido que a distracção reduz a sensação de dor e é igualmente

assumido que a dor altera os níveis de atenção reduzindo a performance na execução de

tarefas cognitivas complexas (Ford et al., 2008; Buhle and Wager, 2010; Moriarty et al.,

2011). Juntos, estes pressupostos sugerem um equilíbrio entre o processamento de

informação dolorosa e o desempenho cognitivo na execução de outras tarefas,

podendo-se inferir que se existir um limite aos recursos cognitivos exigidos para os dois

processos, o desempenho cognitivo esteja condicionado nos pacientes com dor crónica

ou mesmo em episódios transitórios de dor (Norman, 1967; Oosterman et al., 2009).

Vários estudos na literatura analisam os mecanismos de domínio cognitivo que

podem ser influenciados pela dor, entre os quais se destacam estudos em modelos

animais (Dubner et al., 1981; Hayes et al., 1981; Hoffman et al., 1981; Casey and

Morrow, 1983a, b; Boyette-Davis et al., 2008; Boyette-Davis and Fuchs, 2009), pacientes

com dor crónica (Park et al., 2001; Dick et al., 2002; Glass et al., 2005; Dick and Rashiq,

2007; Seminowicz and Davis, 2007; Dick et al., 2008; Sarnthein and Jeanmonod, 2008)

ou em voluntários saudáveis expostos a estímulos dolorosos (Bingel et al., 2002; Brooks

et al., 2002; Bingel et al., 2004; Hoffman et al., 2004; Zambreanu et al., 2005; Ploner et

al., 2011). Em humanos, é no entanto importante referir a existência de algumas

discrepâncias entre os dados clínicos, as quais residem provavelmente no facto da

utilização de diferentes metodologias, variações nos grupos de pacientes a nível dos

sintomas e diferentes níveis de dor (Buhle and Wager, 2010; Moriarty et al., 2011). No

caso dos estudos em voluntários saudáveis expostos a estimulação dolorosa durante a

execução de tarefas também foram encontradas algumas discrepâncias: enquanto em

alguns estudos os participantes evidenciam menor nível de dor à medida que as tarefas

propostas são mais complexas (Dowman, 2004; Hoffman et al., 2004; Coen et al., 2008),

noutros não apresentam qualquer alteração (Pud and Sapir, 2006; Seminowicz and

Davis, 2007). Todavia, apenas um número restrito de estudos reporta um declínio das

capacidades cognitivas em função da dor (Crombez et al., 2002; Houlihan et al., 2004;
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Bingel et al., 2007), enquanto a maior parte não revela qualquer alteração (Wiech et al.,

2005; Pud and Sapir, 2006; Seminowicz and Davis, 2007).

Por outro lado, estudos em modelos animais demonstram também existir um

efeito negativo causado pela dor na performance cognitiva de roedores, quer em

condições de dor inflamatória, quer em condições de dor neuropática (revisão em,

Moriarty et al., 2011). A nível de modelos inflamatórios de dor foram encontrados

défices na atenção (Cain et al., 1997; Millecamps et al., 2004; Boyette-Davis et al., 2008;

Pais-Vieira et al., 2009a), nos mecanismos de decisão emocional (Pais-Vieira et al.,

2009b; Ji et al., 2010), na aprendizagem espacial (Cain, 1997; Lindner et al., 1999) e na

memória de referência espacial (Cain, 1997; Lindner et al., 1999; Millecamps et al.,

2004). Alguns dos défices observados nos modelos inflamatórios de dor foram também

observados em condições de dor neuropática ao nível da aprendizagem e memória

espacial (Leite-Almeida et al., 2009; Hu et al., 2010). Todavia, a dor neuropática está

também associada a alterações nos aspectos de flexibilidade cognitiva (Leite-Almeida et

al., 2009) e aprendizagem de condições adversas (Suzuki et al., 2007).

Os dados obtidos nos estudos em humanos e modelos animais, em conjunto

explicam o modelo conceptual bidireccional da relação entre a dor e a performance,

nomeadamente a nível da compreensão dos processos partilhados pela dor e

performance cognitiva. Todavia, a forma como os circuitos envolvidos em funções

cognitivas estão afectados pela dor e como a dor é processada por esses circuitos

permanece ainda pouco conhecida.

2.2.2. INTEGRAÇÃO DA INFORMAÇÃO ESPACIAL

Os neurónios piramidais das áreas CA1 e CA3 do hipocampo apresentam a

capacidade de codificar a localização espacial do animal, e são por essa particularidade

denominados por “place cells”, pois aumentam a sua frequência de disparo quando o

animal se encontra numa posição particular do seu meio ambiente (o seu campo

espacial ou “spatial field”) (O' Keefe and Dostrovsky, 1971; O' Keefe and Nadel, 1978)

(Fox and Ranck, 1981). O “spatial field” é habitualmente estável ao longo de várias

visitas ao mesmo ambiente, mesmo no caso do animal ser retirado do ambiente de teste

por longos períodos (Muller and Kubie, 1987; Thompson and Best, 1990). Alguns estudos

demonstraram que alterações nas características espaciais ou conteúdo motivacional do
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meio ambiente de teste podem afectar a estabilidade dos “spatial fields” (Muller and

Kubie, 1987; Markus et al., 1995; Kobayashi et al., 1997; Wood et al., 2000; Moita et al.,

2004). Essa estabilidade pode ser ainda alterada por manipulações farmacológicas do

hipocampo (Kentros et al., 1998; Rotenberg et al., 2000; Dragoi et al., 2003) ou por lesão

directa do hipocampo ou de outras áreas interconectadas (McNaughton et al., 1989;

Mizumori et al., 1994; Leutgeb and Mizumori, 1999; Muir and Bilkey, 2001; Liu et al.,

2003).

Para além da informação espacial, o hipocampo está também envolvido na

regulação de diversos aspectos comportamentais associados à adaptação a situações

adversas, incluindo a dor (Khanna and Sinclair, 1992; Khanna et al., 2004; Soleimannejad

et al., 2006). Os neurónios do hipocampo respondem à estimulação dolorosa (Delgado,

1955; Halgren et al., 1978; Khanna, 1997; Wei et al., 2000; Soleimannejad et al., 2006;

Tai et al., 2006; Zheng and Khanna, 2008) e estudos de imagiologia em humanos

comprovaram a activação da formação hipocampal durante estimulação dolorosa aguda

(Ploghaus et al., 2000; Ploghaus et al., 2001; Bingel et al., 2002). Por outro lado, a

inactivação da transmissão sináptica do hipocampo revelou ter atenuado o

comportamento nociceptivo em ratos sujeitos ao modelo do formol (McKenna and

Melzack, 1992; Khanna, 1997; McKenna and Melzack, 2001). Em termos do

funcionamento do hipocampo, alguns estudos demonstraram que a dor crónica altera a

expressão de c-Fos (Ceccarelli et al., 2003; Carter et al., 2011), perturba os mecanismos

de LTP “long-term-potentiation” (Kodama et al., 2007; Zhao et al., 2009), reduz o nível

de BDNF (Duric and McCarson, 2005; Hu et al., 2010) e causa diminuições na volumetria

do hipocampo (Lutz et al., 2008; Younger et al., 2010). Contudo, ainda são

desconhecidos os efeitos da dor em funções cruciais do hipocampo como na integração

de informação espacial e na geração dos mapas espaciais.

2.2.3. WORKING MEMORY DE REFERÊNCIA ESPACIAL

A memória de trabalho ou “working memory” é geralmente definida como um

mecanismo central relacionado com a retenção temporária de informação em curtos

intervalos de tempo (Goldman-Rakic, 1995; Baddeley, 1996; Fuster, 1997; Dudchenko,

2004). Esta capacidade é crucial para a formação de associações entre estímulos, que é

antecedente e necessária a todas as funções cognitivas. A memória de trabalho pode
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estar associada a estímulos sensoriais simples, a objectos ou associada à localização

espacial do sujeito (Olton and Samuelson, 1976; Deadwyler et al., 1996; Delatour and

Gisquet-Verrier, 1996; Floresco et al., 1997).

Em roedores, as tarefas de alternação são utilizadas para investigar a relação

entre a actividade do córtex pré-frontal e a memória de referência espacial, utilizando

labirintos em forma de “T”, labirintos radiais e labirintos em figura de “8”, (Floresco et

al., 1997; Murphy and Segal, 1997; Zahrt et al., 1997; Baeg et al., 2003; Schoenbaum et

al., 2003; Phillips et al., 2004). Para além do córtex pré-frontal, o hipocampo também

está envolvido nas tarefas de memória de trabalho, em particular em tarefas que

envolvem intervalos longos de tempo de retenção da memória adquirida (Lee and

Kesner, 2003). Lesões nestas duas regiões cerebrais permitiram comprovar, em primeiro

lugar, que a formação hipocampal desempenha um papel importante na fase inicial da

aprendizagem de tarefas comportamentais por roedores, não afectando as fases finais

do processo de aprendizagem (Anagnostaras et al., 1999; Eichenbaum, 2000; Maviel et

al., 2004; Gaskin et al., 2009). O inverso acontece quando se lesiona o córtex pré-frontal

medial (mPFC), havendo lugar a um défice na fase final da curva de aprendizagem e não

na fase inicial (Shaw and Aggleton, 1993; Delatour and Gisquet-Verrier, 1996; Floresco et

al., 1997; Kyd and Bilkey, 2003; Takehara et al., 2003).

Anatomicamente, as duas regiões partilham interconexões funcionais,

directamente através da conexão da via excitatória mono-sináptica na parte ventral da

região CA1 do hipocampo e parte ventral do subiculum (Ferino et al., 1987; Laroche et

al., 2000; Thierry et al., 2000), e indirectamente através do tálamo mediodorsal (MD) até

à parte dorsal da região CA1 do hipocampo (Vertes, 2006). Esta última está

especificamente envolvida no processamento da informação espacial (Moser et al.,

1993) e a inibição desse circuito provou estar associado ao desenvolvimento de défices

de memória espacial (Floresco et al., 1997; Wang and Cai, 2006). Um ponto-chave neste

circuito é o tálamo MD, uma vez que a sua lesão demonstrou estar associada ao

desenvolvimento de deficies de memoria espacial (Isseroff et al., 1982) e amnésia

(Mitchell and Dalrymple-Alford, 2005; Mitchell et al., 2008). O tálamo MD partilha

projecções até ao córtex cingulado anterior (ACC) (Wang and Shyu, 2004; Chai et al.,

2010), o qual está envolvido na integração dos aspectos afecto-motivacionais da dor

(Rainville et al., 1997; Treede et al., 1999; Wang et al., 2003; Shyu et al., 2010).
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As interacções mPFC-hipocampo decorrentes dos processos de memória de

trabalho ocorrem por um aumento da coerência na banda de frequência theta (Jones

and Wilson, 2005b, a; Siapas et al., 2005), na qual os neurónios do mPFC alternam entre

padrões de disparo em fase e não fase dependendo do contexto comportamental

(Hyman et al., 2005). Essas interacções são mais evidentes no período que precede a

tomada de uma decisão e diminuem quando são tomadas decisões erradas (Jones and

Wilson, 2005b, a). Este tipo de padrões de actividade representa uma forte evidência

para a integração funcional entre o mPFC e o hipocampo.

Em humanos também são observados défices de memória de trabalho em

diversos quadros clínicos, como em lesões traumáticas do cérebro (McDowell et al.,

1997), síndrome de Down (Vallar and Papagno, 1993), esquizofrenia (Green, 2006),

autismo (Frank et al., 1996) e dor crónica (Ling et al., 2007; Luerding et al., 2008).

Estas observações foram comprovadas por estudos de imagiologia que

demonstraram a sua activação em processos de memória e aprendizagem durante a

aplicação aguda de estímulação dolorosa (Peyron et al., 1998; Ploghaus et al., 2000;

Ducreux et al., 2006; Schweinhardt et al., 2006). Recentemente, estudos com modelos

animais de dor neuropatica demonstraram que a memória espacial é afectada em

modelos de dor crónica (Leite-Almeida et al., 2009; Hu et al., 2010). Todavia, a forma

como a condição de dor afecta o funcionamento do circuito mPFC-hipocampal ainda não

está totalmente esclarecida. É conhecido o envolvimento da região mPFC em processos

de modulação da dor (Seifert et al., 2009; Devoize et al., 2011), e que reorganizações

morfologicas e funcionais da população de neurónios da região mPFC estão na base do

aparecimento de defices cognitivos durante uma condição de dor neuropática (Metz et

al., 2009). A nível da hipocampo foi recentemente reportado um incremento da

produção TNF-α até nível patológico após a lesão periférica do nervo ciático. Estes dados

foram conotados com o desenvolvimento de défices de memória de trabalho devido a

uma inibição do LTP hippocampal (Ren et al., 2011).

Apesar de todo o conhecimento obtido nos últimos anos, ainda permanece

pouco claro qual o efeito da dor no circuito fronto-hipocampal ao nível da partilha,

manutenção, e processamento de informação que são aspectos cruciais para os

processos mnemónicos.



22 | I n t r o d u ç ã o

3. OBJECTIVOS GERAIS

As interacções oscilativas entre os diferentes circuitos do cérebro reflectem um

estado funcional global do sistema e são utilizadas pelo cérebro como um mecanismo de

alerta para perturbações do seu normal funcionamento, sendo a dor crónica um dos

factores que contribui para essa perturbação. É usualmente assumido que a dor quando

evoluiu para estados de persistência ou crónicos, não causa apenas perturbações e

disfunções sensoriais, mas está também envolvida em diversas alterações funcionais do

cérebro, entre os quais se destacam os processos cognitivos.

Os objectivos a que esta dissertação se propõe, referem-se à compreensão da

relação entre as oscilações sincrónicas dos vários níveis de processamento da

informação nociceptiva e de que forma elas são dependentes das condições de

plasticidade dos circuitos do cérebro responsáveis pelas dimensões sensori-

discriminativa, afecto-motivacional e cognitiva da percepção da dor.

Na primeira parte procedi à caracterização da neurofisiologia das oscilações de

informação tálamo-corticais. Esta análise foi efectuada a dois níveis. Primeiro, através da

análise dos vários padrões oscilatórios do ciclo de vigília-sono após a instalação de uma

condição de dor crónica de cariz neuropática. Em segundo, nas transições dos estados

de consciência para inconsciência, nos quais existe uma redução gradual da quantidade

de informação sensorial integrada pelo circuito.

Na segunda parte procedi à caracterização dos mecanismos de plasticidade no

processamento da informação nociceptiva durante a competição com funções

associativas e cognitivas. Esta análise foi efectuada a dois níveis do circuito fronto-

hipocampal. Primeiro, na integração e processamento da informação associada à

geração dos mapas espaciais pelos neurónios piramidais da região CA1 dorsal do

hipocampo. Em segundo, ao nível do circuito fronto-hipocampal durante a codificação e

retenção da memória de referência espacial, aspecto crucial para a performance de

tarefas cognitivas.
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It is known that the thalamocortical loop plays a crucial role in the encoding of sensory–
discriminative features of painful stimuli. However, only a few studies have addressed the
changes in thalamocortical dynamics that may occur after the onset of chronic pain. Our
goal was to evaluate how the induction of chronic neuropathic pain affected the flow of
information within the thalamocortical loop throughout the brain states of the sleep–wake
cycle. To address this issue we recorded local field potentials (LFPs) – both before and
after the establishment of neuropathic pain in awake freely moving adult rats chronically
implanted with arrays of multielectrodes in the lateral thalamus and primary somatosen-
sory cortex. Our results show that the neuropathic injury induced changes in the number
of wake and slow-wave-sleep (SWS) state episodes, and especially in the total number of
transitions between brain states. Moreover, partial directed coherence – analysis revealed
that the amount of information flow between cortex and thalamus in neuropathic animals
decreased significantly, indicating that the overall thalamic activity had less weight over
the cortical activity. However, thalamocortical LFPs displayed higher phase-locking during
awake and SWS episodes after the nerve lesion, suggesting faster transmission of relevant
information along the thalamocortical loop. The observed changes are in agreement with
the hypothesis of thalamic dysfunction after the onset of chronic pain, and may result from
diminished inhibitory effect of the primary somatosensory cortex over the lateral thalamus.

Keywords: spared nerve injury model, intracranial recordings, thalamocortical, partial directed coherence, rat

INTRODUCTION
Although classically viewed as indicators of sleep–arousal tran-
sitions (McCormick and Bal, 1997), thalamocortical oscillations
are now known to play an important role in the perception of
visual, auditory, and somatosensory stimuli (Jones, 2001; Sherman
and Guillery, 2002; Ribary, 2005; Massimini et al., 2009). Recent
studies have shown that the disruption of this oscillatory activ-
ity in the thalamocortical loop impairs attentional control, affects
the normal processing of sensory information, and disrupts the
recall of previous sensory experiences (Lumer et al., 1997; Wiest
and Nicolelis, 2003; de Labra et al., 2007; Meehan et al., 2008; Ray
et al., 2009). In what concerns pain perception, the functional loop
between neurons of the primary somatosensory cortex and lateral
thalamic nuclei is known for a long time to be fundamental in the
processing of the sensory–discriminative features of painful stim-
uli that are transmitted through the spinothalamic tract (Willis,
2007; Lima, 2008). However, recent studies have proposed a larger
sensory role for thalamocortical oscillations by suggesting that dis-
ruption of their fine balance could be at the onset of neurogenic
pain by a process known as thalamocortical dysrhythmia, in which
slower brain rhythms are produced by a disruption of inhibitory
feedback in thalamic neurons (Llinás et al., 1999). This hypothesis
is supported by the clinical observation that chronic pain patients
have a shift in their EEG spectrum toward lower dominant fre-
quencies (Chen and Herrmann, 2001; Drewes et al., 2008; Walton

et al., 2010). Moreover chronic pain patients display an increase in
EEG power over theta frequency which also supports the neuro-
genic hypothesis of thalamocortical dysrhythmia (Sarnthein et al.,
2006; Bjørk et al., 2009; Walton et al., 2010).

It is, however, difficult to assess how critically important are
these thalamocortical changes to the onset of chronic pain symp-
toms, since they also occur in several non-painful neurological
conditions such as epilepsy, Parkinson disease, essential tremor,
tinnitus, and non-painful paraplegia (Jeanmonod et al., 2003;
Hughes and Crunelli, 2005; Sarnthein and Jeanmonod, 2007;
Boord et al., 2008; Kane et al., 2009). Furthermore, these human
studies were based in short recording sessions, and have not taken
into consideration how the disruption of the thalamocortical oscil-
lations might affect the patient’s state of vigilance, which is highly
relevant since chronic pain causes fragmentation of sleep patterns
(Gudbjornsson et al., 1993; Drewes et al., 1995; Jones et al., 1996;
Hagen et al., 1997; Tishler et al., 1997; Morin et al., 1998) while
sleep deprivation exacerbates pain perception (Moldofsky et al.,
1975; Drewes et al., 1997; Lentz et al., 1999; Onen et al., 2001;
Kundermann et al., 2004; Edwards et al., 2008). More importantly,
the human studies cannot solve the conundrum of determining if
the chronic pain is a cause or a consequence of the thalamocortical
dysrhythmia.

Chronic painful conditions are commonly associated with sleep
disturbances (Lautenbacher et al., 2006; Tang et al., 2007). In fact,
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the relationship between pain and sleep appears to be reciprocal:
while pain may interrupt or disturb sleep, poor sleep can also influ-
ence pain perception. However, the influence of sleep disturbances
on pain processing is still poorly investigated. Previous neuro-
physiological studies describing changes in brain oscillations in
animal models of chronic pain during sleep–wake cycle were com-
monly limited to only short periods or single sessions of recording
(Andersen and Tufik, 2003; Kontinen et al., 2003; Monassi et al.,
2003; Keay et al., 2004; Silva et al., 2008), and most of them were
mainly focused in the changes in sleep patterns (Carli et al., 1987;
Landis et al., 1988; Millecamps et al., 2005) without addressing the
changes in brain activity.

On the other hand no animal studies have addressed the
changes in thalamocortical dynamics after the onset of chronic
pain across the sleep–wake cycle, although a few have described
the changes occurring in the thalamocortical loop during acute
painful stimulation or immediately following formalin injection
(Wang et al., 2003, 2004; Huang et al., 2006). Therefore, our
goal was to evaluate how the induction of prolonged neuropathic
pain affected the thalamocortical dynamics. To pursue this goal
we recorded the spontaneous neural activity of freely moving
adult rats using multielectrodes chronically implanted in the pri-
mary somatosensory cortex and lateral thalamus, in long duration
recording sessions – 24 h – performed before and after the induc-
tion of the spared nerve injury (SNI) – model of neuropathic pain
(Decosterd and Woolf, 2000).

MATERIALS AND METHODS
ETHICS STATEMENT
All procedures and experiments adhered to the guidelines of the
Committee for Research and Ethical Issues of IASP (Zimmer-
mann, 1983), with the Ethical Guidelines for Animal Experimenta-
tion of the European Community Directive Number 86/609/ECC
of 24 November of 1986, and were locally approved by national
regulatory office [Direcção Geral de Veterinária (DGV), Lisboa,
Portugal].

Twelve adult male Sprague-Dawley rats weighing between 350
and 450 g were used in this study. The rats were maintained on
a 12-h light/dark cycle (light period from 7 a.m. to 7 p.m.), and
given ad libitum access to food and water during the habitua-
tion and the recording sessions. Both habituation and record-
ing sessions started at approximately the same time each day
(7 p.m.).

SURGICAL METHODS
For the surgical implantation of the intracranial multielectrodes
arrays the animals were anesthetized with a mixture of xylazine
and ketamine (10 and 60 mg/kg, respectively, i.m.). Anesthesia
was maintained with small additional injections of ketamine (one-
third of the initial dosage). The depth of anesthesia and paralysis
of the musculature was assessed by regularly testing the corneal
blink, hindpaw withdrawal, and tail-pinch reflexes. After the anes-
thesia induction, each animal received a dose of atropine sulfate
(0.02 mg/kg, s.c.), and 1 mL of serum (sucrose 2% p/v in NaCl
0.9% p/v, s.c.) every hour during the surgery. Core body temper-
ature was measured with a rectal thermometer and maintained at
37˚C by means of a homoeothermic blanket system.

The animal’s head was shaved and cleaned using a triple appli-
cation of alcohol (70%, v/v) and betadine. A midline subcutaneous
injection of 0.3 mL of 1% lignocaine (B Braun, Melsungen, Ger-
many) was applied to the scalp for local analgesia. Anesthetized
animals were secured in a stereotaxic frame using ear bars, and a
midline incision was made caudally to the animal’s eyes and end-
ing between ears. The connective tissue was blunt-dissected from
the skull, and the top of the skull was exposed and cleaned using
hydrogen peroxide. After the scalp was excised, holes were drilled
in the skull for microelectrode passage and for implantation of
four to five screws. These screws were used for securing probes
and for grounding purposes. The skull was covered by mineral oil
in order to avoid dehydration during surgical procedure.

Each microelectrode array included eight filaments
(1 array/area) of isonel-coated tungsten wire (35 μm diameter;
California Fine Wire Company, Grover Beach, CA, USA) with
impedances varying between 0.5 and 0.7 MΩ at 1 kHz, and a ref-
erence silver wire (150 μm diameter; A-M Systems Inc., WA, USA)
for connection with the cranial screws. The microelectrode arrays
were constructed in 4 × 2 architecture (1–2; 3–4; 5–6; 7–8 chan-
nels), interspaced 250-μm between lines and 400-μm between
columns (Figure 1A; Silva et al., 2010). Only two of the electrodes
per array (channel #3 [medial] and channel #6 [lateral]) were used
for the recording of low-frequency LFPs; all eight electrodes in each
array were used for recording of high frequency spike activity (data
not reported here). The choice of channels was consistent across
the different recording sessions for each animal. We preferred to
use only LFP data because it fits better the inner characteristics of

FIGURE 1 | Electrode construction and location of recordings. (A)

Architecture of a microelectrode array used to record local field potentials
(LFPs). (B) Coronal diagram illustrating the location of the LFPs recording
sites (dark squares) in ventro-posterior-lateral thalamic nuclei (VPL) (left
side) and in primary somatosensory cortex (SI) (right side). Numbers
represent the rostro-caudal distance (in millimeters) relative to bregma.
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the partial directed coherence (PDC) frequency-based methodol-
ogy (see details in Partial Directed Coherence), and because LFPs
reflect better the “average” neuronal activity in larger volumes of
tissue which is the aim of the current study.

The arrays were oriented rostro-caudally and mounted in the
holder of a hydraulic micropositioner (FHC Inc, Bowdoin, ME,
USA) and subsequently slowly driven (50 μm/min) into the right
primary somatosensory cortex (SI) and right ventro-posterior-
lateral thalamic nucleus (VPL) after dura mater removal. The
following coordinates in millimeters relative to bregma (Paxi-
nos and Watson, 1998) were used to place the arrays: SI (−2.5
rostro-caudal, +2.5 medio-lateral, −1.6 dorso-ventral), and VPL
(−3.1 rosto-caudal, +3.2 medio-lateral, −6.4 dorso-ventral). The
location of the electrodes within SI and VPL was verified by map-
ping the neuronal responses elicited by tactile stimulation of the
correspondent peripheral hindpaw digits receptive field. After the
electrodes reached the correct position, the craniotomy was sealed
with a layer of agar (4% in saline) and they were cemented to
the skull screws by the use of dental acrylic. At the end of the
surgery the animal was transferred to a recovery cage. The analgesic
carprofen (5–10 mg/kg; Rimadyl, Pfizer Animal Health, Lisbon,
Portugal) and the antibiotic amoxicillin (6 mg/kg; Clamoxyl, Pfizer
Animal Health) were administered subcutaneously every 24-h dur-
ing 2–3 days. Rats were allowed to recover for 1 week; after this
week, animals were habituated to the recording chamber in five
sessions of 90-min each in successive days. Behaviors were contin-
uously recorded using a dedicated digital video-tracking system
and synchronized with acquired neural data (CinePlex, Plexon
Inc., Dallas, TX, USA).

Extracellular local field potentials (LFPs) – were recorded from
the implanted microwire electrodes and processed by a 16-channel
Multineuron Acquisition Processor system (16-MAP, Plexon Inc.,
Dallas, TX, USA). LFP signals recorded from the electrodes
were pre-amplified (500×), band-pass filtered (0.5–400 Hz), and
digitized at 500 Hz.

SPARED NERVE INJURY
Two animal groups were used: one group (n = 6) was recorded
before and after the establishment of a peripheral nerve lesion
(here afterward named as SNI-baseline and SNI-surgery sessions,
respectively), while a second group (n = 6) was recorded before
and after a SHAM surgery involving similar blunt dissection as the
SNI-surgery but without any nerve lesion (here afterward named
as SHAM-baseline and SHAM-surgery sessions, respectively). SNI
and SHAM-surgery proceedings were implemented according to
the published methodology (Decosterd and Woolf, 2000) in the left
sciatic nerve contralateral to the hemisphere of electrodes implan-
tation. Each recording session lasted 24-h (12/12-h in light/dark
experimental conditions). The animals were placed in the record-
ing chamber with cables connected 30-min before each 24-h
session of LFPs continuous recording that were always initiated
at 7 p.m. (start of dark phase). During the recording sessions the
tethered animals were allowed to move freely in a 45-cm × 45-cm
recording chamber with free access to food and water. Recordings
were performed during two sessions in the baseline period (days-
10 and -2 before surgery, pooled together as baseline recordings)
and in two sessions after SHAM or SNI lesion (with recordings in

day 2 and 10 after surgery. During the analysis of the experimental
data it became clear that the two recordings done at 2 and 10 days
after surgery (both after nerve lesion or sham surgery) did not
significantly differ in any of our analysis; we have therefore used
both recordings as coming from a single “post-surgery” period.

Sensory threshold for noxious stimulation was measured using
von Frey filaments (Somedic, Sweden) as previously described
(Chaplan et al., 1994). Von Frey testing was always performed
during the light phase, 1 h before the beginning of each recording
session. Testing was performed in an elevated chamber with a thin
metallic mesh floor that allowed easy access to the plantar surface
of the hindpaw. Filament series were run from the thinnest to the
widest to detect the filament to which the animal withdraw the
paw in at least 6 of 10 successive applications; we then performed
another two series of 10 stimulations using the same filament
(2-min intervals between sessions) and averaged the number of
positive responses evoked by the three series.

STATEMAP
In order to identify wakefulness and sleep brain states of the rat
circadian cycle, we used the method recently developed by Ger-
vasoni, Lin, Ribeiro, and colleagues (Gervasoni et al., 2004; Lin
et al., 2006). Briefly, this technique splits wakefulness and sleep
states as distinct clusters into a two-dimensional state space map
derived from two LFPs power spectral ratios. These ratios were
heuristically established, and allowed for the best separation of
each brain state based on their spectral features. Each point of the
two-dimensional state space (example in Figure 2A) represents
1-s of ongoing brain activity. The density of points reflects the
relative abundance of the different brain states, and the distance
between two consecutive data points reflects the speed of spectral
changes. Clustering was performed semi-automatically using the
StateMap algorithm (Gervasoni et al., 2004). The slow-wave-sleep
(SWS) cluster was always located on the upper right quadrant
of the StateMap, whereas REM occupied the left quadrants, and
the WK cluster occupied the lower right quadrant. The generated
hypnograms (1-s bins of resolution) were used to calculate the fre-
quency of episodes of each brain state, respective mean duration,
and transitions between them (Figure 2C). The term “episode”
was used to classify the occurrence of a brain state with duration
in the hypnogram longer than 3 s.

Six different brain states were identified using the method-
ology described above. The WK state, characterized by theta (θ,
4–9 Hz) and gamma (γ, 30–55 Hz) LFPs spectral power (Steri-
ade et al., 1993; Destexhe et al., 1999). During waking state the
animals were involved in exploratory and stereotyped behaviors,
such as locomotion, whisking, eating, drinking, etc. An additional
transient waking state (WT) was characterized by synchronized
rat whisker-twitching and corticothalamic LFPs oscillations at
7–12 Hz (Nicolelis et al., 1995; Fanselow and Nicolelis, 1999).
These oscillations have been demonstrated to define a physio-
logical state associated with normal sensory perception (Fanselow
and Nicolelis, 1999; Wiest and Nicolelis, 2003). The REM was
characterized by low cortical LFPs amplitude and high theta and
gamma power state, and the animals were immobile with inter-
mittent whisker and ear twitches (Vanderwolf, 1969; Steriade et al.,
1993). In SWS state, the animals were immobile with eyes closed
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FIGURE 2 | Example of the technique used for statistical classification of

oscillatory patterns according to Principal Component Analysis of the

LFP signals. (A) Two-dimension brain StateMap. Three major clusters
were represented corresponding to waking state (WK), slow-wave-sleep
(SWS) and rapid-eye-movement (REM) states. (B) Power spectrogram of a
SI LFP channel showing the different patterns of signal power oscillations
across brain state episodes transitions. (C) Brain states hypnogram
obtained from two-dimensional state illustrated in panel A. Six different brain
states were coded: WK, SWS, REM, whisker-twitching (WT), M (undefined
movement), and U (transition states). (D) Density plots calculated from

scatter plots [e.g., (A)], showing the conserved cluster topography
and the relative abundance of the various brain states. Scale from
dark-blue (low-density) to red (high-density). (E) Speed plots representing
the average of spontaneous trajectories within the two-dimensional
StateMap. Stationarity (low speed) can be observed in the three main
clusters (WK, SWS, and REM), whereas a maximum speed is reached
during transitions from one clusters to another. After SNI lesion the velocity
between WK and SWS state episodes increased, suggesting also an
increase of WK/SWS transitions during the neuropathic pain
period.

and had slow regular respiratory movements. The light SWS is
characterized by sleep spindles (10–14 Hz) superimposed to delta
waves (δ, 1–4 Hz), while in deep SWS the delta oscillations are
more prominent (Achermann and Borbely, 1997; Destexhe et al.,
1999). Furthermore, SWS state can be followed by a transient inter-
mediate state of unstable oscillations named as U-transition state
(Gottesmann, 1992; Mandile et al., 1996; Vescia et al., 1996). An
additional M state was coded to include all unspecific patterns of
oscillations that are exhibited by the rat. Examples of traces of the
WK, SWS, and REM states are presented in Figure A2 in Appen-
dix. In order to confirm and validate the brain states hypnogram
generated by the StateMap, two different experimenters visually
identified WK, SWS, and REM episodes in the video recordings

using the behavioral characteristics and associated LFP spectral
features as detailed above (see also Figure A1 in Appendix).

Rats spent more time in the awake state during the dark phase
than during the light phase, and, conversely, the rat sleep states
during the light phase are more frequent and longer than in the
dark phase.

SPECTRAL ANALYSIS
Power spectral density and coherence
Power spectral density (PSD) of cortical and thalamic LFPs signals
were calculated between 1 and 50 Hz using the Welch’s method
(MATLAB function), with 512-points fast Fourier transform of
non-overlapping 1-s epochs (Hanning-window). Data is shown
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as the percentage of total PSD within the frequency range con-
sidered (1–50 Hz). In order to determine the spectral coupling
among signals from thalamocortical recorded regions, we have
calculated the correlation coefficient or sometimes referred to as
coherence in the signal engineering community. Coherence (Cxy )
was measured applying the equation mathematically equivalent to
Cxy = |Pxy|2/(PxPy) where the coherence from two signals, x and
y, is equal to the average cross power spectral density (Pxy) nor-
malized by the averaged power spectra of the two signals. Its value
lies between 0 and 1, and it estimates the degree to which phases
at the frequency (f ) of interest are dispersed. Cxy = 0 means that
phases are dispersed, and high coherence (Cxy = 1) means phases
of signals x and y are identical and the two signals are totally
phase-locked at this frequency. Cross power spectral density was
calculated using the default MATLAB function.

Phase–coherence
Phase–coherence (φxy ) of simultaneously recorded thalamocor-
tical LFPs was evaluated calculating the Hilbert transform of
each LFP segment. The phase angles of each signal segment were
extracted and wrapped between 0˚ and 360˚ and displayed as a
rose plot histogram. The whole rose plot (360˚) was divided in
60 bins of resolution (6˚ per bin), with each bin displaying the
respective population percentage. The Rayleigh test of uniformity
(P < 0.01) was used to assess the resulting phase distributions
for deviations from the circular uniform distribution. The degree
of phase-locking or phase–coherence was determined calculating
the concentration around the preferred phase in the circular-
distribution, with its value lying between 0 and 1, where φxy = 0
indicates that phase values at a particular frequency range are ran-
domly distributed across the time interval, while φxy = 1 indicates
that phase values are exactly the same across the time interval.
Phase–coherence values are inversely related to the Rayleigh P-
value, with φxy = 0 standing for uniform distribution. Circular
statistics were calculated according to Fisher (1993).

Partial directed coherence
The PDC measure was used to identify and quantify the infor-
mation flow interactions in the thalamocortical loop. The PDC
method has been described in detail elsewhere (Sameshima and
Baccalá, 1999; Baccala and Sameshima, 2001). Briefly, PDC is an
alternative representation of Granger-causality involving multi-
variate processes to uncover direct influences in the frequency
domain. The allied PDC from structure j-th to i-th at frequency λ

is defined as:

πij(λ) = Āij(λ)√
N∑

n=1
Ānj(λ) · Ā∗

nj(λ)

where,

Aij(λ) =

⎧⎪⎪⎨
⎪⎪⎩

1 −
p∑

r=1
aij(r) exp(−j2πλr), if i = j

−
p∑

r=1
aij(r) exp(−j2πλr), otherwise,

aij are multivariate autoregressive coefficients and p is the model
order. Nullity of PDC [πij (λ) = 0] can be interpreted as absence of

effective connectivity from the j-th structure to the i-th structure
at frequency λ and high PDC, near one, indicates strong connec-
tivity between the structures. This can be interpreted as existence
of information flow from brain area j to i.

