
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Exploring Complex Event Management
in Smart-Spaces through a

Conversation-Based Approach

André Sousa Lago

Master in Informatics and Computing Engineering

Supervisor: Hugo Sereno Ferreira, PhD

Second Supervisor: Claudio Cherubino

June 22, 2018

Exploring Complex Event Management in Smart-Spaces
through a Conversation-Based Approach

André Sousa Lago

Master in Informatics and Computing Engineering

June 22, 2018

Abstract

The Internet of Things, or IoT, refers to the networked connection of everyday objects which is
often equipped with a collective sense of intelligence. IoT enables the creation of customized
intelligent systems that can be installed virtually anywhere and improve the interaction between
humans and their surrounding spaces.

One of the most common applications of IoT are smart homes. These are regular homes
equipped with sensors and other devices that enable users to create automation mechanisms or in-
teract with their own home remotely. Some examples of smart home applications are remote door
locks, security cameras and alarm systems, pressure and motion sensors or even smart switches.

To provide smart homes with even more intelligence, the world’s tech giants have developed
smart assistants that aim to make the interaction with these IoT systems more seamless. Products
like Siri or the Google Assistant enable users to turn on lights or their alarm system with nothing
but their voice, which makes smart homes truly smart and even more appealing.

However, these assistants are incomplete as they are incapable of fully managing IoT systems
using only voice commands. They are usually limited to simple commands such as “turn on the
light” not being able to easily setup complex actions such as systems rules or repeating commands.

As an alternative to these assistants there are visual programming tools (VPPs) like IBM’s
Node-RED that enable users to fully manage any IoT system creating complex rules like turning
on lights when a tweet with #led is received simply by dragging and connecting blocks in a web
app. However, these tools are lacking in making the management seamless and effortless as they
require users to sit in front of a computer to setup the system and their visual UI can be hard to
interpret when the system complexity increases.

The main goal of this project is to develop a bot that is capable of fully managing an IoT
system, being able to interact with the system and manage its rules. This means that the supported
interactions should range from simple commands like “turn on the toaster” to “when it is raining
outside, close the windows”. Additionally, users should be able to understand how the system is
setup by asking questions like "why did the light turn on?".

This project’s success can prove that IoT assistants can evolve into more complex systems, able
to provide more complex management features than what is currently possible. Simultaneously,
a more complete bot like the one being propose can help more people to start using IoT in their
homes, bringing more automation and comfort to their lives.

i

ii

Resumo

A Internet das Coisas, ou IoT, refere-se à conexão interligada de objetos do dia-a-dia que é fre-
quentemente equipada com um sentido coletivo de inteligência. O IoT permite a criação de es-
paços inteligentes personalizados que podem ser instalados em praticamente qualquer lugar e mel-
horam a interação entre os seres humanos e os espaços que os rodeiam.

Uma das aplicações mais comuns do IoT são as casas inteligentes. Estas são casas normais
equipadas com sensores e outros dispositivos que permitem aos utilizadores a criação de mecanis-
mos automatizados ou a interação remota com a sua própria casa. Alguns exemplos de aplicações
de casas inteligentes são fechaduras de portas, câmaras de segurança ou sistemas de alarme com
acesso remoto, sensores de pressão ou movimento ou mesmo interruptores inteligentes.

Para fornecer ainda mais utilidade a estas casas inteligentes, as gigantes empresas tecnológ-
icas mundiais têm desenvolvido assistentes inteligentes cujo objetivo é tornar a interação entre
humanos e sistemas de IoT ainda mais fácil. Produtos como a Siri ou o Google Assistant per-
mitem que os seus utilizadores liguem luzes ou sistemas de alarme apenas através da sua voz,
tornando as casas verdadeiramente inteligentes e apelativas.

Contudo, estes assistentes são incompletos na medida em que são incapazes de gerir a to-
talidade de um sistema de IoT apenas com comandos de voz. Por norma, eles estão limitados
a comandos simples como "liga a luz" não sendo capazes de gerir ações mais complexas como
regras para o sistema ou comandos repetitivos.

Como alternativa a estes assistentes, existem ferramentas de programação visual como o Node-
RED da IBM que permitem aos seus utilizadores a completa gestão de um sistema de IoT pela
criação de regras complexas como ligar luzes quando receber um tweet com #led simplesmente
por arrastar e conectar blocos numa aplicação web. Contudo, estas ferramentas falham em tornar
a gestão fácil exigindo que os seus utilizadores se sentem em frente a um computador para criar
o sistema e tendo uma interface visual que se pode tornar difícil de interpretar com o aumento da
complexidade do sistema associado.

O principal objetivo deste projeto é o de desenvolver um bot capaz de gerir de forma completa
um sistema de IoT, sendo capaz de interagir com este e gerir as suas regras. Assim, as interações
devem abrangir desde frases simples como "liga a torradeira" a "quando estiver a chover, fecha as
janelas". Adicionalmente, os utilizadores devem ser capazes de compreender o funcionamento do
sistema fazendo perguntas como "porque é que a luz se ligou?".

O sucesso deste projeto pode provar que assistentes de IoT podem evoluir para sistemas mais
completos capazes de gerir de forma mais completa os sistemas a que se associam. Para além
disso, um bot mais capaz pode fazer com que mais pessoas comecem a utilizar IoT, tornando as
suas vidas mais autónomas e confortáveis.

iii

iv

Acknowledgements

First, I thank my supervisor Hugo Sereno Ferreira for guiding me through the process of defining
and developing this project. His knowledge and ideas were a huge contribution to the success of
the project.

I also thank my second supervisor, Claudio Cherubino, for the availability to provide his opin-
ions and experiences to someone he didn’t know while being over 8000km away.

To my family, I give the biggest of gratitudes for their never ending love and support through
not only this dissertation but also my entire life. I am who I am because of them, and nothing
would be the same without them. A special "thank you" goes to my brother, who has been the
closest friend and definitely the most important person in my live.

Last but not least, I thank my friends, "O Grupo das Boleias", for many years of amazing
friendship, moments and experiences, and for the many years to come.

André Sousa Lago

v

vi

“I can accept failure, everyone fails at something.
But I can’t accept not trying.”

Michael Jordan

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Definition . 2
1.3 Motivation and Goals . 2
1.4 Report Structure . 3

2 State of the Art 5
2.1 Automation . 5
2.2 Internet of Things . 7

2.2.1 History . 7
2.2.2 IoT Applications . 9

2.3 Interaction with Smart Spaces . 13
2.3.1 Visual Programming Platforms . 13
2.3.2 Technologies for Natural Language Interaction 17
2.3.3 Chatbots and Intelligent Assistants . 18
2.3.4 IoT Communication Protocols . 21

2.4 Chatbot Development Platforms . 22
2.5 Summary . 24

3 Problem Statement 27
3.1 Current Issues . 27
3.2 Proposal . 27
3.3 Assumptions . 28
3.4 Desiderata . 29

3.4.1 Use Case 1: one-time action query . 29
3.4.2 Use Case 2: one-time action query with uncertainty of device 30
3.4.3 Use Case 3: delayed one-time action query 30
3.4.4 Use Case 4: delayed period action query 30
3.4.5 Use Case 5: daily repeating action query 31
3.4.6 Use Case 6: daily repeating period query 31
3.4.7 Use Case 7: cancel last command query 31
3.4.8 Use Case 8: event rule query . 31
3.4.9 Use Case 9: rules defined for device query 32
3.4.10 Use Case 10: change device rule query 32
3.4.11 Use Case 11: causality query (single possible answer) 32
3.4.12 Use Case 12: causality query (parallel possible causes) 33
3.4.13 Use Case 13: causality query (documented chained causality, single answer) 33

ix

CONTENTS

3.4.14 Use Case 14: causality query (documented chained causality, contextual
conversation) . 34

3.4.15 Use Case 15: causality query (undocumented chained causality) 35
3.4.16 Use Case 16: alias definition query . 35

3.5 Research Questions . 36
3.6 Validation . 37
3.7 Summary of Contributions . 37
3.8 Conclusions . 38

4 Implementation 39
4.1 Overview of a Chatbot . 39
4.2 Solution Overview . 42
4.3 Component Overview . 43

4.3.1 User Interface . 44
4.3.2 Dialogflow Backend . 46
4.3.3 Jarvis Backend . 53
4.3.4 Database . 57
4.3.5 Messaging Queue . 57
4.3.6 IoT System Controllers . 58

4.4 Assembling the Solution . 61
4.5 Conclusions . 64

5 Validation 65
5.1 Simulated Scenarios . 65

5.1.1 Scenario 1 - one-time action . 66
5.1.2 Scenario 2 - one-time action with uncertainty of device 67
5.1.3 Scenario 3 - delayed one-time action . 67
5.1.4 Scenario 4 - delayed period action . 67
5.1.5 Scenario 5 - daily repeating action . 68
5.1.6 Scenario 6 - daily repeating period action 68
5.1.7 Scenario 7 - cancel last command . 68
5.1.8 Scenario 8 - event rule . 69
5.1.9 Scenario 9 - rules defined for device . 69
5.1.10 Scenario 10 - causality query . 70
5.1.11 Test Results . 70

5.2 User Study . 72
5.2.1 Study Description . 72
5.2.2 Results . 73
5.2.3 Analysis . 74
5.2.4 Validation Threats . 75

5.3 Conclusions . 76

6 Conclusions and Future Work 77
6.1 Main Difficulties . 77
6.2 Main Contributions . 78
6.3 Conclusions . 78
6.4 Future Work . 79

References 81

x

CONTENTS

A Sample Intent JSON Representations 85
A.1 Direct Action Intent . 85
A.2 Delayed Action Intent . 87
A.3 Confirm Thing Choice Intent . 88
A.4 Repeating Intent . 89
A.5 Event Intent . 91
A.6 Why Did Something Happen Intent . 92
A.7 Alias Intent . 93
A.8 Set Alias Type Intent . 95
A.9 Rules Defined Intent . 96
A.10 Change Single Rule Intent . 97
A.11 Cancel Command Intent . 99
A.12 Confirm Cancel Intent . 100

B Sample Jarvis MongoDB Documents 103
B.1 Commands . 103
B.2 User Commands . 103
B.3 Event History . 104

xi

CONTENTS

xii

List of Figures

2.1 RFID label . 7
2.2 Arduino board . 8
2.3 Raspberry Pi computer . 9
2.4 NEST product family . 10
2.5 Apple Watch . 11
2.6 Simple setup of a Node-RED managed system 14
2.7 Home Assistant’s live demo UI . 15
2.8 Home Assistant’s UI for a room’s controls (living room) 16

3.1 Example of a smart home with a wide range of IoT devices 29

4.1 Joe Birch’s visualization of the Dialogflow fulfillment 40
4.2 Overview of a chatbot suitable for this project 41
4.3 Jarvis overall architectural components . 42
4.4 Slack integration enabled in Dialogflow’s integrations panel 44
4.5 Chat with Jarvis bot using Dialogflow’s Slack integration (Android app version

2.61.0) . 45
4.6 Google Assistant configuration popup in Dialogflow’s integrations panel 46
4.7 Chat with Jarvis using Google Assistant’s online simulator 47
4.8 Main entities defined in Jarvis’ Dialogflow project 49
4.9 Sample activity diagram for the parsing of an intent 54
4.10 Sequence diagram for a sample query in the assembled system 64

5.1 Assembled RaspberryPi with 2 LEDs and 1 button 66

xiii

LIST OF FIGURES

xiv

List of Tables

5.1 Simulated scenarios fulfillment in Jarvis, Google Assistant and Node-RED 71
5.2 User Study results (task completion rate, task time and incorrect queries). 74

xv

LIST OF TABLES

xvi

Abbreviations

API Application Programming Interface
EPC Electronic Product Code
GPIO General Purpose Input/Output
IPA Intelligent Personal Assistant
IoT Internet of Things
ISA International Society of Automation
JSON JavaScript Object Notation
ML Machine Learning
NLP Natural Language Processing
QPM Queries Per Minute
REST Representational State Transfer
RFID Radio Frequency Identification
SR Speech Recognition
TS Text Synthesis
TTS Text-to-Speech
UI User Interface
URL Uniform Resource Locator
VPP Visual Programming Platform
WAR Web Application Archive
Wi-Fi Wireless Internet
W3C World Wide Web Consortium
WWW World Wide Web

xvii

Chapter 1

Introduction

This chapter introduces the scope of this project, as well as the problems it aims to solve. Section

1.1 describes the framing of the project in terms of the technology fields it is based on. Section 1.2

presents the main problem tackled by this project, as well as some of its causes. Then, section 1.3

discusses the main forces driving this project as well as what it proposes to deliver, setting the bar

for what should be expected from it. Finally, section 1.4 explains how the rest of this document

is structured, and what content should be expected in it.