STATISTICAL ANALYSIS
Neural activity data was processed and validated by offline analysis
using NeuroExplorer 4 (NEX, Plexon Inc., Dallas, TX, USA) and
exported to MatLab R14 Version 2008a (MathWorks, Natick, MA,
USA) for complementary analysis. The PSD, Cxy , φxy , and PDC
parameters were calculated using the same 40 LFPs signal segments
of 10-s per recording session for each of the three more frequent
behaviors (WK, SWS, and REM). These signal segments were ran-
domly selected based on brain states hypnogram generated by the
two-dimensional StateMap, and were verified and validated by
visual inspection of behavior states in the video recordings and
LFP spectral features.

In all analyses the distribution of the data was initially checked
for potential deviations from normality assumptions, in order to
choose the appropriate statistical test to apply. Non-parametric
statistics were used when the Kolmogorov–Smirnov test (with
Dallal–Wilkinson–Lilliefor corrected P-value) revealed deviations
from the normal distribution (P > 0.05, Kolmogorov–Smirnov
test). In this case, we performed non-parametric Wilcoxon signed-
rank test for paired samples, or non-parametric Mann–Whitney
test for unpaired samples. To compare multiple groups, we relied
on the Kruskal–Wallis analysis of ranks (with post hoc Dunn’s test),
which is a non-parametric version of the classical one-way analysis
of variance (ANOVA), and an extension of the Wilcoxon rank sum
test to more than two groups. The level of significance was set as
5% (or P < 0.05).

Under normality assumptions, we used ANOVA to compare
multiple groups. Statistical comparisons between frequency spec-
tra were performed by a two-way ANOVA (groups × frequency
bands) with post hoc Bonferroni test. In this case, and to facil-
itate interpretation of data, we performed separate comparisons
for paired experimental groups [two-way ANOVA-repeated mea-
sures (RM); SHAM-baseline vs. SHAM-surgery and SNI-baseline
vs. SNI-surgery] and for unpaired groups (two-way ANOVA non-
matching; SHAM-baseline vs. SNI-baseline and SHAM-surgery
vs. SNI-surgery). Thus, we are testing four separate comparisons
on our dataset. We therefore need to take care in selecting our sta-
tistical significance level to account for the fact, by chance alone,
we may encounter a favorable significance level simply because
of the number of comparisons that we are conducting. In this
case, we apply the Bonferroni correction. The Bonferroni correc-
tion states that if we test n comparisons on a set of data, then we
should adjust our statistical significance level by a factor of 1/n.
Choosing a standard significance level of P < 0.05 for a single com-
parison, our Bonferroni-corrected significance level in this work
is P < 0.05/4, or P < 0.0125.

The results were expressed as mean ± SEM.

HISTOLOGY
At the end of all experiments, the rats were deeply anesthetized
with ketamine/xylazine mixture and the recording site was marked
by injecting DC current (10–20 μA for 10–20 s) through one
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microwire per matrix group, marking the area below the elec-
trode tips. Afterward animals were perfused through the heart
with 0.01 M phosphate buffer (pH = 7.2) in 0.9% saline solu-
tion followed by 4% paraformaldehyde. Brains were removed and
post-fixed in 4% paraformaldehyde during 4 h and stored in 30%
sucrose before freeze-sectioning into 60 μm sections, and stained
for site identification under the microscope. This technique, in
conjunction with careful notation of electrodes movements dur-
ing implantation, allowed for localization of all recording sites
(Figure 1B).

RESULTS
MECHANICAL STIMULATION THRESHOLDS
All SNI animals developed mechanical allodynia as indicated by
the significant decrease in the mechanical withdrawal stimulus
threshold in the hindpaw ipsilateral to the lesion, but not in the
contralateral paw or in the SHAM-operated control group. In
the SHAM group, no statistical difference was noted between the
control period (SHAM-baseline) and after the surgery (SHAM-
surgery; 16.6 ± 0.7 to 17.3 ± 0.8 g; NS; Wilcoxon test). In the SNI
group, relative to baseline, a large decrease (83.9%) was observed
in the threshold required to induce a paw response to stimulation
with von Frey filaments (17.4 ± 1.2 to 2.8 ± 1.2 g; P < 0.05).

BRAIN STATES AND SPECTRAL CHARACTERISTICS
In order to quantitatively distinguish stable oscillatory episodes
and brain states, we have used the StateMap algorithm (Gerva-
soni et al., 2004; Lin et al., 2006) that maps wakefulness and sleep
states as distinct clusters in a two-dimensional state space derived
from two LFP spectral ratios (Figure 2A). This technique presents
the advantage of clearly distinguishing brain states that shared
common spectral features, such as the theta oscillations observed
during WK and REM episodes (Figure 2B). The three spectral
clusters were clearly visible in two-dimensional state maps, cor-
responding to WK, SWS, and REM 1-s segments (hypnogram of
Figure 2C).

All LFPs data segments with amplitude saturation were dis-
carded from the working dataset (5.86 ± 0.91% of the total
data per rat). The inspection of intracranial LFP activity con-
firmed that large-power oscillations were present during all brain
states. The spontaneous spectral trajectories (distance between
two consecutive points in the state map per unit of time, 1-
s) that govern transitions between brain states were character-
ized by specific duration patterns in the state maps. The most
frequent transitions occurred between WK → SWS → WK and
WK → SWS → REM → WK episodes (Figure 2C). The speed of
the spontaneous spectral trajectories on the state map can identify
the regions in which little spectral variation exists (light blue area
in Figure 2E) that coincide with the accumulation of points of
the states identified by the algorithm [delimitation on blue (WK),
green (SWS), and red (REM) in Figure 2A and density plot of
Figure 2D], and the regions with fast spectral oscillations (yel-
low area in Figure 2E) that correspond to segments of transitions
between different brain states (e.g., transitions between WK and
SWS state episodes). After the nerve lesion (SNI-surgery vs. SNI-
baseline) the spontaneous spectral trajectories velocity showed an
increase in the WK → SWS → WK transitions during the dark

phase (Figure 2E), whereas in the SHAM animals no differences
were observed (data not presented in the figure). This increase
in velocity can be associated with the increase in the number of
WK–SWS transitions observed after nerve injury.

SLEEP–WAKE CHARACTERISTICS
Brain state episodes
As shown in Table 1 (panel above), there were statistical sig-
nificant differences between experimental groups in the num-
ber of brain state episodes (Kruskal–Wallis test; WK-light phase:
K–W = 15.01, P = 0.0018, and WK-dark phase: K–W = 9.64,
P = 0.0219; SWS-dark phase: K–W = 9.94, P = 0.0191; U-light
phase: K–W = 10.38, P = 0.0156, and U-dark phase: K–W = 17.97,
P = 0.0004). The post hoc comparison of the SNI-baseline group
to the SNI-surgery showed a significant increase in the num-
ber of WK state episodes during the light and dark phases
(291.1 ± 19.7 to 383.7 ± 22.1, and 310.3 ± 13.3 to 491.9 ± 31.7,
respectively; Dunn’s test, P < 0.05), while for SWS it was signif-
icant only during the dark phase (241.8 ± 26.2 to 376.5 ± 53.0;
P < 0.05). In the case of U-transition state episodes, they also
revealed an increase during both recording phases (258.2 ± 24.9
to 398.7 ± 16.9, and 318.4 ± 22.5 to 502.9 ± 23.3, respectively;
P < 0.05). The post hoc comparison between SHAM-surgery/SNI-
surgery groups revealed that the number of WK episodes in
SNI-surgery was superior to SHAM-surgery during both light
(383.7 ± 22.1 vs. 303.7 ± 29.9; Dunn’s test, P < 0.05) and dark
phases (491.9 ± 31.7 vs. 312.9 ± 20.9; P < 0.05), while the num-
ber of SWS episodes was superior in SNI group only during the
dark phase (376.5 ± 28.1 vs. 254.1 ± 23.4; P < 0.05). A similar
result was obtained for U-transition episodes during both phases
(398.7 ± 16.9 vs. 286.3 ± 26.9, and 502.9 ± 23.2 vs. 312.3 ± 40.2,
respectively; P < 0.05). In addition, post hoc analysis revealed no
significant differences between SHAM-baseline/SHAM-surgery,
and SHAM-baseline/SNI-baseline sessions.

In terms of the mean duration of each state episode (Table 1,
panel below), there were statistical differences between exper-
imental groups but only for the U-transition state (Kruskal–
Wallis test; light phase: K–W = 18.98, P = 0.0003, and dark phase:
K–W = 15.92, P = 0.0012). Post hoc analysis revealed a signif-
icant decrease of the U-transition state episodes mean dura-
tion for SNI-baseline/SNI-surgery (light phase: 25.4 ± 2.4 to
11.6 ± 1.3 s; and dark phase: 23.4 ± 4.2 to 8.3 ± 1.6; Dunn’s test,
P < 0.05), and SHAM-surgery/SNI-surgery comparisons (light
phase: 27.8 ± 5.6 to 11.6 ± 1.3 s; and dark phase: 28.4 ± 7.9 to
8.3 ± 1.6, P < 0.05). In addition, post hoc analysis revealed no sig-
nificant differences between SHAM-baseline/SHAM-surgery, or
SHAM-baseline/SNI-baseline sessions.

Brain state transitions
After the SNI nerve lesion, all rats showed an increase in the num-
ber of state transitions between the more representative brain
states (WK, SWS, and REM), indicating an increase of circadian
pattern fragmentation in these animals (Table 2). ANOVA revealed
significant differences between all experimental groups for WK–
SWS transitions (Kruskal–Wallis test; light phase: K–W = 9.98,
P = 0.0188, and dark phase: K–W = 9.46, P = 0.0237), SWS–WK
(dark phase: K–W = 13.46, P = 0.0037), SWS–REM (light phase:
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Table 1 |The number and mean duration of episodes from the different sleep states to wakefulness are shown for the light and dark phases

(expressed as mean value per period of 12-h).

SHAM SNI

Baseline (n = 6) Surgery (n = 6) Baseline (n = 6) Surgery (n = 6)

EPISODE

WK Light 256.3 (23.4) 303.7 (29.2) # 291.1 (19.7) 383.7 (22.1)*

Dark 314.1 (15.2) 312.9 (20.9) # 310.3 (13.3) 491.9 (31.7)*

SWS Light 207.8 (12.3) 199.1 (23.3) 195.5 (14.2) 177.3 (24.3)

Dark 232.7 (14.2) 254.1 (23.4) # 241.8 (26.2) 376.5 (28.1)*

REM Light 37.1 (7.2) 23.4 (7.2) 38.3 (6.0) 22.1 (7.2)

Dark 56.3 (11.0) 58.0 (3.2) 59.1 (11.2) 68.2 (21.2)

WT Light 26.0 (9.8) 15.8 (3.4) 23.4 (9.9) 18.8 (3.3)

Dark 19.5 (5.4) 18.2 (3.7) 18.3 (5.7) 17.8 (3.1)

M Light 11.4 (4.3) 6.7 (2.1) 13.6 (4.5) 6.8 (2.1)

Dark 21.1 (2.4) 13.9 (0.9) 20.8 (3.7) 17.7 (3.4)

U Light 282.2 (25.9) 286.3 (26.9) # 258.2 (24.9) 398.6 (16.9)*

Dark 315.9 (33.7) 312.3 (40.2) # 318.4 (22.5) 502.9 (23.2)*

DURATION (S)

WK Light 66.4 (15.1) 59.1 (17.9) 61.1 (14.1) 58.4 (15.7)

Dark 61.1 (24.6) 59.9 (15.6) 64.9 (17.1) 44.9 (8.9)

SWS Light 68.8 (26.5) 66.1 (26.6) 65.2 (12.5) 74.3 (16.2)

Dark 47.3 (23.5) 51.2 (24.5) 49.9 (15.1) 35.4 (9.8)

REM Light 34.3 (13.2) 27.6 (14.4) 29.2 (9.8) 31.3 (11.2)

Dark 31.0 (5.7) 28.1 (8.8) 23.1 (8.8) 26.2 (10.0)

WT Light 6.8 (3.9) 4.0 (2.9) 3.3 (0.5) 5.8 (1.7)

Dark 5.5 (3.7) 5.4 (1.1) 4.3 (0.9) 2.9 (0.3)

M Light 15.2 (10.7) 9.3 (4.8) 10.7 (6.1) 5.7 (2.1)

Dark 7.9 (2.6) 5.2 (2.7) 6.8 (2.4) 7.4 (1.8)

U Light 23.5 (2.9) 27.8 (5.6) # 25.4 (2.4) 11.6 (1.3)*

Dark 27.9 (3.4) 28.4 (7.9) # 23.4 (4.2) 8.3 (1.6)*

Six different brain states were considered: WK, waking state; SWS, slow-wave-sleep; REM, rapid-eye-movement sleep; WT, whisker-twitching; M, undefined move-

ment; U, transition state. Values are expressed as mean (SEM). Statistical differences between study groups indicated by asterisks (*) for SNI-baseline/SNI-surgery

and cardinal (#) for SHAM-surgery/SNI-surgery comparisons (*/# P < 0.05).

K–W = 9.99, P = 0.0187), REM–WK (light phase: K–W = 9.21,
P = 0.0266), WK–U (light phase: K–W = 12.13, P = 0.0070), U–
WK (light phase: K–W = 10.85, P = 0.0125, and dark phase: K–
W = 11.57, P = 0.0090), and REM–U (light phase: K–W = 12.19,
P = 0.0068).

When compared SNI-baseline group to SNI-surgery (Table 2,
significance indicated by asterisks symbols), post hoc analysis
revealed an increase of the WK-to-SWS transitions during the light
and dark phases (100.9 ± 9.1 to 173.9 ± 10.9, and 119.2 ± 24.4
to 201.9 ± 32.6, respectively; Dunn’s test, P < 0.05), and SWS-
to-WK transitions but only during the dark phase (87.1 ± 11.9
to 168.9 ± 11.2; P < 0.05). Other low-frequency state transitions
such as SWS-to-REM and REM-to-WK increased only during
the light phase (6.5 ± 1.4 to 22.4 ± 2.9, and 7.6± to 45.2 ± 14.1,
respectively; P < 0.05). In addition, all SNI rats showed a signif-
icant increase in the transitions mediated by U-state and WK
states. For example, the WK-to-U transitions increased during the
light phase (126.3 ± 30.9 to 215.7 ± 17.1; P < 0.05), while U-to-
WK increased during both phases (134.1 ± 19.4 vs. 211.4 ± 21.2,
and 195.1 ± 29.1 vs. 272.3 ± 8.6, respectively; P < 0.05), and the

REM-to-U transitions increased during the light phase of the
recordings (8.1 ± 2.1 vs. 32.1 ± 5.2; P < 0.05).

Post hoc statistical analysis of the SNI-surgery/SHAM-surgery
groups showed similar differences to those observed when com-
paring SNI-surgery/SNI-baseline (Table 2, significance indicated
by cardinal symbols). In SNI-surgery group, the number of WK-
to-SWS transitions was superior to SHAM-surgery during the
light (173.9 ± 10.9 vs. 97.2 ± 18.5; Dunn’s test, P < 0.05) and dark
phases (201.9 ± 32.6 vs. 124.4 ± 19.9; P < 0.05), whereas for SWS-
to-WK it was significant only during the dark phase (168.9 ± 11.2
vs. 88.3 ± 9.3; P < 0.05). Other low-frequency transitions such as
SWS-to-REM and REM-to-WK increased only during light phase
(22.4 ± 2.9 vs. 6.2 ± 4.4, and 45.2 ± 14.1 vs. 7.7 ± 2.3, respec-
tively; P < 0.05). Transitions mediated by U-state also increased
in SNI-surgery group: WK-to-U transitions during the light phase
(215.21 ± 17.1 vs. 111.9 ± 22.4; P < 0.05); U-to-WK transitions
during the light (211.4 ± 21.2 vs. 137.7 ± 14.1; P < 0.05) and
dark phases (272.3 ± 8.6 vs. 197.4 ± 21.3; P < 0.05); and REM-
to-U transitions during the light phase (32.1 ± 5.2 vs. 9.3 ± 2.2;
P < 0.05).
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Table 2 |The number of transitions from the different sleep states to wakefulness are shown for the light and dark phases (expressed as mean

value per period of 12-h).

SHAM SNI

Baseline (n = 6) Surgery (n = 6) Baseline (n = 6) Surgery (n = 6)

TRANSITIONS

WK–SWS Light 102.7 (14.7) 97.2 (18.5) # 100.9 (9.1) 173.9 (10.9)*

Dark 125.2 (14.3) 124.4 (19.9) # 119.2 (24.4) 201.9 (32.6)*

SWS–WK Light 118.1 (16.4) 119.1 (21.7) 121.0 (14.4) 159.8 (15.0)

Dark 89.7 (13.4) 88.3 (9.3) # 87.1 (11.9) 168.8 (11.2)*

SWS–REM Light 4.5 (1.1) 6.2 (4.4) # 6.5 (1.4) 22.4 (2.9)*

Dark 16.6 (7.4) 16.1 (9.1) 14.8 (8.1) 15.5 (7.7)

REM–WK Light 6.6 (3.9) 7.7 (2.3) # 7.6 (2.8) 45.2 (14.1)*

Dark 18.6 (17.8) 18.9 (23.2) 15.9 (10.4) 44.8 (2.3)

WK–U Light 122.1 (32.4) 111.9 (22.4) # 126.3 (30.9) 215.7 (17.1)*

Dark 151.6 (37.1) 152.7 (39.2) 149.7 (55.1) 248.4 (21.9)

U–WK Light 138.1 (25.1) 137.7 (14.1) # 134.1 (19.4) 211.4 (21.2)*

Dark 199.7 (24.2) 197.4 (21.3) # 195.1 (29.1) 272.3 (8.6)*

SWS–U Light 89.3 (35.4) 94.0 (29.8) 98.1 (31.3) 93.1 (15.2)

Dark 76.4 (7.8) 74.4 (8.2) 73.5 (7.7) 135.7 (41.1)

U–SWS Light 45.2 (33.4) 41.9 (29.1) 54.1 (23.4) 95.7 (18.3)

Dark 106.7 (29.8) 104.1 (22.8) 104.8 (35.7) 148.3 (26.6)

REM–U Light 7.5 (3.7) 9.3 (2.2) # 8.1 (2.1) 32.1 (5.2)*

Dark 29.4 (27.1) 31.3 (26.1) 32.4 (16.1) 34.4 (10.2)

U–REM Light 7.6 (6.1) 5.6 (1.9) 9.2(4.3) 29.3 (4.3)

Dark 34.3 (21.1) 33.7 (19.4) 34.9 (17.1) 66.7 (10.2)

Values are expressed as mean (SEM). Statistical differences between study groups indicated by asterisks (*) for SNI-baseline/SNI-surgery and cardinal (#) for

SHAM-surgery/SNI-surgery comparisons (*/# P < 0.05).

In addition, post hoc analysis revealed no significant dif-
ferences between SHAM-baseline/SHAM-surgery, or SHAM-
baseline/SNI-baseline sessions across the considered state tran-
sitions.

THALAMOCORTICAL POWER SPECTRAL DENSITY AND COHERENCE
Power spectral density analysis was employed to visualize the
power spectra of LFPs of WK, SWS, and REM brain states across
the studied frequency range (1–50 Hz). A qualitative compari-
son of PSD measurements between the thalamocortical LFPs is
shown in Figure 3A–D, comparing both SHAM-baseline and SNI-
baseline with SHAM-surgery and SNI-surgery. The inspection
of PSD confirmed that characteristic power oscillations were as
expected, with a prominent high-power in theta frequency band
(4–9 Hz) in WK and REM episodes, and a high-power in delta
band (1–4 Hz) observed during SWS episodes.

The qualitative comparison of the coherence measurements
between the thalamocortical LFPs clearly showed similar values
of coherence activity across selected brain states (Figures 3E,F).
Note however that REM revealed an increase of coherence activity
across gamma frequency band (30–50 Hz) that was not observed
in WK or SWS episodes. We present additional data (see Figure A3
in Appendix) of average PSD and coherence per frequency band.
ANOVA (two-way ANOVA) revealed no differences in these
measurements between experimental groups.

THALAMOCORTICAL PHASE–COHERENCE
As shown in Figure 4A, there were statistical significant differ-
ences between experimental groups in SI–VPL phase–coherence
(1–50 Hz frequency range) for WK and SWS brain states
(Kruskal–Wallis test; K–W = 13.28, P = 0.0041; and K–W = 12.08,
P = 0.0071; respectively), and no differences for REM state (K–
W = 3.47, P = 0.3243). When compared SNI-baseline group to
SNI-surgery, post hoc analysis revealed a significant enhance-
ment of SI–VPL phase–coherence after nerve lesion (WK: from
0.52 ± 0.02 to 0.65 ± 0.04; SWS: from 0.61 ± 0.02 to 0.69 ± 0.03;
Dunn’s test, P < 0.05), and also the comparison of SHAM-
surgery/SNI-surgery groups (WK: from 0.55 ± 0.05 to 0.65 ± 0.04;
SWS: from 0.58 ± 0.04 to 0.69 ± 0.03; P < 0.05; Figure 4A). In
addition, post hoc analysis revealed no significant differences
between SHAM-baseline/SHAM-surgery groups for WK, SWS,
and REM brain states. As shown in Figure 4B, the rose plot his-
tograms present a narrow range of phase–coherence in all three
brain states, indicating a high degree of phase synchronization
of SI–VPL LFPs activity; this suggests a broader coordination of
thalamocortical activities after nerve lesion. Indeed, all phase dis-
tributions are significantly non-uniform (P < 0.01, Rayleigh test
of uniformity).

The analyses of mean phase–coherence across frequency
bands are illustrated in Figure 4C. In the case of WK
state, the comparison of SHAM-baseline/SHAM-surgery groups
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FIGURE 3 | Spectral analysis of SI–VPL LFPs channels during WK (blue),

SWS (green), and REM (red) states. Data were presented comparing the
baseline (left side of each panel) and respective SHAM or SNI lesion (right
side). Values are expressed for all animals as mean (±SEM). (A–D) Power
spectral density (PSD) of LFPs normalized by the percentage of total power

within the frequency range analyzed (1–50 Hz) for VPL (A,B) and SI
(C,D) channels. PSD showed that spectral power patterns were conserved
across the experimental groups. (E,F) Coherence between VPL and SI
LFPs showed similar levels of coherence activity across all experimental
groups.

revealed no significant differences across experimental groups
[two-way ANOVA-RM: F (1,25) = 1.73, P = 0.2182] and interaction
[groups × frequency bands; F (4,25) = 0.48, P = 0.7479], and
a significant effect across frequency bands [F (4,25) = 10.74,
P < 0.0001]. In addition, the comparison of SHAM-baseline/SNI-
baseline groups revealed also no significant differences
across experimental groups [two-way ANOVA: F (1,50) = 1.56,
P = 0.2173] and interaction [F (4,50) = 0.16, P = 0.9567], and a sig-
nificant effect across frequency bands [F (4,50) = 7.65, P < 0.0001].
On the other hand, when comparing SNI-baseline/SNI-surgery
groups significant effects were encountered across groups [two-
way ANOVA-RM: F (1,25) = 19.30, P = 0.0002] and frequency
bands [F (4,25) = 3.15, P = 0.0314], and no significant interac-
tion effect between these two factors [F (4,25) = 1.55, P = 0.2180].
Post hoc analysis revealed a significant increase of the mean

phase–coherence across delta frequency band in the SNI-surgery
group (P < 0.0125, Bonferroni test with corrected P-value).
In the case of the comparison of SHAM-surgery/SNI-surgery
groups, ANOVA revealed significant differences across experimen-
tal groups [two-way ANOVA: F (1,50) = 32.49, P < 0.0001], and
no differences across frequency bands [F (4,50) = 2.13, P = 0.0914]
and interaction effect [F (4,50) = 1.40, P = 0.2475]. Post hoc analy-
sis revealed a significant increase of mean phase–coherence
across delta (P < 0.0025, Bonferroni test with corrected P-
value) and theta (P < 0.0125) frequency bands after nerve
lesion (Figure 4C). In the case of SWS state, the comparison
of SHAM-baseline/SHAM-surgery groups revealed no signifi-
cant differences across experimental groups [two-way ANOVA-
RM: F (1,25) = 0.04, P = 0.8346], frequency bands [F (4,25) = 1.25,
P = 0.3191], as well for the interaction effect [F (4,25) = 0.01,
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FIGURE 4 | Phase-locking of cortical and thalamic local field potentials.

(A) Comparison of mean phase–coherence of SI–VPL LFPs segments
recorded during WK, SWS, and REM states. Data was calculated for a
1- to 50-Hz frequency range. A significant increase of phase–coherence was
observed for WK and SWS episodes after nerve lesion. (B) Examples
of LFPs phase distributions during WK, SWS, and REM episodes for one rat
submitted to the nerve lesion protocol. The numbers in the upper right corner
of each plot shows the value of the mean phase–coherence. All
circular-concentration distributions are significantly non-uniform (Rayleigh

test, P < 0.01) indicating a high degree of thalamocortical phase
synchronization. (C) Average phase–coherence across frequency bands
analyzed during the baseline and respective SHAM or SNI lesion (surgery).
Frequency bands: delta (δ, 1–4 Hz), theta (θ, 4–9 Hz), alpha (α, 9–15 Hz), beta
(β, 15–30 Hz), and slow-gamma (γ, 30–50 Hz). Comparison of SNI-surgery in
respect to SNI-baseline (plus symbols), and to SHAM-surgery (cardinal
symbols). Values are expressed as mean ± SEM. +/# P < 0.0125, ++/##
P < 0.0025, +++/### P < 0.0002 (Bonferroni test with corrected
P -value).

P = 0.9996]. A similar result were obtained for the comparison
of SHAM-baseline/SNI-baseline groups [two-way ANOVA:
groups F (1,50) = 0.08, P = 0.7822, frequency bands F (4,50) = 0.52,
P = 0.7172, and interaction F (4,50) = 0.02, P = 0.9992]. On the
other hand, when comparing SNI-baseline/SNI-surgery groups
significant differences were encountered across groups [two-
way ANOVA-RM: F (1,25) = 54.79, P < 0.0001], and no differ-
ences across frequency bands [F (4,25) = 0.48, P = 0.7485] and
interaction effect [F (4,25) = 0.71, P = 0.5902]. In the case of
the comparison of SHAM-surgery/SNI-surgery groups, ANOVA
revealed significant differences across experimental groups [two-
way ANOVA: F (1,50) = 21.97, P < 0.0001], and no differences
across frequency bands [F (4,50) = 0.58, P = 0.6803] and interac-
tion effect [F (4,50) = 0.34, P = 0.8475]. Post hoc analysis revealed
a significant increase of mean phase–coherence across delta fre-
quency band after nerve lesion (P < 0.0125, Bonferroni test with
corrected P-value; Figure 4C).

In the case of REM state, the comparison of SHAM-
baseline/ SHAM-surgery groups, SHAM-baseline/SNI-baseline,
and SHAM-surgery/SNI-surgery revealed no significant dif-
ferences across experimental groups [two-way ANOVA-RM:
F (1,25) = 0.64, P = 0.4323; and two-way ANOVA: F (1,50) = 1.04,
P = 0.3124; F (1,50) = 1.97, P = 0.1664; respectively] and interac-
tion effect [groups × frequency bands, two-way ANOVA-RM:
F (4,25) = 0.05, P = 0.9952; and two-way ANOVA: F (4,50) = 0.08,
P = 0.9884; F (4,50) = 1.16, P = 0.3378; respectively], and a sig-
nificant effect across frequency bands [two-way ANOVA-RM:
F (4,25) = 9.51, P < 0.0001; and two-way ANOVA: F (4,50) = 9.40,
P < 0.0001; F (4,50) = 2.85, P = 0.0330; respectively]. In addition,
when comparing SNI-baseline/SNI-surgery groups no statistical
differences were encountered across experimental groups [two-
way ANOVA-RM: F (1,25) = 1.13, P = 0.2977], frequency bands
[F (4,25) = 2.17, P = 0.1013], as well for the interaction effect
[F (4,25) = 1.15, P = 0.3024].
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THALAMOCORTICAL PARTIAL DIRECTED COHERENCE
The changes of thalamocortical information flow in SHAM and
SNI animals before and after surgery were determined by PDC
analysis. Figure 5A shows the averaged PDC between SI cor-
tex and VPL thalamic nuclei during WK, SWS, and REM states
selected using the two-dimensional cluster technique described
above. The qualitative comparison of the data suggests that, in the

SNI-surgery group, the amount of information flow from VPL-
to-SI and from SI-to-VPL decreased in both directions indicating
that less information was transmitted in the thalamocortical loop
after peripheral sciatic nerve injury. In addition, the decrease in
the descending direction (from cortex to thalamus) was smaller
when compared to the ascending direction (from thalamus to
cortex).

FIGURE 5 | Information flow between the two recorded regions were

determined by partial directed coherence (PDC) analysis during WK

(blue), SWS (green), and REM (red) states. (A) The amount of information
flow in ascending (VPL-to-SI) and descending (SI-to-VPL) directions did not
show significant differences for SHAM-lesion animals, while decreased
significantly for SNI group after peripheral nerve lesion, indicating that less
information was processed in the thalamocortical circuit after lesion. (B) The

averaged PDC across frequency bands revealed a significant decrease of
information flow for both directions at all frequency bands. Frequency bands:
delta (δ, 1–4 Hz), theta (θ, 4–9 Hz), alpha (α, 9–15 Hz), beta (β, 15–30 Hz), and
slow-gamma (γ, 30–50 Hz). Comparison of SNI-surgery groups in respect to
SNI-baseline (plus symbols), and to SHAM-surgery (cardinal symbols). Values
are expressed as mean ± SEM. +/# P < 0.0125, ++/## P < 0.0025, +++/###
P < 0.0002 (Bonferroni test with corrected P -value).
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In order to detail the thalamocortical information flow
across frequency bands, we calculated the averaged PDC
per range of frequencies (Figure 5B). ANOVA was per-
formed to measure the differences in the averaged PDC
across experimental groups. In the case of the thala-
mocortical ascending direction (VPL-to-SI), the compari-
son of SHAM-baseline/SHAM-surgery groups, and SHAM-
baseline/SNI-baseline revealed no significant differences across
experimental groups [two-way ANOVA-RM: WK F (1,25) = 2.65,
P = 0.0746; SWS F (1,25) = 2.67, P = 0.0691; REM F (1,25) = 0.73,
P = 0.4006; and two-way ANOVA: WK F (1,50) = 0.01, P = 0.9706;
SWS F (1,50) = 1.94, P = 0.1703; REM F (1,50) = 0.79, P = 0.3789;
respectively] and interaction effect [groups × frequency bands;
two-way ANOVA-RM: WK F (4,25) = 2.07, P = 0.3442; SWS
F (4,25) = 0.50, P = 0.7290; REM F (4,25) = 0.36, P = 0.8356;
and two-way ANOVA: WK F (4,50) = 0.17, P = 0.9526; SWS
F (4,50) = 0.10, P = 0.9817; REM F (4,50) = 0.11, P = 0.9778; respec-
tively], and as expected a significant effect across frequency
bands [two-way ANOVA-RM: WK F (4,25) = 11.87, P < 0.0001;
SWS F (4,25) = 24.66, P < 0.0001; REM F (4,25) = 10.85, P < 0.0001;
and two-way ANOVA: WK F (4,50) = 12.09, P < 0.0001; SWS
F (4,50) = 6.07, P = 0.0005; REM F (4,50) = 11.06, P < 0.0001;
respectively]. On the other hand, when comparing SNI-
baseline/SNI-surgery groups significant differences were encoun-
tered across experimental groups [two-way ANOVA-RM; WK
F (1,25) = 85.33, P < 0.0001; SWS F (1,25) = 725.00, P < 0.0001;
REM F (1,25) = 362.60, P < 0.0001], frequency bands [WK
F (4,25) = 8.79, P < 0.0001; SWS F (4,25) = 4.78, P = 0.0053; REM
F (4,25) = 4.72, P = 0.0056], and no interaction effect between these
two factors [WK F (4,25) = 0.73, P = 0.5787; SWS F (4,25) = 0.39,
P = 0.8168; REM F (4,25) = 1.48, P = 0.2378]. Post hoc analysis
revealed a significant decrease of PDC activity across all fre-
quency bands after nerve lesion [WK: delta (P < 0.0025), theta
and alpha (P < 0.0002), beta and gamma (P < 0.0125); SWS
and REM: all bands (P < 0.0002); Bonferroni test with corrected
P-value; Figure 5B]. The comparison of SHAM-surgery/SNI-
surgery groups revealed significant differences across experimental
groups [two-way ANOVA; WK F (1,50) = 110.70, P < 0.0001; SWS
F (1,50) = 202.30, P < 0.0001; REM F (1,50) = 273.50, P < 0.0001]
and frequency bands but only for SWS and REM state
[F (4,50) = 5.17, P = 0.0015; F (1,50) = 9.90, P < 0.0001; respec-
tively], and no interaction effect between these two factors. Post hoc
analysis revealed a significant decrease of PDC activity across all
frequency bands after nerve lesion [WK: theta (P < 0.0002), delta,
alpha, beta, and gamma (P < 0.0025); SWS and REM: all bands
(P < 0.0002); Bonferroni test with corrected P-value; Figure 5B].

In the case of the thalamocortical descending direc-
tion (SI-to-VPL), the comparison of SHAM-baseline/SHAM-
surgery groups, and SHAM-baseline/SNI-baseline revealed no
significant differences across experimental groups [two-way
ANOVA-RM: WK F (1,25) = 1.12, P = 0.3006; SWS F (1,25) = 0.76,
P = 0.0620; REM F (1,25) = 1.93, P = 0.1704; and two-way ANOVA:
WK F (1,50) = 2.20, P = 0.0701; SWS F (1,50) = 0.51, P = 0.4780;
REM F (1,50) = 1.88, P = 0.1767; respectively] and interaction
effect [two-way ANOVA-RM: WK F (4,25) = 0.21, P = 0.9319;
SWS F (4,25) = 0.07, P = 0.9912; REM F (4,25) = 1.03, P = 0.4116;
and two-way ANOVA: WK F (4,50) = 0.39, P = 0.8133; SWS

F (4,50) = 0.16, P = 0.9559; REM F (4,50) = 0.12, P = 0.9731; respec-
tively], and a significant effect across frequency bands but only for
WK and REM states [two-way ANOVA-RM: WK F (4,25) = 3.54,
P = 0.0203; REM F (4,25) = 7.20, P < 0.0001; and two-way ANOVA:
WK F (4,50) = 7.17, P = 0.0001; REM F (4,50) = 16.36, P < 0.0001;
respectively]. On the other hand, when comparing SNI-
baseline/SNI-surgery groups significant differences were encoun-
tered across experimental groups [two-way ANOVA-RM; WK
F (1,25) = 257.20, P < 0.0001; SWS F (1,25) = 158.90, P < 0.0001;
REM F (1,25) = 304.10, P < 0.0001] and frequency bands but
only for WK and REM state [F (4,25) = 5.98, P = 0.0016, and
F (4,25) = 7.54, P < 0.0001, respectively], and no interaction effect
between these two factors. Post hoc analysis revealed a signifi-
cant decrease of PDC activity across all frequency bands after
nerve lesion [WK, SWS, and REM: all bands (P < 0.0002); Bon-
ferroni test with corrected P-value; Figure 5B]. In addition, the
comparison of SHAM-surgery/SNI-surgery groups revealed sig-
nificant differences across experimental groups [two-way ANOVA;
WK F (1,50) = 133.60, P < 0.0001; SWS F (1,50) = 66.76, P < 0.0001;
REM F (1,50) = 340.90, P < 0.0001] and frequency bands for WK
and REM states [F (4,50) = 6.01, P = 0.0005, and F (4,50) = 6.79,
P = 0.0002, respectively], and no interaction effect. Post hoc analy-
sis revealed a significant decrease of PDC activity across all fre-
quency bands after nerve lesion [WK: delta and beta (P < 0.0025),
theta, alpha, and gamma (P < 0.0002); SWS: delta, beta, and
gamma (P < 0.0125), theta and alpha (P < 0.0025); REM: all
bands (P < 0.0002); Bonferroni test with corrected P-value;
Figure 5B].

DISCUSSION
In this study we report how the induction of chronic neuropathic
pain affects the circadian patterns of thalamocortical oscillatory
activity and the bidirectional flow of information between the
cortical and thalamic somatosensory areas; for this we contrasted
before- and after-pain sessions of 24 h of continuous recording
of neurophysiological activity in freely moving rats chronically
implanted with intracranial multielectrodes. The few previous
neurophysiological studies describing changes in brain oscilla-
tions in animal models of chronic pain used whole-brain EEG
scalp activity with poor spatial resolution; furthermore, they were
commonly limited to only a few hours of recording (Landis et al.,
1989; Palma et al., 2000; Tokunaga et al., 2007) or to a single ses-
sion of 24 h of recording (Andersen and Tufik, 2003; Kontinen
et al., 2003; Monassi et al., 2003; Keay et al., 2004; Silva et al.,
2008). In fact, several studies dealing with pain-induced arousal
changes focused on the description of behavioral alterations in the
sleep cycle without any neurophysiological recording (Carli et al.,
1987; Landis et al., 1988; Millecamps et al., 2005). Therefore, in
contrast with the many clinical reports in humans that have used
multichannel EEG, MEG, and intracranial recordings in an effort
to address the spatial origins of brain oscillations (Sarnthein et al.,
2006; Stern et al., 2006; Boord et al., 2008; Drewes et al., 2008;
Sarnthein and Jeanmonod, 2008; Bjørk et al., 2009; Walton et al.,
2010), almost no information exists from animal models on how
chronic pain affects the functioning of the thalamocortical loop,
since the only studies addressing this issue were limited to acute
pain stimulation (Wang et al., 2003, 2004; Huang et al., 2006).
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CHRONIC PAIN DISRUPTS THALAMOCORTICAL FLOW OF INFORMATION
The most significant finding in the present study is that the
onset of neuropathic pain causes a rapid and dramatic decrease
in the thalamocortical flow of information as measured by PDC
(Sameshima and Baccalá, 1999; Baccala and Sameshima, 2001);
this decrease was observed across all the brain states of the
wake–sleep cycle, in spite of the lack of alterations in other thal-
amocortical features such as the frequency power spectrum and
spectral coherence. PDC is a bidirectional frequency domain rep-
resentation of the concept of Granger-Causality that measures
how a time series x(n) causes another series y(n), if knowledge
of x(n)’s past significantly improves prediction of y(n). Hence,
the thalamocortical PDC reflects how much of the cortical fre-
quency space is temporally dependent on the thalamic LFP, and
vice-versa.

The use of PDC analyses is growing in literature (Winterhalder
et al., 2006; Sato et al., 2009); it has been validated in real neuro-
physiological data (Fanselow et al., 2001; Wang et al., 2003, 2004,
2008; Winterhalder et al., 2005; Huang et al., 2006) as well as
in several theoretical studies using simulated data (Sameshima
and Baccalá, 1999; Baccala and Sameshima, 2001; Schelter et al.,
2006a,b; Takahashi et al., 2010), to demonstrate expected changes
in brain networks that other less complex methods had failed to
identify. As examples, PDC was able to uncover dopaminergic-
dependent changes in connectivity between visual and motor
areas in Parkinson patients that were undetectable by traditional
spectral analysis (Tropini et al., 2011), and it was used to iden-
tify the directionality of widespread oscillatory brain interactions
during visual object processing in the recognition of familiar vs.
unfamiliar objects (Supp et al., 2007).

In what concerns thalamocortical processing of nociceptive
information, PDCs have been calculated only in acute pain studies,
in which it was shown that immediately after formalin injection
the flow of information is maximal from cortex to the thalamus
but that the direction of maximal information flow is reversed after
1 h (Huang et al., 2006); more recently, the same research group
showed that noxious heat stimulation significantly increased the
flow of information from SI cortex to ventral posterior thalamus,
while in the ascending direction the flow of information decreased
or remained unchanged, demonstrating for the first time that
during pain processing the primary somatosensory cortex has a
prominent role over the activity of thalamic neurons (Wang et al.,
2007). This observation is in agreement with previous studies
that have proposed that the descending corticothalamic projec-
tion could amplify noxious inputs of interest while simultaneously
inhibiting other irrelevant information in order to improve input
selectivity and detection (Rauschecker, 1997; Suga et al., 1997,
2000).

Our current results seem to suggest that the descending pathway
remains functionally stronger than the ascending pathway raising
the possibility that the cortex is still exerting an inhibitory role over
the thalamus; this is in agreement with several studies indicating
thalamic hypoactivity after prolonged pain conditions (Iadarola
et al., 1995; Apkarian et al., 2004; Garcia-Larrea et al., 2006;
Sorensen et al., 2008). Moreover, our calculation of information
flow across states of the wake–sleep cycle is also in agreement with
the observed disruption of default-mode network connectivity

that is also observed in chronic pain patients (Baliki et al., 2008;
Cauda et al., 2009).

CHRONIC PAIN CHANGES THALAMOCORTICAL PHASE–COHERENCE
Our results show that after nerve injury there was an increase in
thalamocortical phase–coherence during episodes of awake – WK
– and SWS, while at the same time there was a decrease in the
flow of information between cortex and thalamus. Notably, all the
differences that were observed at 48 h following the induction of
chronic neuropathic pain were also observed in the recordings per-
formed 10 days afterward, suggesting that these changes have fast
onset and endure while the pain symptoms persist. In contrast to
the change in thalamocortical phase–coherence, power spectrum,
and spectral coherence were unaltered throughout all frequency
bands which was not expected given that several human studies
have shown an increase in spectral power and coherence in pain
patients, specially at theta frequencies (Sarnthein and Jeanmonod,
2008; Ray et al., 2009; Walton et al., 2010). The most probable
reason for this discrepancy between previous human studies and
the present results is the fact that we have performed pre- vs. post-
pain intracranial recordings of LFPs from the lateral thalamus
and somatosensory cortex while similar human studies used non-
invasive whole-brain recording techniques in which patients were
compared to a control population. These human recordings com-
prise brain sources such as frontal areas that are known to be highly
relevant to the increase in theta power and coherence (Sarnthein
et al., 2006; Stern et al., 2006). In fact, when recorded simultane-
ously, the peaks of activity differ between EEG and LFPs with the
EEG having maximal frequencies at the theta range and thalamic
LFPs at the faster alpha range (Sarnthein and Jeanmonod, 2008).
Moreover, the few human studies made with intracranial thalamic
recordings are commonly based on medial areas and not on the
lateral thalamus (Sarnthein et al., 2006; Sarnthein and Jeanmonod,
2008).

On the other hand, several studies have also shown evidence
for not only a more desynchronized thalamic activity (Kane et al.,
2009), but also reduced EEG power spectra in chronic pain patients
(Boord et al., 2008). It is also interesting to note that other studies
using animal models of pain have also failed to observe an increase
in EEG power (Landis et al., 1989; Kontinen et al., 2003).

CHRONIC PAIN DISRUPTS THE BRAIN STATEMAPS
After the induction of the SNI model of neuropathic pain, the
number of WK and SWS episodes increased whereas their mean
duration remained the same; the increase in SWS occurred during
both the dark and the light phases of recording, while the increase
in WK episodes occurred only in the dark phase of the recording.
Our observation of an increase in WK episodes is in agreement
with published data from different chronic pain models that have
also showed an increase in the percentage of time allocated to
alertness episodes during the pain period (Carli et al., 1987; Landis
et al., 1988, 1989; Andersen and Tufik, 2003; Monassi et al., 2003;
Keay et al., 2004). However, our observation of an increase in SWS
episodes is in contrast to previous observations that have reported
either a decrease (Carli et al., 1987; Landis et al., 1988; Andersen
and Tufik, 2003; Monassi et al., 2003; Silva et al., 2008), or no
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alteration in SWS episodes after induction of chronic pain (Mil-
lecamps et al., 2005). We also did not observe differences in REM
episodes, which is in agreement with previous findings (Monassi
et al., 2003), while other reports showed either a decrease (Carli
et al., 1987; Landis et al., 1989) or an increase (Andersen and Tufik,
2003; Schutz et al., 2003) in the time spent in REM.

It must be noted that our statistically based classification of
brain states according to intracranial LFPs (Gervasoni et al., 2004)
is inherently distinct from traditional wake–sleep EEG/EMG clas-
sification, with increased sensitivity to short duration transitional
episodes and the ability to discriminate brain states based on
higher frequencies than what is typically possible using scalp EEG.
Therefore, direct comparison with previous studies is not entirely
possible, particularly because the literature differs widely on the
duration of the recording periods.

Transitions between the three more frequent states (WK, SWS,
and REM) also increased after peripheral nerve injury. Our data
showed an increase of WK → SWS transitions (in light phase),
SWS → WK (in light and dark phases), and of low-frequency tran-
sitions such as SWS → REM and REM → WK during the light
phase. In literature, similar results were published in several clin-
ical chronic pain studies (Drewes et al., 1998; Lentz et al., 1999;
Peyron et al., 2004; Lautenbacher et al., 2006). Apart the more
frequent transitions, also the U-transition episodes that mediate
state transitions increased after nerve lesion, namely WK → U
and U → WK. These changes are probably related to the sig-
nificant increase in the amount of U episodes that occurs after
nerve lesion. Some studies in the literature report a similar short
duration transition state called TS that was firstly described in
the rat (Gottesmann, 1992; Benington et al., 1994), and spo-
radically observed during the transition between SWS and REM
episodes. Mandile and co-workers using high temporal resolu-
tion computational methods for the EEG pattern analyses also
identified this type of oscillation during the transitions between

SWS → TS → WK (Mandile et al., 1996; Vescia et al., 1996), how-
ever with a longer duration compared to the transition observed
between SWS → TS → REM.

A final note should be given on the inherent impossibility of
teasing apart the strictly somatosensory effects from the indirect
effects of pain. However, it may be argued that the non-specific
effects are also intrinsic to the full neuropathic syndrome, to the
extent that teasing them is almost impossible, if not senseless.
Although we cannot rule out that the observed changes in sleep
patterns or in thalamocortical connectivity may result from phys-
ical or motivational changes in locomotion patterns, we cannot
dismiss that even those changes were triggered by the neuropathic
model.

In summary, our results showed that peripheral nerve injury
(SNI) induces a clear reduction of the amount of information
flow and an enhancement of phase synchronization between the
lateral thalamus and the primary somatosensory cortex. Our find-
ings also demonstrate wake–sleep cycle disturbances, namely in
the number, duration and transitions between brain state episodes.
As previously suggested (Llinás et al., 2005; Walton et al., 2010),
one possible explanation is that these changes may be caused by
the unmasking of cortical descending inhibitory mechanisms that
regulate the thalamic balance between continuously amplification
of nociceptive information and suppression of non-nociceptive
information.
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APPENDIX

FIGURE A1 | Comparison of the efficiency in states detection

between the StateMap algorithm selection vs. visual inspection

of the video recordings and spectral bands. Brain states are
expressed as percentage of the total recording time during the light and
dark phases in the SNI group (filled bars) and in the SHAM-group plotted for

waking state (WK, blue), slow-wave-sleep (SWS, green), and
rapid-eye-movement (REM, red). No statistical differences were
encountered between both methodologies of detection (Mann–Whitney test,
P < 0.05). The determinations are expressed for all animals as mean
(±SEM).

FIGURE A2 | Oscillations on intracranial local field potentials

(LFPs) recorded in one session during the dark phase

(SHAM-baseline period) simultaneously in the primary

somatosensory cortex (SI, black trace) and in the

ventro-posterior-lateral thalamic nuclei (VPL, blue trace). Raw
recordings representing 5-s of ongoing LFP activity recorded during a waking
state (WK) episode, slow-wave-sleep (SWS), and rapid-eye-movement (REM)
states.
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FIGURE A3 | Spectral analysis of SI–VPL LFPs channels during WK (blue),

SWS (green), and REM (red) state episodes across frequency bands.

Frequency bands: delta (δ, 1–4 Hz), theta (θ, 4–9 Hz), alpha (α, 9–15 Hz),
beta (β, 15–30 Hz), and slow-gamma (γ, 30–50 Hz). Each point represents
the mean value within the frequency band. Experimental groups were
represented: SHAM-baseline (continuous black line), SHAM-surgery
(black line-dotted), SNI-baseline (continuous color line: WK (blue), SWS
(green), and REM (red), and SNI-surgery (color line-dotted). (A) Left
column represents the power spectra density (PSD) measurements across
frequency bands for the two recorded areas (ventro-posterior-lateral thalamic
nuclei, VPL and primary somatosensory cortex – SI). Analysis of variance
revealed no differences across experimental groups
[(SHAM-baseline/SHAM-surgery) – VPL: WK F (1,25) = 1.61, P = 0.1874, SWS
F (1,25) = 0.27, P = 0.6081, REM F (1,25) = 0.41, P = 0.5271; and SI: WK
F (1,25) = 3.71, P = 0.0538, SWS F (1,25) = 3.04, P = 0.0934, REM F (1,25) = 1.34,
P = 0.2588; (SHAM-baseline/SNI-baseline) – VPL: WK F (1,50) = 2.24,
P = 0.0989, SWS F (1,50) = 0.10, P = 0.7552, REM F (1,50) = 0.02, P = 0.8800; and
SI: WK F (1,50) = 0.46, P = 0.4993, SWS F (1,50) = 0.19, P = 0.6683, REM
F (1,50) = 0.76, P = 0.3900; (SNI-baseline/SNI-surgery) – VPL: WK F (1,25) = 1.86,
P = 0.4147, SWS F (1,25) = 0.25, P = 0.6237, REM F (1,25) = 0.08, P = 0.7753; and
SI: WK F (1,25) = 1.53, P = 0.2281, SWS F (1,25) = 1.72, P = 0.4266, REM
F (1,25) = 0.21, P = 0.6500; (SHAM-surgery/SNI-surgery) – VPL: WK F (1,50) = 0.76,
P = 0.3880, SWS F (1,50) = 3.43, P = 0.0698, REM F (1,50) = 0.01, P = 0.9999; and
SI: WK F (1,50) = 3.35, P = 0.0732, SWS F (1,50) = 1.58, P = 0.6673, REM
F (1,50) = 0.40, P = 0.5288] and interaction [(SHAM-baseline/SHAM-surgery) –
VPL: WK F (4,25) = 2.74, P = 0.0510, SWS F (4,25) = 0.75, P = 0.5652, REM

F (4,25) = 1.29, P = 0.3009; and SI: WK F (4,25) = 0.69, P = 0.6073, SWS
F (4,25) = 074, P = 0.5693, REM F (4,25) = 2.42, P = 0.0750;
(SHAM-baseline/SNI-baseline) – VPL: WK F (4,50) = 2.66, P = 0.0701, SWS
F (4,50) = 0.33, P = 0.8566, REM F (4,50) = 1.04, P = 0.3979; and SI: WK
F (4,50) = 0.80, P = 0.5339, SWS F (4,50) = 0.88, P = 0.5407, REM F (4,50) = 2.44,
P = 0.0590; (SNI-baseline/SNI-surgery) – VPL: WK F (4,25) = 1.93, P = 0.3969,
SWS F (4,25) = 0.60, P = 0.6686, REM F (4,25) = 1.15, P = 0.3561; and SI: WK
F (4,25) = 0.81, P = 0.5322, SWS F (4,25) = 1.97, P = 0.1294, REM F (4,25) = 0.34,
P = 0.8449; (SHAM-surgery/SNI-surgery) – VPL: WK F (4,50) = 2.23, P = 0.1003,
SWS F (4,50) = 0.69, P = 0.5992, REM F (4,50) = 1.45, P = 0.2703; and SI: WK
F (4,50) = 0.45, P = 0.7730, SWS F (4,50) = 2.20, P = 0.0823, REM F (4,50) = 0.26,
P = 0.9030], and as expected an effect across frequency bands
[(SHAM-baseline/SHAM-surgery) – VPL: WK F (4,25) = 459.20, P < 0.0001, SWS
F (4,25) = 185.40, P < 0.0001, REM F (4,25) = 381.80, P < 0.0001; and SI: WK
F (4,25) = 337.10, P < 0.0001, SWS F (4,25) = 239.10, P < 0.0001, REM
F (4,25) = 293.80, P < 0.0001; (SHAM-baseline/SNI-baseline) – VPL: WK
F (4,50) = 542.90, P < 0.0001, SWS F (4,50) = 83.05, P < 0.0001, REM
F (4,50) = 183.30, P < 0.0001; and SI: WK F (4,50) = 274.40, P < 0.0001, SWS
F (4,50) = 244.50, P < 0.0001, REM F (4,50) = 255.60, P < 0.0001;
(SNI-baseline/SNI-surgery) – VPL: WK F (4,25) = 272.80, P < 0.0001, SWS
F (4,25) = 91.82, P < 0.0001, REM F (4,25) = 67.83, P < 0.0001; and SI: WK
F (4,25) = 270.40, P < 0.0001, SWS F (4,25) = 172.50, P < 0.0001, REM
F (4,25) = 165.10, P < 0.0001; (SHAM-surgery/SNI-surgery) – VPL: WK
F (4,50) = 358.20, P < 0.0001, SWS F (4,50) = 246.40, P < 0.0001, REM
F (4,50) = 163.10, P < 0.0001; and SI: WK F (4,50) = 296.80, P < 0.0001,
SWS F (4,50) = 189.80, P < 0.0001, REM F (4,50) = 244.40, P < 0.0001].

(Continued )
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FIGURE A3 | (Continued)

(B) Right column represents the thalamocortical VPL–SI coherence activity.
Analysis of variance revealed no significant differences across experimental
groups [(SHAM-baseline/SHAM-surgery): WK F (1,25) = 0.21, P = 0.6524, SWS
F (1,25) = 0.25, P = 0.6202, REM F (1,25) = 0.12, P = 0.7314;
(SHAM-baseline/SNI-baseline): WK F (1,50) = 0.11, P = 0.7419, SWS
F (1,50) = 0.31, P = 0.5815, REM F (1,50) = 2.26, P = 0.1388;
(SNI-baseline/SNI-surgery): WK F (1,25) = 0.62, P = 0.4378, SWS F (1,25) = 0.50,
P = 0.4882, REM F (1,25) = 0.20, P = 0.6553; (SHAM-surgery/SNI-surgery): WK
F (1,50) = 2.11, P = 0.1530, SWS F (1,50) = 0.27, P = 0.6026, REM F (1,50) = 3.87,
P = 0.0544], frequency bands [(SHAM-baseline/SHAM-surgery): WK
F (4,25) = 1,64, P = 0.1956, SWS F (4,25) = 0.43, P = 0.7844, REM F (4,25) = 0.90,
P = 0.4783; (SHAM-baseline/SNI-baseline): WK F (4,50) = 0.58, P = 0.6721,
SWS F (4,50) = 0.66, P = 0.6208, REM F (4,50) = 0.63, P = 0.6431;

(SNI-baseline/SNI-surgery): WK F (4,25) = 0.32, P = 0.8626, SWS
F (4,25) = 0.51, P = 0.7284, REM F (4,25) = 0.46, P = 0.7675;
(SHAM-surgery/SNI-surgery): WK F (4,50) = 0.97, P = 0.4346, SWS
F (4,50) = 0.51, P = 0.7293, REM F (4,50) = 0.55, P = 0.7006], and
interaction effect [groups × frequency bands;
(SHAM-baseline/SHAM-surgery): WK F (4,25) = 0.09, P = 0.9851, SWS
F (4,25) = 0.08, P = 0.9879, REM F (4,25) = 0.21, P = 0.9295;
(SHAM-baseline/SNI-baseline): WK F (4,50) = 0.15, P = 0.9613, SWS
F (4,50) = 0.05, P = 0.9956, REM F (4,50) = 0.11, P = 0.9784;
(SNI-baseline/SNI-surgery): WK F (4,25) = 0.16, P = 0.9560, SWS F (4,25) = 0.17,
P = 0.9508, REM F (4,25) = 0.32, P = 0.8607; (SHAM-surgery/SNI-surgery): WK
F (4,50) = 0.13, P = 0.9718, SWS F (4,50) = 0.11, P = 0.9779, REM F (4,50) = 0.48,
P = 0.7508]. The determinations are expressed for all animals as mean
(±SEM).
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Comparison of Anesthetic Depth Indexes Based on
Thalamocortical Local Field Potentials in Rats
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ABSTRACT
Background: Local field potentials may allow a more precise anal-
ysis of the brain electrical activity than the electroencephalogram. In
this study, local field potentials were recorded in the thalamocor-
tical axis of rats to (i) compare the performance of several indexes
of anesthetic depth and (ii) investigate the existence of thalamo-
cortical correlated or disrupted activity during isoflurane steady-
state anesthesia.
Methods: Five rats chronically implanted with microelectrodes were
used to record local field potentials in the primary somatosensory cortex
and ventroposterolateral thalamic nuclei at six periods: before induction
of anesthesia; in the last 5 min of randomized 20-min steady-state
end-tidal 0.8, 1.1, 1.4, and 1.7% isoflurane concentrations; and after
recovery. The approximate entropy, the index of consciousness, the
spectral edge frequency, and the permutation entropy were estimated
using epochs of 8 s. A correction factor for burst suppression was
applied to the spectral edge frequency and to the permutation entropy.
The correlation between the derived indexes and the end-tidal isoflu-
rane was calculated and compared for the two studied brain regions
indexes. Coherence analysis was also performed.
Results: The burst suppression–corrected permutation entropy showed
the highest correlation with the end-tidal isoflurane concentration, and a
high coherence was obtained between the two studied areas.
Conclusions: The permutation entropy corrected with the classic
burst suppression ratio is a promising alternative to other indexes of
anesthetic depth. Furthermore, high coherence level of activity exists
between the somatosensory cortical and thalamic regions, even at
deep isoflurane stages.

THERE are several indexes of anesthetic depth developed
to translate the information of the complex electroen-

cephalogram signal into a number. However, the electroen-
cephalogram reflects noisy overlapping of activity from dif-
ferent brain regions1 and only its lower frequency
components (below 30 Hz) are normally analyzed because of
potential electromyographic activity interferences.2 Intracra-
nial techniques, such as the local field potentials (LFPs), are
not contaminated by electromyographic activity and allow
the analysis of higher frequencies, such as the �-band. Thus,
the effect of anesthetics on the brain could be more accu-
rately reflected on the LFPs than on the electroencephalo-
gram, allowing a more precise analysis of the performance of
anesthetic depth indexes.

LFPs represent the extracellular low-frequency summed

applied in neurophysiology studies to record the electric sig-
nal from specific brain areas.3–5 By recording thalamocorti-
cal LFPs, it is possible to compare the activity in the cortical
and thalamic neurons and answer the controversy regarding
which region is responsible for anesthetic-induced uncon-
sciousness, the cortex6,7 or the thalamus.8,9 These structures
are densely and reciprocally interconnected,10–13 even dur-
ing quiet physiologic sleep,10 but it is not known whether
this connection is interrupted by anesthetics.14 The use of
electroencephalogram-derived indexes to analyze LFPs is a
strong tool to address these questions. The most recently
investigated indexes of anesthetic depth are the approximate
entropy (AE), the permutation entropy (PE),15–17 and other
commercial monitors such as the most recently introduced
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What We Already Know about This Topic

❖ Surface electroencephalographic analysis of anesthetic depth
reflects overlapping activity

❖ Analysis of intracranial local field potentials may improve un-
derstanding and advancement of electroencephalographic
analysis

What This Article Tells Us That Is New

❖ In rats, there was high coherence between cortical and tha-
lamic activity during steady-state anesthesia

❖ Permutation entropy corrected with classic burst suppression
was noted as a promising new index of anesthetic state
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index of consciousness (IoC).18 On the other hand, classic
spectral edge frequency (SEF) is mathematically simpler and
has been suggested to adequately reflect depth of anesthesia
from the electroencephalogram of rats, when corrected for
the burst suppression (BS) ratio.19

In this study, LFPs were recorded in isoflurane-anesthe-
tized rats with two main objectives: (i) to compare the per-
formance of the more recently introduced indexes of anes-
thetic depth and (ii) to investigate the existence of
thalamocortical correlated or disrupted activity during
isoflurane steady-state anesthesia.

Materials and Methods

Subjects
Five adult male Sprague-Dawley rats weighing between 350
and 400 g were used in this study. The rats were maintained
on a 12-h light and dark cycle, with ad libitum access to food
and water. All procedures and experiments were conducted
in compliance with the Ethical Guidelines for Animal Exper-
imentation and Animal Care Committee imposed by the
European Community Directive Number 86/609/ECC,
November 24, 1986, and approved by the national regula-
tory office (Direcção Geral de Veterinária—DGV, Lisboa,
Portugal) under the title “Melhorias das técnicas anestésicas e
analgésicas em animais de laboratório de 21 de Outubro de
2003,” and the project was approved by the Foundation for
Science and Technology with the number POCI/CVT/
59056/2004 and the same name.

Surgery
At least 7 days before the experiment, the rats were anesthe-
tized with an intramuscular injection of a mixture of xylazine
and ketamine (10 and 60 mg/kg, respectively). Anesthesia
was maintained with additional injections of ketamine (one-
third of the initial doses). A fresh gas supply of oxygen was
delivered during the procedure by a facemask. Depth of an-
esthesia was assessed by regularly testing the corneal blink,
hind paw withdrawal, and tail-pinch reflexes. Core body
temperature was measured with a rectal thermometer and
maintained at 37°C by a homeothermic blanket system. An-
imal heads were shaved and cleaned by using a triple appli-
cation of alcohol (70% v/v) and betadine. A midline subcu-
taneous injection of 0.3 ml of 1% lignocaine (B Braun,
Melsungen, Germany) was applied to the scalp for local an-
algesia. Anesthetized animals were secured in a stereotaxic
frame using ear bars, and a midline incision was made cau-
dally to the animal’s eyes and ending between ears. The con-
nective tissue was blunt dissected from skull, and the top of
the skull was exposed and cleaned by using hydrogen perox-
ide. After the scalp was excised, holes were bored in the skull
for four to five screws and for two microelectrode arrays (4 �
4-mm portion). These screws were used for securing probes
and for grounding purposes. The skull was covered with
mineral oil. Just before the implantation, microelectrode ar-
ray filaments were cut to the ideal length, using a sharp pair

of scissors, and then soaked in a saturated solution of sucrose.
Each microelectrode array included eight filaments (one ar-
ray per area) and isonel-coated tungsten wire (35 �m in
diameter) (California Fine Wire Company, Grover Beach,
CA) with impedances varying between 0.5 and 0.7 M[O-
mega] at 1 KHz. The microelectrode arrays were constructed
in 4 � 2 architecture (1–2; 3–4; 5–6; 7–8 channels), in-
terspaced 250 �m between lines and 450 �m between col-
umns (fig. 1A). The arrays were oriented rostrocaudally and
mounted in the holder of a hydraulic micropositioner (FHC
Inc., Bowdoin, ME) and subsequently slowly driven (50
�m/min) into the primary somatosensory cortex (SI) and
ventroposterolateral (VPL) after dura mater removal. The
following coordinates in millimeters relative to Bregma20

were used to center the arrays: SI (�2.5 rostro-caudal, �2.5
mediolateral, and �1.6 dorsoventral) and VPL (�3.1 rostro-
caudal, �3.2 mediolateral, and �6.4 dorsoventral). The lo-
cation of the electrodes within SI and VPL was verified by
mapping the neuronal responses elicited by tactile stimula-
tion of the correspondent peripheral hind paw receptive
field. After electrodes were placed in the correct position, the
craniotomy was sealed with a layer of agar (4% in saline), and
they were cemented to skull screws by the use of dental
acrylic.21 In the end of the implantation, the animal was
transferred to a recovery cage. The analgesic carprofene
(5–10 mg/kg) (Rimadyl; Pfizer Animal Health, Lisboa, Por-
tugal) and the antibiotic amoxiciline (6 mg/kg) (Clamoxyl;
Pfizer Animal Health) were administered subcutaneously ev-
ery 24 h during 2 or 3 days. Rats were allowed to recover for
1 week before the recording sessions began.

Histology
After the end of all experiments, the rats were deeply anes-
thetized with ketamine and xylazine mixture, and the record-
ing site was marked by injecting direct current (10–20 �A
for 10–20 s) through one microwire per matrix group, mark-
ing the area below the electrode tips. After this step, the
animals were perfused through the heart with 0.01 M phos-
phate buffer (pH � 7.2) in 0.9% saline solution followed by
4% paraformaldehyde. The brains were removed and post-
fixed in 4% paraformaldehyde during 4 h and then stored in
30% sucrose before they were frozen and sectioned into
60-�m slices. The sections were stained to identify the
recording site under the microscope. This technique, in
conjunction with careful notation of electrode move-
ments during implantation surgery, allowed localization
of all recording sites (fig. 1B).

Isoflurane Anesthesia Studies
To reduce stress during induction, animals were placed in the
induction chamber, connected to the data recording cables,
and oxygen was administered several days before the experi-
ment. This allowed animals’ acclimatization to the induction
chamber and instrumentation. On the testing day, neuronal
recording started 5 min before induction of anesthesia. An-
esthetic induction was performed with 4% isoflurane (isoflu-
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rane; Abbott, Amadora, Portugal) in 5 l/min of 100% oxy-
gen. After loss of the righting reflex and evaluation of changes
in respiratory rate, the animal was transferred to a smaller
chamber placed above an homeothermic blanket (Harvard
Apparatus, Edenbridge, Kent, United Kingdom), which also
recorded the animal’s temperature by a rectal probe. A pur-
pose-built hole in the chamber allowed the passage of the
LFP signals recording cable. A gas sensor, connected to an
anesthetic agent monitor (Capnomac II; Datex Ohmeda,
Helsinki, Finland) was placed inside the chamber at the level
of the rat’s nose. The animal was positioned with the head
turned to the inflow port in ventral recumbence. The end-
tidal isoflurane (etISO) concentration was stabilized at 0.8,
1.1, 1.4, and 1.7% concentrations for 20 min to allow equil-
ibration between inspired and end-tidal concentration, ac-
cording to a predetermined randomized sequence for each
animal. These concentration stages were named as 0.8, 1.1,
1.4, and 1.7.

During the experiments, the animals breathed spontane-
ously, and the respiratory frequency was monitored every 5
min. In the end of the last isoflurane concentration stage, the
animal was transferred to the induction chamber, where ox-
ygen was delivered, and the recording continued for 5 min
after the animal recovered its righting reflex.

LFP Recording and Processing
LFPs represent the extracellular low-frequency current flow
that reflects the linearly summed postsynaptic potentials
from local cell groups around the microelectrode. This type
of neural signal has a temporal structure mainly in the fre-

quency of 0–100 Hz. Extracellular LFP activity was recorded
from the implanted microwires and processed by using a
16-channel Multineuron Acquisition Processor (Plexon Inc.,
Dallas, TX). LFP signals recorded from electrodes were pre-
amplified (500�), filtered (0.5–400 Hz), and digitized at
1,000 Hz using a Digital Acquisition card (NIDAQ; Na-
tional Instruments, Austin, TX) and sent to the 16-channel
Multineuron Acquisition Processor system. Only two LFP
channels per array per area were recorded and considered
for posterior analysis (channel 3 [medial] and channel 6
[lateral]). The LFP frequencies analyzed ranged from 1 to
100 Hz.

Data were validated by offline analysis using NeuroEx-
plorer 4 (Plexon Inc.) and exported to MatLab R14 (Ver-
sion 2008a) for complementary analysis (MathWorks,
Natick, MA).
Calculation of AE, PE, SEF, and BS Ratio. The LFP sam-
pling frequency was first decreased to 250 Hz. All four pa-
rameters were derived from epochs of 8 s from the mean of
the two cortical channels and the mean of the two thalamic
channels.

The AE and the PE were computed according to the
published algorithms.15,22 The AE measures the predictabil-
ity of a time series. There are three essential parameters on its
calculation: the embedding dimension (m) that refers to the
number of points used for prediction, the number of samples
considered for each calculation (N), and a noise threshold (r).
These parameters and the AE algorithm are explained in
more detail in the literature.15,22 Studies carried out by
Bruhn et al.22 showed that the AE yielded the highest pre-

Fig. 1. (A) Architecture of a microelectrode array used to record local field potentials (LFP). (B) Coronal diagram illustrating the location in
ventroposterolateral thalamic nuclei (VPL) (left) and primary somatosensory cortex (SI) (right) of the LFP recording sites (dark dots). Numbers
represent the distance (in millimeters) relative to bregma.20
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diction probability with desflurane effect site concentration
using m � 2, r � 0.2, and an epoch length equal or higher
than 1.024 points. N � 2,000, m � 2, and r � 0.2 were
selected in our study for AE calculation.

The PE is a method for ordinal time series analysis. It
analyzes consecutive subvectors of constant length (m) in the
analyzed signal interval (length, N). Then, it orders the sam-
ples in every subvector according to their amplitude and
defines permutations of order m (m!). The parameter value is
given by the resultant normalized probability distribution of
the obtained permutations, using the Shannon entropy for-
mula. In this study, we used m � 3 and N � 2,000. A more
detailed description of the PE calculation can be found in the
published works.15–17

The SEF that consists of the power spectrum in the 95%
quantile was also calculated and was corrected for the pres-
ence of BS patterns according to the correction factor pro-
posed by Rampil23 for human electroencephalogram studies.
The same correction factor was applied to PE, calculated as
follows: BS-corrected PE � PE � (1 � BS/100), where the
BS is defined as the epoch length in which the LFP voltage
did not exceed 50 �V.