1.1 Context

The Internet of Things, or IoT, is the networked connection of everyday objects, which is often

equipped with a collective sense of intelligence [XYWV12]. The integration of such objects cre-

ates a huge range of distributed systems that are able to interact with the environment and human

beings around them in a lot of different ways.

The flexibility of IoT systems has enabled their use across many different product areas and

markets, including smart homes, smart cities, healthcare, transportation, retail, wearables, agricul-

ture and industry [Mou17].

IoT is a booming technological market, and Gartner predicts that 11.2 billion devices will be

connected in 2018, a number that is also predicted to almost double over the following 2 years,

becoming 20.4 billion devices by 2020 [vdM17]. The Boston Consulting Group also estimates

that by 2020 companies will spend 250 billion Euros in IoT on top of what they already spend on

other technologies [HRS+17]. This means that not only more people will be using IoT, but also

that it will be present in a lot of different environments and situations. This represents a unique

opportunity for IoT to evolve as a facilitator on people’s lives. After all, having intelligently

connected devices around us should help us make our day to day lives easier.

Even though the boom of IoT is quite recent, there are some older fields of software engi-

neering that are also playing a big role in IoT’s evolution: Natural Language Processing (NLP),

1

Introduction

Speech Recognition (SR) and Text-to-Speech (TTS). Combined, these technologies allow for con-

versational interaction between humans and technology systems, with the aim of making human-

computer interaction closer to human-human interaction. Because of that, companies are able

to create intelligent personal assistants, or IPAs, that aim to assist people in their daily activi-

ties [SRC+16].

Some examples of these assistants are the Google Assistant1, Amazon Alexa2 or Apple’s Siri3.

These aim to help users complete simple daily tasks like finding a recipe, calculating the distance to

the moon or converting Euros to Dollars without a single touch on a device. Plus, these assistants

have the ability to communicate with certain IoT systems, which makes them a great tool for

making smart homes.

1.2 Problem Definition

IoT devices tend to be divided into several ecosystems, which are often associated with one of the

smart assistants developed by the technology giants (Google Assistant, Amazon Alexa and Apple

Siri). On its own, installing and coordinating products from just one of these ecosystems in a

closed space is relatively easy. However, by doing so the range of usable devices is limited, and

therefore the possibilities of what the system as a whole can do are reduced.

Using platforms like Node-RED4, it is possible to set up a customized IoT environment, but

doing so can demand a lot of work, especially for people that are not familiar with programming

or software development. For example, IBM’s tutorial5 for creating a customized smart home

requires the users to write code, use wires and lastly sit in front of a computer to create the rules

that define the system’s behavior.

This means that, for a regular user, the choices are usually restricted to the tech giants’ ecosys-

tems, and because of that some users may not be able to fully experience the advantages of IoT

simply because its setup and management is too hard.

1.3 Motivation and Goals

The main goal of this project is to make the management of IoT systems easier so that not only

current users can increase their comfort with such systems, but also so that it is more seamless for

new users to start using smart spaces.

To achieve that, the goal is to develop an intelligent conversational bot that is able to com-

pletely manage an IoT system in a seamless way. The purpose of this bot is to enable the complete

1https://assistant.google.com/
2https://developer.amazon.com/alexa
3https://www.apple.com/ios/siri/
4https://nodered.org/
5https://www.ibm.com/developerworks/library/iot-lp101-get-started-develop-iot-

home-automation/index.html

2

https://assistant.google.com/
https://developer.amazon.com/alexa
https://www.apple.com/ios/siri/
https://nodered.org/
https://www.ibm.com/developerworks/library/iot-lp101-get-started-develop-iot-home-automation/index.html
https://www.ibm.com/developerworks/library/iot-lp101-get-started-develop-iot-home-automation/index.html

Introduction

management of a smart space without the need of using a computer to visualize the system’s setup

or change system rules.

Users should be able to interact with the IoT system in several different ways, with different

degrees of complexity:

• Execute a direct action on a device:

– “Turn on the kitchen light”

– “What is the living room temperature?”

• Create a delayed task:

– “In five minutes, turn on the kitchen light”

• Create a repeating task:

– “Every day at 11pm turn on the alarm”

– “Close the windows when it’s raining"

• Understand how the system works by talking to the bot:

– “Why did the kitchen light turn on?”

• Edit a task by having a conversation with the bot:

– User - ”When did I tell you to turn on the kitchen light?”

Bot - ”Every day at 5pm”

User - ”Make that 6pm”

From a user’s standpoint, the final result of the project should be usable through usual con-

versational means that already exist, being the text interface of apps such as Slack or Facebook

Messenger, or through natural language voice interfaces such as the Google Assistant or Amazon

Alexa. This is possible because assistants like the Google Assistant6 and Amazon Alexa7, among

others, provide APIs for developers to create custom integrations with them. It should also be

possible to interact with the bot with text in case of noisy environments.

If this goal is achieved, the result should enable less instructed people to create their own IoT

systems without the hassle of doing the setup by hand.

1.4 Report Structure

Chapter 2 describes the state of the art surrounding this project’s scope. Throughout it, the history

and current status of the technological and economical fields related to this project’s objective

are presented as a way to introduce the issues this project aims to resolve. Chapter 3 focuses

on those issues, describing the proposed solution and its expected impact. Along with that, the

techniques used to measure this project’s success are also presented. Chapter 4 focuses on the

work that has been done, describing how the solution was developed and how several techniques

6https://developers.google.com/actions/building-your-apps
7https://developer.amazon.com/alexa-skills-kit

3

https://developers.google.com/actions/building-your-apps
https://developer.amazon.com/alexa-skills-kit

Introduction

were put together in order to create the results that are presented afterwards. Chapter 5 analyzes

the evaluation process that was made to validate the results of the project, going through how the

proposed features work from a usage standpoint and how they were made easier by this project.

Finally, Chapter 6 reflects on the actual success of the project, presenting its main difficulties and

future goals.

4

Chapter 2

State of the Art

This chapter extensively details the context of this project in the form of its state of the art. At

first, Section 2.1 reports the definition and history of automation as a field of technology and the

economic market. As a consequence of this movement comes the Internet of Things, described in

Section 2.2, yet another technological movement with major implications on what this project is

about. IoT’s history and current applications will be debated as a way to introduce the scope of this

project. Being smart spaces one of the most popular IoT applications, the products and platforms

used to interact with them are described in Section 2.3. Finally, since chatbots will be shown to

be extremely relevant in the field of IoT and this project’s scope, some tools used to develop these

bots are described in Section 2.4.

2.1 Automation

The International Society of Automation (ISA) defines automation as “the technique of making

an apparatus, a process, or a system operate automatically" or, in their words, "the creation and

application of technology to monitor and control the production and delivery of products and

services” [ISA10].

The very definition of laziness has led humans to automate tasks for thousands of years in an

attempt to make their lives easier. Even something as simple as creating a structure that allows

cattle to be fed on demand instead of forcing the farmer to deliver food can be seen as a way to

automate a process. Guarnieri documents the oldest form of automation as the water clock, dating

back to 285-222 BC [Gua10], which uses water movement to keep track of time therefore doing it

without any human interaction.

In the recent past, large scale forms of automation were seen the transformation of manual

and demanding tasks into automatic processes through the use of developing technologies. A

clear example of this was the automation of phone call switching which led to the extinction of

telephone call operators starting in 1892 [Jer34]. Even earlier than that, machines started to be used

5

State of the Art

in the industry to replace manual labour that previously heavily depended in human dexterity and

skill. As early as in the 1840s, automated machines were used in factories so that unexperienced

laborers and boys became more able to operate them [MR69]. As this last example demonstrates,

automation can be particularly useful for manufacturing and the industry, which was one of its

most popular applications back in the 18th century partly due to the industrial revolution felt at the

time.

Despite automation’s problems with initial costs or even the ethical concerns such as loss of

jobs to machines, it simultaneously presents us with unquestionable advantages that range from

increased productivity and consistency to scalability and replication.

The advantages mentioned above led to the transition of automation from the manufacturing

industry to many other interesting use cases where it is helpful. Use cases of automation can be

seen in waste management [McF17], video surveillance [Dr.], retail [Pet17] and mining [Oli17],

among many others.

These examples demonstrate how services or production processes can be improved by re-

placing older systems or even people by automatic machines that outperform their predecessors

in many ways. While these can make human jobs and tasks more effective, they disregard an

important place we spend a lot of time on - our homes.

Based on a study from the American Bureau of Labor Statistics, in 2016 american working

adults spent at least over 8 hours per day at home (if time spent on household activities and sleep

is added up) [bur17]. This means that the average American worker spends over a third of his time

in the same physical space, which in turn should make that space a particular subject of increased

comfort for its occupants.

This is where a new type of automation comes in - domotics. This term refers to the au-

tomation of mechanisms or processes in a home, which usually aim to make its inhabitants’ lives

easier and more comfortable. The first widespread applications of domotics are mostly utensils

that nowadays are considered simple and “mandatory” in modern houses: washing machines, re-

frigerators, air conditioning and many others. All of these are systems that aim to automate certain

specific and isolated tasks, which makes them extremely useful in our daily lives. Even though

domotics wasn’t the first focus of automation, it is still a market that is experiencing a fast growth,

documented by an ABI Research study that indicates 1.5 Million home automation systems having

been installed in the United States during 2012 [abi12].

Especially in the early days of domotics, a characteristic of most applications was that they

were isolated tasks being automated by machines. In other words, these systems were able to

automate specific tasks without communicating with each other or doing any sort of functionality

that spread beyond what they were programmed to do. All of the examples mentioned above,

from air conditioning systems to refrigerators, were very good at one limited set of tasks, but

could not cooperate or present any relevant level of intelligence. More recently, with the advent of

the Internet of Things, that panorama started to change.

6

State of the Art

Figure 2.1: RFID label

2.2 Internet of Things

The Internet of Things is a complex concept that has evolved a lot over the years, both in terms

of applications but also market size. Throughout this section, we will present a brief history of

IoT along with some of its main applications, in order to better understand the framing of this

dissertation.

2.2.1 History

Even though IoT is a concept that saw a huge growth in the past few years, it is not a recent

concept at all. In fact, it is almost as old as the concept of Internet itself as applications as simple

as a toaster that could be turned on over the Internet were made in the year after the global Internet

was born, in 1989 [SDPA14]. However, the term “Internet of Things” only became popular after

being used as the title for a presentation made by Kevin Ashton, cofounder of the Auto-ID Center

at the Massachusetts Institute of Technology in 1999 [Kev09].

Only one year later, LG announced the world’s first consumer Internet refrigerator, which was

the first widely available consumer product that incorporated the concept of IoT by connecting a

household appliance to the Internet [FS16].

In 2003, news organizations like The Guardian started reporting advances in Radio Frequency

Identification (RFID) and Electronic Product Code (EPC) that would turn out to be very relevant

for the growth of IoT [Sea03]. With these technologies, it was possible to create RFID labels that

can be placed in all sorts of objects, from a tin can to a bottle of water, to make them instantly

identifiable with an appropriate reader. There are a lot of different RFID labels, and one of them

is presented in Figure 2.1.

7

State of the Art

Figure 2.2: Arduino board

Marking the increased recognition of IoT, the first European IoT Conference was held in 20081

, which along with the birth of IPv6 [Dee98] and IoT’s steady growth allowed for the number of

Internet connected devices to increase.

The new millennium also brought devices like Arduino (20052) and the Raspberry Pi (2012

[Den13]) to the general public, which made it cheap to have small, connected computer in all sorts

of spaces, from houses to offices.

Arduino3 is an open-sourced hardware platform that allows users to program electronic boards

to read inputs and perform certain outputs. Because of Arduino boards’ low cost, they are widely

used for homemade IoT systems, as they can be used to turn on lights, publish online activity or

move an object. Figure 2.2 displays an Arduino board.

On a similar concept, the Raspberry Pi Foundation4 aims to provide a low cost fully functional

computer that can motivate people to learn more about computers, but also make them more ac-

cessible when money is a limitation. Similarly to Arduino boards, the Raspberry Pi computers are

very popular for homemade IoT systems for being cheap and very capable. Another advantage of

the Raspberry Pi is that it has a GPIO port that allows for customized connections with all sorts of

electronic appliances. Figure 2.3 shows what a Raspberry Pi looks like.

The result of combining Internet connectivity, product identification, network identity and

cheap electronic hardware was a huge increase in connected devices around the globe, with IEEE

owned online publication Electronics360 estimating that 20 Billion devices were connected to the

1http://www.the-internet-of-things.org/iot2008/
2https://www.arduino.cc/en/Main/AboutUs
3https://www.arduino.cc/en/Guide/Introduction
4https://www.raspberrypi.org/about/

8

http://www.the-internet-of-things.org/iot2008/
https://www.arduino.cc/en/Main/AboutUs
https://www.arduino.cc/en/Guide/Introduction
https://www.raspberrypi.org/about/

State of the Art

Figure 2.3: Raspberry Pi computer

Internet during 2017 [Bro17]. Similar studies by tech consultant Gartner indicate similar numbers

for the overall growth of IoT [vdM17] [RvdM14].

2.2.2 IoT Applications

This boom in worldwide connected devices has led to a lot of different applications of these tech-

nologies across countries and product areas. Although being a relatively small sample, the exam-

ples below demonstrate different use cases of IoT when combined with multiple technologies and

markets [CXL+14, LL15, XHL14].

Smart Homes are the IoT application of domotics. While domotics usually refers to individual

systems that perform isolated tasks automatically, smart homes usually refer to a set of connected

sensors and electronics that allow for a house to be more autonomous. Some smart houses include

appliances such as fridges that remind users when a certain item is about to run out, self-regulating

temperature systems or self-locking door and window mechanisms. Perhaps more importantly,

many of these devices can be controlled or monitored remotely which provides users with a greater

sense of control of their appliances.

One of the most popular companies in this market is Nest5, an Alphabet company that develops

smart thermostats, doorbells, cameras and alarm systems. Nest products can be connected to a

network, which allows for their monitoring and control, even when the user is not at home. For

example, the Nest Secure6 system can be controlled via a mobile app, through which users can

check the lock status on doors or toggle the alarm system.

Wearables are devices that are worn like clothes, accompanying human beings in their regular

activities. Some examples of wearable devices are smartwatches, step counters or smart glasses.

With the sizes of processors and electronic boards shrinking, the capabilities of these devices have

increased, and such can be seen in the growth of this industry segment which was predicted to

surpass 4 billion dollars in 2017 by Forbes [Mar16].

One example of a wearable device is the Apple Watch7 (displayed in Figure 2.5), a smartwatch

that is able to send text messages, play music, count steps and much more.

5https://nest.com
6https://nest.com/alarm-system/overview/
7https://www.apple.com/watch/

9

https://nest.com
https://nest.com/alarm-system/overview/
https://www.apple.com/watch/

State of the Art

Figure 2.4: NEST product family

Smart Cities are a concept similar to smart homes, where the same technology is applied

in the context of a public space. These usually aim towards simplifying urban life, or making it

more environment-friendly. The most common use cases in this segment are smart parking spaces,

smart waste management systems or smart street lighting.

One of the smart-city companies is Telensa8, that develops both smart street lighting and smart

parking. These products provide not only wireless control of street lighting and energy saving

techniques, but also parking monitoring systems to reduce congestion.

Retail can also be an interesting use case for IoT as it can benefit both customers and store

managers. In these cases, IoT can not only help customers instantly know whether a certain

product is in stock or not, but also help the manager determine when to order a certain product

based on its current shelf stock.

A good example of Retail IoT is IBM’s TRIRIGA9 facility management system 10, which

performs facility planning and energy-saving techniques based on IoT devices and sensors.

Healthcare is yet another field where IoT can be very beneficial, as it can help doctors re-

motely keep track of a patient’s live status, or receive an alert when a problem is detected with

a patient. An article by IBM even alerts that even though there are a lot of problems around IoT

in healthcare, especially due to data privacy, it can help reduce healthcare costs or improve the

outcome of treatments [Pat17].

An example of a real healthcare IoT product is Eversense’s portable connected glucose moni-

toring systems11.

Finally, customized smart spaces are a logical consequence of the growth of IoT and its asso-

ciated products, as it became possible for almost everyone to create a customized IoT experience

based on products and hardware available. In any IoT system, the essential items are the physical

devices that are connected by the system and interact with the environment. In this document these

are called leaf devices.

8https://www.telensa.com/
9https://www.ibm.com/us-en/marketplace/ibm-tririga

10https://www.ibm.com/internet-of-things/iot-solutions/facilities-management/
11https://ous.eversensediabetes.com/products/eversense-sensor/

10

https://www.telensa.com/
https://www.ibm.com/us-en/marketplace/ibm-tririga
https://www.ibm.com/internet-of-things/iot-solutions/facilities-management/
https://ous.eversensediabetes.com/products/eversense-sensor/

State of the Art

Figure 2.5: Apple Watch

The first step to create a customized smart space is to acquire the leaf devices, depending on

the intended use for the system. Some of the most common leaf devices are:

• Temperature sensors: used to monitor the temperature of a room or object

• Pressure sensors: used to sense pressure in objects like chairs, windows or doors

• Luminosity sensors: used to determine the intensity of light in a specific area

• Motion sensors: used to detect movement in a space, usually using infrared radiation tech-

nology

• Remote switches: used to remotely switch lights or electronics on or off

• Cameras: used to remotely view a recording of a certain room or area

• Lock mechanisms: used to lock or unlock doors, windows or gates

• Speakers and displays: used to output audio or visual information via a remote input source

(e.g. stream a YouTube video from a phone to the living room TV)

• Thermostats: used to remotely control the temperature in a room

Although some of these devices have controllers of their own that can be programmed or

controlled in a certain way, it is also possible to acquire middleware devices that connect to the

leaf devices, and therefore are able to read and modify their current status.

Arduino boards and Raspberry Pi computers, which were mentioned above, are often used

as middleware devices due to their setup simplicity and low cost. For example, a Raspberry Pi’s

GPIO12 ports can be simultaneously connected to a luminosity sensor and a light switch. That

way, not only the luminosity value of the sensor can be sent to a remote server via Wi-Fi, but

also the light switch can be turned on when the luminosity drops below a certain level. Arduino

boards can also be used to increase the capacity of simpler devices such as sensors or actuators.

For example, an Arduino board can be connected to a sensor providing it with a connection to a

local network, so that the sensor’s status can be accessed remotely.

12General Purpose Input/Output, multi-purpose ports that can be programmed for different inputs and outputs

11

State of the Art

Once the devices are acquired, it is necessary to connect them to a network and manage their

behavior. To achieve this, a common technique is to use a supervisor device, a middleware

device that acts as a supervisor for all the other devices. A computer or Raspberry Pi are common

supervisor devices as these usually require a bit more power than alternatives like Arduino boards

can offer. Once the supervisor device is ready, platforms like Node-RED13 or Home Assistant14

can be installed to facilitate the management of the system as a whole. These management
platforms are described thoroughly below.

If there is the need to store data from the system, there are plenty data storage solutions that

can be applied to lightweight systems such as these. MongoDB15 and InfluxDB16 are popular

choices especially for simple local instances of storage. Another option is Apache Cassandra17,

a tool driven towards scalable distributed databases which can be useful with large amounts of

data. Although it might not look like it, IoT systems can generate a lot of data depending on

the granularity desired for devices like sensors. If, for instance, the value of a sensor is read and

stored 10 times per second and there are 1000 sensors in the system, it is clear how fast the need

for storage can increase.

The final piece in making a complete smart space is a monitoring tool, such as Kibana18

or Grafana19. These allow for not only the monitoring of the system device’s values (values of

sensors, position of actuators, . . .), but also its usage (middleware device processor usage, battery

levels, . . .). With such tools, all this monitoring can be done remotely with a friendly web interface

that displays all that information in a friendly way.

As a practical example, let’s picture a user that wants to have a luminosity sensor and a tem-

perature sensor in his room, and an actuator that can open and close the window. With these, the

user wants to have a dashboard where he can consult the history of the room’s luminosity as well

as the status (open/closed) of the window. Finally, the user wants the window to be shut if the

temperature drops below a certain level. To achieve this functionality, all the user needs is to buy

the actual sensors, the actuator and a Raspberry Pi. Then, the sensors and the actuator are con-

nected to the Pi, which is then given an installation of Node-RED, MongoDB and Grafana. With

Node-RED, the user can make the window close when the temperature drops, and also direct the

values of the luminosity sensor to the MongoDB storage system. Finally, the user configures the

Grafana dashboard and makes it accessible from outside of his local network so that he can see

what’s going on when he is not at home.

With all the components mentioned in this section, it is possible for users to create a fully

customized smart space with personalized sensors, actuators, management platforms and even

data storage mechanisms. This is a great advantage of IoT, especially for tech-savvy users, as it

allows for virtually anything to be automated or remotely controlled.

13https://nodered.org/
14https://home-assistant.io/
15https://www.mongodb.com/
16https://www.influxdata.com/
17http://cassandra.apache.org/
18https://www.elastic.co/products/kibana
19https://grafana.com/

12

https://nodered.org/
https://home-assistant.io/
https://www.mongodb.com/
https://www.influxdata.com/
http://cassandra.apache.org/
https://www.elastic.co/products/kibana
https://grafana.com/

State of the Art

2.3 Interaction with Smart Spaces

As mentioned in the previous section, the growth and evolution of IoT has led to the appearance

of many forms of smart spaces. The wide variety of products and platforms developed for such

applications has also led to the use of many ways to interact with these systems. The goal of this

section is to describe the many ways and tools used to interact with smart spaces, as well as the

technologies they require.

2.3.1 Visual Programming Platforms

Visual programing platforms, or VPPs, are tools that are usually installed in supervisor devices in

IoT systems so that they can access all the devices and components in such systems. Because of

that, these platforms can offer users with extensive and friendly UIs through which the user can

visualize the state of the system, customize its behavior or even configure the system’s devices

themselves. Some VPPs even offer integrations with third parties such as Twitter or Instagram, so

that their APIs can be used as part of the system’s behavioral rules.

Let’s take a look at some of the most popular VPPs: Node-RED and Home Assistant.

Node-RED20 is a tool developed by IBM’s Emerging Technology Services team in 2013, and

is now a part of the JS Foundation. Node-RED follows a flow-based programming approach to the

management of an IoT system, providing its users with a Node.js-based web application through

which they can create, edit and delete system rules and connections in an interface that displays

rules and connections as a flow of information, events or actions.

In Node-RED, system devices are represented as colourful nodes that possess specific prop-

erties and actions, which can be interconnected with other nodes. Similarly, conditions, actions

and events are also represented as nodes, which makes it easy to understand how elements can be

connected in the platform.

Being based in Node.js, all that is required to use Node-RED is to have it running in a super-

visor device in the system, such as a Raspberry Pi, and then the platform can be accessed through

any regular web browser.

As an example, Figure 2.6 will be analysed as it represents a simple application of Node-RED

to manage an IoT system.

In the example of Figure 2.6, the user has defined a flow where built-in Node-RED nodes are

connected in a flow of information.

In this case, the flow starts with a Twitter node that triggers the following node in the flow

whenever a tweet with the hashtag “#led” is detected in the public feed or the user’s private tweet

feed. When such a tweet is detected, it is sent to the next node in the flow.

The following element, which is the trigger node, is configured so that, when triggered, it

relays a signal with the value “1” to the next node in the flow for 1 second, and then relays the

signal “0” once that time has passed.

20https://nodered.org/

13

https://nodered.org/

State of the Art

Figure 2.6: Simple setup of a Node-RED managed system

The last element is a Raspberry Pi GPIO node, which controls the input and output of GPIO

ports of a Pi. In this case, when it receives the signal “1” it turns on the GPIO port 12 on the Pi,

turning it back off when it receives the signal “0”.

If, for example, an LED is connected to the GPIO port 12 of the Pi, then it will be lit for 1

second every time a tweet with the hashtag “#led” is detected.

The same way it is possible to connect Node-RED to Twitter, it is also possible to integrate

with a lot of other components ranging from Fitbit wristbands to weather APIs or traffic monitoring

systems. Connecting all of these with IoT devices can help make a smart space extremely efficient

and intelligent given how many complex integrations can be made. With Node-RED, it is possible

to turn on the coffee-machine whenever the user wakes up, turn on the heating system when the

user is returning home after work, turn on the A/C if the temperature rises above a certain level,

and a lot of other examples. There is virtually an infinite amount of combinations that can be

made, and Node-RED’s growing community21 contributes greatly to those integrations.

Another very useful application of Node-RED is to connect data sources to database systems.

With integrations like MongoDB or InfluxDB, it is possible to direct virtually any data source to a

data storage system, which is important for keeping track of records, events and other data. This

can be used to store anything from tweets to sensor values, and it can be done with either a local,

remote or even distributed database.

Node-RED can also integrate with messaging systems such as MQTT22 or RabbitMQ23. These

systems are used to convey messages between different software applications, which can even

be running in separate machines or networks. As an example, MQTT is quite popular for IoT

applications due to its lightweight nature and ease of use. With it, it is possible for applications

subscribe to message topics which are identified by paths (e.g. “home/room/light”), which other

applications can publish messages to. MQTT then handles the distribution of such messages

according to user-defined policies. When integrated with Node-RED, it becomes possible to notify

21https://nodered.org/about/community/
22http://mqtt.org/
23https://www.rabbitmq.com/

14

https://nodered.org/about/community/
http://mqtt.org/
https://www.rabbitmq.com/

State of the Art

Figure 2.7: Home Assistant’s live demo UI

a certain topic in MQTT that the value of a certain sensor has changed, so that other systems and

applications can act accordingly.