Calculation of the IoC. The IoC was derived from the
signal using an executable file provided by the manufac-
turer (Aircraft Medical, Barcelona, Spain). Its calculation
is based on the symbolic dynamics method that trans-
forms a time series into a symbol sequence that can reveal
the nonlinear characteristics of the electroencephalogram.
It also integrates the �-ratio (frequency range between 11
and 42 Hz) during superficial anesthesia and the amount
of suppression of the electroencephalogram (equivalent to
the BS). Similar to entropy methods, this method also ex-
presses the complexity of the signal that makes it a correlate to
the depth of anesthesia. In humans, decreasing values of IoC
correspond to a gradual loss of consciousness and a deepening of
the level of anesthesia. In a unitless scale from 99 to 0, an index
of 99 indicates an awake patient and an index of 0 indicates a flat
electroencephalogram. More details on its calculation were re-
cently published.18

Spectral Analysis. Spectrogram analysis was used to visual-
ize LFP power at different frequency bands as a function of
time for each etISO concentration (fig. 2). LFP spectrograms
were computed in NeuroExplorer (Version 4, Plexon Inc.),
with a 0.5-Hz spectral resolution and a 100-ms temporal

Fig. 2. Effects of isoflurane on intracranial local field potentials (LFPs) recorded simultaneously in the primary somatosensory cortex (SI, black
trace) and in the ventroposterolateral thalamic nuclei (VPL, blue trace). (A) Raw LFP recordings representing a sample of 10 s of ongoing LFP
activity recorded during the last 5 min before anesthesia induction (unaesthetized period) and during the last 5 min of each isoflurane
concentration (0.8, 1.1, 1.4, and 1.7%). Visual inspection of the LFP traces revealed similar patterns of signal amplitude oscillations developed
by the two recorded areas across the anesthesia stages. (B) Correspondent power spectrogram of each SI trace from A. Spectrograms
showed the different patterns of signal power across the frequency range analyzed, with the appearance of alternating periods of quiescence
and high-frequency activity, at higher anesthetic depths. This is compatible with the burst suppression pattern observed on the LFP
correspondent traces (A).
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resolution, using a 512-point fast Fourier transform and a
50-ms Hanning window. The power was normalized by the
logarithm of the power spectral density (in decibel) and a
smoothing was applied (Gaussian filter, width � 3).

The power spectra of cortical (Pxx) and thalamic (Pyy)
LFP signals were calculated between 1 and 100 Hz by fast
Fourier transform (512 point) of nonoverlapping 1-s ep-
ochs (Hanning window). Data are shown as the percent-
age of total power spectral density within each considered
frequency band: � (1– 4 Hz), � (4 –9 Hz), � (9 –15 Hz), �
(15–30 Hz), �-low (30 –50 Hz), and �-high (50 –100 Hz)
(figs. 3A and B).

Coherence Kxy � ( Pxy
2/(Pxx Pyy) for two signals, x and y,

is equal to the average cross power spectrum (Pxy) normalized
by the averaged power spectra of the signals. This technique
was used to measure the strength of the linear relationship at
every frequency band24 between the cortical and thalamic
LFP signals across each etISO concentration (fig. 3C). Its
value lies between 0 and 1, where Kxy � 0 means phases are
eventually dispersed, and high coherence (Kxy � 1) means
phases of signals x and y are identical.

Intervals of 5 min were used to calculate signal power
spectral density and coherence (Kxy). Isoflurane stages were
calculated during the last 5 min, 5 min before anesthesia
induction, and 5 min after anesthesia recovery.

Statistical Analysis
Data resultant from the LFP processing were exported from
MatLlab to Graphpad Prism (Version 5; GraphPad Software
Inc., San Diego, CA) for statistical analysis. The Kolmog-
orov-Smirnov test was used to determine whether datasets
were normally distributed. The correlation between the stud-
ied indexes AE, IoC, SEF, PE, BS-corrected SEF, BS-cor-
rected PE, and the etISO was calculated using the Spearman
rank correlation coefficient (r), with data from all animals.
Statistical comparisons for the derived indexes, between an-
imals and between SI and VPL channels (including compar-
isons of the r values) were made using the Mann–Whitney
and the Wilcoxon matched-pairs tests, respectively. One-
way repeated-measures ANOVA with Bonferroni post hoc
was used to address the existence of significant differences in
the spectral frequency bands of the LFP signal at the different
study periods.

Results

Spontaneous intracranial LFP activity was recorded from the
SI and VPL of awake and anesthetized rats (n � 5).

Six indexes of anesthetic depth were derived from the SI
and VPL recordings: the AE, the IoC, the SEF, the PE, the
BS-corrected SEF, and the BS-corrected PE. The values of
the indexes, at each study period, for the five rats are pre-

Fig. 3. Normalized power spectral density calculated using the average of all primary somatosensory cortex (SI) (A) and ventroposterolateral
thalamic nuclei (VPL). (B) Local field potentials (LFP) channels illustrating the changes in spectral power across awake (before induction [BI]),
isoflurane anesthetic concentrations (0.8, 1.1, 1.4, and 1.7), and after recovery (AR). (C) SI-VPL LFP coherence measurements illustrating a
stronger level of coherence of simultaneously recorded channels of LFPs across the frequency bands considered at the different study periods
BI, isoflurane concentrations (0.8, 1.1, 1.4, and 1.7%), and AR. Frequency bands: � (1–4 Hz), � (4–9 Hz), � (9–15 Hz), � (15–30 Hz), �-low
(30–50 Hz), and �-high (50–100 Hz). Values are means � SE. Comparisons based on two-way analysis of variance test, followed by Bonferroni
post hoc test. *P � 0.05; **P � 0.01, and ***P � 0.001. Color version of this figure is available at www.anesthesiology.org.
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sented in figure 4. The Spearman rank correlation coefficient
(r) between the indexes and the etISO concentration was
calculated for the indexes derived from the SI and the VPL
and compared (table 1).

The indexes tended to decrease similarly with increasing
concentrations of etISO, except the SEF and PE. Both SEF and
PE decreased from the period before induction to the period 0.8
but increased paradoxically with higher etISO concentrations,
as shown in figures 4C and D. When the correction factor for
BS was applied, both parameters decreased monotonically with
increasing etISO concentrations (figs. 4E and F).

Comparisons between the SI and VPL revealed signifi-
cant differences only in the AE (1.4 and 1.7; P � 0.05),
PE (0.8, 1.1, 1.4, and 1.7; P � 0.05), and BS-corrected
SEF (0.8, 1.1, and 1.4; P � 0.0025). No significant dif-
ferences were found between the r values of the SI- and

VPL-derived indexes (P � 0.089), although the indexes
derived from the SI tended to have higher r values with the
etISO (table 1). A correlation was found between AE and
BS (r � �0.73; P � 0.001).

Data obtained from a representative recording are given
in figure 2. The visual inspection of the raw LFPs confirmed
that large signal amplitude oscillations were developed si-
multaneously in both recording areas during all anesthesia
concentrations (fig. 2A). In addition, anesthetic induced
changes in the signal power in the frequency range consid-
ered (1–100 Hz) (fig. 2B).

The LFP signal power spectral density over all experimen-
tal conditions is shown in figures 3A and B. The statistical
comparison of the signal power of each considered frequency
band between the two recorded areas revealed that no differ-
ences were present for � (F(5,40) � 0.0136, P � 0.99),

Fig. 4. Indexes derived from the signal recorded on the somatosensory cortex (SI) and in the ventroposterothalamic nuclei (VPL) at different
study periods: before induction (BI) of anesthesia at steady-state end-tidal isoflurane concentrations of 0.8, 1.1, 1.4, and 1.7% (0.8, 1.1, 1.4,
and 1.7) and after recovery (AR). The following indexes are presented: (A) approximate entropy (AE), (B) index of consciousness (IoC), (C)
spectral edge frequency 95% (SEF), (D) permutation entropy (PE), (E) burst suppression–corrected SEF (BSSEF), and (F) burst suppression–
corrected PE (BSPE).The mean and SD are presented (n � 5; *P � 0.05).
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�-low (30–50 Hz) (F(5,40) � 0.3789, P � 0.8692), and
�-high (50–100 Hz) (F(5,40) � 0.8445, P � 0.5264)
bands. However, analysis of variance showed differences for
� (F(5,40) � 6.033, P � 0.0003), � (9–15 Hz) (F(5,40) �
3.698, P � 0.0076), and 32 � (15–30 Hz) (F(5,40) � 3.124,
P � 0.0179) bands, with the signal power on the � and �
bands being higher on the SI and the signal power of the �
band higher on the VPL.

ANOVA in the case of SI recordings data showed that
signal power changed across the increase of the anesthetic (�,
F(5,24) � 10.78, P � 0.0001; �, F(5,24) � 13.69, P �
0.0001; �, F(5,24) � 11.47, P � 0.0001; and �-high,
F(5,24) � 4.356, P � 0.0058). The exception was encoun-
tered for �-low frequency band (30–50 Hz) (F(5,24) �
1.213, P � 0.333). In addition, post hoc analysis showed that
� increased and � and �-high power decreased between the
period before induction and 0.8% etISO states (Bonferroni,
P � 0.001, P � 0.001, and P � 0.05).

On the other hand, in the case of VPL recordings, data
showed that the power of � (F(5,24) � 10.88, P � 0.0001),
� (F(5,24) � 4.761, P � 0.0037), � (F(5,24) � 9.062, P �
0.0001), � (F(5,24) � 5.055, P � 0.0026) frequency bands
changed with the increase of the anesthetic. However, no
differences were encountered for � band (�-low, F(5,24) �
1.885, P � 0.1345; �-high, F(5,24) � 1.760, P � 0.15).
Post hoc analysis showed that � power increased after anes-
thesia induction and � decreased (Bonferroni, P � 0.01 and
P � 0.05, respectively).

Coherence measurements between simultaneously re-
corded SI-VPL channels clearly showed high values of coher-
ence activity across all the frequency bands analyzed (fig.
3C). Moreover, analysis of variance revealed no significant
differences in SI-VPL activity coherence between unanesthe-
tized and anesthesia periods (�, F(5,24) � 0.7585, P �
0.5900; �, F(5,24) � 1.302, P � 0.3027; �, F(5,24) �

1.233, P � 0.3306; �, F(5,24) � 1.433, P � 0.2557; �-low,
F(5.24) � 1.226, P � 0.3336; �-high, F(5,24) � 0.7522,
P � 0.5943).

Discussion

LFPs may allow a more precise analysis of the brain electrical
activity than the electroencephalogram. In this study, LFPs
were recorded in the thalamocortical axis of rats to (i) com-
pare the performance of several indexes of anesthetic depth
and (ii) investigate the existence of thalamocortical corre-
lated or disrupted activity during isoflurane steady-state an-
esthesia. The use of electroencephalogram-derived indexes to
analyze LFPs was a strong help for the interpretation of the
results obtained for the second objective.

Two main results were obtained with this study: (i) the
BS-corrected PE had the best correlation with steady-state
etISO concentration and (ii) high coherence activity exists
between the cortical and thalamic regions during steady-state
anesthesia, even at deeper stages.

Both the SEF and the PE values decreased from the awake
state to 0.8% isoflurane etISO concentration but paradoxi-
cally increased when higher concentrations were used. This
phenomenon is well described for the SEF in electroencepha-
lographic signals and is assumed to be caused by the appear-
ance of the BS pattern.23,25 This paradoxical increase was
also seen in the spectral analysis, with increasing spectral
power on the �, �, and � bands with increasing etISO con-
centration. A similar paradoxical increase occurred in PE in
humans anesthetized with sevoflurane.15,17 The inclusion of
a BS component in the PE would, therefore, contribute to
the improvement of the parameter,15 and the correction ap-
plied in this study seems appropriate to adapt the PE for
deeper anesthetic states.

There was no correction necessary to achieve an adequate
association between AE and etISO concentration. This pa-
rameter seems to correctly classify the BS pattern, which is in
accordance to previous findings in humans26 and rats.19

However, AE has the drawback of being very sensitive to
artifacts. In the study by Ihmsen et al., higher etISO concen-
trations were achieved (a maximum of 2.1%) and the AE did
not decrease to values lower than 0.4, whereas in this study
lower values were achieved with etISO concentration of
1.7%. This may be due to the presence of residual noise
during BS pattern in the study by Ihmsen et al., which could
have been classified as brain activity by AE. In our study, with
a cleaner signal from intracranial recordings this situation
could be avoided. The IoC18 had an acceptable performance
in detecting the effects of different isoflurane concentrations
in the LFPs. It is a proprietary monitor and its exact calcula-
tion algorithm is not published. However, it is known that, as
other commercial monitors, it has a BS component. The
lower correlation value obtained with the IoC, when com-
pared with BS-corrected PE, BS-corrected SEF, and AE,
could be related to the fact that its algorithm is adjusted for
the human electroencephalogram and the BS limit might

Table 1. Correlation Coefficients (Spearman Rank r)
with End-tidal Isoflurane Concentration for the Studied
Parameters

Spearman Rank (r)

SI VPL

AE �0.89 �0.87
IoC �0.85 �0.83
PE NS NS
BSPE �0.97 �0.95
SEF �0.42 �0.41
BSSEF �0.94 �0.93

Correlation coefficients (Spearman rank r) for the studied param-
eters: approximate entropy (AE), index of consciousness (IoC),
permutation entropy (PE), burst suppression–corrected permu-
tation entropy (BSPE), spectral edge frequency 95% (SEF), and
burst suppression corrected spectral edge frequency (BSSEF).
The r values calculated from pooled data of all rats indexes
derived from the primary somatosensory cortex (SI) and ventro-
posterolateral thalamic nuclei (VPL) are presented. Correlations
were considered statistically significant with P � 0.05; correlation
was not statistically significant (NS) at the 0.05 level.
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need an adaptation for this type of signal to achieve a better
performance. Its major drawback is being proprietary, which
makes it impossible to adapt the algorithm to the type of
signal and species. On the other hand, the other three param-
eters (AE, SEF, and PE) have a greater advantage of having
published algorithms thereby allowing its continuous im-
provement. The calculation of the SEF is very simple relying
only on frequency changes. Its major problems are the sen-
sitivity to artifacts and the need for a correction for BS. With
this correction, it seems to be able to classify different anes-
thetic depths, with a correlation with the anesthetic concen-
tration even better than the AE in this study.

The type of signal analyzed here represents a relevant
difference to previous studies comparing anesthetic depth
indexes. No artifact-filtering systems were applied before de-
riving the indexes and only a 50-Hz notch filter was applied
because, contrary to the electroencephalogram, the LFPs do
not suffer interference from the electromyographic activity.
This way, the �-band oscillations could be preserved, which
are known to be important markers of the conscious state.2

In this study, the �-band power decreased from the awake to
the anesthetized state, but this decrease was only significant
in the SI. This may be due to the association of the � oscil-
lations to cortical conscious activity2 and may be the reason
for the higher correlation coefficients with the etISO concen-
tration obtained with the SI indexes. Significant differences
between the two areas were found for the �, �, and � bands.
This could also be related to the different origins of these
rhythms: while the spindle activity (14 Hz) is generated on
the thalamus10 and may increase the power in the � band
(9–15 Hz), the � rhythms (15–30 Hz) generated by cortico-
cortical interactions caused higher power on the SI.14

The BS pattern simultaneously appeared in the SI and
VPL and was highly synchronized, as previously suggested.27

Although there was a tendency for the correlation coeffi-
cients from the SI indexes to be higher than those from the
VPL indexes, the difference was not statistically significant. It
could be expected that the SI indexes had a better correlation
with the anesthetic concentration, because they were devel-
oped to analyze the electroencephalogram that reflects
mainly the cortical activity, contrary to previous findings
with neuroimaging techniques in humans.28 But this result
together with the high coherence obtained between the two
areas may indicate that the cortical and thalamic neurons
remain connected to some extent during steady-state anes-
thesia. Our results support the existence of a “permanent
corticothalamic dialogue” during steady-state anesthesia, as
has been suggested for quiet physiologic sleep.10 However,
the existence of a separate role of the cortex6,7 or the thala-
mus,8,9 as targets of anesthetic effects, cannot be clarified
with the present results because the dynamic phases of anes-
thesia were not studied but only steady-state effects. These
results are in accordance with the ideas that loss of conscious-
ness may not necessarily require that talamocortical neurons
are inactivated10,11 and that anesthesia causes a drop in �-fre-
quency power.2,11 According to the information or integra-

tion theory proposed by Alkire et al.,11 anesthetic-induced
unconsciousness presupposes two mechanisms: (1) a loss of
information capacity reflected by reduction in the number of
electrophysiological patterns with increasing anesthetic
depth and (2) a loss of integration capacity reflected by an
interruption in the interactions between brain structures. Al-
though this study does not reveal a disruption in the
thalamocortical interactions, it may support the loss of infor-
mation idea, because a decrease in the electrophysiological
patterns was observed, shrinking to the stereotypic BS pat-
tern at deeper stages.

Meanwhile, these results do not guarantee the existence of
equal activity in both areas, because output neuronal activity
is not contemplated on the LFPs, but only slower postsyn-
aptic activity. Nevertheless, this animal preparation is a
promising method for future investigations on the mech-
anisms of anesthetic action, especially by analyzing the
dynamic phases of anesthesia, at induction and recovery
and including other recording techniques such as multi-
unit recordings. Also, by knowing how the SI and VPL
neurons interact during steady-state anesthesia, it will be
easier to draw conclusions on the effects of intraoperative
noxious stimuli and analgesic administration on pain pro-
cessing by the somatosensory system, with the same ani-
mal preparation.29

LFP recordings performed in this study resulted in two
main conclusions: (i) the PE corrected with the classic BS
ratio is a promising alternative to other indexes of anesthetic
depth and (ii) data showed high coherence level of activity
between cortical and thalamic regions, even at deep isoflu-
rane stages.

References

1. Nunez P, Srinivasan R: Electric Fields of the Brain: The
Neurophysics of EEG, 2nd edition. Oxford, Oxford Univer-
sity Press, 2006

2. Sleigh JW, Steyn-Ross DA, Steyn-Ross ML, Williams ML,
Smith P: Comparison of changes in electroencephalo-
graphic measures during induction of general anaesthesia:
Influence of the gamma frequency band and electromyo-
gram signal. Br J Anaesth 2001; 86:50 – 8

3. Gervasoni D, Lin SC, Ribeiro S, Soares ES, Pantoja J,
Nicolelis MA: Global forebrain dynamics predict rat behav-
ioral states and their transitions. J Neurosci 2004; 24:
11137– 47

4. Juergens E, Guettler A, Eckhorn R: Visual stimulation elic-
its locked and induced gamma oscillations in monkey
intracortical and EEG-potentials, but not in human. Exp
Brain Res 1999; 129:247–59

5. Legatt AD, Arezzo J, Vaughan HG Jr: Averaged multiple
unit activity as an estimate of phasic changes in local
neuronal activity: Effects of volume-conducted potentials.
J Neurosci Methods 1980; 2:203–17

6. Velly LJ, Rey MF, Bruder NJ, Gouvitsos FA, Witjas T, Regis
JM, Peragut JC, Gouin FM: Differential dynamic of action
on cortical and subcortical structures of anesthetic agents
during induction of anesthesia. ANESTHESIOLOGY 2007; 107:
202–12

7. Hentschke H, Schwarz C, Antkowiak B: Neocortex is the
major target of sedative concentrations of volatile anaes-
thetics: Strong depression of firing rates and increase of
GABAA receptor-mediated inhibition. Eur J Neurosci 2005;
21:93–102

362 Thalamocortical LFP-based Anesthetic Depth Indexes

Anesthesiology, V 112 • No 2 • February 2010 Silva et al.

70 | P u b l i c a ç ã o  2



8. Alkire MT, McReynolds JR, Hahn EL, Trivedi AN: Thalamic
microinjection of nicotine reverses sevoflurane-induced
loss of righting reflex in the rat. ANESTHESIOLOGY 2007;
107:264 –72

9. Alkire MT, Haier RJ, Fallon JH: Toward a unified theory of
narcosis: Brain imaging evidence for a thalamocortical
switch as the neurophysiologic basis of anesthetic-induced
unconsciousness. Conscious Cogn 2000; 9:370 – 86

10. Amzica F, Steriade M: Integration of low-frequency sleep
oscillations in corticothalamic networks. Acta Neurobiol
Exp (Wars) 2000; 60:229 – 45

11. Alkire MT, Hudetz AG, Tononi G: Consciousness and an-
esthesia. Science 2008; 322:876 – 80

12. Jones EG: The thalamic matrix and thalamocortical syn-
chrony. Trends Neurosci 2001; 24:595– 601

13. Steriade M: The GABAergic reticular nucleus: A preferen-
tial target of corticothalamic projections. Proc Natl Acad
Sci USA 2001; 98:3625–7

14. Schneider G, Kochs EF: The search for structures and
mechanisms controlling anesthesia-induced unconscious-
ness. ANESTHESIOLOGY 2007; 107:195– 8

15. Li X, Cui S, Voss LJ: Using permutation entropy to measure
the electroencephalographic effects of sevoflurane. ANES-
THESIOLOGY 2008; 109:448 –56

16. Jordan D, Stockmanns G, Kochs EF, Pilge S, Schneider G:
Electroencephalographic order pattern analysis for the
separation of consciousness and unconsciousness: An anal-
ysis of approximate entropy, permutation entropy, recur-
rence rate, and phase coupling of order recurrence plots.
ANESTHESIOLOGY 2008; 109:1014 –22

17. Olofsen E, Sleigh JW, Dahan A: Permutation entropy of the
electroencephalogram: A measure of anaesthetic drug ef-
fect. Br J Anaesth 2008; 101:810 –21

18. Revuelta M, Paniagua P, Campos JM, Fernandez JA, Mar-
tinez A, Jospin M, Litvan H: Validation of the index of
consciousness during sevoflurane and remifentanil anaes-
thesia: A comparison with the bispectral index and the
cerebral state index. Br J Anaesth 2008; 101:53– 8

19. Ihmsen H, Schywalsky M, Plettke R, Priller M, Walz F,

Schwilden H: Concentration-effect relations, prediction
probabilities (Pk), and signal-to-noise ratios of different
electroencephalographic parameters during administra-
tion of desflurane, isoflurane, and sevoflurane in rats.
ANESTHESIOLOGY 2008; 108:276 – 85

20. Paxinos G, Watson C: The Rat Brain in Stereotaxic Coor-
dinates, 4th edition. San Diego, Academic Press, 1998

21. Nicolelis MA, Ghazanfar AA, Faggin BM, Votaw S, Oliveira
LM: Reconstructing the engram: Simultaneous, multisite,
many single neuron recordings. Neuron 1997; 18:529 –37

22. Bruhn J, Ropcke H, Hoeft A: Approximate entropy as an
electroencephalographic measure of anesthetic drug ef-
fect during desflurane anesthesia. ANESTHESIOLOGY 2000;
92:715–26

23. Rampil IJ: A primer for EEG signal processing in anesthe-
sia. ANESTHESIOLOGY 1998; 89:980 –1002

24. Achermann P, Borbely AA: Temporal evolution of coher-
ence and power in the human sleep electroencephalo-
gram. J Sleep Res 1998; 7(suppl 1):36 – 41

25. Antunes LM, Golledge HD, Roughan JV, Flecknell PA: Com-
parison of electroencephalogram activity and auditory
evoked responses during isoflurane and halothane anaes-
thesia in the rat. Vet Anaesth Analg 2003; 30:15–23

26. Bruhn J, Ropcke H, Rehberg B, Bouillon T, Hoeft A: Elec-
troencephalogram approximate entropy correctly classi-
fies the occurrence of burst suppression pattern as in-
creasing anesthetic drug effect. ANESTHESIOLOGY 2000; 93:
981–5

27. Detsch O, Kochs E, Siemers M, Bromm B, Vahle-Hinz C:
Increased responsiveness of cortical neurons in contrast to
thalamic neurons during isoflurane-induced EEG bursts in
rats. Neurosci Lett 2002; 317:9 –12

28. White NS, Alkire MT: Impaired thalamocortical connectiv-
ity in humans during general-anesthetic-induced uncon-
sciousness. Neuroimage 2003; 19:402–11

29. Cardoso-Cruz H, Lima D, Galhardo V: Thalamocortical pain
processing in freely behaving rats: A study based on
chronic extracellular multichannel recordings. Eur J Pain
2006; 10:S54 –5

363PERIOPERATIVE MEDICINE

Silva et al. Anesthesiology, V 112 • No 2 • February 2010

68 | P u b l i c a ç ã o  2

71 | P u b l i c a ç ã o  2





PUBLICAÇÃO 3





NEUROSYSTEMS

Instability of spatial encoding by CA1 hippocampal place
cells after peripheral nerve injury

Helder Cardoso-Cruz,1,2 Deolinda Lima1,2 and Vasco Galhardo1,2

1Instituto de Biologia Molecular e Celular (IBMC), Grupo de Morfofisiologia do Sistema Somatosensitivo, Universidade do Porto,
4150-180 Porto, Portugal
2Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal

Keywords: multichannel recording, neuropathy, pain, rat

Abstract

Several authors have shown that the hippocampus responds to painful stimulation and suggested that prolonged painful conditions
could lead to abnormal hippocampal functioning. The aim of the present study was to evaluate whether the induction of persistent
peripheral neuropathic pain would affect basic hippocampal processing such as the spatial encoding performed by CA1 place cells.
These place cells fire preferentially in a certain spatial position in the environment, and this spatial mapping remains stable across
multiple experimental sessions even when the animal is removed from the testing environment. To address the effect of prolonged
pain on the stability of place cell encoding, we chronically implanted arrays of electrodes in the CA1 hippocampal region of adult rats
and recorded the multichannel neuronal activity during a simple food-reinforced alternation task in a U-shaped runway. The activity of
place cells was followed over a 3-week period before and after the establishment of an animal model of neuropathy, spared nerve
injury. Our results show that the nerve injury increased the number of place fields encoded per cell and the mapping size of the place
fields. In addition, there was an increase in in-field coherence while the amount of spatial information content that a single spike
conveyed about the animal location decreased over time. Other measures of spatial tuning (in-field firing rate, firing peak and number
of spikes) were unchanged between the experimental groups. These results demonstrate that the functioning of spatial place cells is
altered during neuropathic pain conditions.

Introduction

It has long been known that the hippocampus is crucial for learning
and memory. One special feature of pyramidal complex-spike neurons
found in CA1 and CA3 areas of the hippocampus is that they encode
the animal location in the environment (Fox & Ranck, 1981). These
place cells increase their firing rate when an animal is in a particular
position within its environment (place field; O’ Keefe & Dostrovsky,
1971; O’ Keefe & Nadel, 1978), and this place field is usually stable
across repeated visits to the same environment, even when the animal
is removed from it for extended time periods (Muller et al., 1987;
Thompson & Best, 1990). Several studies have shown that changes in
the spatial features or motivational content of the testing environment
may disrupt the place field stability (Kobayashi et al., 1997; Markus
et al., 1995; Moita et al., 2004; Muller & Kubie, 1987; Wood et al.,
2000). On the other hand it has been shown that place field instability
could also result from pharmacological manipulations of hippocampal
functioning (Dragoi et al., 2003; Kentros et al., 1998; Rotenberg
et al., 2000) or from direct lesioning of the hippocampus or
hippocampal-connected areas (Leutgeb & Mizumori, 1999; Liu et al.,

2003; McNaughton et al., 1989; Mizumori et al., 1994; Muir &
Bilkey, 2001).
In addition to spatial information, the hippocampus has repeatedly

been described as being involved in the regulation of several
behavioural aspects of the adaptation to aversive situations, including
pain (Khanna, 1997; Khanna & Sinclair, 1992; Soleimannejad et al.,
2006). Hippocampal neurons respond to noxious stimulation
(Delgado, 1955; Halgren et al., 1978; Khanna, 1997; Soleimannejad
et al., 2006; Tai et al., 2006; Wei et al., 2000; Zheng & Khanna,
2008), and human imaging studies have shown its activation by acute
noxious stimulation (Bingel et al., 2002; Ploghaus et al., 2001, 2000).
Moreover, partial hippocampectomy has been used (albeit with
moderated success) as a treatment for human chronic pain syndromes
(Gol & Faibish, 1967), while the inactivation of hippocampal synaptic
transmission attenuated nociceptive behaviour in the rat formalin
model (Khanna, 1997; McKenna & Melzack, 1992, 2001).
Despite all the knowledge gathered on how the hippocampus affects

pain processing, little is known about how pain affects hippocampal
functioning. It has been shown that chronic pain changes c-fos
expression (Carter et al., 2011; Ceccarelli et al., 2003) and long-term
potentiation (Kodama et al., 2007; Ren et al., 2011), and causes
changes in hippocampal volume (Lutz et al., 2008; Younger et al.,
2010), but it is still unknown whether pain affects crucial hippocampal
functions such as the generation of spatial maps. Therefore, our goal
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was to verify whether long-term neuropathic pain disrupts the stability
of CA1 hippocampal place fields in the absence of spatial or
motivational changes introduced in the familiar testing environment,
or alterations in the performance capability of the animal. We recorded
neuronal activity of freely moving rats in a simple spatial alternation
task, performed before and after the induction of the spared nerve
injury (SNI) model of neuropathic pain (Decosterd & Woolf, 2000).

Materials and methods

Subjects

Twelve adult male Sprague–Dawley rats weighing between 275 and
325 g were used in this study. The rats were maintained on a 12-h
light–dark cycle, and both training and recording sessions ran at
approximately the same time each day, during the light portion of the
cycle. All procedures and experiments adhered to the guidelines of the
Committee for Research and Ethical Issues of IASP (Zimmermann,
1983) and with the Ethical Guidelines for Animal Experimentation of
the European Community Directive Number 86 ⁄ 609 ⁄ ECC of 24
November of 1986, and were approved by national and local boards.

Behavioral arena

The testing environment consisted of a U-shaped arena with three
sections that were 72 cm long and 15 cm wide, and with opaque walls
30 cm high (Fig. 1); this arena was similar to an elevated runway
previously used in a place cell stability study (Tropp et al., 2005). Rats
were trained to run an alternation schedule on the arena to receive food
reinforcements at both ends of the runway; one chocolate-flavoured
pellet was automatically delivered by a pellet dispenser (Coulbourn
Instruments, Whitehall, PA, USA), depending on previous visit to the
opposite end of the runway. Control of pellet dispensers was fully
automated using the OpenControl software adapted to this particular
task (Aguiar et al., 2007). We preferred the use of this simple task in a
linear runway instead of a more complex bifurcating arena that
requires navigational decision-making because pain is known to affect
both decision-making and spatial navigation in working memory-
dependent tasks (Pais-Vieira et al., 2009a; Hu et al., 2010; our own
unpublished results), and any perturbations of the navigational
performance of the animals may lead to spontaneous place field
remapping.

Experimental schedule

During the training period, the rats were given two 15-min sessions
per day to learn the alternation schedule until they performed 80
correct runway alternations within a period of 4 consecutive days
(Tropp et al., 2005). After reaching this performance criterion the
animals were surgically implanted unilaterally with a multielectrode
array for single-unit recording (see details below).
After 7 days of recovery from the implantation surgery, 12 animals

(n = 6 in both sham and nerve-lesioned groups) were recorded over 4
consecutive days (hereafter named baseline or control period) while
performing the runway alternation task in two daily sessions of
15 min. The detailed results from this control period sessions are
presented in Table S1 as Supporting Information. On the following
day the animals were briefly anesthetized and either surgically
subjected to the SNI model of neuropathic pain (Decosterd & Woolf,
2000) or to a sham intervention with the same extent of skin incision
and muscle dissection, performed in the left hindpaw contralateral to

the location of the intracranial recording electrodes. Both groups of
animals were then recorded for a period of 3 weeks (with recordings
performed on days 1, 2, 3, 7, 10, 15 and 21 after SNI or sham
intervention). The sensory threshold for noxious stimulation was
measured using von Frey filaments (Somedic, Sweden) as previously
described (Chaplan et al., 1994). Von Frey testing was always
performed after the second recording session of the day (with at least
a minimum interval of 1 h after replacing the animals in their home
cage). Testing was performed in an elevated chamber with a thin
metallic mesh floor that allowed easy access to the plantar surface of
the left hindpaw; filament series were run from the thinnest to the
widest to detect the filament to which the animal withdrew the paw in
at least six of 10 successive applications; we then performed another
two series of 10 stimulations using the same filament (2-min intervals
between sessions) and averaged the number of positive responses
evoked by the three series.

Multielectrode implantation

For the surgical implantation of the intracranial multielectrode array
the animals were anesthetized with an intramuscular injection of a
mixture of xylazine and ketamine (10 and 60 mg ⁄ kg, respectively).
Anesthesia was maintained with small additional injections of
ketamine (one-third of the initial dosage). Oxygen was supplied
during the procedure via a face mask. The depth of anesthesia and
paralysis of the musculature was assessed by regularly testing the
corneal blink, hindpaw withdrawal and tail-pinch reflexes. After the
anesthesia induction, each animal received a single dose of atropine
sulphate (0.02 mg ⁄ kg, subcutaneous) and 1 mL of serum (sucrose 2%
w ⁄ v in NaCl 0.9% w ⁄ v, subcutaneous) every hour throughout the
surgery. Core body temperature was measured with a rectal thermom-
eter and maintained at 37 �C by means of a homeothermic blanket
system. The animal’s head was shaved and cleaned using a triple
application of alcohol (70%, v ⁄ v) and Betadine. A midline subcuta-
neous injection of 0.3 mL of 1% lignocaine (B Braun, Melsungen,
Germany) was applied to the scalp for local analgesia. Anesthetized
animals were secured in a stereotaxic frame using ear bars, and a
midline incision was made caudally to the animal’s eyes and ending
between ears. The connective tissue was blunt-dissected, and the top
of the skull was exposed and cleaned using hydrogen peroxide. After
exposure of the scalp, holes were bored for fixation of four screws
used for securing the array and for grounding. One craniotomy
(3 · 3 mm) was made for implantation of the multielectrode.
Each multielectrode array consisted of eight filaments of isonel-

coated tungsten wire (35 lm diameter; California Fine Wire Company,
Grover Beach, CA, USA) with impedances varying between 0.5 and
0.7 MX at 1 kHz. The multielectrode arrays were built in a 4 · 2
architecture, interspaced with 250 lm between rows and 400 lm
between columns (Silva et al., 2010). The arrays were rostrocaudally
oriented andmounted in the holder of a hydraulic micropositioner (FHC
Inc, Bowdoin, ME, USA) and slowly driven (50 lm ⁄ min) into the right
hippocampal CA1 region after dura mater removal, while monitoring
the neuronal activity. The following coordinates in mm relative to
bregma (Paxinos & Watson, 1998) were used to center the arrays: )3.2
rostrocaudal, +2.2 mediolateral and )2.6 dorsoventral. After the
electrodes were advanced to the correct position, the craniotomy was
sealed with a layer of agar (4% in saline) and the array was cemented to
the skull screws using dental acrylic. At the end of the implantation the
animal was transferred to a recovery cage. The analgesic carprofen
(7.5 mg ⁄ kg; Rimadyl, Pfizer Animal Health, Lisbon, Portugal) and the
antibiotic amoxicillin (6 mg ⁄ kg; Clamoxyl, Pfizer Animal Health,
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Lisbon, Portugal) was administered subcutaneously every 24 h for
3 days while the animal recovered from surgery. Rats were allowed to
recover for 1 week before the task re-training sessions began.

Neural recordings

All neural activity signals from the implanted microelectrodes were
recorded and processed using a Multineuron Acquisition Processor
system (16-MAP; Plexon Inc., Dallas, TX, USA). Voltage–time

threshold windows were used to identify single-unit waveforms. The
differentiated neural signals were preamplified (10 000–25 000 ·),
and digitized at 40 kHz. Up to two neuronal action potentials per
recording channel were sorted online (SortClient 2008; Plexon Inc.)
and validated by offline analysis (Offline Sorter 2.8.; Plexon Inc.)
according to the following cumulative criteria: voltage thresholds
> 2 SD of amplitude distributions; signal-to-noise ratio > 3; fewer
than 1% of interspike intervals > 1.2 ms; and stability of the
waveform shape as determined by a waveform matching template

A C

B

Fig. 1. Illustration of activity of a place cell during the testing environment navigation before (baseline) and after nerve injury (SNI). (A) Normalized firing rate
maps. The bright red pixels correspond to regions where the cell fired at a higher rate, and the dark blue to a lower rate. (B) Correspondent encoded place fields
(green pixels). (C) Photograph of the U-shaped testing environment. The rats were trained to alternate between feeders A and B in the maze for food reinforcement
dispensed by pellet feeders located one at the end of each arm. The feeders dispensed a single food pellet when the animal performed a correct alternation.
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algorithm and principal component analysis. In addition, the
Waveform Tracker software (Plexon Inc.) was used to verify that
the recorded units were stable across experimental sessions. This
software ensures that the same neuron is recorded in consecutive
sessions through the analysis of the projection of the waveform of
each recorded unit onto its three-dimensional principal components
analysis space. An overhead video tracking system (CinePlex; Plexon
Inc.) was used to provide information about the animal location on the
runway and synchronize the video recordings with the acquired
neuronal data.

Data analysis

Neural ensemble data were processed offline using NeuroExplorer 4
(NEX; Plexon Inc.) and exported to our own MatLab R14 routines for
additional analysis (MathWorks, Natick, MA, USA). Statistical
comparisons of the experimental groups were performed by
repeated-measures two-way anova and, when appropriate, a post
hoc analysis was carried out using the Bonferroni test (Prism 5.0;
GraphPad, San Diego, CA, USA). The level of significance was set as
at 5%. Results are expressed as mean ± SEM.

Classification of cells

Putative pyramidal complex-spike ‘place cells’ were classified as
such if they had a spike width (peak-to-trough) > 450 ls and a
signal-to-noise ratio > 3 : 1. These cells were characterized by
complex bursts wherein they often fired two to five spikes with an
interspike interval of approximately 5 ms. Complex bursts were
identified with an autocorrelation function (Neuroexplorer; Plexon
Inc.) that calculated the time between all spike pairs and distin-
guished between the firing patterns of place cells and those of theta
cells (putative interneurons; Markus et al., 1994). Data from
recorded theta cells were not included in the present study. Place
cells recorded in the testing environment typically presented a mean
firing rate < 5 Hz and a maximal in-field firing rate < 30 Hz.
Because most of the examined parameters are affected by low firing
rates, cells that had firing rates < 0.1 Hz were not analyzed.
Furthermore, because it was important to ensure that the same unit
was being recorded in repeated sessions, only units that exhibited
stable spike amplitudes and consistent waveforms within and
between recording sessions were included in this study.

Firing properties

Firing rate maps were prepared for each cell by dividing the recording
environment into a 32 · 32-bin array, each bin corresponding to
20 · 20 pixels of video resolution. Average firing rate for each bin
was calculated for each neuron by dividing the number of recorded
spikes by the time spent in that bin. Place fields were designated as an
area of 5–20 bins sharing adjacent edges, with a firing rate > 2 SD
above of the average cell firing rate over the entire arena (Muller &
Kubie, 1989). Place field size was defined as the number of bins
sharing adjacent edges that comprised the place field.
Basic firing properties were calculated: (i) the average firing rate of

the unit on testing environment; (ii) the average firing rate within the
place field; (iii) the maximum peak of firing rate within the place field;
(iv) spatial discrimination capability, the ratio between the mean firing
rate inside the place field and the mean firing rate outside the place
field; and (v) the coherence of the firing inside the place field, this
coherence measure being a computed autocorrelation between the rate

for each bin of the place field and the average rate of all in-field bins
(Neuroexplorer; Plexon Inc.).
In order to provide a measure of spatial firing that does not require

characterization of the place field, the data obtained from the recording
sessions were analyzed using a measure of spatial information content
measure (I, or specificity; Skaggs & McNaughton, 1996; Skaggs
et al., 1993). Specificity of the place field was calculated in terms of
the amount of spatial information content (in bits) that a single spike
conveyed about the animal’s location and was calculated using the
equation I = R Pi (Ri ⁄ R).log2(Ri ⁄ R), where i is the bin number, Pi is
the probability for occupancy of bin i, Ri is the mean firing rate for
bin i and R is the overall mean firing rate. A value of 0 indicates that
no spatial information is conveyed, while a typical place cell generates
a value close to 1 bit of information per spike.
The averaged position of a place field on the runway was defined by

calculating the centre of mass (centroid) of the firing rate distribution
within the place field boundaries (Mehta et al., 1997). To assess place
field expansion we calculated the size (in bins) of each field. In
addition, to assess shifts in the place field position, we calculated the
linear distance (in pixels) between field centroids of the current and
previous recording sessions.

Histology

At the end of all experiments, the rats were deeply anesthetized with a
mixture of ketamine and xylazine, and the recording site was marked
by injecting DC current (10–20 lA for 10–20 s) through one
microelectrode, marking the area below the electrode tips. Afterwards
animals were perfused through the heart with 0.01 m phosphate buffer
(pH = 7.2) in 0.9% saline solution, followed by 4% paraformalde-
hyde. Brains were removed and post-fixed in 4% paraformaldehyde
for 4 h and stored in 30% sucrose before they were frozen and
sectioned into 60-lm slices. Sections were stained with Cresyl violet
for microscopic identification of the recording site (shown in
Supporting Information Fig. S1).

Results

Mechanical hypersensitivity after SNI

All SNI animals developed mechanical allodynia as indicated by the
significant decrease in the mechanical force needed to evoke paw
withdrawal to Von Frey stimulation in the hindpaw ipsilateral to the
lesion, but not in the contralateral hindpaw (Bonferroni, P < 0.001). In
the SHAM group, no statistical differences were noted between before
and after surgery sessions (Fig. 2A).

Behavioral task activity

No evident variation was found in rat activity across training sessions,
and no signs of satiation were observed in the 15-min duration of each
session. anova revealed no significant differences in the number of
correct alternations (from feeder A to feeder B) between SNI and
SHAM animals (anova-RM, F7,70 = 1.33, P = 0.2421; Fig. 2B).
However, there was a within-group time effect across pre- and post-
surgery recording sessions (anova-RM, F7,70 = 8.33, P < 0.0001),
probably due to the decrease in correct alternations that occurred in
both groups in the first 3 days after surgery.
These results show that the induction of chronic pain did not cause a

significant change in task performance between control and pain
groups; this is technically crucial for establishing that eventual
alterations in hippocampal spatial encoding did not result from
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changes in either locomotion or reward motivation, which are known
to induce place cell instability by themselves.

Neuronal activity during task performance

We used the Waveform Tracker software (Plexon Inc.) to ensure that
individual neural recordings were correctly identified across experi-
ments; only place cells that remained stable throughout the recording
sessions in terms of waveform shape were considered in the present
study (Supporting Information Fig. S1). Therefore, a total of 117
validated neurons were recorded from the CA1 region in six nerve-
injured rats (SNI; n = 58 cells) and six control SHAM rats (n = 59
cells). Some cells were excluded from the final analysis because they
did not exhibit the criterion properties of pyramidal complex cells
described earlier (18 neurons, presumably theta cells). Consequently,
49 ⁄ 58 (84.48%) of cells from the SNI group and 50 ⁄ 59 (84.75%) cells
from the SHAM group were determined to be place cells (Fig. 2C).

The mean firing rate was calculated for each place cell for the
duration of the behavioural task. A two-factor repeated-measures
anova was used to compare the firing rates of cells from SNI and
SHAM animals in pre- and post-surgery recording sessions (Fig. 2D),
and revealed no significant differences in mean firing rate between the
two experimental groups (anova-RM, F7,70 = 0.99, P = 0.4466) and
across the recording sessions (anova-RM, F7,70 = 1.03, P = 0.4225).

Encoding of place fields

CA1 pyramidal cells of the SNI group showed a significant increase in
the number of encoded place fields. This increase was observed on a

cell-by-cell basis and did not affect all cells simultaneously recorded in
the same animal (Fig. 3). Repeated-measures anova revealed that
there were differences between the two groups (F7,70 = 5.87,
P < 0.0001) and across time (F7,70 = 3.27, P = 0.0460). Moreover,
post hoc analysis showed that the number of place fields in the SNI
group was larger than in SHAM control animals (Bonferroni, P < 0.01
for day 7 after SNI and P < 0.001 for day 10 after SNI; Fig. 4A).
A two-factor repeated-measures anova was used to compare the in-

field firing activity of cells from SHAM and lesion animals in pre- and
post-surgery recording sessions. There was no significant group effect
for the place cells’ in-field mean firing rate (F7,70 = 1.03, P = 0.4201)
or in-field peak of firing (F7,70 = 0.66, P = 0.7059; Fig. 4B and C).
However, over the recording sessions there was a significant effect of
time in the in-field mean firing rate (F7,70 = 6.99, P < 0.0001) and in-
field peak of firing (F7,70 = 4.26, P = 0.0006).
The recordings in the SNI and SHAM groups show that the internal

place field coherence of place cells was affected after peripheral nerve
injury with a significant increase after 7 days of lesion (Fig. 4D).
Analysis revealed that there were differences between groups (anova-
RM, F7,70 = 5.45, P < 0.0001) and across the recording sessions
(anova-RM, F7,70 = 4.74, P = 0.0002). Post hoc analysis showed
that values of field coherence after nerve injury were greater than those
observed in the SHAM group (days 7 and 10; Bonferroni, P < 0.05).
There were also differences in the field size between the two

experimental groups (anova-RM, F7,70 = 3.57, P = 0.0025) and
across the recording sessions (anova-RM, F7,70 = 2.63, P = 0.0179;
Fig. 4E). Post hoc analysis of field size revealed a significant increase
for SNI group after nerve injury. However, no group interaction was
found for field centroid movement (anova-RM, F7,70 = 1.38,

A B

C D

Fig. 2. Behavioural performance in the runway alternation task. (A) Level of sensitivity to mechanical stimulation evaluated using von Frey filaments. A large
decrease was observed in the threshold required to induce a paw response in the SNI group. (B) Number of correct alternations on the U-shaped maze. Similar levels
of behavioural task activity were observed for the two experimental groups. (C) The proportion of recorded neurons that were classified as place cells showed a
similar distribution in the two experimental groups. Note that only neurons classified as place cells were considered in the analyses of the present study. (D) Average
firing rate per place cell during the entire session remained unchanged after surgery. SNI, nerve lesion group; SHAM, control group. Values are mean ± SEM.
Shaded area on the left of each graph represents the baseline control period (CT); the baseline plotted value is the collapsed average of the recording sessions in the
4 days before the nerve lesion, although it should be noted that in all statistical comparisons the values of the control days were used without any averaging.
Comparisons between control and after surgery recording sessions based on two-way repeated-measures anova, followed by Bonferroni’s post hoc test.
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P = 0.2275), although both groups presented changes over time
(anova-RM, F7,70 = 13.10, P < 0.0001; Fig. 4F).

Spatial information content

The information content (bits ⁄ spike) of cells recorded from peripheral
nerve injury animals (SNI group) was significantly lower than that of
cells from SHAM control animals (Fig. 4G). anova-RM analysis
revealed there was a difference between groups (F7,70 = 16.06,
P < 0.0001) and across the recording sessions (F7,70 = 10.44,
P < 0.0001). Post hoc analysis revealed a significant decrease in
information content encoded by the cells of the SNI group 10 days
after nerve injury when compared with SHAM group (Bonferroni,
P < 0.05).

Spatial discrimination capability

Spatial discrimination capability, or the ratio between the mean firing
rate inside the place field and the mean firing rate outside the place
field, is shown in Fig. 4H. The results indicate that spatial discrim-
ination did not differ between experimental groups (anova-RM,
F7,70 = 1.13, P = 0.3565) or over recording sessions (anova-RM,
F7,70 = 1.79, P = 0.1037).

Discussion

The aim of the present study was to address for the first time whether
the onset of an animal model of the chronic neuropathic pain condition
affects the spatial encoding properties of hippocampal CA1 pyramidal
cells. This type of cell is considered to be crucial for the continuously
updated representation of space and individual position. However, this
dynamic information is only one of several features stored in the

hippocampal network (Eichenbaum et al., 1999; Leutgeb et al., 2005),
and for this reason it is of primary interest to determine what factors,
including pain, may contribute to disruption of the stability of place
cells.
Our results show that pain causes instability in hippocampal place

field encoding in the absence of changes in overall task performance.
As intended, the onset of the pain model caused a transient reduction
in task performance only in the days immediately following the
surgery and this effect was equally observed in both control and pain
animals. We specifically used this simple alternation task because it is
not cognitively challenging and our results are in agreement with
previous reports showing that pain has no impact on performance in
simple spatial and nonspatial memory tasks (Apkarian et al., 2004;
LaBuda & Fuchs, 2000; Leite-Almeida et al., 2009), although pain-
related memory deficits may be observed in more complex memory
tasks (Dick & Rashiq, 2007; Millecamps et al., 2004; Leite-Almeida
et al., 2009). Moreover, the transient effect in performance (Fig. 2B)
is not temporally correlated with the peak of place field instability
(Fig. 4A), suggesting that the late onset instability of CA1 place fields
is not caused by motor impairment or reduced motivation for task
completion.
It is important to note that, although the task used in this study is not

strictly hippocampus-dependent, several single-unit recording studies
have also used tasks which are not hippocampus-dependent, such as
forced-choice tasks, to examine place field characteristics, showing
that place cells present environment re-mapping even on nonhippo-
campal tasks (Markus et al., 1995; Muller & Kubie, 1987; Ranck,
1973).

Chronic pain changed CA1 place cell activity

Basic firing properties of CA1 place cells remained stable after
peripheral nerve lesion. These properties included mean firing rate

Fig. 3. Differential effect of pain over the remapping of place fields. The top two rows show the normalized firing rate per bin of two simultaneously recorded
hippocampal place cells during the alternation task in the U-shaped runway. Note the similarity in the spatial firing activity of neuron 1 across recording sessions, and
the encoding instability of neuron 2 in the days following the nerve lesion. The bottom row shows the time spent in each bin during the entire recording session, and
demonstrates that the place field locations are commonly unrelated to the movement of the animal. Bright red represents bins with higher firing rate (top two rows) or
where the animal spent more time (bottom row), and dark blue represent bins with lower firing rates (top two rows) or where the animal spent less time during the
session (bottom row). The shaded plot on the left of each row represents the baseline control period; the baseline plotted values are the collapsed average of the
activity in the 4 days before the nerve lesion.
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activity and spatial discrimination capability. Indeed, the fact that the
spatial discrimination was similar across the two groups implies a
proportional firing activity in both experimental conditions. However,
the analysis of spatial information content, or specificity (Skaggs
et al., 1993), a measure of spatial firing that does not require that a
particular region be defined as a place field, revealed significantly
lower values in the neurons recorded from nerve-lesioned rats,
indicating that the activity of these neurons provided less information
about spatial location. It should also be noted that the spatial
information content is only minimally affected by proportional
changes in the firing rate.

Chronic pain disrupted place field stability

Spatial tuning characteristics such as number of place fields encoded
per cell and in-field firing coherence changed after nerve lesion, with a
peak effect observed 7 days after the lesion, of two place fields
encoded per cell. Interestingly, 21 days after nerve lesion the majority
of the cells returned to the baseline encoding of only one place field in
average. A possible hypothesis to explain this transient effect is a
reduction in pain threshold associated with nerve-injured animals;
however, no statistically significant differences in data were encoun-
tered between days 15 and 21 in the von Frey test. In addition, it is

A B

C D

E F

G H

Fig. 4. Spatial place field properties across recording sessions. (A) Number of place fields encoded per recorded place cell. (B) Place field firing coherence. (C)
Average in-field firing rate. (D) maximum firing rate for in-field peak. (E) Average size, in bins, of the place fields. (F) Place field shifts of centroid location, in pixels.
(G) Specificity, or spatial content information (in bits), conveyed per spike of place cells. (H) Spatial discrimination capability (in-field ⁄ out-field firing ratio) between
groups. SNI, nerve lesion group; SHAM, control group. Values are mean ± SEM. Shaded area on the left of each graph represents the baseline control period (CT);
the baseline plotted value is the collapsed average of the recording sessions in the 4 days before the nerve lesion, although it should be noted that in all statistical
comparisons the values of the control days were used without any averaging. Comparisons between control and after surgery recording sessions based on two-way
repeated-measures anova, followed by Bonferroni’s post hoc test. *P < 0.05; **P < 0.01, and ***P < 0.001.
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important to note that the second place field occupied a location which
was not adjacent to the first one; this suggests that pain-induced field
remapping and field expansion are different phenomena. It has been
reported that place fields may be modified during a single recording
session, and this may represent the within-session continuous
acquisition of novel spatial information (Mehta et al., 1997, 2000).
This hypothesis does not apply to our results because we only started
the control recording sessions after several training sessions, and
during all control recording sessions the properties of place field
remained stable (see Supporting Information Table S1).

Mechanisms of place field instability

Apart from studies involving lesioning of the hippocampus or
hippocampus-connected areas (McNaughton et al., 1989; Muir &
Bilkey, 2001), to our best knowledge no previous studies have shown
disruption of place fields in the absence of changes to the testing
environment. Stressful stimuli were shown to alter the in-field firing
rate stability of place cells but not the stability of the field’s location
within a familiar environment (Kim et al., 2007), although the data
presented by the authors suggest a shift in pre- vs. post-stress location.
A similar study has shown that the stability of place fields in a familiar
environment does not change across the estrous cycle (Tropp et al.,
2005).
Several studies have shown that place field instability is accompa-

nied by an overall increase in the size of preexisting place fields, and it
has been reported that this size expansion is diminished in aged rats
(Barnes et al., 1997; Shen et al., 1997) and abolished by selective
blockade of NMDA receptors (Ekstrom et al., 2001). Moreover,
NMDA-dependent long-term potentiation processes are important for
maintaining the stability of place fields (Kentros et al., 1998; Shapiro
& Eichenbaum, 1999).
Only incomplete and sometimes conflicting data exist on the

molecular mechanisms of interplay between pain and hippocampal
plasticity; it has been shown that chronic neuropathy reduces CA1
long-term potentiation (Kodama et al., 2007; Ren et al., 2011) while
the opposite effect has been described after acute peripheral injection
of formalin (Zhao et al., 2009). In addition, recent studies have shown
that chronic pain reduces the hippocampal levels of BDNF (Duric &
McCarson, 2005; Hu et al., 2010; Al-Amin et al., 2011), which is
known to be a key regulator of hippocampal synaptic plasticity
(Minichiello, 2009). It must be noted that to our best knowledge no
direct connection has been demonstrated between neurotrophin levels
in the hippocampus and the stability of place cells, but it is expected
that the modulation of molecules important for synaptic plasticity also
leads to changes in the circuitry of hippocampal spatial encoding.
Finally, it has been proposed that hippocampal remapping may

result from memory interference between concurrent sets of experi-
ences (Colgin et al., 2008). This is in agreement with the idea that
evoked or spontaneous pain perception causes an interference with
ongoing cognitive functions (Seminowicz & Davis, 2007; Moriarty
et al., 2011), disrupting the attentional processes that are crucial for
learning and memory (Boyette-Davis et al., 2008; Pais-Vieira et al.,
2009b).

Conclusion

In summary, our data suggest that peripheral nerve injury (SNI)
induces a relative instability of hippocampal CA1 place cells’ spatial
features. The present data indicate that nerve lesion induces a clear
reduction in the speciality measure, indicating that place cells provided

less information about spatial location after lesion. Our findings also
demonstrate place field disturbances, namely in the number, size and
in-field firing coherence. These changes are probably caused by
hippocampal structural adaptive mechanisms that occur during the
onset of the painful condition, which may disturb the mnemonic
processes that rely on the integration and consolidation of spatial
reference memory.

Supporting Information

Additional supporting information may be found in the online version
of this article:
Fig. S1. Stability of waveform shapes of two hippocampal place
cells simultaneously recorded from the same channel (yellow and
green) across experimental sessions (A). Note that the waveform
shape of each place cell remained stable throughout the recording
sessions. Only units with a > 3 : 1 signal to noise rate were
considered. (B) Illustration of the Unit A firing activity recorded
from a rat running on the U-shaped task encoding a spatial place
field (area with peak of firing). Maximum firing rate is indicated by
red and occupancy with no firing by blue. (C) Offline analysis of 3-
D PC cluster stability from the channel shown across the whole
recording sessions using the WaveTracker software (Plexon Inc.,
Dallas, TX, USA). In this view (D), 2-D PC clusters are projected as
function of time (Z-axis). Stability across time and absence of
overlap between units isolated from the same channel were used as
extra-selection criteria. (E) Location of implanted multielectrode
arrays for nine rats used in this study. The black dots indicate the
location of the centre of the array in CA1 region.
Table S1. Statistical summary for SHAM and SNI-group comparison
across all measurements during the eight recording sessions of the
control period.
Please note: As a service to our authors and readers, this journal
provides supporting information supplied by the authors. Such
materials are peer-reviewed and may be re-organized for online
delivery, but are not copy-edited or typeset by Wiley-Blackwell.
Technical support issues arising from supporting information (other
than missing files) should be addressed to the authors.
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Supporting Information

Figure S1.

Stability of waveform shapes of two hippocampal place cells simultaneously recorded

from the same channel (yellow and green) across experimental sessions (A). Note that

the waveform shape of each place cell remained stable throughout the recording

sessions. Only units with a greater than 3:1 signal to noise rate were considered. (B)

Illustration of the Unit A firing activity recorded from a rat running on the U-shaped task

encoding a spatial place field (area with peak of firing). Maximum firing rate is indicated

by red and occupancy with no firing by blue. (C) Offline analysis of 3-D PC cluster

stability from the channel shown across the whole recording sessions using the

WaveTracker software (Plexon Inc., Dallas, TX, USA). In this view (D), 2-D PC clusters are

projected as function of time (Z-axis). Stability across time and absence of overlap

between units isolated from the same channel were used as extra-selection criteria. (E)

Location of implanted multielectrode arrays for nine rats used in this study. The black

dots indicate the location of the centre of the array in CA1 region.
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Table S1.

Statistical summary for SHAM and SNI-group comparison across all measurements

during the 8 recording sessions of the control period.

Measurement Comparison Statistics Degrees of
freedom P

Mechanical
stimulation

2-way
repeated
measures
ANOVA

Factor 1 – Time
(SHAM x SNI)

F=0.1689 3, 30 0.9530

Factor 2 – Groups
(SHAM x SNI) F=1.5600 1, 30 0.2402

Interaction (F1 x F2) F=0.1041 3, 30 0.9804

Correct
alternations
per trial

2-way
repeated
measures
ANOVA

Factor 1 – Time
(SHAM x SNI)

F=2.188 7, 70 0.0878

Factor 2 – Groups
(SHAM x SNI) F=0.0776 1, 70 0.7862

Interaction (F1 x F2) F=0.6929 7, 70 0.6012

Mean firing
rate (Hz)

2-way
repeated
measures
ANOVA

Factor 1 – Time
(SHAM x SNI)

F=0.1261 7, 70 0.9722

Factor 2 – Groups
(SHAM x SNI) F=0.1823 1, 70 0.6784

Interaction (F1 x F2) F=0.3308 7, 70 0.8556

Specificity (in
bits)

2-way
repeated
measures
ANOVA

Factor 1 – Time
(SHAM x SNI)

F=1.255 7, 70 0.1169

Factor 2 – Groups
(SHAM x SNI) F=0.0001 1, 70 0.9945

Interaction (F1 x F2) F=1.975 7, 70 0.3036

Spatial
discrimination
capability

2-way
repeated
measures
ANOVA

Factor 1 – Time
(SHAM x SNI)

F= 1.760 7, 70 0.1561

Factor 2 – Groups
(SHAM x SNI) F=0.5245 1, 70 0.4855

Interaction (F1 x F2) F=1.975 7, 70 0.9339

Place fields
encoded per
cell

2-way
repeated
measures
ANOVA

Factor 1 – Time
(SHAM x SNI)

F=0.1210 7, 70 0.9742

Factor 2 – Groups
(SHAM x SNI) F=0.0731 1, 70 0.7924

Interaction (F1 x F2) F=0.6885 7, 70 0.6042
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The data presented in this table serves to demonstrate the stability of place fields and

related properties during the 8 recording sessions made before the induction of the

neuropathic injury. No differences were found across time, as well as between

experimental groups during the control period. Given the stability of these

measurements we have used the average value of these 8 sessions throughout the

manuscript.

Firing
coherence in-
field

2-way
repeated
measures
ANOVA

Factor 1 – Time
(SHAM x SNI)

F=2.279 7, 70 0.0776

Factor 2 – Groups
(SHAM x SNI) F=5.015 1, 70 0.0512

Interaction (F1 x F2) F=0.8711 7, 70 0.4897

Mean firing
rate in-field
(Hz)

2-way
repeated
measures
ANOVA

Factor 1 – Time
(SHAM x SNI)

F=1.322 7, 70 0.2783

Factor 2 – Groups
(SHAM x SNI) F=0.0212 1, 70 0.8870

Interaction (F1 x F2) F=0.1834 7, 70 0.9457

Firing peak
in-field (Hz)

2-way
repeated
measures
ANOVA

Factor 1 – Time
(SHAM x SNI)

F=1.963 7, 70 0.1187

Factor 2 – Groups
(SHAM x SNI) F=0.1539 1, 70 0.7031

Interaction (F1 x F2) F=0.7105 7, 70 0.5896

Field size
(bins)

2-way
repeated
measures
ANOVA

Factor 1 – Time
(SHAM x SNI)

F=0.7374 7, 70 0.5720

Factor 2 – Groups
(SHAM x SNI) F=0.0908 1, 70 0.7693

Interaction (F1 x F2) F=0.7135 7, 70 0.5876

Field
movement
(pixels)

2-way
repeated
measures
ANOVA

Factor 1 – Time
(SHAM x SNI)

F=1.855 7, 70 0.1585

Factor 2 – Groups
(SHAM x SNI) F=0.6696 1, 70 0.4323

Interaction (F1 x F2) F=1.169 7, 70 0.3379
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REDUCED HIPPOCAMPAL-PREFRONTAL CORTEX CONNECTIVITY IN

NEUROPATHIC PAIN RATS PERFORMING AN SPATIAL NAVIGATION TASK

Helder Cardoso-Cruz, Deolinda Lima, Vasco Galhardo
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ABSTRACT

Chronic pain patients commonly complain of working memory deficits, but the

mechanisms and brain areas underlying this cognitive impairment remain elusive. The neuronal

populations of the medial prefrontal cortex and dorsal hippocampal CA1 are well known to form

an interconnected neural circuit that is crucial for correct performance in spatial memory

dependent tasks. In this paper, we investigated whether the functional connectivity between

these two areas is affected by the onset of an animal model of peripheral neuropathic pain. To

address this issue, we chronically implanted two multichannel arrays of electrodes in the frontal

cortex and dorsal hippocampus of adult rats and recorded the neuronal activity during a food-

reinforced spatial working memory task in a figure-eight shaped maze. Recordings were

performed for three weeks, before and after the establishment of the spared nerve injury (SNI)

model of neuropathy. Our results show that the nerve lesion caused a clear impairment of

working memory performance that is temporally correlated with a decrease in single neuron

activity in the mPFC. Moreover, the activity of both frontal and hippocampal neuronal

populations after the nerve injury increased their phase-locking in respect to hippocampal theta

rhythm. Finally, our data revealed that chronic pain induces a reduction in the overall amount of

information flowing in the frontohippocampal circuit, that is well correlated with the correct or

incorrect performance of the animal on a trial-by-trial basis. The present results demonstrate

that functional disturbances in the mPFC-CA1 connectivity are certainly a relevant cause for

pain-induced working memory deficits.
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INTRODUCTION

Evidence from both animal neurophysiological recordings and human brain imaging

studies show that the neural activity of medial prefrontal cortex (mPFC) and hippocampus

correlates with the retention of information over a brief temporal scale, a function that is crucial

for a wide range of cognitive tasks (Floresco et al., 1997; Jung et al., 1998; Rainer et al., 1999;

Stern et al., 2001; Pesaran et al., 2002; Baeg et al., 2003; Schon et al., 2005). Important memory

performance-related mPFC-hippocampal interactions occur via coherent oscillations in the theta

frequency range (Jones & Wilson, 2005b; Siapas et al., 2005), during which the mPFC neurons

alternate between phase and non-phase firing patterns depending on the behavioural context

(Hyman et al., 2005). These interactions were greatest just before a correct mnemonic decision

was made (Jones & Wilson, 2005a), and are evidence of a functional connection between both

regions.

Impaired working memory is observed in several clinical conditions, such as traumatic

brain injury (McDowell et al., 1997), mental retardation (Vallar & Papagno, 1993), schizophrenia

(Green, 2006), attention-deficit hyperativity disorder (Frank et al., 1996), and chronic pain (Ling

et al., 2007; Luerding et al., 2008a). Indeed, it is commonly assumed that  chronic pain may lead

to learning dysfunctions in patients (Kim et al., 2011). This clinical observation is corroborated by

neuroimaging studies during noxious stimulation that have demonstrated an activation of brain

areas that are particularly involved in memory and learning processes (Peyron et al., 1998;

Ploghaus et al., 2000; Ducreux et al., 2006; Schweinhardt et al., 2006; Apkarian et al., 2011).

Recent studies in animals pain models have also demonstrated that pain induces reduced

working memory performance (Leite-Almeida et al., 2009; Hu et al., 2010), and poor attentional

performance (Millecamps et al., 2004; Pais-Vieira et al., 2009; Legrain et al., 2011).

However, little is known about how pain affects the mPFC–hippocampal circuit. It has

been shown that mPFC region have important key role in pain-modulatory process (Seifert et al.,

2009; Devoize et al., 2011); and that morphological and functional reorganization of mPFC

region can be in celular basis for cognitive impairments under neuropathic pain condition (Metz

et al., 2009). Additionally, chronic pain has been associated to working memory deficits due to

hippocampal LTP inhibition (Ren et al., 2011), and disturbances in the spatial reference memory

integration (Cardoso-Cruz et al., 2011a). Despite all the knowledge gathered in recent years it

remains unclear how pain affects the share, maintenance, and processing of information that

are crucial for spatial mnemonic processes. Therefore, our interest was to study how the mPFC-

hippocampal connectivity is affected by a prolonged neuropathic pain condition. We recorded

neuronal activity and local-field-potentials of freely moving rats in a spatial alternation task,
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performed before and after the induction of the Spared Nerve Injury model – SNI (Decosterd &

Woolf, 2000).

MATERIALS AND METHODS

Animal model and ethical statement

Ten adult male Sprague-Dawley rats weighing between 275 and 320 g were used in this

study. The rats were maintained on a 12-h light/dark cycle, and both training and recording

sessions run at approximately the same time each day during the light portion of the cycle. All

animals were food deprived to 90-95% of their ad libitum body weights during the course of

these experiments. All procedures and experiments adhered to the guidelines of the Committee

for Research and Ethical Issues of IASP (Zimmermann, 1983), with the Ethical Guidelines for

Animal Experimentation of the European Community Directive Number 86/609/ECC of 24

November of 1986, and were approved by national and local boards.

Maze and training procedure

The behavioral task consisted of a food-reinforced spatial alternation task on a figure-

eight shaped maze, similar to the maze used in studies of episodic memory (Baeg et al., 2003; Ji

& Wilson, 2007). The total dimension of the arena was 90 x 60 cm, with plexiglass corridors 15

cm wide and opaque walls 30 cm high with intramaze cues (Fig. 1A). Starting from the center of

the maze (C), the rats were trained to alternately visit two reward sites (R) to obtain one

chocolate-flavored pellet (45 mg) that was automatically delivered by a pellet dispenser

(Coulbourn Instruments, Whitehall, PA, USA). After visiting one of the reward locations, the

animal had to continue forward and cross again the central corridor before visiting the opposite

reward site; food rewards were not dispensed if the animal failed to cross the central corridor

immediately before arriving at the reward sites or if the animal made two consecutive visits to

the same reward site (arrows in Fig. 1A illustrate the pattern of correct maze navigation).

Control of pellet dispensers was fully automated using the OpenControl software adapted to this

particular task (Aguiar et al., 2007). In all the analysis of this study we have considered three

different zones in the behavioral arena: the “reward-zones” are the 15x15 cm corner areas

where the animal receives a pellet upon a correct alternation; the “delay-zones” comprise the

area between the reward-zones and the central corridor; finally, the “choice-zone” is the area

preceding the reward-zones and immediately following the central corridor (Fig. 1A).

The testing room was moderately illuminated and rich in visual cues distant from the

maze. During the training period, the rats were given three daily 10-min sessions to learn the
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alternation schedule until they reached at least 80% of correct maze alternations (Fig. 1B). An

error was defined by a consecutive visit to the same reward site or when the return route was

the same from the approach route. Errors were not reinforced. After reaching this performance

criterion the animals were surgically implanted with two arrays two arrays of 8 isonel-insulated

tungsten filaments of 35-microns in diameter, for recording of extracellular single-unit and local

field potentials (LFPs) (see details below).

After 7 days of recovery from the implantation surgery, ten animals (n = 5 in both sham

and nerve-lesioned groups) were re-trained and recorded during 5 consecutive days (hereafter

named baseline or control period) while performing the maze alternation task in 2 daily sessions

of 10 minutes with 4 hours of interval between sessions. In the following day the animals were

briefly anesthetized and either surgically subjected to the Spared Nerve Injury (SNI) - model of

neuropathic pain (Decosterd & Woolf, 2000) or to a sham intervention with the same extent of

skin incision and muscle dissection. Both interventions are implemented in the contralateral side

to recording probes implantation. Both groups of animals were then recorded for a period of

three weeks (with recordings performed at days 1, 3, 5, 7, 10, 15 and 21 after SNI or sham

intervention). Sensory threshold for noxious stimulation was assessed 1 hour after the end of

the second daily recording session by placing the animals in a cage with a metal mesh floor and

touching the plantar surface of the paw with von Frey filaments (Somedic, Sweden) as previously

described (Chaplan et al., 1994; Cardoso-Cruz et al., 2011a).

Electrodes implantation

The procedure for the surgical implantation of intracranial multielectrode arrays has

been previously described in detail elsewhere (Cardoso-Cruz et al., 2011a). The multielectrodes

arrays were oriented rostrocaudally and driven to the medial prefrontal cortex (mPFC) and

dorsal hippocampal CA1-field (CA1). The following coordinates in millimeters relative to Bregma

(Paxinos & Watson, 1998) were used to place the arrays: mPFC (-2.2 rostro-caudal, 1.0 medio-

lateral, 3.2 dorso-ventral), and CA1 (+3.2 rostro-caudal, 2.2 medio-lateral, 2.7 dorso-ventral).

After surgery, rats were allowed to recover for 1 week before the task re-training sessions

began.

Neural recordings

All neural activity signals from the implanted microelectrodes were recorded and

processed using a Multineuron Acquisition Processor system (16-MAP, Plexon Inc., Dallas, TX,

USA). Voltage-time threshold windows were used to identify single-units waveforms. Neural
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signals were pre-amplified (10000-25000X) and digitized at 40 kHz. Up to two neuronal action

potentials per recording channel were sorted online (SortClient 2.6., Plexon Inc., Dallas, TX, USA)

and validated by offline analysis (Offline Sorter 2.8., Plexon Inc., Dallas, TX, USA) according to the

following cumulative criteria: voltage threshold greater than two standard deviations of the

amplitude distribution; signal-to-noise ratio larger than 3; less than 1% of inter-spike intervals

smaller than 1.2 msec; and stability of the waveform shape as determined by a waveform

matching template algorithm and principal component analysis. In addition, the Waveform

Tracker software (Plexon Inc., Dallas, TX, USA) was used to verify that the recorded units were

stable across experimental sessions. Extracellular LFPs were simultaneously recorded from the

same implanted microwires by low-frequency (0.5-200 Hz) filtering of the raw signals. LFPs were

pre-amplified and digitized at 500 Hz. An overhead video tracking system (CinePlex 2, Plexon

Inc., Dallas, TX, USA) was used to provide information about the animal position on the maze,

and synchronize the video-recordings with the acquired neuronal data.