Another useful integration of Node-RED are dashboard frameworks such as Grafana24, Kibana25

or Freeboard26. With these integrations, it is possible to convey messages and system data to dash-

board applications that may even be hosted remotely, so that the user is given a friendly interface

through which he can visualize the status of the system live. With these dashboards it is possi-

ble to visualize the current status or value of sensors, the history of a room’s temperature, and

much more. Again, these are especially useful for customized smart spaces because they allow for

remote monitoring of the whole system.

Home Assistant27 follows a slightly different approach to the design of a VPP, but it offers a

powerful and simple way to interact with an established IoT system.

With a very simple and intuitive UI, which is accessible via a web or mobile app, Home

Assistant is able to connect to a lot of different types of components of typical IoT systems (NEST,

MQTT, IFTTT, Arduino, . . .) so that the user can not only visualize the state of his system’s

devices, but also change their behavior and even define operational rules. Let’s take a look at an

example from Home Assistant’s live demo28, displayed by Figure 2.7:

24https://grafana.com/
25https://www.elastic.co/products/kibana
26https://freeboard.io/
27https://home-assistant.io/
28https://home-assistant.io/demo/

15

https://grafana.com/
https://www.elastic.co/products/kibana
https://freeboard.io/
https://home-assistant.io/
https://home-assistant.io/demo/

State of the Art

Figure 2.8: Home Assistant’s UI for a room’s controls (living room)

In the example of Figure 2.7, it is possible to view toggles that represent actuators of the

systems (switches, sensors, . . .). When a division like “Living Room” is clicked, we can see the

panel below which displays all the actuators in that division, as well as their state and a toggle to

change their behavior. This panel is displayed by Figure 2.8.

The example also displays the integration with the NEST thermostat, so that the user can

visualize not only its current temperature but also its target temperature. Clicking on that item of

the UI brings up a chart that shows the evolution of the temperature detected by the thermostat

over time.

Automation is also visible in Home Assistant’s example, where it is indicated that today’s

cook (“Paulus”) will be notified that it is his time to cook. Other examples of automation through

this app are also describe in Home Assistant’s documentation29, which explains how the app can

be used to turn on and off lights when a rain sensor detects the presence of rain.

Although its UI may be simpler or slightly better than Node-RED’s UI, Home Automation

falls a bit short when it comes to the complexity of its rules. Node-RED’s more complex UI ends

up giving the user more freedom to make custom system rules, and the rules that this platform

allows are far more complex, in big part due to its flow programming design. Home Automation

might be considered prettier or simpler, but that also takes it some of the power that its alternative

can offer. Interestingly enough, it is possible to use both platforms simultaneously, which can

make it easier to access Node-RED’s information through Home Assistant’s pretty UI.

29https://home-assistant.io/cookbook/automation_for_rainy_days/

16

https://home-assistant.io/cookbook/automation_for_rainy_days/

State of the Art

As the examples above demonstrate, VPPs can be extremely useful for users of custom smart

spaces due to the flexibility and power they provide. However, they possess several disadvantages

that make them somewhat hard to use, especially for users that are not entirely comfortable with

understanding how certain technologies work.

Picture a Node-RED system, embedded in a user’s home, with multiple devices. Even if there

are only a couple of dozens of rules defined, it can be extremely difficult to understand why a

certain event took place due to the overwhelming flow that results from them. A single dozen of

rules can already result in a Node-RED page that you need to scroll to completely visualize, let

alone a couple dozen! The more rules you add to the system, the harder it becomes to look at Node-

RED’s interface and understand what the system is able to do, in part because it is impossible to

make any other form of “query” to the platform besides looking at it.

Another major disadvantage of this sort of platforms is that they require the user to sit in front

of a computer to set up the system, even if it is for simple tasks. For example, if a user is sitting

in his couch, far away from his computer, and thinks that it would be great to have his light turn

on as soon as it gets dark outside, he would need to actually get up and go to the computer when

there can possibly be a lot of IoT devices around him that he could interact with. Again, this can

make these platforms hard or boring to use as it may require a lot of time to perform simple tasks

such as the one described.

To solve some of these issues, there are plenty of chatbots and assistants that can help IoT

users. These, are described in Section 2.3.3.

2.3.2 Technologies for Natural Language Interaction

There are three main technologies required to have a conversational experience with a virtual

system: speech recognition, natural language processing and text synthesis.

Speech Recognition (SR) is the technology that converts the audio input of a person’s voice

into a text string that represents exactly what the person said. SR is a relatively old field of study,

even going back to 1930 [JR04], but it still improves thanks to pushes from a lot of the world’s

largest companies. According to TechRadar, Nuance Communications’ Dragon30, Google’s Cloud

API31 and Microsoft’s Windows32 provide some of the best user SR products, and some of them

are even available for developers to use in their own applications [All17].

Natural Language Processing (NLP) is the extraction of meaning from a text that represents

something a person said or wrote, allowing computers to understand human language [Cho03].

NLP is a very complex field of technology, especially because human communication itself can

be very complex. Depending on location, language, background and context, humans have a lot

of different ways for saying something, and this makes developing NLP algorithms a lot harder.

However, there is a lot of work done on NLP that has enabled the development of a wide range of

tools, that perform different types of NLP, and with different results. Currently, API’s like Google

30https://www.nuance.com/dragon/dragon-accessories.html
31https://cloud.google.com/speech/
32https://www.microsoft.com/en-us/windows/cortana

17

https://www.nuance.com/dragon/dragon-accessories.html
https://cloud.google.com/speech/
https://www.microsoft.com/en-us/windows/cortana

State of the Art

Cloud33 or Dialogflow34 (previously API.AI) give developers the tools they need to understand

user input, extracting information like the user’s intent or previous conversation context only from

a user’s text input.

Text Synthesis (TS) or Text-to-Speech (TTS) technologies do the opposite of what SR and

NLP do, converting an expression a computer wants to express to a user into an artificial voice,

enabling computers to speak like humans do. TS can be seen in a lot of different products and

operating systems. One of the first operating systems to have TS out of the box was Apple’s

Macintosh, already being able to “speak” in 1984 [Her84]. Since then, TS has been featured

in multiple other systems like Microsoft’s Windows, Google’s Android, as well as other minor

appliances in vehicle audio systems and other products.

Together, SR, NLP and TS allow for realistic conversational experiences with computers, as

they allow for bi-directional comprehension of information and intent.

2.3.3 Chatbots and Intelligent Assistants

With a different approach from VPPs, chatbots and intelligent assistants aim to enable a conversa-

tional interaction between humans and IoT systems. What this means is that the ultimate goal of

these applications is to have humans talking to machines as if they were human too, as that way

the communication is more natural.

When it comes to products and interaction with smart spaces, the technologies used for Speech

Recognition, Natural Language Processing and Text Synthesis are merged together into the smart

assistants developed by some of the world’s largest companies: Google’s Assistant35, Apple’s

Siri36, Amazon’s Alexa37, Microsoft’s Cortana38, Samsung’s Bixby39, among others. These are

powerful, often cloud-based, software solutions that allow users to either talk or write to algorithms

that understands the intent in user phrases.

Chatbots have existed for a while now, and their use has ranged from online companion bots

like CleverBot40 to Pizza Hut customer assistance bots41 that talk to users while their pizza is being

made and delivered. However, these applications were limited not only in the dialog complexity

but also its actionable capabilities.

Most of the modern intelligent assistants allow for not only text interactions, but also voice-

exclusive interactions, which means the user doesn’t need to touch any physical device to interact

with it. All that’s required is an active microphone, so that the user can talk to it and expect a

certain response. This has been one of the main focus features of these assistants, due to the

flexibility and ease of use it provides for users.

33https://cloud.google.com/natural-language/
34https://dialogflow.com/
35https://assistant.google.com/
36https://www.apple.com/ios/siri/
37https://developer.amazon.com/alexa
38https://www.microsoft.com/en-us/windows/cortana
39http://www.samsung.com/pt/apps/bixby/
40http://www.cleverbot.com/
41https://botlist.co/bots/pizza-hut

18

https://cloud.google.com/natural-language/
https://dialogflow.com/
https://assistant.google.com/
https://www.apple.com/ios/siri/
https://developer.amazon.com/alexa
https://www.microsoft.com/en-us/windows/cortana
http://www.samsung.com/pt/apps/bixby/
http://www.cleverbot.com/
https://botlist.co/bots/pizza-hut

State of the Art

A lot of the world’s largest tech companies have focused and invested in developing their own

smart assistant, each with his own gimmicks and tricks, but in the end they are all fairly similar:

they answer questions from information they find in the web, execute simple tasks on demand and

interact with third-party services. Some of the tasks these bots can do based on user queries are

getting answers from the internet (with questions like “How tall is the Portuguese President?”),

scheduling events (with queries like “Remind me to turn off the oven in 5 minutes”) or creating

grocery lists (with queries like “Add bacon to my grocery list”).

One important and complex feature of most of these bots is conversational awareness - the

ability for the bots to connect multiple separate phrases to extract a common line of thought or

information. Let’s take a look at the following example:

User: “What is the capital city of Portugal?”

Bot: “The capital of Portugal is Lisbon.”

User: “What is its population?”

Bot: “The population of Lisbon is 506 892 inhabitants.”

In the example, the first question is a relatively easy question for most of the aforementioned

bots, as all it requires is to lookup the “capital city” attribute of an entity named “Portugal”. Based

on the knowledge graphs available online, along with information sources like Wikipedia, this

information is quite easy to obtain. However, the second question has a complicated detail that

makes it harder to understand, as the user wants to know the “population attribute” of an entity

named “its”. Obviously, “its” is not a valid entity, so the question, on its own, makes no sense.

However, most of the bots mentioned are now capable of interconnecting user queries, and in

examples like the one above they are able to understand that “its” relates to an entity from a

previous query, and therefore the bot can understand that it refers to “Portugal” and answers the

question correctly.

Conversational awareness is an important progress in conversational technologies, as it is a

step towards making them more humanlike. Human conversation is embedded with contextual

and conversational details that are natural for us, but extremely hard for algorithms and computers

that are not yet capable of representing and analysing the world the same way that we do.

However limited they may be, the most recent conversational technologies available can al-

ready provide incredible experiences for their users, and they surely lead towards a more auto-

mated and intelligent world where humans and machines interact more closely than ever before.

There are a lot of very good assistants currently available to the public, but some of the most

popular examples of are these:

• Google Assistant: the Assistant is embedded in a lot of Google related products, from

Android smartphones, to Pixel laptops and even its own Google Home hardware. It aims

to provide information to the user even before he asks for it, giving the user personalized

recommendations based on the traffic to work, calendar events, and other information. It

also integrates with external services such as mobile networks to provide hands-free cell

phone calls to its users.

19

State of the Art

• Apple’s Siri: Siri also comes integrated with all of Apple’s mobile device range (from

iPhones to iWatches), providing users with a lot of hands free features they wouldn’t nor-

mally be able to perform. A useful integration of Siri is with Apple’s own smart home

products, Homekit, enabling users to interact with their home in a hands-free way.

• Amazon’s Alexa: Alexa can be reached through mobile apps or through Amazon’s own

hardware, the Amazon Echo. With these interfaces, users can talk to Alexa to perform tasks

such as searching the web or Alexa’s connected systems. Being integrated with the Amazon

marketplace, Alexa is even able to perform hands-free purchases with queries like “Order

[item] from Prime Now”42.

Currently, tasks that involve searching the internet for information and facts are considered

trivial for assistants as advanced as these are, and pretty much all of them can offer the same

completion rate for queries like “what is the capital city of Portugal?” or “what does the weather

for tomorrow look like?”.

Most of these assistants also offer the conversational awareness mentioned above. This means

that not only they know which real entity “Portugal” refers to, but also they understand when a user

chains queries that relate to each other in a certain way. The improvements in the conversational

and contextual awareness of these assistants make them progressively sound more human and

natural, which is definitely a step in the right direction.

Let’s take a deeper look into the Google Assistant, as it represents most of what the other

assistants can do and has features that are interesting in the context of this document43.

The Google Assistant is a mostly cloud-based smart assistant. In Google’s own words, “Ask it

questions. Tell it to do things. It’s your own personal Google, always ready to help”.

There are plenty of ways users can interact with the Google Assistant, either through the

standalone Google apps44, built-in integrations with Android (6.0+) and Chrome OS (also known

as Chromium OS45) or with standalone hardware, such as the Google Home and Google Home

Mini46. Through these interfaces, it is possible to ask the Assistant questions, ask it to do things

and interact with other associated products.

With this, comes one of the interesting use cases of the Assistant - interacting with smart

spaces. With the Assistant it is possible to talk to smart space devices such as NEST thermostats47

or alarms48, as well as other third-party services light Philips Hue49 bulbs or IFTTT50 queue

systems, among others51.

42https://www.amazon.com/gp/help/customer/display.html?nodeId=201807210
43All of the Google Assistant features mentioned in this section were tested using the Google app (version

8.5.15.21.arm64) on a Google Pixel phone with the Android P Beta (May 5, 2018 security patch)
44https://play.google.com/store/apps/details?id=com.google.android.

googlequicksearchbox&hl=pt_PT
45https://www.chromium.org/chromium-os
46home.google.com
47https://nest.com/thermostats/nest-learning-thermostat/overview/
48https://nest.com/alarm-system/overview/
49https://www2.meethue.com/en-us
50https://ifttt.com/
51https://support.google.com/googlehome/table/7401014

20

https://www.amazon.com/gp/help/customer/display.html?nodeId=201807210
https://play.google.com/store/apps/details?id=com.google.android.googlequicksearchbox&hl=pt_PT
https://play.google.com/store/apps/details?id=com.google.android.googlequicksearchbox&hl=pt_PT
https://www.chromium.org/chromium-os
home.google.com
https://nest.com/thermostats/nest-learning-thermostat/overview/
https://nest.com/alarm-system/overview/
https://www2.meethue.com/en-us
https://ifttt.com/
https://support.google.com/googlehome/table/7401014

State of the Art

The problem with the Assistant’s approach is that these interactions are quite simple, and

are mostly directly associated with direct commands or queries to the smart devices. All the

Assistant can do with these devices is perform queries like “is the baby monitor on?” or “what

is the temperature in the living room?”, or execute direct actions such as “turn on the coffee

machine”52.

What this means is that although intelligent assistants like the Google Assistant, Siri and other

can make it much more comfortable to interact with smart spaces because they remove the need

of touching a physical device, they do not allow you to define rules for how the spaces operate.

Saying things like “everyday at 3pm close the windows” or “when it is raining turn on the porch

light” won’t work on these assistants unless you manually define every single one of them.

Overall, it is easy to understand that although current smart assistants can be very helpful and

comfortable to use, they don’t yet have the complexity and completeness that other IoT manage-

ment systems like Node-RED possess. Also, some of them are limited to a specific range of vendor

devices, so there is always a limitation to the customization they can offer.

2.3.4 IoT Communication Protocols

When it comes to IoT, there are many protocol definitions that are essential for systems to work,

and these can fit into the many layers they are made of. These protocols can be dedicated for IoT,

but they can also be general application protocols that happen to be usable in these systems.For

example, IoT systems may use the IPv6 protocol for the infrastructure layer, Bluetooth in the

communication layer or MQTT for data protocols.

As mentioned in Section 2.3.1, physical IoT devices can communicate with each other using

message queue systems like RabbitMQ or MQTT. These use path formats to describe devices,

topics or other endpoints of the system, therefore creating an organized structure for the commu-

nication system. Another way of describing this path structure is to compare it to a REST API as

the paths used for these are very similar.

However, without a common structure or protocol defined for these messaging structures, each

individual IoT system would be using an ad-hoc solution that could fit its purpose but lead to a

reduced flexibility of the system. While it is not essential, having the same organizational structure

among IoT systems makes the development of new applications simpler and more structured,

removing the need of re-implementing the communication structure wheel.

In an attempt to solve this issue, Mozilla is currently developing a Web Thing API53 which is

expected to be submitted for approval to the W3C54, a community that brings together companies

and experts to develop Web standards. The goal of Mozilla’s Web Thing API is to describe a

data model and API that could be used in the context of IoT describe physical devices in a JSON

format. This API could then be used together with the communication platforms like MQTT

52https://store.google.com/us/product/google_home_learn?hl=en-US
53https://iot.mozilla.org/wot/
54https://www.w3.org/

21

https://store.google.com/us/product/google_home_learn?hl=en-US
https://iot.mozilla.org/wot/
https://www.w3.org/

State of the Art

and RabbitMQ to create a more standardized way of establishing communication structures and

protocols for IoT systems.

While the document is still being prepared for submission, it’s principles for communication

structures and device identification are already interesting and useful for developing projects. The

description of some concepts described by Mozilla’s API can be found below.

The code snippet in Listing 2.1 describes a sample “web thing”, a device that interacts with

the environment by reading and/or changing its status.

The JSON code in Listing 2.1 can fully describe the status and abilities of a “web thing”,

which can be useful for example for knowing what sort of actions a certain device is capable of or

to read its current status.

In the example, “properties” can be used to define attributes of a device, which should represent

its status. On the other hand, “actions” define functions the device is able to perform, which may

be activated remotely. The events the device is capable of emitting are stated under “events”,

which can be used for monitoring certain changes in the environment. Finally, “links” describes

the URLs for accessing the previously mentioned properties of the device, which can be used

through communication tools like RabbitMQ.

Besides the description of a device, Mozilla’s API also describes the REST APIs that can be

used to access such properties of the devices, as well as what device types may be used in this

definition (e.g. “onOffSwitch” or “binarySensor”).

2.4 Chatbot Development Platforms

Chatbots, like virtually any software application, can be developed from scratch by anyone with

the required software development skills. This development can even be made easier with the

inclusion of open-source of free to use APIs and libraries that tackle implicit problems of chatbots

like speech recognition or natural language processing.

However, software reuse has been proven to be an effective way of improving the whole pro-

cess of software development [Gri97], and chatbots are not an exception. In fact, there are mul-

tiple platforms for chatbot development like Botsify55 or Chatfuel56. These platforms are aimed

towards providing bots with text interfaces so that they can be used for example for customer as-

sistance bots in Facebook Messenger. The main downside of these platforms is that the bots are

too scripted, lacking the abilities to perform more complex dialogs or understanding the existence

of entities in phrases. Also, these platforms lack the voice interaction that makes most chatbots

more usable and user friendly.

An alternative to these solutions is Dialogflow57 (previously known as API.AI). DialogFLow

is a product and company owned by Google that provide a platform for developers to create con-

versational interfaces that use AI to interact with their users. Dialogflow’s goal is to use machine

55https://botsify.com/
56https://chatfuel.com/
57https://dialogflow.com/

22

https://botsify.com/
https://chatfuel.com/
https://dialogflow.com/

State of the Art

1 {
2 "name":"WoT Pi",
3 "type": "thing",
4 "description": "A WoT-connected Raspberry Pi",
5 "properties": {
6 "temperature": {
7 "type": "number",
8 "unit": "celsius",
9 "description": "An ambient temperature sensor",

10 "href": "/things/pi/properties/temperature"
11 },
12 "humidity": {
13 "type": "number",
14 "unit": "percent",
15 "href": "/things/pi/properties/humidity"
16 },
17 "led": {
18 "type": "boolean",
19 "description": "A red LED",
20 "href": "/things/pi/properties/led"
21 }
22 },
23 "actions": {
24 "reboot": {
25 "description": "Reboot the device"
26 }
27 },
28 "events": {
29 "reboot": {
30 "description": "Going down for reboot"
31 }
32 },
33 "links": {
34 "properties": "/thing/pi/properties",
35 "actions": "/things/pi/actions",
36 "events": "/things/pi/events",
37 "websocket": "wss://mywebthingserver.com/things/pi"
38 }
39 }

Listing 2.1: Mozilla Web Thing API’s sample of a "web thing" which can be an IoT device

23

State of the Art

learning to understand the intent, entities and meaning of a user’s phrase based on examples given

by the developer, changing the bot’s responses based on the input.

One big advantage of Dialogflow is that provides a simple way to integrate the bots with many

popular products like Facebook Messenger, Slack or the Google Assistant, enabling both text and

voice interactions with the created bots. What this means is that the developers can focus only on

the conversation aspect of the bot, disregarding the interface between it and the users.

To create a chatbot in Dialogflow, the developer must specify intents which represent a user

query. For example, to define the intent of a user saying “hello”, all that’s needed is to create

an intent that accepts “hello” as a user input. Then, the developer defines output responses for

the intent such as “good day”. Once this is done, Dialogflow uses machine learning to generate

phrases that may be similar to “hello” such as “greeting” or “hi” so that the bot becomes able to

reply to a more diverse range of queries.

Another useful feature of Dialogflow is the ability to define entities. These are structures that

define variable parts of user phrases which may have different values with different meanings.

Also, the entities’ values may be useful if the bot’s response varies according to those. For exam-

ple, in the intent “pass me a pear”, “pear” may be replaced by an entity so that other fruits can

be used in its place. In that case, the developer could create the entity “@fruit” and define it as

having the values “pear”, “banana” and “strawberry”. That way, the bot would accept more user

inputs and be able to deal with those fruits differently.

In Dialogflow’s web UI it is possible to define these intents and entities and all of the process-

ing occurs in Dialogflow’s backends. However, it is also possible to make queries to the bots be

sent to external APIs so that they may be processed differently. This can be extremely useful to

create interactions between a Dialogflow bot and other software systems like smart spaces.

Let’s take a look at a possible integration between Dialogflow and a smart space. To enable

the Dialogflow bot to respond to a query such as “what is the temperature in the living room”, it

is possible to use the webhooks provided by Dialogflow to send that exact request to the smart

space’s API so that the temperature sensor’s value is appended to the bot’s response. When this

is done, the bot sends a JSON object to the smart space’s API that indicates not only the user’s

input (including the entities used in it, the bot’s confidence in it;s analysis and other relevant data)

but also it’s suggested outputs. Then, the API may create a customized response that includes the

actual sensor data so that the bot provides a real up-to-date response.

All of the characteristics mentioned above make Dialogflow a great platform for chatbot de-

velopment as it is able to support complex speech features but also many integrations that can be

important to spread the use of a certain bot.

2.5 Summary

Over the years, IoT has become a very relevant concept in today’s technology fields. However,

the capabilities of the management tools for IoT systems still lack in certain types of features that

could help more people to use IoT in their homes.

24

State of the Art

On one hand, the visual programming platforms like Node-RED and Home Assistant offer a

good deal of complexity for the management of a system, including the possibility of defining

complex rules and interactions between systems. However, they lack the simplicity and comfort

of use that could make them more appealing, especially for users that are not very comfortable

with technology.

On the other hand, there are the smart assistants that not only try to maximize the user’s

comfort by providing voice interactions, but also are already capable of performing multiple inte-

grations and different commands. These assistants are also great for users not so comfortable with

technology because they require no technical knowledge. However, as advanced as they may be,

they still lack the understanding and complexity required for performing a more complete man-

agement of smart spaces like defining operational rules, conditional triggers or interoperability of

devices.

Adding to that, recent studies [Ras14] show that users are dissatisfied with the inflexibility and

complicated interfaces of IoT systems, claiming that there should be easier and more comfortable

ways to interact with them. A study participant’s complaint stated that "I don’t want to work

through a menu just to turn off the lights”. [Ran03]

All these problems boil down to the lack of a simple interface for users to manage IoT systems.

More people could be creating their own smart spaces if interacting with them was made easier.

With the current state of conversational technologies it seems that we don’t yet take full advantage

of what these can do when it comes to interacting with smart spaces and making them even more

useful.

25

State of the Art

26

Chapter 3

Problem Statement

The goal of this section is to describe exactly what the problems with the current solutions for IoT

management are and what the proposed solution for them is. Then, the relevant features of the

solution are presented along with the means for evaluating this project’s success and impact.

3.1 Current Issues

As presented in Chapter 2, the current solutions available in the market offer great alternatives for

the management of smart spaces, but none of them seems complete as a whole. This is because

none of the presented tools simultaneously has these features:

• Complex Management: the ability to perform a wide range of tasks, including direct ac-

tions, delayed actions, conditional actions or device interoperability.

• Comfort and ease of use: the possibility to manage the IoT system with the minnimum

possible effort. The maximum comfort would be for the user not to have to move or touch a

device in order to get his tasks done, as can happen with voice assistants.

• Understanding system’s functioning: the ability to understand how the configure system

works or why something was done. For example, with Node-RED, this is only possible by

looking at all the configured rules to figure out which one could have caused somethign to

happen. Ideally, all that should be needed is to ask the system why something happen and it

should do that search for the user.

3.2 Proposal

The goal of this project is to develop a conversational bot dedicated to the management of smart

spaces that is capable of defining and managing complex system rules, called Jarvis.

Jarvis’s abilities reach across different levels of operational complexity, ranging from direct

one-time actions (e.g. "turn on the light) to repeating conditional actions (e.g. "when it is raining,

27

Problem Statement

close the windows"). Besides that, Jarvis should also let the user easily change or understand the

status of the system, through queries like "why did the toaster turn on?". In that latter case, Jarvis

should also possess conversational awareness that allows for chained commands. This particular

feature is demonstrated by the following dialogue:

User: “Why did the toaster turn on?”

Jarvis: "You told me to turn it on at 8 AM.”

User: “Okay, change it to 7:50 AM.”

Jarvis: “Sure, toaster timer was changed.”

In the example above, the second query of the user wouldn’t make sense on its own, however

it does make sense as a follow-up to the previous interactions. This can not only be extremely

user but also facilitate the user’s experience since it avoids repeating information that was already

mentioned in the conversation.