Data analysis

Neural data were processed offline using NeuroExplorer 4 (NEX, Plexon Inc., Dallas TX,

USA) and exported to our own MatLab R14 routines for additional analysis (MathWorks, Natick,

MA, USA). In all analyses the distribution of the data was initially checked for potential

deviations from normality assumptions (Prism 5.0, GraphPad, San Diego, CA, USA), in order to

choose the appropriate statistical test to apply. Parametric statistics were used when the

Kolmogorov-Smirnov test (with Dallal-Wilkinson-Lilliefor corrected P-value) revealed no

deviations from the normal distribution (P<0.05, Kolmogorov-Smirnov test). Analyses of variance

between experimental groups were performed by two-factor ANOVA – repeated measures

(ANOVA-RM; group x recording days and/or group x frequency bands), and when appropriate a

Post hoc analysis was carried out using the Bonferroni test. The level of significance was set as

5%. Results are expressed as mean ± standard error of the mean (SEM). All results were

averaged per recording days.

Spiking activity

Average firing rate activity for the mPFC and CA1 neurons were examined across maze

navigation zones, comparing SNI and SHAM animals in pre- and post-surgery recording sessions.

In order to analyze firing activity response for correct versus error alternations during

each recording session, individual perievent time decision histograms were computed for each

recorded neuron and plotted in a 2-sec range centered at the time of the transition between the
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delay and the choice navigation zones (50-msec per bin). A Kolmogorov-Smirnov test (KS,

P<0.05) was used to test differences in the firing distribution of each neuron. The units were

classified based in their increased, decreased, or unchanged firing rate. All recording sessions

selected for comparisons of neuronal activity for correct vs. error alternations have at least 5%

of incorrect alternations.

Additionally, to examine which neurons displayed elevated activity in the delay-zone

navigation, we compared in each alternation the average firing rate of the last second spent in

the delay-zone versus the global firing rate of the session (paired t-test, P<0.05). Neurons whose

average delay-zone firing rate was <1 Hz were excluded from analysis because these provided

too few spikes to be analyzed (mPFC – SHAM: 3 neurons, SNI: 6 neurons; CA1 – SHAM: 11

neurons, SNI: 9 neurons).

To characterize the temporal structure of the spiking activity in respect to the theta

cycle, the raw hippocampal LFPs were filtered in the theta range (4-9 Hz) using a zero-phase

forward and reverse digital 4-pole Butterworth band-pass filter to yield the signal LFPθ. The

relationship between temporal structure of mPFC and CA1 neuronal spiking activity and

hippocampal ongoing theta rhythm was calculated using standard cross-correlograms

(Neuroexplorer 4, Plexon Inc., Dallas, TX, USA). Correlations were computed using CA1 LFPθ as

reference with a temporal resolution of 2-msec per bin, and the rate histograms for both mPFC

and CA1 spiking activity were calculated individually for each cell, and represented in function of

the populational activity across navigation zones. Given the complexity of the analysis we

compared the signals from the control period versus the signals from only one post-surgery

session and selected day 10 because the nerve lesioned animals reach stable levels of pain at

this time point. The comparison of phase distributions was performed using a two-sample KS

test (P<0.05).

Spectral analysis

Global spectral characteristics of mPFC-CA1 LFPs signals were presented in function of

maze navigation zone. The power spectral density (PSD) of mPFC (Pxx) and CA1 (Pyy) LFPs signals

were calculated between 1 and 50 Hz using the Welch's method (MatLab native function), with

512-points fast Fourier transform of non-overlapping 1-sec epochs (Hanning-window). Data are

presented as the percentage of total PSD within the 1-50 Hz frequency range. Five frequency

bands were considered: 1-4 Hz (δ, delta), 4-9 Hz (θ, theta), 9-15 Hz (α, alpha), 15-30 Hz (β, beta),

and 30-50 Hz (γ, gamma). In order to determine the spectral coupling among signals from

recorded regions, we calculated the correlation coefficient or coherence. Coherence (Cxy) was
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measured applying the equation mathematically equivalent to Cxy = |Pxy|2 / (PxPy) where the

coherence for two signals, x and y, is equal to the average cross power spectrum (Pxy) normalized

by the averaged power spectra of the two signals. Its value lies between 0 and 1, and it

estimates for a given frequency the level to which phases are dispersed. Cxy = 0 means that

phases are dispersed, and high coherence (Cxy = 1) means phases of signals x and y are identical

and the two signals are totally phase-locked at this frequency.

The statistical method of partial directed coherence (PDC) was used to quantify the

information flow within the mPFC-CA1 circuit. The PDC method has been described in detail

elsewhere (Sameshima & Baccalá, 1999; Baccala & Sameshima, 2001; Cardoso-Cruz et al.,

2011b). Briefly, PDC is an alternative representation of multivariate processes involving Granger-

causality to uncover frequency-domains of direct influence, which allows for assessing

interactions between brain regions and revealing their directionality. Its value lies between 0

and 1. PDC = 0 can be interpreted as absence of functional connectivity from the first structure

(j) to the second structure (i) at a particular frequency-window, while high PDC values indicate

strong connectivity between the structures. This can be interpreted as existence of information

flow from brain structure j to i.

Histology

After the end of all experiments, the rats were deeply anesthetized with

ketamine/xylazine mixture and the recording site was marked by injecting DC current (10-20 µA

for 10-20 sec) through one microwire per array, marking the area below the electrode tips.

After this step the animals were perfused through the heart with 0.01 M phosphate buffer

(pH=7.2) in a 0.9% saline solution followed by 4% paraformaldehyde. Brains were removed and

post-fixed in 4% paraformaldehyde during 4 hours and stored in 30% sucrose before they were

frozen and sectioned into 60 µm slices. Sections were Nissl counterstained to help visualize the

electrode tracks under the microscope.

RESULTS

Behavior

Rats were trained to optimal performance prior to electrode implantation, and all

animals performed the task at levels higher than 80% of correct choices after 10 days of training

(3 daily sessions of 10 minutes per animal) (Fig. 1B). Fig. 1C shows two examples of cumulative

animal trajectories in early day 2 and late day 10 of training period. As shown, the animal
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frequently made more navigation errors in the early days of training (see for example the direct

trajectories between the reward locations in the top diagram of Fig. 1C).

Mechanical stimulation thresholds

All SNI animals developed mechanical allodynia as indicated by the significant decrease

in the mechanical force needed to evoke paw withdrawal to Von Frey filaments stimulation in

the hindpaw ipsilateral to the lesion (Fig. 1D). In the SHAM group, no statistical differences were

noted in respect to pre-operation period (control period). A two-factor ANOVA-RM was used to

compare responses from SHAM and SNI animals. Significant statistical differences were observed

between experimental groups (F(1,56)=432.7, P<0.0001), across recording days (F(7,56)=19.24,

P<0.0001), and interaction effect (group x time; F(7,56)=7.61, P<0.0001).

Performance during recording sessions

The performance in SNI rats with mechanical allodynia was significantly worse than

those in SHAM group (Fig. 1E). Analysis of variance revealed statistical differences in the rat’s

performance between experimental groups (two-factor ANOVA-RM; F(1,56)=12.97, P=0.0006), and

across recording sessions (F(7,56)=2.17, P=0.0482). No interaction effect between factors was

observed (group x time; F(7,56)=0.67, P=0.6936). Post hoc analysis revealed a significant

performance decrease in the SNI group at day 3 after nerve lesion (Bonferroni, P<0.05).

Additionally, a decrease in the running velocity was observed after lesion in both experimental

groups; both groups fully recovered to normal values of running speed 7 days after the surgery

(Fig. 1F). Analysis of variance showed significant differences between experimental groups (two-

factor ANOVA-RM; F(1,56)=2.34, P=0.0341) and recording days (F(7,56)=10.97, P<0.0001). No

significant statistical differences for the factor-interaction effect (groups x time; F(7,56)=1.28,

P=0.2743). Post hoc analysis revealed a decrease of the running velocity for SNI group at day 5

after lesion (Bonferroni, P<0.05).

An essential issue of alternation tasks is the temporal gap between trajectory decisions,

in which the animal should maintain a retrospective memory of the previous visited food cup in

order to choose correctly in the next left/right decision point. Our results show that after the

nerve lesion, the SNI animals spent more time navigating in the delay-zone of the behavioral test

(Fig. 1G). Analysis of variance showed a significant statistical difference between experimental

groups (two-factor ANOVA-RM; F(1,56)=12.15, P=0.0009), and no effects across recording days

(F(7,56)=1.69, P=0.1284) and factor-interaction (groups x time; F(7,56)=1.37, P=0.2327). Post hoc

analysis revealed an increase of the time of navigation in the delay-zone for the SNI group at day

3 after lesion (Bonferroni, P<0.05). The average interval of time that mediated two consecutive
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correct choices increased significantly for the SNI animals (Fig. 1H); analysis of variance revealed

a significant effect between experimental groups (two-factor ANOVA-RM, F(1,56)=44.87,

P<0.0001), and across the recording sessions after lesion (F(7,56)=3.60, P=0.0025). However, no

factor-interaction effect was observed for these two factors (groups x time; F(7,56)=1.58,

P=0.1591). Post hoc analysis revealed an increase of the average interval between correct

choices for SNI-group between day 7 and 21 after lesion (Bonferroni test; days 7, 10, and 21,

P<0.05; day 15, P<0.01).

Neuronal activity

In the present study, a total of 175 neurons were recorded (mPFC - SHAM: 44, SNI: 46;

CA1 - SHAM: 42, SNI: 43 neurons). The Waveform Tracker Software (Plexon Inc., Dallas, TX, USA)

was used to ensure that individual neural recordings were correctly identified across recording

sessions (Fig. 2). Only neurons that remained stable throughout the recording sessions in terms

of waveform shape were considered in the analysis.

Population spiking activity

Fig. 2E-F presents the average neuronal firing rate calculated for each zone of the maze

for both brain areas. Although there were no statistical differences in the pre-surgery firing

rates, there was a visible increase in the firing rate of mPFC neurons when the animal was

navigating the delay-zone versus the other two zones (Fig. 2E).

The nerve lesion did not affect the pre-surgery firing rates of mPFC neurons: no

significant statistical effects were observed between experimental groups (two-factor ANOVA-

RM; reward-zone: F(1,56)=0.44, P=0.5255; delay-zone: F(1,56)=1.63, P=0.2372; and choice-zone:

F(1,56)=3.07, P=0.1177), recording sessions (reward-zone: F(7,56)=0.63, P=0.7238; delay-zone:

F(7,56)=0.98, P=0.4548; and choice-zone: F(7,56)=0.53, P=0.8088), and no factor-interaction effect

was observed (groups x time; reward-zone: F(7,56)=0.64, P=0.7198; delay-zone: F(7,56)=0.83,

P=0.5635; and choice-zone: F(7,56)=0.67, P=0.6973). It may be noted that the firing rate increase

during navigation in the delay-zone is lower in SNI animals when compared to SHAM animals.

In contrast, the nerve injury caused an increase in the firing rate of hippocampal CA1

neurons when the animal was in the reward-zone and choice-zone, but not during navigation in

the delay-zone, when compared to the pre-surgery firing rates (Fig. 2F). We found statistical

differences across time (reward-zone: F(7,56)=3.36, P=0.0046;  and choice-zone: F(7,56)=4.06,

P=0.0012), and in factor-interaction effect (reward-zone: F(7,56)=2.74, P=0.0163; and choice-zone:

F(7,56)=3.59, P=0.0029). Post hoc analysis revealed an increase of the average firing rate for SNI
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group at day 5 for reward-zone (P<0.05), and at day 7 for choice-zone (Bonferroni, P<0.05). In

respect to delay-zone no significant differences were encountered in average firing rate across

experimental groups and recording days (delay-zone: groups – F(7,56)=1.63, P=0.2372, time –

F(7,56)=0.98, P=0.4548, and factor-interaction – F(7,56)=0.83, P=0.5635). No overall statistical

differences were observed between experimental groups for reward and choice-zones (reward-

zone: F(1,56)=2.42, P=0.1587; and choice-zone: F(1,56)=4.67, P=0.0626).

Firing activity of correct and error alternations

In order to analyze if the firing activity was affected when the animal approached the

decision point of left/right alternation temporal vicinity, we have calculated for each neuron the

respective perievent time decision histogram of firing activity for either correct or error trials

(marked as green and red vertical lines in Fig. 3A respectively). The Fig. 3A presents examples of

mPFC and CA1 neurons with different activity patterns. The majority of the mPFC neurons

increase their firing activity after the rat performed a correct direction choice (Fig. 3B, above

panel). In contrast, the activity of CA1 neurons commonly decreased across error alternations

(Fig. 3C, below panel).

The analysis of firing patterns revealed no significant differences in the percentage of

neurons that increased their activity, decreased, or remained unchanged at the decision point

after nerve lesion (Fig. 3 B-C). In the case of correct alternations, no statistical differences were

encountered in the percentage of neurons that increased their firing activity (two-factor ANOVA-

RM; mPFC: groups F(1,56)=1.18, P=0.3094, time F(7,56)=1.27, P=0.2831, interaction F(7,56)=1.32,

P=0.2567; CA1: groups F(1,56)=0.23, P=0.6448, time F(7,56)=0.17, P=0.9789, interaction F(7,56)=0.18,

P=0.9890), decreased (mPFC: groups F(1,56)=0.24, P=0.6356, time F(7,56)=1.76, P=0.1134,

interaction F(7,56)=1.34, P=0.2478; CA1: groups F(1,56)=0.15, P=0.7116, time F(7,56)=0.20, P=0.9684,

interaction F(7,56)=0.21, P=0.9538), or remained unchanged (mPFC: groups F(1,56)=0.52, P=0.4902,

time F(7,56)=0.36, P=0.9239, interaction F(7,56)=0.38, P=0.9092; CA1: groups F(1,56)=0.02, P=0.8948,

time F(7,56)=0.42, P=0.2848, interaction F(7,56)=0.38, P=0.2914) (Fig. 3B). In the case of error

alternations, no statistical differences were encountered in the percentage of neurons that

increased their firing activity (mPFC: groups F(1,56)=0.96, P=0.3558, time F(7,56)=0.43, P=0.8791,

interaction F(7,56)=0.43, P=0.8791; CA1: groups F(1,56)=1.10, P=0.3259, time F(7,56)=0.9761, P=0.23,

interaction F(7,56)=0.24, P=0.0.9676), decreased (mPFC: groups F(1,56)=0.95, P=0.3590, time

F(7,56)=0.51, P=0.8261, interaction F(7,56)=0.73, P=0.6500; CA1: groups F(1,56)=0.02, P=0.8801, time

F(7,56)=0.82, P=0.5688, interaction F(7,56)=0.84, P=0.5477), or remained unchanged (mPFC: groups
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F(1,56)=1.80, P=0.2172, time F(7,56)=0.12, P=0.9966, interaction F(7,56)=0.44, P=0.8752; CA1: groups

F(1,56)=0.57, P=0.4736, time F(7,56)=0.01, P=0.9999, interaction F(7,56)=0.01, P=0.9999) (Fig. 3C).

Spiking activity during the navigation on the delay-zone

We calculated the percentage of neurons that elevated their average firing rate during

the delay-zone navigation in respect to the whole recording session. Note that only the activity

recorded in correct trials were selected for this analysis, so that direct comparisons could be

done. In the case of mPFC neurons, significant differences were encountered between

experimental groups (two-factor ANOVA-RM; F(1,56)=8.76, P=0.0182), and no differences across

recording days (F(7,56)=1.46, P=0.1991) and factor-interaction effect (groups x time; F(7,56)= 1.20,

P=0.3198) (Fig. 3D, above panel). Post hoc analysis revealed a decrease in the percentage of

mPFC neurons that elevated their average firing rate within the delay-zone at days 1, 7 and 10

after nerve lesion (Bonferroni, P<0.05). In the case of CA1 neurons, no significant statistical

differences were encountered between experimental groups (F(1,56)=1.52, P=0.2532), recording

sessions (F(7,56)=1.33, P=0.2535), and in factor-interaction effect (groups x time; F(7,56)=0.99,

P=0.4417) (Fig. 3D, below panel).

Changes in the hippocampal-theta rhythm

The relationship between the temporal structure of populational neuronal spiking

activity and ongoing theta cycle of hippocampal LFPs was calculated for the pre-surgery period

versus day 10 after SHAM or SNI surgery. As illustrated in Fig. 4, different temporal activity

patterns were encountered for mPFC and CA1 recorded areas across environment testing zones

after peripheral nerve lesion. In the case of mPFC, no differences were observed after nerve

lesion during the reward-zone navigation between experimental groups (CT/SNI: KS=0.04,

P=0.9217, and SHAM/SNI: KS=0.08, P=0.6864; two-sample KS test). In respect to delay and

choice-zones, the mPFC neurons after lesion increased their firing precision in relation to theta

rhythm (delay-zone: CT/SNI: KS=0.28, P=0.0459, and SHAM/SNI: KS=0.25, P=0.0257; choice-zone:

CT/SNI: KS=0.26, P=0.0389, and SHAM/SNI: KS=0.26, P=0.0291) (Fig. 4A and 4B). In the case of

CA1, no differences in the timing of spiking activity were observed between groups for reward

(CT/SNI: KS=0.09, P=0.5912, and SHAM/SNI: KS=0.08, P=0.6151) and choice-zones (CT/SNI:

KS=0.11, P=0.4987, and SHAM/SNI: KS=0.11, P=0.4591), while for delay-zone after lesion the

spiking activity was phase-locked in respect to theta cycle (CT/SNI: KS=0.24, P=0.0289, and

SHAM/SNI: KS=0.26, P=0.0311) (Fig. 4C and 4D). No significant differences were observed when

compared control period (CT) to SHAM group (mPFC - reward-zone: KS=0.05, P=0.9102; delay-



103 | P u b l i c a ç ã o  4

zone: KS=0.06, P=0.8744; choice-zone: KS=0.09, P=0.7423; and CA1 – reward-zone: KS=0.05,

P=0.9044; delay-zone: KS=0.12, P=0.6422; choice-zone: KS=0.10, P=0.7231).

SPECTRAL ANALYSIS

Changes in Power Spectral Densities

A qualitative comparison of power spectral density (PSD) values for mPFC and

hippocampal dorsal CA1 LFPs is shown in Fig. 5A and 5C, comparing SHAM and SNI groups across

recording sessions and maze navigation zones. The inspection of PSD confirmed that

characteristic power oscillations were as expected, with a high-power in the theta frequency

band (4-9 Hz) shared by both recorded areas as has been previously described (Buzsaki, 2002;

Lörincz et al., 2007). Analysis of variance revealed no statistical differences between

experimental groups (two-factor ANOVA-RM; mPFC - reward-zone: F(1,30)=0.02, P=0.9821; delay-

zone: F(1,30)=0.01, P=0.9999; choice-zone: F(1,30)=0.01, P=0.9266; CA1 - reward-zone: F(1,30)=0.01,

P=0.9999; delay-zone: F(1,30)=0.01, P=0.9998; choice-zone: F(1,30)=0.01, P=0.9964) and factor-

interaction effect (groups x frequency bands; mPFC - reward-zone: F(4,30)=0.51, P=0.7314; delay-

zone: F(4,30)=0.90, P=0.4747; choice-zone: F(4,30)=1.85, P=0.1452; CA1 - reward-zone: F(4,30)=0.94,

P=0.4527; delay-zone: F(4,30)=1.50, P=0.2274; choice-zone: F(4,30)=1.05, P=0.4005), but as expected

a significant effect was encountered across frequency bands (mPFC - reward-zone: F(4,30)=139.6,

P<0.0001; delay-zone: F(4,30)=152.40, P<0.0001; choice-zone: F(4,30)=371.30, P<0.0001; CA1 -

reward-zone: F(4,30)=139.90, P<0.0001; delay-zone: F(4,30)=89.40, P<0.0001; and choice-zone:

F(4,30)=164.10, P<0.0001; respectively) (Fig. 5B and 5D, respectively).

Coherence Analysis

A qualitative comparison of the coherence measurements between the mPFC-CA1 circuit

LFPs across recording days and testing environment navigation zones were illustrated in Fig. 6A.

The global levels of mPFC-CA1 coherence after nerve lesion changed across recordings sessions,

but not across frequency bands. Analysis of variance revealed no significant differences after

nerve lesion between experimental groups in the reward locations (two-factor ANOVA-RM;

F(1,56)=0.04, P=0.8541), but there were significant differences across recording sessions

(F(7,56)=17.93, P<0.0001), as well as a factor-interaction effect (groups x time;  F(7,56)=9.03,

P<0.0001). Post hoc analysis revealed differences between experimental groups at days 1 and 21

after lesion (Bonferroni, P<0.001) (Fig. 6B, left panel). In the case of the delay-zone, analysis of

variance revealed no differences between groups (F(1,56)=0.23, P=0.6428), but there were

significant differences across recording days (F(7,56)=10.33, P<0.0001) and a factor-interaction
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effect (F(7,56)=9.16, P<0.0001). Post hoc analysis revealed differences between SHAM and SNI-

groups during the first (P<0.05) and last two recording sessions performed after nerve lesion

(P<0.01, and 0.05, respectively) (Fig. 6B, center panel). No differences were encountered in the

choice-zone between experimental groups (F(1,56)=0.07, P=0.7996), but differences were found

across recording days (F(7,56)=10.52, P<0.0001), as well as a factor-interaction effect (F(7,56)=9.16,

P<0.0001). Post hoc analysis revealed significant differences in coherence between experimental

groups across days 1, 3 (P<0.01), and 21 (P<0.001) after lesion (Fig. 6B, right panel).

We calculated the averaged mPFC-CA1 circuit coherence per range of frequencies (Fig.

6C). No differences were encountered between groups (reward-zone: F(1,30)=0.02, P=0.9536;

delay-zone: F(1,30)=0.02, P=0.8827; choice-zone: F(1,30)=0.04, P=0.8474), frequency bands (reward-

zone: F(4,30)=1.23, P=0.3199; delay-zone: F(4,30)=2.02, P=0.1170; choice-zone: F(4,30)= 1.13,

P=0.3621), or in the factor-interaction effect (reward-zone: F(4,30)=0.08, P=0.9879; delay-zone:

F(4,30)=0.25, P=0.9097; choice-zone: F(4,30)= 0.76, P=0.5625).

Partial directed coherence

The changes of mPFC-CA1 circuit information flow in SHAM and SNI animals were

determined by PDC analysis. Fig. 7 illustrates the PDC activity across recording days and testing

environment navigation zones. In the case of the direction from CA1 to mPFC (Fig. 7A), the

qualitative analysis confirmed strong PDC values at the theta frequency band (4-9 Hz) in the

choice and also delay navigation zones, which is lost after peripheral nerve lesion. In the

opposite direction - from mPFC to CA1 – high PDC values at the theta band are also visible in the

choice-zone, and they are also lost after the nerve injury (Fig. 7B).

Detailed analysis of averaged PDC values across the 1-50 Hz frequencies for each

recording session showed that the levels of information flow decreased significantly after nerve

lesion. The global PDC level is particularly decreased in the reward-zone, for both circuit

directions, and in the choice-zone in the CA1 to mPFC direction of information. In the case of

CA1>mPFC direction, analysis of variance for reward location revealed significant differences

between experimental groups (two-factor ANOVA-RM; F(1,56)=21.17, P=0.0066), and no effects

across recording days (F(7,56)=1.12, P=0.3612) and a factor-interaction (group x time; F(7,56)=1.51,

P=0.1821). Post hoc analysis revealed a significant decrease of PDC level for SNI animals at days

1, 7 and 15 after lesion (Bonferroni, P<0.01) (Fig. 8A, left panel). For the delay-zone, no

differences were found between experimental groups (F(1,56)=3.55, P=0.0961), but a significant

effect was found for time (F(7,56)=4.57, P=0.0004) and factor-interaction (F(7,56)=2.42, P=0.0309).

Post hoc analysis revealed a significant decrease of the PDC levels in the SNI-group at day 15
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after lesion (P<0.001) (Fig. 8A, center panel). In respect to choice-zone, statistical differences

were encountered between groups (F(1,56)=197.60, P<0.0001), time (F(7,56)=8.50, P<0.0001), as

well as a factor-interaction effect (F(7,56)=3.32, P=0.0050). Post hoc analysis revealed that the PDC

level decreased dramatically for SNI group after lesion (P<0.001) (Fig. 8A, right panel). In the case

of the direction from mPFC to CA1, a significant effect was observed between experimental

groups when the animal was in the reward-zone (two-factor ANOVA-RM: F(1,56)=113.4,

P<0.0001), but no effect across recording sessions (F(7,56)=0.91, P=0.5042) or factor-interaction

(groups x time; F(7,56)=0.72, P=0.6537). Post hoc analysis revealed that after the lesion the PDC

level decreased significantly in the SNI-group (at days 1, 3, and 7 (P<0.05); at days 5 and 21

(P<0.01); and at days 10 and 15 (P<0.001)) (Fig. 8C, left panel). In the delay-zone, analysis of

variance revealed no differences between groups (F(1,56)=0.17, P=0.6916), but there was a

significant effect across time (F(7,56)=2.20, P=0.0481) and a factor-interaction (F(7,56)=3.49,

P=0.0035) (Fig. 8C, center panel). In respect to choice-zone no significant differences were

registered between experimental groups (F(1,56)=3.56, P=0.0961), but a significant effect was

observed across recording sessions  (F(7,56)=3.76, P=0.0021) as well as a factor-interaction

(F(7,56)=5.28, P<0.0001). Post hoc analysis revealed that at day 3 after lesion the PDC was

significantly lower in the SNI group in comparison to the  SHAM group (P<0.05) (Fig. 8C, right

panel).

In order to detail the mPFC-CA1 information flow across frequency bands, we calculated

the averaged PDC per range of frequencies (Fig. 8B). A two-way ANOVA-RM was performed to

assess the differences in the averaged PDC between the SHAM and SNI groups. In the case of the

CA1>mPFC direction there was a significant difference between experimental groups (two-factor

ANOVA-RM; reward-zone: F(1,30)=87.34, P<0.0001; delay-zone: F(1,30)=20.08, P<0.0001; and

choice-zone: F(1,30)=326.89, P<0.0001), between frequency bands (reward-zone: F(4,30)=13.16,

P<0.0001; delay-zone: F(4,30)=21.10, P<0.0001; and choice-zone: F(4,30)=39.86, P<0.0001), as well a

factor-interaction effect (groups x frequency bands; reward-zone: F(4,30)=2.69, P=0.0395; delay-

zone: F(4,30)=3.37, P=0.0148; and choice-zone: F(1,30)=7.20, P<0.0001). Post hoc analysis revealed

that after the nerve lesion the PDC level decrease at all frequency bands in the choice zone and

in the reward-zone, with the exception of the reward-zone delta band (Bonferroni, P<0.001). In

the delay-zone, we found only a significant decrease at the theta frequency band (P<0.001). In

the case of the mPFC>CA1 direction there was a significant difference between experimental

groups at the reward and choice-zones (F(1,30)=363.50, P<0.0001; and F(1,30)=26.61, P<0.0001;

respectively), between frequency bands (reward-zone: F(4,30)=8.59, P<0.0001; delay-zone:

F(4,30)=4.32, P=0.0039; and choice-zone: F(4,30)=81.91, P<0.0001), as well as a factor-interaction
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effect at the reward and choice-zones (F(4,30)=4.57, P=0.0028; and F(4,30)=15.73, P<0.0001;

respectively) (Fig. 8D). Post hoc analyses revealed that after the nerve lesion the PDC level

decrease in all frequency bands at the reward-zone (P<0.001), and decreased in theta and alpha

bands at the choice-zone. No significant differences were encountered for the delay-zone.

Information flow activity in correct and error alternations

We expanded the analysis of the lesion-induced changes in perievent time decision of

neuronal activity by comparing the PDC values of the local field potentials signals for the same

transition periods, and again separated the transition periods of correct alternations from the

incorrect alternations. Different patterns of PDC activity were observed across correct and error

alternations for both directions of the circuit (Fig. 9A).

The quantitative analysis of the averaged PDC in the 1-50 Hz frequency range showed

that the global levels of information flow decreased significantly after nerve lesion (Fig. 9B).

These changes were observed for both directions of the mPFC-CA1 circuit in both correct and

error alternations. In the case of CA1>mPFC direction, for correct alternations statistical

differences were encountered for experimental groups (two-factor ANOVA-RM; F(1,56)=17.77,

P=0.0029), but not across recording sessions (F(7,56)=1.73, P=0.1210) and factor-interaction

(groups x recording sessions, F(7,56)=1.73, P=0.1362). Post hoc analysis revealed a significant

increase of the PDC level across the day 21 after SNI lesion (Bonferroni, P<0.01). For error

alternations, significant effects were observed across groups (F(1,56)=57.34, P<0.0001) and

recording sessions (F(7,56)=4.35, P=0.0007), but not a factor-interaction effect between these

factors (F(7,56)=1.53, P=0.1765). Post hoc analysis revealed a significant decrease of the PDC

activity across the day 1 and 5 after nerve lesion (Bonferroni, P<0.05). In the case of mPFC>CA1

direction, for correct alternations statistical differences were encountered for experimental

groups (F(1,56)=21.74, P=0.0016), but not across recording sessions (F(7,56)=1.48, P=0.1920) and

factor-interaction (F(7,56)=1.23, P=0.3002). Post hoc analysis revealed a significant decrease of the

PDC activity across the day 1 and 21 after SNI lesion (Bonferroni, P<0.05 and P<0.01,

respectively). For error alternations, statistical differences were observed across groups

(F(1,56)=60.86, P<0.0001), recording sessions (F(7,56)=4.47, P=0.0005), as well for the factor-

interaction effect (F(7,56)=2.90, P=0.0118). Post hoc analysis revealed a significant decrease of the

PDC level across the day 1, 3, 5, and 21 after nerve lesion (Bonferroni, P<0.001, P<0.001, P<0.05,

and P<0.001; respectively).

In what concerns the frequency bands (Fig. 9C), the global PDC level were particularly

decreased across theta, alpha, and delta frequency bands for correct and error alternations. One

exception was encountered across correct alternations, for the CA1 to mPFC direction, which
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decreased across theta and increased for gamma frequency band after nerve lesion. In the

CA1>mPFC direction during correct alternations we found significant differences between

experimental groups (two-factor ANOVA-RM; F(1,30)=4.83, P=0.0319), frequency bands

(F(4,30)=41.96, P<0.0001), as well as a factor-interaction effect (groups x frequency bands,

F(4,30)=7.96, P<0.0001). Post hoc analysis revealed a significant decrease of PDC activity after SNI

lesion in the theta frequency band (Bonferroni, P<0.01), and an increase in the gamma

frequency band (P<0.01). During error alternations, statistical differences were found between

groups (F(1,30)=30.42, P<0.0001) and frequency bands (F(4,30)=11.49, P<0.0001), but not a factor-

interaction effect (groups x frequency bands, F(4,30)=1.43, P=0.2357). Post hoc analysis revealed a

significant decrease of the PDC level for theta (Bonferroni, P<0.01), alpha (P<0.01), and beta

(P<0.05) frequency bands after nerve lesion. In the case of mPFC>CA1 direction, for correct

alternations significant differences were encountered between experimental groups

(F(1,30)=41.38, P<0.0001) and across frequency bands (F(4,30)=18.14, P<0.0001), but not a factor-

interaction effect between these factors (F(4,30)=1.02, P=0.4026). Post hoc analysis revealed a

significant decrease of the PDC activity for SNI group across theta (Bonferroni, P<0.001), alpha

(P<0.01), and beta (P<0.05) frequency bands. For error alternations, statistical differences were

encountered across groups (F(1,30)=59.87, P<0.0001) and frequency bands (F(4,30)=9.31, P<0.0001),

but no interaction effect between these factors (F(4,30)=1.35, P=0.2621). Post hoc analysis

revealed a significant decrease of the information flow across theta (Bonferroni, P<0.001), alpha

(P<0.001), and beta (P<0.05) frequency bands for SNI group.

DISCUSSION

In this study we report how the induction of chronic neuropathic pain affects the mPFC-

hippocampal functional connectivity by examining the temporal structure in spiking and LFPs

activity while rats performed a spatial alternation task. The behavioral task used in the present

study is a classical spatial working memory task, where the animals need to remember the route

previously used in order to correctly alternate between reward sites.

We report that the pain-inducing SNI lesion impaired the spatial memory performance in

these animals. These results are in accordance with recent studies using animal models of

neuropathic pain that have also showed a reduction in spatial memory (Leite-Almeida et al.,

2009; Hu et al., 2010; Ren et al., 2011), and with clinical reports that chronic pain patients

commonly present working memory impairments (Ling et al., 2007; Luerding et al., 2008b).

Similar memory impairments has been reported following prefrontal (Kyd & Bilkey, 2003) or
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hippocampal lesions (Gaskin et al., 2009a; Gaskin et al., 2009b), and during the inhibition of the

mPFC-hippocampal circuit by lidocaine (Floresco et al., 1997) or muscimol infusions (Wang & Cai,

2006; Yoon et al., 2008).

Previous reports have shown an increase in firing rate of mPFC neurons firing activity

during the delay period in delayed-choice tasks (Miller et al., 1996; Fuster, 1997; Rainer et al.,

1999), and this led to the suggestion that working memory processing may be dependent on

increased activity of mPFC neurons. Our results show that the nerve lesion reduced the number

of mPFC and CA1 neurons with increased firing rates in the delay-zone versus the other zones of

the maze. This decrease in mPFC activity during the delay period is in agreement with the

suggestion that mPFC instability may play a crucial role in pain-induced memory dysfunction

(Metz et al., 2009; Apkarian et al., 2011). In contrast, the nerve lesion marginally affected the

overall neuronal firing rate of the CA1 in which we observed an increase in the populational

activity during navigation in the reward and choice zones. In addition, our data showed that the

majority of the mPFC neurons increased their firing activity in the decision point when the rat

performed a correct alternation, while the activity of CA1 neurons decreased during error

alternations. More importantly, these firing patterns remain unchanged after peripheral nerve

lesion.

Recordings from awake animals have shown that hippocampal neurons fire at phase-

locked to the theta oscillation of the hippocampal field potential (Fox & Ranck, 1981; Skaggs et

al., 1996), in which the supramammillary nucleus have an important role in its generation (Ruan

et al., 2010). The robust hippocampal theta frequency band has also been reported to be

responsible for theta phase-locked firing patterns of mPFC neurons (Hyman et al., 2005; Jones &

Wilson, 2005a; Siapas et al., 2005; Sirota et al., 2008), and these phase-interactions were

greatest when the animal made a decision (Jones & Wilson, 2005a; b). Hyman et al. (2010) using

a two level delayed non-match to sample task (DNMS) reported that during error trials the mPFC

neurons loose the theta-entrainment that occurs via theta range interactions between mPFC

and hippocampus, in agreement with human studies showing strong mPFC-hippocampal theta

coherence during working memory tasks (Tesche & Karhu, 2000; Onton et al., 2005). In fact, half

of the mPFC neuronal population recorded by Hyman et al. (2010) presented theta-entrainment

across the correct trials, while only a limited number of mPFC neurons presented theta-

entrainment for the error trials. Moreover, the authors found that almost all of the mPFC

neurons had a similar pattern of activity across correct and error trials.