To make the bot easy to integrate with current systems, its interface will be made through

existing platforms like the Google Assistant, Amazon Alexa, Facebook Messenger, Slack, among

others. This range of integrations give the bot the ability to interact with users via voice or text

queries.

3.3 Assumptions

Due to the scope of this dissertation as well as its specific focus of creating a powerful IoT man-

agement tool through a conversational bot, there are many aspects of a real chatbot that will not

be stressed as they are not essencial to the project’s scope.

Smart spaces are often characterized by a great heterogeneity of devices, communication pro-

tocols, feature sets, among other characteristics. These can make the construction of the system,

as well as its operation, much more complex and difficult. These characteristics will not be con-

sidered for this project. Instead, a well-defined set of device types, communication protocols and

features will be defined at the start and used throughout the project since that heterogeneity is a

high priority.

When it comes to exposing smart spaces to the Internet for remote access, there are a lot

of security and privacy issues that on their own present huge problems in the domain of IoT and

smart spaces. In fact, there are multiple cited articles that study and address this concern with IoT’s

progression and growth [DKJG17]. These are serious problems that, if not properly addressed, can

lead to the spread of private personal information on the web or even illegal access to devices and

controllers in a private space. However, because remote access is important for this project and

security and privacy are enormous problems on their own, these aspects will not be taken into

consideration for the development of this project. Instead, the assumption will be made that the

developed system is perfectly secure and private.

Finally, this project assumes that the third-party technologies used for the conversational anal-

ysis and device interaction will remain open for use, as they are essential for the project to work

28

Problem Statement

Figure 3.1: Example of a smart home with a wide range of IoT devices

and also represent big problems on their own. This is relevant for the purpose of replicating this

project since its functioning depends on the external technologies used.

3.4 Desiderata

This section describes the features that we aim to tackle this project. Some of these features are

new, but others already exist in current products. However, their development along this project

is essential in proving that complex management of IoT spaces is possible and better with a smart

voice assistant.

To visualize how the solution would be applied, we illustrate through Figure 3.1 a sample

smart home that includes different sorts of devices, ranging from on-off switches to multilevel

sensors (temperature sensors). The goal is that this sample house includes a wide range of the

sort of IoT devices found in the majority of smart homes, so that it is possible to understand the

expected behavior and advantages of this project.

To better discuss the expected behavior, each of the following subsections explains one of the

expected use cases of the solution. All of the examples are based on the house model of Figure 3.1.

3.4.1 Use Case 1: one-time action query

One-time action on a device that happens instantly and does not repeat unless the user specifi-

cally commands it. This is the simplest type of command supported by the system and the basic

capability of any IoT interaction tool.

Examples:

• "Turn on the kitchen light."

• "Open the bedroom window."

29

Problem Statement

• "Set the hall temperature to 20 degrees."

3.4.2 Use Case 2: one-time action query with uncertainty of device

Similar to Use Case 1, but in this case the device specification is not clear to the system. In these

cases, the system should query the user to clarify which device he intends to choose, if any. This

is also an instance of contextually-aware conversation as the user’s response is only meaningful as

a follow-up to a previous request, which the bot should remember and understand.

Example:

User: "Turn on the light.”

Jarvis: "Do you mean the living room light, kitchen light, bedroom light or hall light?"

User: "The living room light." or "The first."

Jarvis: "Sure, I’ve turned on the living room light."

An important note about the example in this subsection is that this device specification tech-

nique is also possible in most of the following scenarios, anytime it is required to specify a device

with which the system should interact. However, since the course of the dialogue would be very

similar, this technique will not be demonstrated for any of the following use cases.

3.4.3 Use Case 3: delayed one-time action query

One-time action that instead of being executed at the time of the user query is delayed for a certain

period of time ("in 30 minutes") or to a certain time ("at 10pm") or date ("tomorrow at 10am")

specified by the user. In other words, this use case is an application of Use Case 1 with a specified

delay.

Examples:

• "Turn on the living room light in 30 minutes."

• "Turn on the kitchen light at 10pm."

• "Turn on the kitchen light tomorrow at noon."

3.4.4 Use Case 4: delayed period action query

Certain actions that can be performed in IoT devices can be reversed. For example, if a switch is

turned on it can be later turned off and if a thermostat is set to a certain temperature its original

temperature can later be restored.

Because this property can be useful at times, this use case documents an example where a

certain condition is made true for a period of time defined by the user. This can be useful for

example if the user wants to keep a light turned on during the time he has breakfast or keep the

windows closed during the night.

Examples:

• "Turn on the bedroom light from 8am to 10am."

• "Open the bedroom window during the afternoon."

30

Problem Statement

• "Turn on the hall light from tomorrow 10am to 11am."

3.4.5 Use Case 5: daily repeating action query

This use case represents a direct action, as was seen on Use Case 1, that is executed every day at a

certain time. This is the first example of a rule query, which means that it is automated indefinitely

until the user modifies or cancels it. This is called a rule of the system as it will remain active as

long as the system does.

Examples:

• "Turn on the bedroom light everyday at 10am."

• "Close the bedroom window everyday at night."

3.4.6 Use Case 6: daily repeating period query

This use case is very similar to Use Case 5 with the nuance of being a period action, which means

it is only active for a time period defined by the user.

Examples:

• "Turn on the bedroom light everyday from 8am to 10am."

• "Open the bedroom window everyday during the afternoon."

3.4.7 Use Case 7: cancel last command query

This command is used to cancel a user’s last command, regardless of the kind of command it is.

If it is a direct action, that action is undone. If the command is the definition of a rule, that rule is

cancelled.

Since this command can cause system rules to be changed it uses contextual awareness to

confirm what command the user wants to cancel.

Example:

User: "Cancel my last command.”

Jarvis: "Are you sure you want to cancel the action: ‘turn on the living room light from

10am to 11am’?"

User: "Yes."

Jarvis: "Sure, the command was cancelled."

3.4.8 Use Case 8: event rule query

Creates a rule that executes a direct rule (similar to those found in Use Case 1) when a certain

event occurs. This event is an event declared by one of the IoT devices known by the system, as

documented by Mozilla’s Web of Things protocol described in Section 2.3.4.

This command allows devices to operate based on the interactions of other devices which is

the first step to create behavorial bridges between different devices that don’t necessarily need to

be phisically connected to one another.

31

Problem Statement

Examples:

• "Turn on the kitchen light if the kitchen motion sensor is activated."

• "Turn on the living room light if the living room chair pressure sensor is activated."

3.4.9 Use Case 9: rules defined for device query

In order to understand how the system is setup it is essencial that the user can know what rules are

defined for a certain device. This command allows the user to learn how the system is setup by

asking what rules are defined for a device. As well be seen in Use Case 10, this will be very useful

to modify or cancel specific system rules.

Example:

User: "What rules are defined for the living room light?”

Jarvis: "You told me to turn on the living room light everyday at 10am."

3.4.10 Use Case 10: change device rule query

The dialogue mentioned in Use Case 9 allows the user to know what rules are defined for a certain

device. As a follow-up to the result of that query, the user may modify or cancel rules without

the need to specify exactly which rule he wants to cancel because the bot has the contextual

awareness required to know what the user means. With this follow-up command, rules can quickly

be modified or cancelled.

Example:

User: "What rules are defined for the living room light?”

Jarvis: "You told me to turn on the living room light everyday at 10am."

User: "Change that to when the living room motion sensor is activated.”, "Change that to

everyday at 9:30am." or "Cancel that rule."

Jarvis: "Sure, the rule was changed." or "Sure, the rule was cancelled."

3.4.11 Use Case 11: causality query (single possible answer)

One of the most important features that the project provides is to query the system about the reason

why a certain event happened or a certain condition is true. This can make it much easier for a user

to understand how the system works. In the current voice assistants this feature is not available,

and in VPPs this can only be done manually by checking every system rule to understand which

rules may cause the consequence to be true.

The main problem with causality queries is that they may have complex answers or, in some

case, multiple possible answers, which may make it hard for the system to decide which answer

to give in order not to provide an answer that is too long for the user to understand.

Another issue that causality queries face is related with un-documented cause-consequence

pairs, i.e. when the cause of a certain action is indirectly related to something else that happened

32

Problem Statement

in the system. One real world example of this would be how closing electric blinds could cause a

room to get darker, therefore triggering some event on a luminosity sensor.

The different possible outcomes of causality queries are discussed by use cases 11 through 15,

along with their expected behaviors and possible approaches.

In this command we explore a simple causality query with a clear and simple answer. In this

case, there is exactly one system rule that causes the consequence queried by the user and the

result is that same rule.

Previously defined rules:

• When bedroom motion sensor is activated, turn on bedroom light.

Example:

[Bedroom motion sensor is activated]

[Bedroom light turns on]

User: "Why did the bedroom light turn on?"

Jarvis: "You told me to turn on the bedroom light when the bedroom motion sensor is

activated."

3.4.12 Use Case 12: causality query (parallel possible causes)

In this case, when the user queries the bot for the cause of a certain condition, there are multiple

rules that could have caused that condition to be true. Therefore, there are two possible approaches

to this issue. On one hand, the bot can return the earliest interaction that caused the queried

condition. On the other hand, there might have been another following interaction that is more

meaningful to the user as to why the condition is true. In that case, the bot could either reply with

all possible causes of the condition, or use an heuristic to choose the cause that is more relevant to

the user (e.g. in some causes, interactions that are caused by the system’s rules rather than direct

queries by the user are more relevant as an answer to this sort of query).

Previously defined rules:

• When bedroom motion sensor is activated, turn on bedroom light.

• When it’s 7pm, turn on bedroom light.

Example (answer with earliest possible cause):

[(6:50pm) Bedroom motion sensor is activated]

[Bedroom light turns on]

User: (7:10pm) "Why did the bedroom light turn on?"

Jarvis: "You told me to turn on the bedroom light when the bedroom motion sensor is

activated."

3.4.13 Use Case 13: causality query (documented chained causality, single answer)

In this example there is a set of rules that chain into each other, i.e., the consequence of one rule is

the cause for another rule. Because of that, if a rule is triggered that has other rules leading up to

it, the answer to why that rule’s consequence happened might not be clear since although the rule’s

33

Problem Statement

cause is the most direct cause to that consequence, there may have been other earlier interactions

that lead up to it. From the standpoint of the user, it might be useful to not only know what was

the exact rule that caused the consequence, but also the other rules that led to it.

This particular use case explores the possibility of the bot either returning the latest possible

rule that caused the consequence or the complete list of events that led to the consequence.

Previously defined rules:

• When kitchen motion sensor is activated, turn on kitchen light.

• When kitchen light is turned on, turn on kitchen coffee machine.

Example (answer with latest possible cause):

[Kitchen motion sensor turns on]

[Kitchen light turns on]

[Kitchen coffee machine turns on]

User: "Why did the kitchen coffee machine turn on?"

Jarvis: "You told me to turn on the kitchen coffee machine when the kitchen light turns

on." or "The kitchen motion sensor turned on, which caused the kitchen light to turn on, which

caused the kitchen coffee machine to turn on."

3.4.14 Use Case 14: causality query (documented chained causality, contextual
conversation)

As an alternative to what is done in Use Case 13, this scenario explores the possibility of the bot

engaging in a contextual conversational with the user. In this case, the bot at first returns the most

immediate rule that caused the consequence queried by the user, but then the user may ask more

about what happened, in which case the bot responds with the complete list of events that led up

to that consequence.

Previously defined rules:

• When kitchen motion sensor is activated, turn on kitchen light.

• When kitchen light is turned on, turn on kitchen coffee machine.

Example:

[Kitchen motion sensor turns on]

[Kitchen light turns on]

[Kitchen coffee machine turns on]

User: "Why did the kitchen coffee machine turn on?"

Jarvis: "You told me to turn on the kitchen coffee machine when the kitchen light turns

on."

User: "And why did that happen?"

Jarvis: "The kitchen motion sensor turned on, which caused the kitchen light to turn on,

which caused the kitchen coffee machine to turn on."

34

Problem Statement

3.4.15 Use Case 15: causality query (undocumented chained causality)

Unlike the previous causality query scenarios, in this example the set of events that leads up to

a certain consequence is not documented by system rules. In other words, the chain between a

certain pair of rules is explicit, being an indirect consequence of the first rule.

As demonstrated by the example below, the consequence of the first rule is the kitchen window

opening. Because of the increased wind caused by this action, movement of objects in the kitchen

may cause the kitchen motion sensor to be activated, therefore activating the second rule. In this

example, the first rule may be considered as the cause for the final consequence, and the system

should notify the user of that.

This use case is intended as a point of discussion as to how the system should behave in this

sort of scenarios, and the conclusions of that discussion are presented further in this document.

Previously defined rules:

• When the kitchen temperature rises, open the kitchen window.

• When the kitchen motion sensor is activated, turn on the kitchen light.

Example:

[Temperature rises]

[Kitchen window opens]

[Wind causes objects in the kitchen to move]

[Kitchen motion sensor is activated]

[Kitchen light turns on]

User: "Why did the kitchen light turn on?"

Jarvis: "You told me to turn on the kitchen light when the kitchen motion sensor is turned

on."

User: "And why did that happen?"

Jarvis: "It might be because the kitchen window was opened because the temperature

rose."

3.4.16 Use Case 16: alias definition query

In certain cases, the correct physical actions or conditions on devices are not the most intuitive to

use in a natural language interaction. For example, if a user says "open the kitchen windows when

it gets hot", the system will not understand because "hot" is not a condition that it understands as

it is not a valid state for a temperature sensor.

To help with that, the user may create aliases for both actions or events that are then used in

any of the other commands. Aliases can be created manually by the user, or automatically when

an unknown command is given. The two examples below demonstrate the creation and usage of

aliases:

Example 1 (manual creation):

User: "Create an alias for when it gets hot."

Jarvis: "What do you want that alias to represent?"

35

Problem Statement

User: "The living room temperature is above 20 degrees."

Jarvis: "Sure, I’ve created an alias for when it gets hot."

(...)

User: "Open the kitchen windows when it gets hot."

Jarvis: "Sure, the rule has been created."

Example 2 (automatic creation):

User: "Open the kitchen windows when it gets hot."

Jarvis: "I’m not sure what ’when it gets hot’ means. Do you wish to create an alias for

that?"

User: "Yes, create an alias for when the living room temperature is above 20 degrees."

Jarvis: "Sure, I’ve created an alias and setup your rule."

Aliases are intended as a stretch goal for this project and therefore should be seen as a proof

of concept of a sort of feature that can deeply increase the comfort of use of voice assistants for

IoT management.

3.5 Research Questions

Based on the use cases mentioned above, we establish that the research questions of this disserta-

tion are the following:

1. "How can delayed, period and repeating actions be implemented?": we aim to un-

derstand how features demonstrated by use cases 3 through 6 can be implemented in a

conversational bot. These are simple actions that can prove to be very helpful in a voice

assistant.

2. "Can we use contextual awareness for IoT management?": with examples such as use

cases 7 and 10 we believe that contextual awareness in a conversational assistant can be of

great help for the management of an IoT system. Contextual awareness can prevent the user

from having to repeat certain commands or phrases, increasing the system’s comfort of use.

3. "Can a conversational assistant handle event management?": this question focuses on

allowing interaction between different IoT devices through the use of a conversational IoT

assistant, as demonstrated by use case 8. With events, it becomes possible to have separate

devices depend on each other’s actions, which increases the complexity and capabilities of

the system as a whole.

4. "How can a conversational bot solve causality queries?": use cases 11 through 16 show-

case the many different ways a simple "How did that happen?" query can be answered.

Through this question we aim to explore different techniques on how to answer this sort of

queries.

36

Problem Statement

3.6 Validation

As stated above, the main purpose of this project is not only to provide users with management

features that aren’t yet available, but also to make the access to these features easier and simpler.

With that in mind, the successful implementation of this project will me measured in two ways:

On one hand, the project should be able to fulfill the use cases mentioned in Section 3.4.

These features are the main focus point of the project and the defining characteristic that makes

it innovative and useful. Therefore, each use case that is not fulfilled represents an opportunity

that was not properly explored, being a failure for the project. This list of use cases represents an

objective way to compare the project with the tools that already exist in terms of capability and

handled complexity.

On the other hand, a user study is the best way to evaluate the comfort of use of the project.

The main goal of the study is to understand if it is easier to perform the complex management use

cases using this project when compared to the other tools.

Together, both this measurements provide valuable insights on the supported complexity of

this project as well as its advantages in terms of simplicity and ease of use.

To further validate the success and quality of the project, as well as its scientific significance,

there will be attempts to submit related papers or articles to conferences such as Interact1, CASE2,

IEEE RO-MAN3 and ICARCV4.

3.7 Summary of Contributions

The expected contributions of this project reflect the answers to the research questions mentioned

in Section 3.5. Therefore, the contributions of this project all relate to the capabilities of the Jarvis

chatbot that are innovative and new in the domain of IoT management chatbots, which are:

1. Complex management commands such as delayed, period and repeating actions: as

current chatbots are limited to simple direct queries such as "turn on the light", Jarvis

presents more complex actions such as delayed or repeating actions.

2. "Take advantage of contextual awareness for quicker management": if a user has to

repeat commands to manage an IoT system, that task becomes repetitive. With the use of

contextual awareness, queries become interconnected and therefore, with Jarvis, commands

such as "change that to 5pm" work because the system understand they refer to previous

queries.

3. "Events for device interoperability": with current IoT chatbots it is impossible for a

thermostat to operate with a light because they are unaware of each other’s existence. Jarvis

1http://www.interact2017.org/
2http://case2018.org/
3http://ro-man2018.org/
4http://icarcv.org/2016

37

http://www.interact2017.org/
http://case2018.org/
http://ro-man2018.org/
http://icarcv.org/2016

Problem Statement

supports the existence of events, a mechanism through which a device’s actions can depend

on another device without them ever being connected. This is demonstrated by queries such

as "turn on the light when the chair pressure sensor is on".

4. "Answer queries about causality": neither current chatbots nor visual programming plat-

forms can tell the user why something happened. Chatbots simply don’t support it, and

VPPs require the user to look through all the configured rules in order to find the right one.

With Jarvis, all that’s required is to ask "why did the light turn on" for it to explain the rule

that caused that condition.

3.8 Conclusions

The purpose of this project is not to reimplement features that are already available in current

chatbots such as answering questions about the weather or celebrities. Instead, the focus is to

specialize in IoT management features that are not currently available and that can make IoT

easier to use, especially by users that are not familiar with technologies.

Through using a conversational interface, this project provides new and more complete ways to

manage an IoT system while retaining the comfort of natural language interactions. The possibility

of creating delayed or repeating rules, managing a system through events and the support for

causality queries make Jarvis a more complete solution for IoT management.

38

Chapter 4

Implementation

This chapter describes the entire solution developed for the problems mentioned in Chapter 3.

At first, the high-level overview of the developed solution is described, briefly going through

the technologies and methodologies chosen to make the entire system work.

Then, each of the software components is thoroughly analyzed so that the project’s architec-

ture and algorithms are clear and help to understand how the whole system is able to deliver the

proposed features. At this point, the software’s architecture and organization goes through a crit-

ical process to understand where it works well, where it doesn’t and where it could be improved

for real usage.

At the end, an example of how this project was tested and simulated will be presented so that

it is easy for anyone to replicate the project’s results with the given source code. This is an open

source project, that is available in its GitHub page1.

4.1 Overview of a Chatbot

When it comes to software components, there are a lot of ways to implement a regular chatbot

and each implementation may be very different in a lot of ways. However, since Dialogflow is

mentioned in many news sources as a reference for a top chatbot framework [Dav17] [Tec17], it

will be used in this document as a reference high-level structure for a chatbot.

Google Developer Expert Joe Birch wrote a great article on Medium that thoroughly describes

how a Dialogflow agent is generally structured (at the time of the writing of the article, Dialogflow

was still called API.AI) [Bir17]. The article explains a lot of key concepts of Dialogflow as well

as how to use them in the development of a bot, but it also explains how the fulfillment flow in a

bot works. That flow is shown in Figure 4.1.

1https://github.com/andrelago13/jarvis

39

https://github.com/andrelago13/jarvis

Implementation

Figure 4.1: Joe Birch’s visualization of the Dialogflow fulfillment

Birch’s diagram shows how Dialogflow’s parsed information can be sent to a fulfillment web-

hook. The backend that receives this data may do whatever it is supposed to do, be it store the data

or interact with other systems based on the data.

When it comes to IoT bots, like most software applications, there may be several possible ar-

chitectures for the system as a whole which depend a lot on the type of use and available resources

for the system. Figure 4.2 illustrates a possible architecture for a system intended to be used as a

driver for this project: a small number of IoT devices and a backend that receives under 1 QPM

on average, and around 20 QPM at peak usage.

• User Interface (UI) ~ the UI represents any tool the user may use to interact with the chat-

bot. When this is a text interface (Slack, Facebook Messenger, . . .), the only responsibility

of the UI is to send the text written by the user to the Language Processing Backend and

then present the backend’s response to the user. In other cases, such as the Google Assistant

or Alexa, the UI is also capable of voice interaction. In these cases, the device has Speech

Recognition capabilities, being able to translate the user’s audio to a string which is then

sent to the backend. The backend’s string response is then converted to audio through Text

Synthesization processes to make the interaction sound like a human.

• Dialogflow ~ the Dialogflow system is used to process the user query strings and understand

their intent. Once the intent is determined, a fulfillment request is sent to the Language

Processing Backend so that the proper IoT interactions may take place. The response from

the backend is then sent to the UI that initially sent the request to Dialogflow.

• Language Processing Backend ~ the language backend is responsible for making sure

the user query is correct and then perform the required actions. For example, if the query is

"turn on the living room light" the backend should communicate that action to the Messaging

Queue and return a message of success. In the opposite case, if the query is "turn on the

windows" the backend should understand this is an invalid query and return an appropriate

error message. The backend sees the messaging queue as a single point of contact to the

IoT System Controllers, which means it does not need to be concerned about the topology

or specific protocols of each controller.

• Messaging Queue ~ the messaging queue is not essencial to make this type of system work,

40

Implementation

Figure 4.2: Overview of a chatbot suitable for this project

but it helps in making the IoT Controller layer more scalable and immutable to the language

backend. In sum, the messaging queue is a system know by both the language backend and

all the IoT System Controllers. In it, there are messaging channels for each IoT device’s

property or action to which the clients publish or subscribe, depending on the intended use.

For example, the backend publishes on a device’s action channel to make it perform a certain

action, but the controller might publish to a sensor’s property channel to notify recipients of

a change in the sensor’s value. Because of the messaging queue, the communication with

IoT devices for the language backend regardless of whether there is a single controller or

multiple controllers spread across different network locations.

• IoT System Controllers ~ these are networked devices that write or receive messages from

the messaging queue respective to the IoT devices they control. These operate with low-

level technologies that interact with the actual IoT devices to perform any action or query.

This architecture is fitting for this project’s scope as it fits Dialogflow’s model and is able

to support the desired scale under which the project will be tested. However, the core part of

the entire system is the fulfillment backend, which could easily be scaled for larger systems with

minor changes to the data storage and IoT communication modules.

41

Implementation

Figure 4.3: Jarvis overall architectural components

4.2 Solution Overview

As mentioned in Section 3.2, the main purpose of the developed chatbot is to not only make it

easier to use features of already available consumer products, but also to enable new functionalities

that aren’t yet available.

Figure 4.3 illustrates the chosen architecture for Jarvis. It follows the same overall structure

shown in Figure 4.2, specifying which technologies were used for each component.

When it comes to the NLP engine, Dialogflow was chosen due to the fact that not only is it

mentioned in several articles and lists for top bot frameworks [Dav17] [Tec17], but also because

it integrates with multiple UIs. Dialogflow has built-in integrations 2 with UIs such as the Google

Assistant, Slack or Facebook Messenger, which makes it easy to support both text and voice

interactions with users.

Another interesting feature of Dialogflow is ML expansion3 (Machine Learning expansion).

This means that the provided sample user queries are used with ML models to generate similar

user queries, therefore increasing the range of accepted queries with similar structure and words.

Together, these characteristics make Dialogflow very useful in creating the top layer of Jarvis’

architecture since it provides both the UI and NLP engine.

The result of the processing done by Dialogflow’s engine is then sent to the Jarvis Backend for

further processing. This backend component is a Java EE4 server that provides a simple REST API

2https://dialogflow.com/docs/integrations/
3https://dialogflow.com/docs/training
4http://www.oracle.com/technetwork/java/javaee/overview/index.html

42

https://dialogflow.com/docs/integrations/
https://dialogflow.com/docs/training
http://www.oracle.com/technetwork/java/javaee/overview/index.html

Implementation

to which Dialogflow sends its requests. This backend then processes the parsed input generated

by DialogFlow in order to understand what is the user’s intent and how it should act upon that

request. If the request requires actions to be made to the IoT system, the backend sends a message

to a messaging system that will then communicate with the IoT devices. On the other hand, if the

user request requires a database or system query, then the backend merely retrieves the information

it requires so that it can provide the user with a response. In the scope of this project, this backend

can be considered a single point of failure of the system. However, because it is a stateless service,

it could easily be scaled into a more reliable system.

To persist the data relative to both the IoT devices and the user actions, the backend uses a

MongoDB5 database. This was the chosen technology because it is the most popular document

store database system 6 and, because of having a key-document structure, is a great fit for storing

JSON objects that represent the IoT devices (as seen on Section 2.3.4).