Despite the differences between both behavioral tasks, we found that after nerve lesion

the spiking oscillatory activity of mPFC and CA1 neurons increased their level of correlation in
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respect to the hippocampal theta rhythm. This change was particularly evident for both

recorded areas during delay-zone navigation, suggesting a disturbance of the mPFC-hippocampal

circuit synchronization.

Although the LFPs activity did not present changes in power spectrum, both recorded

brain regions shared a prominent theta power band as previously been described in other

research reports (Buzsaki, 2002; Lörincz et al., 2007). An intensification of theta-range coherence

across frontal and hippocampal regions has been described during the execution of working

memory tasks using human EEG recordings (Onton et al., 2005) (Tesche & Karhu, 2000). More

recently, an elevation of mPFC gamma-range power has been associated to the maintenance of

working memory processes (Izaki & Akema, 2008; Klimesch et al., 2008; Sirota et al., 2008;

Colgin et al., 2009). In fact, it has been suggested that working memory is coordinated by

oscillatory processes shared simultaneously by the theta and gamma frequency bands (see for

review, Lisman, 2010). In our study the mPFC-hippocampal LFPs coherence changed across

groups and recording sessions; however no significant differences were encountered across

frequency bands.

The most significant finding in the present study is that the onset of neuropathic pain

causes a decrease in mPFC-hippocampal flow of information as measured by partial directed

coherence – PDC (Sameshima & Baccalá, 1999; Baccala & Sameshima, 2001); this decrease was

observed in both directions of the circuit across reward and choice navigation zones, in spite of

the lack of alteration in the mPFC-hippocampal power spectrum. More importantly, the amount

of information flow from mPFC to CA1 during delay-zone navigation remained partially

conserved across frequency bands; and from CA1 to mPFC the PDC level decreased specifically in

the theta-range. In terms of the nature of the information conveyed in correct and error

alternations, the analysis of PDC activity revealed that the activity in theta, alpha, and beta

frequency bands were decreased. This decrease occurred for both correct and error alternations

in the case of the mPFC to CA1 direction and for error alternations in the case of the CA1 to

mPFC direction, while for the correct alternations in the CA1 to mPFC direction there was a

decrease only at the theta band together with an increase in the PDC activity at the gamma

frequency.

Several authors have suggested that pain is one of the leading factors that can induce

disruptions of spontaneous oscillations at different cortico-subcortical circuits (Corbetta &

Shulman, 2002; Mouraux et al., 2003; Ohara et al., 2004), including the inhibition or potentiation

of oscillatory rhythms (Backonja et al., 1991; Chang et al., 2002; Ploner et al., 2004). Oscillatory

interactions across the different brain circuits reflect a global functional state of the system, and
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are used as an alert mechanism to find normal functional state perturbations (Ploner et al.,

2006). In what concerns processing of nociceptive information, an example of these

perturbations was recently been reported in the rat thalamocortical circuit using the same

chronic pain model applied to this study (Cardoso-Cruz et al., 2011b).

It should be noted that the reduction in task performance could result from pain-

induced motor impairment of the animals; indeed both groups experienced a reduction of the

navigation velocity following the sham or SNI surgery, which resolved after 7 days for pre-

surgery levels of movement. However, we believe that this motor impairment is not the leading

cause for the performance difference between groups because it similarly affected both sham

and nerve-lesioned animals and because the video-tracking measurement of instantaneous

speed showed similar running speeds in both groups (Fig. 1F). Moreover, the observed

difference between groups in alternation duration is caused by the longer trajectories and

frequent pauses at transition points done by the nerve-lesioned animals; this increase in the

average time of navigation also leads to longer delays between alternations which results in

more challenging tasks (Lee & Kesner, 2003).

In summary, our data suggest that peripheral nerve injury (SNI) causes impairment in

spatial working memory performance. In terms of the temporal structure of spiking and LFPs

activity in the mPFC-CA1 circuit, both populations of neurons increased their spiking phase-

precision in respect to hippocampal theta rhythm after nerve lesion. In addition, our data

showed a clear reduction of the amount of information shared by this circuit, which occurs at

different frequency bands depending on whether the rat performs a correct or error alternation.

These changes are probably caused by adaptive mechanisms that occur during the onset of

painful condition, which may disturb the mnemonic processes that rely on the integration and

consolidation of spatial working memory.

Acknowledgments:

This work was supported by grants from the Portuguese Foundation for Science and

Technology – FCT: PhD grant SFRH/42500/2007; Project PTDC/SAU-NEU/100773/2008; and BIAL

Foundation: BIAL Project 126/08.

Conflict of interest:

The authors do not have any conflicts of interest.



111 | P u b l i c a ç ã o  4

LEGEND OF FIGURES

FIGURE 1. Apparatus and behavioral performance.

(A) Figure-eight maze, spatial alternation working memory task. Starting from the center of the
maze (C), the animal had to alternately visit two reward sites (R) (feeder A and B) to obtain
chocolate-flavored pellets. The animal was required to come back to the center from a given
reward site before visiting the other reward site. The arrows indicate the direction of travel
when going to the left and right goals. (B) Training period performance for the spatial working-
memory task. Only rats that reach at least the threshold of 80% of correct alternations from
feeder A to feeder B according to the task imposed rules were selected to be candidates to
receive the surgery for electrodes implantation. (C) Movement map of a rat across the day 2
and 10 of the training period. As shown, the rat frequently made more navigation errors in early
days of training (see for example the direct trajectories between reward locations across day 2).
(D) Level of sensibility to mechanical stimulation evaluated using von Frey filaments. A large
decrease was observed in the threshold required to induce a paw response in the SNI-group. (E)
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Recording period performance for the spatial working-memory task. A significant decrease in
performance level and running velocity (F) was observed in the SNI-group after nerve lesion. (G)
The SNI animals spent more time navigating in the delay-zone of the behavioral test after
lesion. (H) Also a significant increase of the average interval between correct alternations was
observed in this experimental group. Values are presented as mean  SEM. Comparisons
between control (CT) and after surgery recording sessions based on two-factor ANOVA -
repeated measures, followed by Post hoc Bonferroni test. *P<0.05, and **P<0.01.
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FIGURE 2. Stability of two cells simultaneously recorded in the same animal across
experimental sessions and firing activity during task navigation.

(A) Illustration of the waveform shape of a hippocampal CA1 cell (yellow) and a mPFC cell
(green). Only units with a greater than 3:1 signal to noise rate were considered. (B) Offline
analysis of 3-D PC cluster stability from each channel shown across the whole recording
sessions using the WaveTracker software (Plexon Inc., Dallas, TX, USA). In this view (C), 2-D PC
clusters are projected as function of time (Z-axis). Stability across time of the units isolated was
used as extra-selection criteria. (D) Correspondent oscillations of intracranial LFP channels. Raw
recordings representing 10-sec of ongoing LFP activity. Average firing rate activity for mPFC (E)
and CA1 (F) neurons when the animals ran the eight-figure task. Data were presented
individually across the three considered navigation zones of the behavioral task. No significant
differences were encountered in mPFC neurons; note however in this case that the average
firing rate was significantly higher during the navigation in the delay-zone when compared to
reward and choice-zones. In the case of CA1 an increase of the average firing rate was observed
during reward and choice-zones navigation after nerve lesion. Values are presented as mean 
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SEM. Comparisons between control (CT) and after surgery recording sessions based on two-
factor ANOVA - repeated measures, followed by Post hoc Bonferroni test. *P<0.05.
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FIGURE 3. Typical neuronal responses for correct and error alternations.

(A) Perievent time decision histograms illustrate the averaged firing rate of four mPFC and four
CA1 representative neurons around the decision limit (bin resolution of 50-msec). Time = 0 on
the x-axis corresponded to the time of decision of direction turn in order to yield the reward
location. Across both recorded regions, some neurons changed their spiking activity and others
remain unchanged in respect to correct and error alternations after the decision of direction
(from left to right, mPFC: KS=0.32, P=0.0001; KS=0.07, P=0.8200; KS=0.24, P=0.0282; and
KS=0.10, P=0.6725; from left to right CA1: KS=0.29, P=0.0003; KS=0.15 P=0.1349; KS=0.25,
P=0.0026; and KS=0.13, P=0.4973; respectively). The majority of mPFC neurons elevated their
average firing activity when the rat performed a correct alternation (B), and CA1 neurons
decreased their firing activity across error alternations (C). In both cases, no differences were
encountered between experimental groups. (D) The percentage of neurons that elevated their
average firing rate during the delay-zone navigation in respect to whole recording session
decreased significantly after nerve lesion in the case of mPFC neurons. Values are presented as
mean  SEM. Comparisons between control (CT) and after surgery recording sessions based on
two-factors ANOVA - repeated measures, followed by Bonferroni Post hoc test. *P<0.05.
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FIGURE 4. Correlation between hippocampal theta oscillations and spiking activity.

The relationship between temporal structure of population neuronal spiking activity and
ongoing theta cycle of hippocampal LFPs (black dotted line) as calculated for pre-operation
period and day 10 after SHAM or SNI surgery. The black dotted line represents the phase
histogram of the 4-9 Hz hippocampal local field potential (LFPθ). The panel (A) illustrate the
populational mPFC activity before (CT, control period) and after SHAM surgery, and the panel (B)
the activity before (CT) and after SNI surgery. The mPFC neurons increased their firing precision
in respect to theta rhythms after nerve lesion during the navigation across delay and choice-
zones (two-sample Kolmogorov-Smirnov test; delay-zone: CT/SNI: KS=0.24, P=0.0459;
SHAM/SNI: KS=0.25, P=0.0257; choice-zone: CT/SNI: KS=0.26, P=0.0389; SHAM/SNI: KS=0.28,
P=0.0291). The panel (C) Illustrate the populational CA1 activity before (CT) and after SHAM
surgery, and the panel (D) the activity before (CT) and after SNI surgery. The CA1 conserved their
temporal structure of activity across reward and choice-zones, but across delay-zone increased
their firing precision (CT/SNI: KS=0.24, P=0.0289, and SHAM/SNI: KS=0.26, P=0.0311). Values are
means  SEM.
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FIGURE 5. Spectral analysis of mPFC-CA1 LFPs channels.

Power spectral density (PSD) of LFPs normalized by the percentage of total power within the
frequency range analyzed (1-50 Hz) for mPFC and CA1 channels (A, C), comparing the control
period (CT) and SHAM or SNI recording sessions after surgery. PSD showed that spectral power
patterns were partially conserved across the experimental groups. The averaged % of PSD
across frequency bands revealed as expected that significant differences between frequency
bands, however no significant differences were found between experimental groups (B, D).
Values are expressed for all animals as mean SEM. Frequency bands: delta (δ, 1-4 Hz), theta (θ,
4-9 Hz), alpha (α, 9-15 Hz), beta (β, 15-30 Hz), and slow-gamma (γ, 30-50 Hz). Comparisons
between control SHAM and SNI groups after surgery recording sessions based on two-factor
ANOVA - repeated measures, followed by Post hoc Bonferroni test.
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FIGURE 6. Spectral coherence.

Spectral coherence between simultaneously mPFC and CA1 LFPs recorded channels showed
similar global levels of coherence activity across navigation zones for experimental groups (A).
The averaged coherence (in 1-50 Hz frequency range) across recording sessions indicate no
significant differences between experimental groups, however significant differences were
found across recording sessions particularly during the early recording sessions after lesion. (C)
The averaged coherence within frequency bands showed no differences for reward and choice-
zones, but for delay-zone the coherence activity across frequency bands were different
between experimental groups. Frequency bands: delta (δ, 1-4 Hz), theta (θ, 4-9 Hz), alpha (α, 9-
15 Hz), beta (β, 15-30 Hz), and slow-gamma (γ, 30-50 Hz). Values are presented as mean  SEM.
Comparisons between control (CT) and after surgery recording sessions based on two-factor
ANOVA - repeated measures, followed by Post hoc Bonferroni test. *P<0.05, **P<0.01; and
***P<0.001.
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FIGURE 7. The oscillations of information flow between the two recorded regions were
determined by partial directed coherence (PDC) analysis.

Data were presented individually across the three considered navigation zones of the
behavioral task. The amount of information flow from dorsal hippocampal CA1-to-mPFC (A)
after peripheral nerve lesion decreased dramatically across choice-zone navigation, and from
mPFC-to-CA1 (B) across reward-zone, indicating that less information was processed in the
mPFC-CA1 circuit after peripheral nerve lesion.
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FIGURE 8. PDC activity across recording days and frequency bands.

The averaged PDC level in 1-50 Hz frequency range across recording sessions indicate that less
information were transmitted from CA1-to-mPFC after peripheral nerve lesion (A), and across
frequency bands for reward (in all frequency bands except in delta) and choice (in all frequency
bands) navigation zones (B). Note however that PDC activity were particularly conserved across
delay-zone, and that only the theta frequency showed a decreased after lesion. In the mPFC-to-
CA1 direction, the averaged PDC level decreased for reward-zone across recording days (C), and
across frequency bands for reward (in all frequency bands) and choice (in theta and alpha
bands) zones (D). No significant differences were encountered for delay-zone across frequency
bands. Frequency bands: delta (δ, 1-4 Hz), theta (θ, 4-9 Hz), alpha (α, 9-15 Hz), beta (β, 15-30
Hz), and slow-gamma (γ, 30-50 Hz). Values are presented as mean  SEM. Comparisons
between control (CT) and after surgery recording sessions based on two-factor ANOVA -
repeated measures, followed by Post hoc Bonferroni test. *P<0.05, **P<0.01; and ***P<0.001.
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FIGURE 9. Patterns of information flow activity for correct and error alternations.

Different patterns of PDC activity were observed across correct and error alternations (A). Note
for example a strong theta band activity during correct alternations for CA1>mPFC direction,
which is altered after peripheral nerve lesion. In terms of recording sessions, the averaged PDC
activity (in 1-50 Hz frequency range) indicates that significant differences were encountered
between experimental groups (B). In terms of frequency bands, the PDC activity showed that
less information were processed in both directions of the circuit across theta, alpha, and beta
frequency bands for correct and error alternations after nerve lesion (C). Frequency bands: delta
(δ, 1-4 Hz), theta (θ, 4-9 Hz), alpha (α, 9-15 Hz), beta (β, 15-30 Hz), and slow-gamma (γ, 30-50
Hz). Values are presented as mean  SEM. Comparisons between control (CT) and after surgery
(SHAM or SNI) recording sessions based on two-factors ANOVA - repeated measures, followed
by Bonferroni Post hoc test. *P<0.05, **P<0.01; and ***P<0.001.
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Abstract

The medial prefrontal cortex (mPFC) and the mediodorsal thalamus (MD) form

interconnected neural circuits that underlie aspects of spatial cognition and memory. In

this paper, we investigated the effect of prolonged pain on the functional interaction

between these areas in rats during the performance of a food reinforced spatial delayed

alternation task for working memory test. Recordings of local-field potentials (LFPs) in

the mPFC and MD were performed over a three week period before and after the

establishment of an animal model of inflammatory pain. Our results showed a clear

decrease in performance during the chronic pain period. The most relevant finding of

the present study is that the onset of chronic pain condition caused a global decrease in

mPFC-MD flow of information as measured by partial directed coherence – PDC –

analysis. This decrease is observed in both directions of the circuit, but is more evident

from MD-to-mPFC direction in a wide frequency range. In addition, spectral analysis of

LFPs revealed significant oscillations of power spectral density across frequency bands,

namely with a strong theta-range component that oscillates across pain condition onset.

Moreover, mPFC-MD LFPs revealed a higher level of coherence, which is partially

conserved across frequency bands. The results demonstrate that inflammatory pain leads

to disturbances in the functional mPFC-MD connectivity, and that can be in the basis of

impairments of spatial working memory.
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Evidence from recording and brain imaging studies found neural activity of

ventral regions of the medial prefrontal cortex (mPFC) were correlated with working

memory (WM) process [3, 13, 22, 35, 48]. Anatomically, mPFC share interconnections

indirectly through the mediodorsal thalamus (MD) to the dorsal hippocampal CA1-field

[53], that are particularly engaged in spatial information processing [31], which is

disturbed during the onset of a neuropathic pain condition [6]. By its turn, it has been

shown that the mPFC region have important key role in pain-modulatory process [10,

42]; and that morphological and functional reorganization of mPFC region can be in

celular basis for cognitive impairments under neuropathic pain condition [28].

A crucial key in the mPFC-hippocampal network is the MD thalamus, damage to

this strucuture has been reported to induce spatial memory deficits [18], and amnesia

[29, 30]. More importantly, the MD share large projections to the anterior cingulate

cortex (ACC) [8, 54], that are particuarly envolved affective-motivational aspects of pain

[36, 44, 52, 56]. Despite all the knowledge in remains unclear several aspects how pain

affects the spatial working memory process, and particularly which is contribution of this

pathway on pain information processing. Therefore, our interest was study the

contribution of a long-term chronic pain condition on the neural activity of mPFC-MD

circuit functioning. We recorded local-field-potentials (LFPs) activity of freely moving

rats in a spatial WM task, performed before and after the induction of the complete

Freund's adjuvant (CFA) injection – model of inflammatory pain [5].

Six adult male Sprague-Dawley rats (275-325 g) were used in this study. The rats

were maintained on a 12-h light/dark cycle, and training and the recording sessions run

at approximately the same time each day during the light portion of the cycle.  All

animals were food deprived to 90-95% of their ad libitum body weights only during

training sessions. All procedures and experiments adhered to the guidelines of the

Committee for Research and Ethical Issues of IASP [61], with the Ethical Guidelines for

Animal Experimentation of the European Community Directive Number 86/609/ECC of

24 November of 1986, and approved by local boards.

The behavioral task consisted of a food-reinforced spatial alternation task on a

figure-eight shaped maze, similar to the maze used in studies of episodic memory

[19].The total dimension of the arena was 90 x 60 cm, with plexiglass corridors 15 cm
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wide and opaque walls 30 cm high with intramaze cues (Fig. 1A). Starting from the

center of the maze (C), the rats were trained to alternately visit two reward sites (R) to

obtain one chocolate-flavored pellet (45 mg) that was automatically delivered by a pellet

dispenser (Coulbourn Instruments, Whitehall, PA, USA). After visiting one of the reward

locations, the animal had to continue forward and cross again the central corridor

before visiting the opposite reward site; food rewards were not dispensed if the animal

failed to cross the central corridor immediately before arriving at the reward sites or if

the animal made two consecutive visits to the same reward site (arrows in Fig. 1A

illustrate the pattern of correct maze navigation). Control of pellet dispensers was fully

automated using the OpenControl software adapted to this particular task [1]. In all the

analysis of this study we have considered three different zones in the behavioral arena:

the “reward-zones” are the 15x15 cm corner areas where the animal receives a pellet

upon a correct alternation; the “delay-zones” comprise the area between the reward-

zones and the central corridor; finally, the “choice-zone” is the area preceding the

reward-zones and immediately following the central corridor (Fig. 1A). The testing room

was sound-attenuating, moderately illuminated and rich in visual cues. During the

training period, the rats were given three daily 10-min sessions to learn the alternation

schedule until they reach at least 80% of correct runway alternations. An error was

defined by a consecutive visit to the same reward site or the return route was the same

from the approach route. Errors were not reinforced. After reaching this performance

criterion the animals were surgically implanted with two arrays of electrodes for

extracellular single-unit recording.

Surgical procedures and electrode specifications were the same in our previous

studies [6, 46], except for the intracranial multielectrodes arrays placement. After

reaching the criterion levels of task performance (see details above), the animals

received surgical implantation of two multielectrode arrays for local-field-potentials

activity (LFPs) recordings. The arrays were oriented rostrocaudally and driven to the

medial prefrontal cortex (mPFC) and mediodorsal thalamus (MD). The following

coordinates in millimeters relative to Bregma [33] were used to place the arrays: mPFC

(+2.2 rostro-caudal, 1.0 medio-lateral, -3.2 dorso-ventral), and MD (-2.3 rostro-caudal,

0.8 medio-lateral, -4.7 dorso-ventral).



133 | P u b l i c a ç ã o 5

After 7 days of recovery from the implantation surgery, six animals (n = 6,

hereafter referred as CFA animals) were re-trained and after recorded during 5

consecutive days (hereafter named control period) while performing the runway

alternation task in 2 daily sessions of 10 minutes. In the following day the animals were

briefly anesthetized and subjected to induction of the complete Freund's adjuvant (CFA)

injection – model of inflammatory pain [5]. The intervention is implemented in knee

articulation, in the contralateral side to recording probes implantation. Animals were

then recorded for a period of 16 days (with recordings performed at days 4, 5, 6, 7, 11

and 16 after CFA injection). Sensory threshold for noxious stimulation was assessed by

placing the animals in cages with a metal mesh floor and touching the plantar surface of

the paw with von Frey filaments (Somedic, Sweden) as previously described [9]. These

measurements were done 1 hour after the end each neural recording session.

Extracellular local field potentials - LFPs – were recorded from the implanted

microwire electrodes and processed by a sixteen-channel Multi-neuron acquisition

processor (16-MAP, Plexon Inc., Dallas, TX). LFP signals recorded from electrodes were

pre-amplified (500x), band-pass filtered (0.5-200 Hz), and digitized at 500 Hz. An

overhead video tracking system was used to provide information about the rat’s location

on testing environment (CinePlex, Plexon Inc., Dallas, TX, USA), and to synchronize the

behaviour video-recordings with the acquired neural data. After the end of all

experiments, the rats were deeply anesthetized and brains were removed to recording

sites identification under the microscope.

Computational procedures for measurements of the power spectral density (PSD)

and coherence of mPFC and MD thalamus LFPs signals were described in detail

elsewhere [7, 46]. The statistical method called by partial directed coherence (PDC) was

used to identify and quantify the information flow interactions among the mPFC-MD

circuit. The PDC method has been described in detail elsewhere [2, 38]. Briefly, PDC is an

alternative representation of multivariate processes involving Granger-causality to

uncover frequency-domains of direct influence. Its value lies between 0 and 1, and it

estimates the degree of functional connectivity from a structure to another at a

particular frequency range. Zero PDC can be interpreted as absence of functional

connectivity and high PDC, near one, indicates strong connectivity between the

structures. This can be interpreted as existence of information flow from brain area



134 | P u b l i c a ç ã o 5

source to target. Five frequency band intervals were considered: 1-4 Hz (δ, delta), 4-9 Hz

(θ, theta), 9-15 Hz (α, alpha), 15-30 Hz (β, beta), and 30-50 Hz (γ, gamma).

Statistical comparisons between control period (CT) and post injection of CFA

were performed by a one or two-factor analysis of variance – repeated measures

(ANOVA-RM), and when appropriate a post hoc analysis was carried out using the

Bonferroni test. The level of significance was set as at 5%. The results were expressed as

mean ± standard error of the mean (SEM). All measures were averaged per recording

days, except control period that were represented by the average of total recording

sessions within this period (see details above).

Our present results show that all animals developed mechanical allodynia as

indicated by the significant decrease in the mechanical force needed to evoke paw

withdrawal to Von Frey filaments stimulation in the hindpaw ipsilateral to the CFA

injection (ANOVA-RM; F(6,30)=49.82, P<0.0001) (Fig. 1B). As shown in Fig. 1C the

induction of chronic pain cause a significant impairment of the performance level in

respect to control period (ANOVA-RM; F(6,30)=23.93, P<0.0001). Post hoc analysis

revealed a significant decrease during the recording sessions of day 4 and 5 (P<0.001)

after CFA injection (Bonferroni test). Additionally, a decrease in the running velocity was

observed after injection (ANOVA-RM; F(6,30)=8.71, P<0.0001), returning to baseline levels

in later recording days (Bonferroni; day 4 , P<0.001; 5, 6, and 7, P<0.01) (Fig. 1D).

An essential issue of delayed alternation tasks of working memory is the

temporal gap between responses, where the animal should maintain a retrospective

memory of the previous response in order to planning a future response. The data

shows that after CFA injection, the animals spent more time navigating in the delay-zone

of the testing environment (Fig. 1E). Analysis of variance revealed significant statistical

differences across recording days (ANOVA-RM; F(6,30)=7.26, P<0.0001). An additional post

hoc analysis demonstrated an increase of the mean time of navigation in the delay-zone

during the recording sessions of day 4 after injection (Bonferroni, P<0.01). Another

import measure was the mean interval that mediates two consecutive correct

alternations (or trials), giving us an idea of the level of improvement in the performance

of the animals (Fig. 1F). Analysis of variance revealed a significant effect across recording

days (F(6,30)=4.47, P=0.0024), that was particularly increased during day 4 (Bonferroni,

P<0.01).
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Fig. 2 illustrates the mPFC and MD thalamus LFPs power spectral across recording

days during the execution of the spatial WM task. Data were calculated separately for

the three navigation zones as described previously. In the case of mPFC, significant

differences were encountered across frequency bands (ANOVA-RM; reward-zone:

F(4,150)=320.10, P<0.0001; delay-zone: F(4,150)=419.60, P<0.0001; choice-zone:

F(4,150)=146.00, P<0.0001), recording sessions but only for reward-zone (F(6,150)=5.25,

P<0.0001), as well an interaction factor effect (frequency x time; reward-zone:

F(24,150)=7.62, P<0.0001; delay-zone: F(24,150)=6.99, P<0.0001; choice-zone: F(24,150)=9.47,

P<0.0001) (Fig. 2C). An additional post hoc analysis revealed an increase of PSD of delta

(days 11, P<0.05; and 16, P<0.001) and theta (day 16, P<0.001) frequency bands for

reward- zone; a decrease for theta band (days 4, 5, and 11, P<0.001) and an increase for

alpha band (day 11, P<0.01) for delay-zone; and an increase across theta band for

choice-zone (day 5, P<0.01; and P<0.001 for the remaining days). In the case of MD

thalamus, significant differences were encountered across frequency bands (ANOVA-

RM; reward-zone: F(4,150)=247.20, P<0.0001; delay-zone: F(4,150)=265.10, P<0.0001;

choice-zone: F(4,150)=57.27, P<0.0001), recording sessions for reward and choice-zones

(F(6,150)=2.32, P=0.0361; and F(6,150)=2.64, P=0.0184; respectively); as well an interaction

factor effect (frequency bands x time; reward-zone: F(24,150)=5.86, P<0.0001; delay-zone:

F(24,150)=9.13, P<0.0001; and choice-zone: F(24,150)=3.39, P<0.0001) (Fig. 2D). Post hoc

analysis revealed an increase of theta band power for reward-zone (day 6, P<0.05; day 7,

P<0.001; day 11, P<0.05; and day 16, P<0.001); a decrease for theta (day 4, P<0.001; day

5, P<0.001; and day 11, P<0.001) and an increase for alpha band (day 11, P<0.05) for

delay-zone; and an increase across day 5 (P<0.001) and a decrease across day 11

(P<0.05) for theta band during the navigation across choice-zone after CFA injection.

Coherence activity of simultaneously mPFC-MD LFPs recorded channels were

illustrated in Fig. 3A. Statistical differences were observed across frequency bands

(ANOVA-RM; reward-zone: F(4,150)=5.83, P=0.0019; delay-zone: F(4,150)=13.54, P<0.0001;

choice-zone: F(4,150)=19.46, P<0.0001) and recording days (reward-zone: F(6,150)=15.71,

P<0.0001; delay-zone: F(6,150)=9.33, P<0.0001; choice-zone: F(6,150)=2.50, P=0.0246);

however no interaction factor effect was found (frequency bands x time, reward-zone:

F(24,150)=1.44, P=0.0978; delay-zone: F(24,150)=0.97; P=0.5122; choice-zone: F(24,150)=0.49,

P=0.9793). In addition, in comparison to control period post hoc analysis revealed an
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increase of coherence activity for delta frequency band during day 7 post-injection

(reward and delay-zones; Bonferroni, P<0.01); and a decrease for alpha and beta bands

across days 11 (both bands, P<0.05) and 16 (P<0.01 and P<0.001, respectively) for

reward-zone (Fig. 3B).

The changes of mPFC-MD circuit information flow during the execution of the

spatial WM task were determined by PDC analysis (Fig. 3 C-D). In the case of MD-to-

mPFC direction, statistical differences were observed across frequency bands (ANOVA-

RM; reward-zone: F(4,150)=4.34, P=0.0084; delay-zone: F(4,150)=6.15, P=0.0014; choice-

zone: F(4,150)=36.61, P<0.0001), recordings days (reward-zone: F(6,150)=141.50, P<0.0001;

delay-zone: F(6,150)=47.66, P<0.0001; choice-zone: F(6,150)=162.6, P<0.0001), as well an

interaction factor effect (frequency bands x time; reward-zone: F(24,150)=1.71, P=0.0283;

delay-zone: F(24,150)=1.91, P=0.0105; choice-zone: F(24,150)=7.14, P<0.0001). Post hoc

analysis revealed that PDC level after CFA injection decreased in respect to control

period in all considered frequency bands for reward-zone (Bonferroni, P<0.001, and

P<0.01 for beta band at day 11); for delay-zone (from theta to gamma band across all

recorded days, and for delta band across days 6 and 7; P<0.001); and for choice-zone (all

bands, P<0.001) (Fig. 3E).

In the case of mPFC-to-MD direction, statistical differences were observed across

frequency bands (ANOVA-RM; reward-zone: F(4,150)=9.29, P<0.0001; delay-zone:

F(4,150)=66.66, P<0.0001; choice-zone: F(4,150)=134.60, P<0.0001), recording days (reward-

zone: F(6,150)=22.71, P<0.0001; delay-zone: F(6,150)=10.37, P<0.0001; choice-zone:

F(6,150)=29.21, P<0.0001), as well an interaction factor effect (frequency bands x time;

reward-zone: F(24,150)=2.15, P=0.0030; delay-zone: F(24,150)=8.33, P<0.0001; choice-zone:

F(24,150)=6.42, P<0.0001). In addition, post hoc analysis revealed that PDC level in the case

of reward-zone after CFA injection increased in alpha band at day 4 post-injection

(Bonferroni, P<0.01), and decreased in all considered frequency bands during 16 (delta:

P<0.01, theta: P<0.05, alpha: P<0.01, beta: P<0.01, and gamma: P<0.05). In what

concerns to delay-zone significant differences were observed across theta and alpha

bands with a decrease of the PDC level in respect to control period. For choice-zone,

PDC level decrease for alpha, beta, and gamma bands across all recording session; for

delta band only across day 4; and for theta only during day 11 and 16 after injection (Fig.
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3F). Taking together these data, after lesion the obtained the PDC levels indicate that

less information were transmitted in mPFC-MD circuit during WM task execution.

In this study we report how the induction of chronic pain affects the patterns of

mPFC-MD activity by examining the LFPs activity while rats performed a spatial

alternation WM task. The behavioral task used in the present study is a classical spatial

WM task, where the animals should remember the spatial location of a reward. Our

behavioral data showed a clear impairment of spatial memory performance in the rats

after the induction of the inflammatory chronic pain model. These results are in

accordance with clinical studies of chronic pain patients have WM impairment [26, 27],

and recent reports using models of neuropathic pain that have suggested a spatial

memory reduction after nerve lesion [15, 24, 37]. Recently, we have also reported an

instability of spatial properties of the dorsal hippocampal CA1 place cells after the onset

of a neuropathic pain condition [6], which may disturb the mnemonic process that rely

on the integration and consolidation of spatial reference memory.

Our data showed that spectral oscillatory mPFC and MD LFPs activity changed

after induction of the chronic pain condition. The most relevant finding of the present

study is that the onset of chronic pain condition caused a global decrease in mPFC-MD

flow of information as measured by partial directed coherence – PDC [2, 38]. This

decrease is observed in both directions of the circuit, and is more evident from MD-to-

mPFC direction in a wide frequency range. On the other hand, from mPFC-to-MD

direction, the amount of information flow changed differently across frequency bands

and maze navigation zones. For instance, across delay-zone the main decrease of the

PDC level was observed across theta (4-9 Hz) and alpha (9-15 Hz) frequency bands, and

remains unchanged across other bands. In contrast, across choice-zone data illustrate a

strong theta-range that is not affected during the onset of chronic pain condition. In this

zone, the principal reduction of information flow occurs in faster frequency ranges. The

use of PDC analyses is growing in literature [39, 60]; it has been validated in real

neurophysiological data [12, 16, 56-59] as well as in several theoretical studies using

simulated data [2, 38, 40, 41, 49], to demonstrate expected changes in brain networks

that other less complex methods had failed to identify.

What concerns to LFPs spectral power, we found that mPFC and MD shared

similar patterns. In both cases, a strong theta-range component was present during
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execution of the behavioral task which oscillates across pain condition onset, being

particularly visible during the navigation in delay and choice zones. In addition, the

mPFC-MD LFPs showed higher levels of coherence that are partially conserved across

the frequency range studied (1-50 Hz) after chronic pain condition induction. An

intensification of theta-range coherence across frontal brain regions has been described

during the execution of WM tasks using human EEG recordings [32], and across

hippocampal formation [50]. These theta rhythms are believed to be responsive to

orchestrate spatial memory process. Moreover, the robust hippocampal theta frequency

band coordination has been reported to be responsive for phase firing patterns of mPFC

neurons [17, 21, 45, 47], that were greatest when the demand for spatial WM increases.

It has been previously reported that alterations to functional connectivity of

mPFC-MD-hippocampal circuit can translate implications in memory processing [13, 29,

30, 55]. More recently, this circuit has been referred to have an important key role in

pain-modulatory process [4, 8, 10, 20, 42, 43]; and that morphological and functional

changes can be in the basis for cognitive impairments under chronic pain conditions [23,

28, 37]. At the network level, mPFC and dorsal hippocampal shared connections

throughout the MD thalamus, and this pathway is mainly involved in spatial reference

memory processing. However, studies on the supraspinal projection of the

spinothalamic pathways suggest that the MD thalamus is a relay in medial pain system

and plays an important role in the affective and motivational aspects of pain processing

[25]. It has been report that the neurons of MD respond to noxious stimulation [11],

increasing the level of c-Fos expression [34, 51]; and the stimulation of MD region

evokes unit and field responses in the ACC [14], that are particularly involved in

nociceptive information processing. By this way, beyond the important role in the mPFC

and hippocampal interconnection for spatial reference memory integration, the MD

thalamus also plays in parallel an important role in the integration of nociceptive

information. More importantly, the main disturbances in the information balance occurs

in the way from MD-to-mPFC, suggesting the idea that the information that reaches the

mPFC from MD present a different quality than in the absence of pain or are integrated

deficiently by the mPFC. On the other hand, is important to note that in the way from

mPFC-to-MD less changes in PDC level were observed, and that surprisingly they are
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more prominent at slow frequencies for delay zone were animal should conserve the

spatial location of the reward; and at fast frequencies for choice zone.

In summary, we can hypothesize that disturbances in the mPFC-MD network

during the working memory demand can be a reflex of different quality or deficiently

integration of the spatial reference information, probably due to the parallel nociceptive

information processing.
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FIGURES AND LEGENDS

FIGURE 1. Apparatus and behavioral performance.

(A) Figure-eight maze, spatial alternation WM task. Starting from the center of the maze (C), the
animal had to alternately visit two reward sites (R) (feeder A and B) to obtain chocolate-
flavored pellets. The animal was required to come back to the center from a given reward site
before visiting the other reward site. The arrows indicate the direction of travel when going to
the left and right goals. (B) Level of sensibility to mechanical stimulation evaluated using von
Frey filaments. A large decrease was observed in the threshold required to induce a paw
response after CFA injection. (C) Recording period performance for the spatial WM task. A
significant decrease in performance level and running velocity (D) was observed after CFA
injection. (E) The animals spent more time navigating in the delay-zone of the behavioral test
after CFA injection, and (F) also increased their mean interval between correct alternations.
Values are means  SEM. Comparisons between control (CT) and after surgery recording
sessions based on one-factor ANOVA repeated measures, followed by Bonferroni post hoc test.
**P<0.01, and ***P<0.001.
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FIGURE 2. Spectral properties.

Power spectral density (PSD) of LFPs normalized by the percentage of total power within the
frequency range analyzed (1-50 Hz) for mPFC (A) and MD (B) LFPs signals, comparing the
control period (CT) and after CFA injection. Data were presented individually across the three
considered navigation zones of the behavioral task. The inspection of PSD revealed a strong
theta-range component that was present during execution of the behavioral task, which
oscillates across pain condition onset. In terms of frequency bands, after CFA injection
significant differences were encountered, namely across delta, theta and alpha bands for mPFC
(C) and MD thalamus (D). Values are expressed for all animals as mean (SEM). Comparisons
between control (CT) and after surgery recording sessions based on two-factors ANOVA
repeated measures (frequency bands x recording days), followed by Bonferroni post hoc test.
*P<0.05, **P<0.01, and ***P<0.001.
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FIGURE 3. Spectral coherence and PDC of simultaneously mPFC and MD LFPs signals.

Data were presented individually across the three considered navigation zones of the
behavioral task. The mPFC-MD LFPs showed higher levels of coherence activity during
considered navigation zones (A), which are partially conserved across frequency bands (B). The
oscillations of information flow between the two recorded regions were determined by partial
directed coherence (PDC) analysis. Panel (C) shows the PDC level from MD-to-mPFC, and panel
(D) from mPFC-to-MD. A global decrease of the information flow was observed after the
induction of the inflammatory pain model. The main disturbances across frequency bands
occurs in the way from MD-to-mPFC (E), and from mPFC-to-MD less changes in PDC level were
observed (F). Comparisons between control (CT) and after surgery recording sessions based on
two-factors ANOVA repeated measures (frequency bands x recording days), followed by
Bonferroni post hoc test. *P<0.05, **P<0.01, and ***P<0.001.
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CONSIDERAÇÕES FINAIS

A complexidade da dor deve ser compreendida como o resultado da integração

de várias dimensões sensoriais, desde a que reflecte os eventos directamente

associados a lesões em tecido, até à dor que é gerada na ausência de qualquer “input”

periférico. O presente trabalho de tese pretendeu elucidar alguns destes aspectos ao

nível de circuitos do cérebro afectos à componente sensorial e funções cognitivas, e de

que forma estes circuitos podem alterar o seu regime de actividade na experiência da

dor.

Tendo em conta as discussões parcelares elaboradas nas cinco publicações

incluídas na dissertação, estas considerações finais deter-se-ão em aspectos referentes

ao conjunto de resultados, no que respeita (i) ao papel do eixo tálamo-cortical na

integração da informação sensorial (Publicação I e II), (ii) e ao papel do circuito fronto-

hipocampal na interacção da experiência da dor com funções cognitivas associadas à

integração da informação (Publicação III) ou memória espacial (Publicação IV e V).

A INTEGRAÇÃO E PROCESSAMENTO DA INFORMAÇÃO SENSORIAL PELO

CIRCUITO TÁLAMO-CORTICAL

A actividade eléctrica é essencial para a comunicação neuronal. Ao longo dos

últimos anos, os registos multi-eléctrodo in vivo revelaram que a actividade eléctrica de

cada neurónio não é independente da actividade dos restantes. Os neurónios tendem a

exibir uma actividade de disparo coordenada dentro da rede neuronal onde se

encontram inseridos. Esta actividade, quando quantificada nos sinais de

electroencefalografia (EEG) ou de potencial de campo local (LFP), resulta em padrões de

actividade oscilatórios complexos, os quais reflectem o grau de sincronismo dos

potenciais sinápticos na rede local (Lopes da Silva, 1991). A actividade eléctrica cerebral

apresenta diferentes padrões de acordo com a actividade comportamental ou com os

estados de vigília-sono – descritos primeiro em modelos animais e mais tarde em

humanos (ver revisão, Karbowski, 1994) -, mostrando que os mesmos circuitos podem

suportar regimes diferentes de actividade. As oscilações tálamo-corticais são exemplo

disso, pois para além de serem um indicador clássico das transições dos estados de

vigília para sono, desempenham também uma importante função na percepção de
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estímulos sensoriais (Jones, 2001; Ribary, 2005). Estudos recentes demonstraram que

distúrbios na actividade oscilatória tálamo-cortical estão associados a alterações dos

níveis de atenção, processamento de informação sensorial ou memória de experiências

sensoriais (Lumer et al., 1997; Ray et al., 2009). No que diz respeito à percepção da dor,

um dos modelos mais explorados e que está na base da geração dos processos

associados à dor neurogénica, assenta precisamente na existência de uma disritmia

tálamo-cortical (DTC) (Llinás et al., 1999; Ribary, 2005).

No entanto, ainda é escasso o universo de estudos que abordam a dinâmica

tálamo-cortical durante a dor. Partindo dessa premissa, o primeiro estudo desta

dissertação teve por objectivo principal avaliar o efeito da instalação de uma condição

de dor crónica neuropática nos diferentes regimes oscilatórios circadianos exibidos pelo

circuito tálamo-cortical. A actividade do circuito foi avaliada pela primeira vez através de

registos de LFPs de longa duração (com sessões continuas de 24 horas abrangendo um

ciclo vigília-sono completo) em animais implantados cronicamente com matrizes de

multi-eléctrodos no tálamo lateral e córtex somatosensitivo primário – antes e após o

estabelecimento de um modelo de dor neuropática (Publicação I).

Ao nível comportamental, a lesão neuropática alterou a frequência dos episódios

do estado de vigília e de sono slow-wave-sleep (SWS), aumentando de forma

significativa o número total de transições entre ambos (Publicação I). Os dados obtidos

neste estudo vão ao encontro de outras observações obtidas noutros modelos de dor

neuropática (Andersen and Tufik, 2003; Kontinen et al., 2003; Monassi et al., 2003; Keay

et al., 2004) e inflamatória (Carli et al., 1987; Landis et al., 1989; Andersen and Tufik,

2000), que mostraram igualmente a existência de uma fragmentação dos padrões

circadianos e um incremento do tempo alocado aos episódios de alerta.

A análise da Coerência Direccionada Parcial (partial directed coherence - PDC) das

oscilações tálamo-corticais revelou que, para os animais com neuropatia, a quantidade

de informação conduzida bidireccionalmente entre o córtex e o tálamo diminuiu

significativamente em todos os estados de vigília-sono, embora a diminuição seja menos

expressiva no sentido descendente do circuito, sugerindo a existência de uma redução

no grau de conectividade efectiva do circuito (Publicação I). É importante referir que

esta diminuição ocorre de forma rápida logo após a lesão do nervo e que perdura com a

persistência dos sintomas de dor, mas não é acompanhada por alterações ao nível de
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outras propriedades espectrais do sinal como, a potência em frequência e coerência

quadrática entre ambas as áreas registadas.

Os resultados apresentados na Publicação I são especialmente importantes

porque demonstraram, pela primeira vez, que o córtex somatosensitivo apresenta um

papel proeminente sobre a actividade dos neurónios talâmicos durante o

processamento de estímulos dolorosos. Esta hipótese é apoiada por estudos recentes

que demonstraram que durante a aplicação periférica de estímulos dolorosos existe um

aumento significativo da actividade entre o córtex SI e o tálamo ventro-posterior,

enquanto na direcção ascendente diminui ou permanece inalterada (Huang et al., 2006;

Wang et al., 2007), e por estudos que propõem que a projecção descendente cortico-

talâmica possa estar intrinsecamente mais envolvida na amplificação de estímulos

nociceptivos, enquanto simultaneamente promove a inibição de outra informação

irrelevante, aumentando desta forma a sua capacidade de selecção e detecção de

estímulos (Rauschecker, 1997; Suga et al., 1997; Suga et al., 2000). Da mesma forma, os

resultados da Publicação I demonstram que a via descendente, embora diminuída,

permanece funcionalmente mais activa que a via ascendente, o que apoia a

possibilidade do córtex somatossensitivo estar a exercer um efeito inibitório sobre o

tálamo lateral. Este efeito explica em parte a redução do fluxo de informação no circuito

e poderá ser o resultado do desmascarar dos mecanismos descendentes de origem

cortical, que desencadeiam uma amplificação contínua da informação nociceptiva e

promovem em simultâneo uma supressão da informação não-nociceptiva (Llinás et al.,

2005; Walton et al., 2010). Esta hipótese é também reforçada por estudos clínicos que

indicam existir uma hipoactividade talâmica (Iadarola et al., 1995; Apkarian et al., 2004a;

Garcia-Larrea et al., 2006; Sorensen et al., 2008) e uma perturbação da conectividade

nativa das redes corticais e subcorticais do cérebro em pacientes com dor crónica (Baliki

et al., 2008; Cauda et al., 2009).

No segundo estudo que realizei nesta dissertação, utilizei as mesmas

metodologias para observar as modificações que ocorrem no eixo cortico-talâmico

durante a perda de consciência induzida por anestésicos, uma vez que este circuito tem

sido apontado como fundamental para o suporte instrumental dos mecanismos da

consciência (Llinás et al., 1998). A perda de consciência induzida por anestésicos ocorre
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pela perturbação da comunicação entre os diversos circuitos do cérebro, através uma

redução gradual da sua capacidade de integração de informação (Tononi, 2004; Alkire et

al., 2008). O eixo cortico-talâmico é por excelência um circuito envolvido na integração e

distribuição de informação para outras regiões (Contreras et al., 1996; Castro-

Alamancos, 2004), e alguns investigadores defendem que durante a transição para a

inconsciência ocorre uma interrupção da transferência de informação neste circuito

(Alkire et al., 2007; Velly et al., 2007; Zhou et al., 2011). Todavia, não se sabe ainda qual

das duas regiões é determinante na perda de consciência, nem de que forma a conexão

entre ambas as regiões é afectada pelos anestésicos (Detsch et al., 2002; Hentschke et

al., 2005; Schneider and Kochs, 2007; Tu et al., 2011).

Assim, no segundo trabalho que apresento nesta dissertação, tive como

objectivo principal avaliar a dinâmica da actividade no circuito TC em função de

diferentes concentrações de um anestésico volátil; e aplicar essa actividade eléctrica

para comparar a performance de índices de monitorização da profundidade da anestesia

(Publicação II).

A actividade do circuito foi avaliada através de registos de LFPs em animais

implantados cronicamente com matrizes de multi-eléctrodos ao nível do tálamo lateral e

córtex somatosensitivo primário, ao longo de diferentes concentrações do anestésico

volátil isoflurano. Os resultados demonstraram que para este anestésico o índice de BS

“burst suppression” com correcção por permutação entrópica (PE) apresentou a melhor

performance na avaliação da correlação entre a concentração e a profundidade da

anestesia, apresentando-se como uma alternativa promissora a outros índices

comerciais (Publicação II). É importante referir que um dos problemas dos índices de

monitorização da profundidade da anestesia reside no facto de poderem apresentar

diferentes performances, e que essa diferença é mais expressiva durante a aplicação de

veículos voláteis (Schneider and Kochs, 2007). Por outro lado, o sinal de EEG que está na

base da construção dos diversos índices anestésicos habitualmente utilizados, apresenta

também algumas desvantagens: em primeiro lugar, possui pouca especificidade espacial

uma vez que o sinal obtido provém da sobreposição de actividade de grandes porções

do cérebro (Legatt et al., 1980), e em segundo lugar é um sinal muito atenuado, o que

leva a que as frequências superiores a 30 Hz tenham pouca potência e são muito

vulneráveis a interferências causadas pelo potencial electromiográfico (Sleigh et al.,
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2001). As fontes de sinal intracraniano, como os LFPs, apresentam uma melhor razão

sinal/ruído e possibilitam a preservação de frequências mais rápidas na banda gamma

(superior a 30 Hz), o que nos permitiu realizar neste estudo uma análise mais detalhada

dos padrões oscilatórios associados à indução de anestesia,  que foi um parâmetro

crucial para o ajuste dos índices de monitorização da profundidade anestésica.

Dados de análises realizadas posteriormente à publicações destes resultados,

utilizando a técnica PDC de análise espectral já acima referida, mostraram existir um

desequilíbrio na conectividade do circuito cortico-talâmico que se traduz numa redução

do fluxo de informação nas frequências mais lentas (delta, theta e gamma) e um

aumento nas bandas de frequência alpha e gamma-alta (50-100 Hz) dependente da

concentração de anestésico (Cardoso-Cruz et al., em preparação). Em conjunto, estas

observações sugerem que os neurónios de ambas as regiões mantêm uma conectividade

funcional mesmo durante a anestesia, o que suporta a ideia da existência de um

“diálogo cortico-talâmico” contínuo e que a perda de consciência não passa

necessariamente pela inactivação das populações de neurónios deste eixo sensorial

(Alkire et al., 2008).

A INFORMAÇÃO E MEMÓRIA ESPACIAL DURANTE A DOR CRÓNICA

No terceiro estudo que apresento nesta dissertação, analisei as propriedades de

codificação da informação espacial pelos neurónios piramidais da área dorsal da região

CA1 do hipocampo (Publicação III), também denominados por place cells. Este tipo de

neurónios tem um papel crucial na integração e actualização da informação espacial. No

entanto, este tipo de informação é apenas uma das várias características armazenadas e

processadas nessa rede hipocampal (Eichenbaum et al., 1999; Leutgeb et al., 2005). Por

esta razão é especialmente relevante determinar quais os factores, incluindo a dor, que

poderão contribuir para a perturbação da estabilidade funcional da actividade destes

neurónios.

Os nossos dados mostraram que a actividade das place cells – medida pela

frequência de potenciais de acção - permaneceram estáveis após a lesão periférica do

nervo. Em contraste o índice de especificidade/informação de Skaggs (1993), uma

medida de avaliação da actividade espacial de disparo que não requer que uma região

específica seja definida como campo espacial, revelou uma diminuição significativa no
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grupo de animais com neuropatia, indicando que a actividade dos neurónios deste

grupo experimental codifica menos informação sobre a localização espacial após a

instalação da condição de dor (Publicação III). No que diz respeito à codificação de

campos espaciais o seu número aumentou após a lesão, passando em média a ser

codificados dois campos por neurónio, o que leva a que a estimulação dolorosa tenha

um efeito semelhante à exposição de animais a arenas não familiares (Renaudineau et

al., 2009; Korotkova et al., 2010). Em paralelo, os nossos dados revelaram ainda que o

acréscimo do número de campos espaciais é acompanhado por um aumento do seu

tamanho individual e respectiva coerência de disparo a nível interno. É também

importante referir que o segundo campo codificado ocupa uma localização não

adjacente ao primário, o que descarta a possibilidade de esse resultar de uma expansão

do primário, sugerindo que o re-mapeamento induzido pela dor e a expansão de campo

são fenómenos diferentes (Mehta et al., 1997; 2000). Da literatura, é conhecido que o

fenómeno de expansão dos campos espaciais hipocampais não é influenciado por

flutuações hormonais (Tropp et al., 2005), mas é potenciado por condições de stress

(Kim et al., 2007) e está reduzido em animais de idade avançada (Barnes et al., 1997;

Shen et al., 1997; Sava and Markus, 2008). A evolução da experiência adquirida durante

o processo de habituação/exposição do animal também é fundamental para a

ocorrência desse re-mapeamento numa fase inicial, estabilizando numa fase posterior

(Kobayashi et al., 1997; Kentros et al., 1998; Ainge et al., 2007; Korotkova et al., 2010).

Por último, esse re-mapeamento pode também ser reflexo de interferências entre

experiências concorrentes (Colgin et al., 2008), o que explica em parte o facto da

condição de dor poder perturbar os mecanismos cognitivos de referência espacial

(Seminowicz and Davis, 2007; Moriarty et al., 2011), alterando os processos de atenção

que são cruciais na aprendizagem e memória (Boyette-Davis et al., 2008; Pais-Vieira et

al., 2009).

Em resumo, os nossos dados demonstraram que os mecanismos hipocampais

responsáveis pela integração e processamento da informação de referência espacial são

perturbados pela instalação da condição de dor crónica.

Na tarefa comportamental de alternação simples em ambiente familiar que foi

utilizada na Publicação III, os animais apresentaram apenas uma pequena redução
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temporária nos dias subsequentes à cirurgia de indução do modelo de dor, sendo que

este efeito foi partilhado por ambos os grupos experimentais. Estes resultados vão ao

encontro de dados publicados em outros estudos com modelos de dor crónica, nos

quais é demonstrado que não existem alterações na performance de tarefas espaciais

simples ou em tarefas não espaciais de memória (LaBuda and Fuchs, 2000; Apkarian et

al., 2004b; Leite-Almeida et al., 2009), encontrando-se apenas défices comportamentais

em tarefas mais complexas que envolvam manutenção prolongada de memória

(Millecamps et al., 2004; Dick and Rashiq, 2007). Com efeito, a queixa de falta de

memória é o problema cognitivo mais habitualmente auto-reportado por pacientes com

síndromes de dor crónica; no entanto é actualmente reconhecido que isso não constitui

uma situação de perda de memória generalizada, mas antes um problema circunscrito

aos processos de memória de curto prazo com grau médio de complexidade cognitiva

(Park et al., 2001; Buhle and Wager, 2010; Schmidt-Wilcke et al., 2010; Apkarian et al.,

2011). As explicações mais habituais para o aparecimento de perturbações de memória

são, por um lado, o facto de os pacientes terem muitas vezes regimes medicamentosos

prolongados e com drogas de actuação central (Choi et al., 2007), e por outro lado a

possibilidade de que os episódios súbitos de dor perturbem os mecanismos normais de

aprendizagem levando a perdas temporárias de atenção (Dick et al., 2002). No entanto,

nenhuma destas hipóteses permite explicar a especificidade de perdas sobre memórias

de curto prazo e memórias declarativas retrospectivas, ou o facto de muitas das

perturbações cognitivas provocadas por dor crónica se observarem igualmente em

modelos animais na ausência de qualquer manipulação farmacológica.

A memória de curto prazo, também denominada por working memory (WM) ou

memória de trabalho, está intrinsecamente correlacionada com a capacidade de

performance de um leque muito variado de tarefas cognitivas (Conway et al., 2003). Esta

capacidade é vista como um processo contínuo, que pode ser melhorado através do

treino repetido e pelas rotinas de adaptativas obtidas na execução da tarefa em causa

(Klingberg, 2010). A experiência adquirida com o treino da tarefa está associada a

alterações na actividade do cérebro ao nível do córtex frontal, parietal e gânglios da

base (Todd and Marois, 2004; McNab and Klingberg, 2008), e também associada a

alterações na densidade de receptores de dopamina no córtex pré-frontal (McNab et al.,

2009; Söderqvist et al., 2011). A transferência da experiência de treino adquirida numa
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tarefa para outras tarefas de WM não treinadas, é consistente com a noção de que essa

experiência é importante para o desenvolvimento de fenómenos de plasticidade nos

circuitos neuronais de WM (Rainer and Miller, 2000), e que o treino repetido pode

funcionar como um método para remediar factores limitativos na capacidade de WM.

Partindo das anteriores premissas, no quarto e quinto estudos da presente dissertação,

o objectivo principal foi avaliar as alterações na conectividade funcional do circuito

fronto-hipocampal, na via que está estreitamente associada à integração da memória de

referência espacial, e de que forma o regime de actividade desse circuito é afectado por

dor crónica, aplicando um modelo de dor neuropática (Publicação IV) e um modelo de

dor inflamatória (Publicação V).

Ao nível comportamental, os nossos resultados demonstraram que os grupos

experimentais expostos à dor exibem uma redução significativa da sua performance na

execução da tarefa de memória espacial. Esta redução de performance é mais evidente

durante os primeiros dias após a implementação dos modelos de dor (Publicação IV e

V), sendo que o modelo de dor inflamatória induz uma redução de performance

superior ao modelo neuropático (Publicação V).

Em termos da actividade básica de disparo no circuito fronto-hipocampal, os

neurónios das regiões CA1 dorsal do hipocampo (dCA1) e córtex préfrontal medial

(mPFC) apresentam regimes de actividade diferentes após a lesão do nervo, em especial

durante a navegação pela zona da tarefa na qual o animal deve reter em memória o

percurso efectuado de forma a alcançar a subsequente zona de recompensa, com um

aumento da actividade de disparo dos neurónios do mPFC nas alternações correctas, e

com uma diminuição para os neurónios da área dCA1 nas alternações incorrectas. É

também importante assinalar que após a lesão, os neurónios de ambas as regiões

alteraram o seu grau de sincronismo em relação às oscilações theta hipocampais, sendo

particularmente evidente esse efeito na zona de navegação associada à retenção em

memória da resposta precedente (Publicação IV). Durante os processos de WM, as

oscilações hipocampais em theta são conhecidas por estarem associadas a padrões

sincronizados em relação aos neurónios préfrontais (Hyman et al., 2005; Jones and

Wilson, 2005; Siapas et al., 2005; Sirota et al., 2008), mas também já foram identificados

sincronismos theta na interacção do hipocampo com outras estruturas, tal como a

amígdala durante episódios de ansiedade (Adhikari et al., 2010) ou o estriado durante
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episódios de aprendizagem (DeCoteau et al., 2007). Esta preponderância das oscilações

theta no sincronismo entre múltiplas áreas cerebrais sugere a sua importância como

mecanismo primordial pelo qual é transmitida a informação entre hipocampo e essas

estruturas.

Estas alterações no sincronismo da actividade dos neurónios foram também

acompanhadas por uma redução da conectividade funcional do circuito mPFC-dCA1;

essa redução ocorre em particular durante a navegação pela zona de recompensa e de

decisão da tarefa, mas não é acompanhada por alterações nas propriedades espectrais

da potência e coerência dos sinais das duas regiões. É também importante assinalar que

o fluxo de informação no sentido de mPFC para dCA1 está parcialmente conservado na

zona de retenção de memória e que de dCA1 para mPFC diminui apenas na banda theta.

Em termos da natureza dos padrões de informação das respostas correctas e

incorrectas, os nossos dados revelaram uma diminuição da actividade em theta, alpha e

beta na zona de decisão da localização da recompensa após a lesão do nervo.

Curiosamente, essa diminuição não difere consoante o tipo de resposta no caso do

sentido de mPFC para dCA1, e está também presente nas respostas incorrectas no caso

do sentido de dCA1 para mPFC, que para as respostas correctas apresentou uma

diminuição em theta e um aumento em gamma (Publicação IV).

Com o objectivo de aprofundar o detalhe de conhecimento deste circuito,

realizei uma série final de experiências em que registei a actividade neuronal em

simultâneo no tálamo médio-dorsal (MD) e no mPFC durante a execução da mesma

tarefa de memória espacial, mas neste caso antes e após a indução de um modelo de

dor inflamatória (Publicação V). A nível anatómico, a região mPFC partilha conexões

indirectas com a área dorsal da região CA1 do hipocampo através do tálamo MD (Vertes,

2006). O tálamo MD é um dos pontos chave do circuito fronto-hipocampal, projectando

para regiões da via medial de processamento da dor, como o córtex cingulado, amígdala

e outras áreas préfrontais; e está envolvido nas respostas a estímulos nociceptivos e

mecanismos de memória (Markowitsch, 1982; Sikes and Vogt, 1992; Yang et al., 2006;

Chai et al., 2010). A lesão desta região provou estar associada a uma redução da

performance em tarefas espaciais do tipo delayed em primatas (Isseroff et al., 1982),

bem como tarefas de condicionamento (Olton and Isaacson, 1967; Smith et al., 2002) e

de memória espacial em ratos (Mitchell and Dalrymple-Alford, 2005). De forma análoga
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aos dados anteriores (Publicação IV), o circuito mPFC-MD apresentou uma redução

bidireccional da sua conectividade após a instalação do modelo de dor, acompanhada de

uma redução significativa de performance na tarefa de memória espacial (Publicação V).

É importante referir que essa redução é mais evidente no sentido de MD para mPFC e

numa banda mais larga de frequências, o que sugere a hipótese da informação poder

estar a chegar ao mPFC com uma qualidade diferente após a condição de dor. No caso

do sentido inverso, os dados demonstraram existir uma redução confinada apenas às

frequências mais lentas durante o período de navegação associada à retenção de

memória, e às frequências mais rápidas durante a navegação na zona de decisão

(Publicação V). Em conjunto, os dois estudos sugerem a existência de uma perturbação

na forma como o circuito fronto-hipocampal processa e distribui a informação durante a

execução da tarefa de memória espacial, o que poderá ser reflexo da competição entre

experiências cognitivas concorrentes (Munoz and Esteve, 2005; Awh et al., 2006;

Moriarty et al., 2011).

Em conclusão, os dados reunidos na dissertação detalham o papel das oscilações

tálamo-corticais no processamento da informação sensorial e como o equilíbrio nessas

oscilações é afectado durante a integração da informação nociceptiva e durante os

processos de redução de consciência. Os resultados obtidos mostram ainda que

condições de dor prolongada afectam a estabilidade da codificação da informação que

está na base da geração dos mapas cognitivos de referência espacial no hipocampo, e

que o regime condução da informação entre o hipocampo e as estruturas préfrontais

está perturbado durante os processos mnemónicos associados à integração e

consolidação da memória espacial.
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RESUMO E CONCLUSÕES

A experiência dolorosa constitui um fenómeno sensorial com características

únicas que a colocam num especial patamar de interacção neurobiológica entre os

processos sensoriais e os processos cognitivos. A perturbação da actividade oscilatória

do circuito tálamo-cortical surge associada a alterações, não só ao nível do

processamento da informação sensorial e memória de experiências sensoriais passadas,

mas também ao nível dos processos de atenção e consciência. Os resultados da presente

dissertação demonstraram que após o estabelecimento de uma condição de dor

neuropática, a dinâmica funcional do eixo tálamo-cortical está alterada. Os animais com

neuropatia exibiram um aumento do nível de sincronismo entre o tálamo lateral e o

córtex somatosensitivo, sugerindo que o regime de processamento e coordenação da

informação no circuito é efectuado de forma mais precisa. Adicionalmente, foi também

observada uma redução significativa da quantidade de informação partilhada entre

ambas as regiões, embora esta redução seja mais expressiva na projecção descendente

do circuito, sugerindo que a actividade global do tálamo tem um menor peso sobre a

actividade cortical. Por outro lado, estes dados reforçam também a ideia de que a

projecção descendente cortico-talâmica possa estar a exercer um efeito inibitório sobre

o tálamo, o que explica em parte essa redução do fluxo de informação no circuito. Esta

hipótese é também reforçada por estudos clínicos que indicam que em pacientes com

dor crónica existe uma hipoactividade talâmica e uma perturbação da conectividade

nativa das redes corticais e subcorticais.

A perda de consciência induzida por anestésicos ocorre pela perturbação da

comunicação entre os diversos circuitos do cérebro, através de uma redução gradual da

sua capacidade de integração de informação. O circuito tálamo-cortical tem vindo a ser

apontado como um candidato para o suporte instrumental dos mecanismos da

consciência. Os nossos dados provaram que as populações de neurónios deste circuito

permanecem estruturalmente funcionais durante a perda de consciência induzida pelo

anestésico volátil isoflurano. Ambas as regiões exibiram um elevado nível de coerência

no seu regime de actividade durante o estado estacionário da anestesia e também

durante a exposição a concentrações mais elevadas do anestésico. É importante referir
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que este padrão é mantido mesmo na presença das flutuações da potência do sinal em

frequência que decorrem da concentração do anestésico. Por outro lado, essa actividade

apresentou um elevado grau de correlação em função da concentração do anestésico na

aplicação de índices clássicos de monitorização da profundidade da anestesia,

apresentando-se como uma alternativa promissora em relação a outros índices

comerciais baseados na actividade de EEG. Estes resultados suportam a ideia da

existência de um diálogo cortico-talâmico contínuo mesmo durante a anestesia, e que a

perda de consciência não passa necessariamente pela inactivação dos neurónios deste

circuito.

A disfunção cognitiva dos doentes de dor crónica é simultaneamente uma

questão crucial e paradoxal uma vez que é absolutamente desconhecida a etiologia

deste problema e não se compreende de que forma um síndrome doloroso pode levar a

perturbações nos circuitos neuronais de memória e aprendizagem. No presente trabalho

de dissertação, procedeu-se à caracterização dos mecanismos de plasticidade no

processamento da informação nociceptiva durante a competição com funções

associativas e cognitivas. Esta análise foi efectuada em dois níveis do circuito fronto-

hipocampal. Primeiro, na integração e processamento da informação associada à

geração dos mapas espaciais pelos neurónios piramidais da região CA1 dorsal do

hipocampo. Em segundo, ao nível do circuito fronto-hipocampal durante a codificação e

retenção da memória de referência espacial, aspecto crucial para a performance de

tarefas cognitivas. Os nossos dados demonstraram existir uma instabilidade nas

propriedades de codificação espacial dos neurónios piramidais da região CA1 dorsal do

hipocampo durante a instalação de uma condição de dor neuropática. Essa instabilidade

é traduzida por uma redução do índice de especificidade espacial, indicando que esses

neurónios providenciam menos informação acerca da localização do animal após a lesão

periférica do nervo. Foram também observadas perturbações na codificação dos mapas

espaciais, nomeadamente no número de campos codificados por neurónio, dimensão e

coerência de disparo interna.

Os dados demonstraram ainda que o nível de performance associado à memória

espacial de trabalho está afectado após a instalação da condição de dor neuropática, e

que essas alterações então correlacionadas com perturbações na actividade dos
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circuitos entre o córtex pré-frontal e o hipocampo. Em termos da estrutura temporal da

actividade dos neurónios do circuito fronto-hipocampal, ambas as populações de

neurónios aumentaram a sua precisão de disparo em relação ao ritmo “theta” do

hipocampo. Os dados demonstram ainda uma redução significativa da quantidade de

informação que é partilhada pelo circuito, a qual ocorre em bandas de frequência

diferentes dependendo da resposta correcta ou incorrecta do animal na selecção do

percurso a efectuar para localizar a recompensa. Essa redução da conectividade também

foi observada nas interacções entre o córtex pré-frontal medial e o tálamo mediodorsal

(embora de forma mais evidente no sentido do tálamo mediodorsal para o córtex pré-

frontal medial e numa gama mais ampla de frequências de oscilação).

Em conclusão, os dados reunidos na dissertação detalham o papel das oscilações

tálamo-corticais no processamento da informação sensorial e como o equilíbrio nessas

oscilações é afectado durante a integração da informação nociceptiva e durante os

processos de redução da consciência. Os resultados obtidos mostram ainda que

condições de dor prolongada afectam a estabilidade da codificação da informação que

está na base da geração dos mapas cognitivos de referência espacial no hipocampo, e

que o regime de distribuição da informação entre o hipocampo e as estruturas pré-

frontais está perturbado durante os processos mnemónicos associados à integração e

consolidação da memória espacial.
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SUMMARY AND CONCLUSIONS

The experience of pain is a sensory phenomenon with unique features, such as

the dynamic interaction between sensory and cognitive neurobiological processes. The

impairment of the thalamocortical circuit oscillatory activity is associated with changes

not only in the processing of sensory information and memory of past sensory

experiences, but also in the attention and awareness processes. The results presented in

this dissertation demonstrate that the functional activity of the thalamocortical axis is

changed after the establishment of a neuropathic pain condition. The animals with

neuropathy exhibited an increased level of synchronism between the lateral thalamus

and somatosensory cortex, suggesting that the processing and coordination of the

information in the circuit is carried out more accurately. In addition, we observed a

significant reduction in the amount of information shared by both regions; this decrease

is more significant across the downward circuit projection, suggesting that the cortical

activity has a larger burden over the thalamic activity. Moreover, these data also

reinforce the idea that the corticothalamic descending projection may be carrying out an

inhibitory effect on the thalamus, which partly explains the reduction in the flow of

information of the circuit. This hypothesis is also supported by clinical studies of chronic

pain patients that indicate the presence of a thalamic hypoactivity and a disturbance of

the native connectivity of cortical and subcortical networks.

The loss of consciousness induced by anesthesia occurs by the disruption of the

communication between several brain circuits, leading to a gradual reduction of its

ability to integrate information. The thalamocortical circuit has been identified as a

candidate for the instrumental support of the consciousness mechanisms. Our data

shows that the neuronal populations of this circuit remain functional during the loss of

consciousness induced by the volatile isoflurane anesthetic. Both regions exhibit a high

level of consistency in their activity during the anesthesia steady-state, as well as during

the exposure to high concentrations of anesthetic. It should be noted that this pattern is

maintained even in the presence of fluctuations in the signal power that result from the

anesthetic concentration. Furthermore – using conventional monitoring indexes of the

depth of anesthesia that are a promising alternative to commercial indexes based in EEG
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activity – the corticothalamic signals presented a high degree of correlation degree with

depth pf anesthesia. These results support the idea that the corticothalamic dialogue is

maintained during anesthesia, and that the loss of consciousness does not necessarily

cause an inactivation of the neurons in this circuit.

The cognitive dysfunction of patients with chronic pain is simultaneously critical

and paradoxical since the etiology of this problem is absolutely unknown, and it is not

understood how a painful syndrome can lead to disturbances in the neuronal circuits of

memory and learning. In this dissertation, we have proceeded to characterize the

mechanisms of plasticity associated spatial working memory processing in animal

models of pain. This analysis has been performed on two levels of the fronto-

hippocampal circuit. First, in the integration and processing of information associated

with the generation of spatial maps by CA1 pyramidal neurons of the dorsal

hippocampus. Second, in the encoding and retention of spatial reference memory in the

fronto-hippocampal circuit, crucial for the performance of cognitive tasks. Our data

showed an instability in the spatial coding properties of the CA1 pyramidal neurons of

the dorsal hippocampus during the installation of a neuropathic pain condition. This

instability is translated into a reduction of the spatial specificity, indicating that these

neurons provide less information about the animal location in the environment after the

peripheral nerve injury. We also observed disruptions in the encoding of spatial maps,

including the number of fields coded by neuron, the size of each field, and the internal

field firing coherence.

Our data also showed that the performance level associated to spatial working

memory is affected by the onset of a neuropathic pain condition, and that these changes

are correlated with an impairment in the circuit activity between the prefrontal cortex

and the hippocampus. The temporal structure of the activity of neurons in this circuit is

modified after pain, with both populations increasing their firing accuracy in respect to

hippocampal theta oscillations. The data also demonstrates a significant reduction in the

amount of information that is shared by the circuit, which occurs in different frequency

bands depending on the correct or incorrect path selected by the animal in order to

locate the reward. This reduction was also observed in the connectivity between the

medial prefrontal cortex and the mediodorsal thalamus (albeit more evident in the
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direction from the thalamus to the cortex and in a wider range of oscillation

frequencies).

In conclusion, the data gathered in this dissertation details the role of the

corticalthalamic oscillations in the processing of sensory information, and how the

balance of these oscillations is affected during the integration of nociceptive information

and loss of consciousness. These results also show that prolonged pain conditions affect

the ability to encode information that underlies the generation of spatial maps in the

hippocampus, and that the distribution of information between the hippocampus and

prefrontal structures is disturbed during the mnemonic processes associated with the

integration and consolidation of the spatial reference memory.
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