The messaging queue acts as an intermediate system to provide communication between the

Jarvis backend and the IoT controllers. For this component, RabbitMQ7 was the chosen tech-

nology because it uses scalable techniques for creating a distributed messaging system. Also,

RabbitMQ uses communication channels 8 to distribute messages from publishers to consumers,

which is ideal for the type of exchanges that are described in the sections below. This queue is a

simple yet very important part of the system because it allows the backend to be unaware of the

location or architecture of the IoT controllers. Instead, the backend communicates to a single sys-

tem that may be connected to one or many controllers. Although it was not used for this project,

this wouldn’t be considered a single point of failure of the system because it is also possible to

create a distributed RabbitMQ broker9.

On the final end of the entire system are the IoT System Controllers. These are light Python

scripts that must run on networked devices (e.g. Raspberry Pis) that are connected via hardware to

the actual IoT devices in order to control them or be able to read their status. These controllers are

clients of the messaging queue so that they read the actions published by the backend and publish

the changes in the status of the devices.

Combined, these technologies allow Jarvis to perform the use cases mentioned in Section 3.4,

and each of them is thoroughly detailed and explained in the following sections.

4.3 Component Overview

Throughout the following sub-sections each of the software components pictured in Figure 4.3 are

thoroughly described. By the end of this section, each of the components should be individually

understood as the assembly of the entire system is detailed in the following section.

5https://www.mongodb.com/
6According to DB-Engines’ ranking of almost 300 systems: https://db-engines.com/en/ranking
7https://www.rabbitmq.com/
8https://www.rabbitmq.com/tutorials/amqp-concepts.html
9https://www.rabbitmq.com/distributed.html

43

https://www.mongodb.com/
https://db-engines.com/en/ranking
https://www.rabbitmq.com/
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/distributed.html

Implementation

Figure 4.4: Slack integration enabled in Dialogflow’s integrations panel

4.3.1 User Interface

The user interface is the means through which the user interacts with Jarvis. Due to the use of

DialogFlow, there is no need to create specific interfaces for Jarvis as this platform provides built-

in integration with multiple popular interfaces. In this case, the main interfaces used were Slack

and the Google Assistant so that both text and voice interfaces were covered.

Slack10 is a very powerful team-communication tool used worldwide for team collaboration

and efficient communication. Slack provides direct communication with individuals or groups

of individuals, but also channeled conversations. In this case, users may create public or private

messaging channels in which they can write themed content for other members of the channels to

read.

Slack’s API11 allows developers to create bots that talk to users in a natural language fashion.

This is already used by many applications available online12. Dialogflow uses this same API13 to

create Slack bots through which Dialogflow bots communicate. This integration allows users to

create bots with Dialogflow that are then easily integrated with Slack with the click of a button.

To set up the Slack integration two steps are required. First, through DialogFlow’s integrations

panel, shown in Figure 4.4, the user must enable the integration toggle. Then, a web page allows

the user to specify a Slack domain where the bot should be made available.

Once this integration is setup, it is possible to chat with the bot via Slack’s UI the same way

a user would chat with another user. Figure 4.5 illustrates how a conversation with the bot would

look like using Slack’s Android app14.

10https://slack.com/
11https://api.slack.com/
12https://slack.com/apps/category/At0MQP5BEF-bots
13https://dialogflow.com/docs/integrations/slack
14Slack App version 2.59.0 running on a Google Pixel phone with Android P Beta

44

https://slack.com/
https://api.slack.com/
https://slack.com/apps/category/At0MQP5BEF-bots
https://dialogflow.com/docs/integrations/slack

Implementation

Figure 4.5: Chat with Jarvis bot using Dialogflow’s Slack integration (Android app version 2.61.0)

Slack’s UI was also used for debugging the project. Through the Slack API developer console

it is possible to generate URLs to which a system may send POST requests with messages that are

then displayed in a specific channel of a specific Slack domain. This tool allowed Jarvis debug

messages to be sent to a Slack channel so that interested parties may be notified every time an

instance of the Jarvis backend is launched, when an unexpected exception happens or if there is a

problem with the database connection.

The integration with the Google Assistant is also made easily due to Dialogflow’s built-in

integration system. In fact, this integration is already enabled by default and is even prepared

for testing live changes made to the Dialogflow bot. To use it, all the user needs to do is click

the "Google Assistant" section of the Dialogflow integrations panel already shown in Figure 4.4

and then the popup of Figure 4.6 will be shown. In this popup, the "test" button takes the user

to a simulator where he can simulate the interactions as if they were being made in a device

with the Google Assistant, which includes text, voice and gestures. The "manage assistant app"

button in that same popup allows the user to make the necessary configurations to take the bot into

production.

Once this configuration is complete, the user may use other Google Assistant enabled devices

with his account to communicate with the bot, only needing to start with a query such as "Hey

Google, talk to Jarvis". Using the simulator mentioned above, a chat with the Assistant looks like

45

Implementation

Figure 4.6: Google Assistant configuration popup in Dialogflow’s integrations panel

what’s shown in Figure 4.7. This UI is used on smartphones even if the interaction is made using

the voice, so that the user knows what the system understood. On the right side of the figure the

simulator shows the user queries, followed by the bot’s responses on the left. On the bottom there

is a panel to type text queries or enable the microphone to speak voice queries.

Regardless of which of these interfaces is used, the strings representing the exact user query

are sent from the interface to DialogFlow’s backend. Because Dialogflow is being used, there is

no need to implement any Speech Recognition techniques because they are already implemented.

This means that Dialogflow’s backend receives raw strings that represent the user queries, which

are then analyzed using Natural Language Processing techniques.

4.3.2 Dialogflow Backend

This system receives the user queries from the different user interfaces and parses them into ma-

chine understandable code.

Upon receiving a request, there are two things DialogFlow can do: either respond with an

automatic response or send the parsed request to a fulfillment backend (in this case, the Jarvis

Backend) which will then process the request and return the desired response.

There are a few key concepts that are important to understand in Dialogflow in order to make

it operate the best possible way. All the information below can be found in the official Dialogflow

46

Implementation

Figure 4.7: Chat with Jarvis using Google Assistant’s online simulator

documentation15.

• Fulfillment Backend: a secondary user-created server that provides a REST API for Di-

alogflow to send processed messages in order to receive the intended response to the user.

This backend receives the result of the processing done by Dialogflow, being able to perform

other actions that Dialogflow can’t perform (e.g. interact with IoT devices).

• Request: plain string that represents a user query. An example would be “turn on the living

room light”.

• Entity: symbol that can be represented by different literal strings. As an example, there may

be an entity called “toggleable-device” which may be represented by “living room light” or

“kitchen light”. Additionally, entities may be represented by other entities, which means

that an entity “device” could be represented by the entity “toggleable-device” which then

may be represented by certain strings. Entities are represented in DialogFlow with the use

of the “@” symbol (“@device”). The purpose of entities is to act as arguments of a request,

as will be seen further in this section.

• System entity: a system entity is a regular entity that instead of being manually defined

15https://dialogflow.com/docs/getting-started/basics

47

https://dialogflow.com/docs/getting-started/basics

Implementation

by the user is already defined by the system. There are multiple useful system entities to

represent values such as time, temperature, color or currency.

• Intent: represents a set of example requests that may contain multiple entities. Intents

are defined by the user and, ideally, each represents one type of query by the user. As an

example, an intent named “Turn on/off device” may be represented by the requests “turn

the @device on” and “turn the @device off”. In this case, if the request is “turn the kitchen

light on”, the DialogFlow engine will understand that “@device” is represented by “kitchen

light” and provide that information to the fulfillment backend. Additionally, in the example

“on” and “off” could also be represented by an entity “@on-off-status”. Also note that

using a backend for fulfillment is optional and defined manually for each intent.

• Context: contexts are used to allow intents or requests to depend on previous instances,

enabling for the creation of context-aware interactions. A context is defined by a simple

string (e.g. “device-choice”) and can be used as input and/or output for an intent. A context

has a lifespan which determines for how many consecutive requests it will be active unless

otherwise specified by the fulfillment backend. If an intent has a context as output, the

following requests will carry that context in their parameters. On the other hand, if an intent

has a context as input, a request will only be parsed into that intent if it carries that context in

its parameters (e.g. if a previous intent had that same context as output). Contexts may also

carry parameters that help in processing a follow-up request. The parameters are a simple

list of key-value pairs where the key must always be a string. Whether or not a context is

the output of an intent can either be pre-defined in DialogFlow or defined by the fulfillment

backend. An example of a use of a context would be if a user query is "Who is LeBron

James?". In this case, the system replies with "LeBron James is a professional basketball

player" and stores that information in the context parameters. That way, if the following

request is "How tall is he?" the system can use the context parameters to know that "he"

represents "LeBron James" and therefore can answer the request properly.

When it comes to entities and intents, DialogFlow provides an optional useful feature called

Machine Learning (ML) expansion. If the user enables this feature, DialogFlow will use ML to

look for string values that are similar to those defined by the user while still keeping the same

meaning. For example, if this feature is enabled, if the user defined “turn on the light” as an

intent, DialogFlow could recognize “turn the light on” as an instance of the same intent.

In the case of Jarvis, there are multiple intents, entities and contexts defined to make the entire

system work. Figure 4.8 illustrates the main entities defined for Jarvis in Dialogflow. As it is

shown, entities may be used by other entities and can also contain text. In the case of "@action-

on-off", the entity is defined by a text similar to a user request and contains two other entities.

Multiple intents were defined in order to represent the multiple supported user queries and

make use of the entities shown in Figure 4.8. Below is a list of the main intents defined as well

as their relevant details. Note that when entities are used in intents, each entity must be given an

alias name that is used for that entity’s representation in the JSON that is sent to the fulfillment

48

Implementation

Figure 4.8: Main entities defined in Jarvis’ Dialogflow project

backend. Because of that, if an intent is defined by "@entity:alias", "entity" is the entity’s name

and "alias" is the name that should be used in the JSON (as is seen further in this section).

• Direct Action

– Usage: single direct action that happens instantly. The example JSON provided below

is an example of when the specified device is ambiguous (there may be several "light"

devices), and therefore contains a context that allows the follow-up request to specify

the device.

– Definition:

∗ "@action:action"

– Possible output context:

∗ "confirm-thing-choice" (if specified device is amiguous)

– Example:

∗ "Turn on the light."

– Generated JSON: Appendix A, Listing A.1

• Delayed Action

– Usage: single delayed action that happens after a certain time period.

– Definition:

∗ "@time:time @action:action"

∗ "@action:action @time:time"

– Example:

49

Implementation

∗ "Turn the light on tomorrow at 5pm"

– Generated JSON: Appendix A, Listing A.2

• Confirm Thing Choice

– Usage: used when the device specified in an action query is unclear or ambiguous, so

that the user can specify the device he wants to choose. An example of the system’s

response previous to this query would be "Do you mean the living room light or bed-

room light?". Note that because this intent has an input context, it may only be used if

that context was enabled by a previous query. Also note that the example provided in

the appendix does not have a context because it is intentionally reset by the fulfillment

backend as the action can now be considered complete.

– Definition:

∗ "@thing:thing"

∗ "the @sys.ordinal:ordinal"

– Input context: "confirm-thing-choice"

– Examples:

∗ "The third."

∗ "The bedroom light."

– Generated JSON: Appendix A, Listing A.3

• Repeating Intent

– Usage: used for defining a rule for an action that should be performed everyday.

– Definition:

∗ "@action:action @periodtime:periodtime"

– Example:

∗ "Turn on the light everyday at 5pm"

– Generated JSON: Appendix A, Listing A.4

• Event Intent

– Usage: creates an action that is performed upon a certain event, such as an activity of

another device or a change of a device’s status.

– Definition:

∗ "@action:action when @event:event"

– Example:

∗ "Turn on the bedroom light when the living room light turns off"

– Generated JSON: Appendix A, Listing A.5

• Why did something happen?

50

Implementation

– Usage: used when the user wants to know why a certain condition is true or why a

certain action took place.

– Definition:

∗ "Why did @action-past:action-past ?"

∗ "Why has @action-past:action-past ?"

– Example:

∗ "Why did the living room light turn on?"

– Generated JSON: Appendix A, Listing A.6

• Alias Intent

– Usage: used for the user to create an action/event that associates to a custom phrase.

– Definition:

∗ "make an alias for @sys.any:alias"

∗ "create an alias for @sys.any:alias"

– Example:

∗ "Create an alias for turn up the heat"

– Generated JSON: Appendix A, Listing A.7

• Alias Intent | Set Alias Type

– Usage: as the follow-up request to the Alias Intent request, this is used to confirm

what the alias being created should represent.

– Definition:

∗ "execute @action:action"

∗ "do @action:action"

∗ "when @event:event"

– Example:

∗ "Execute turn on the light"

– Generated JSON: Appendix A, Listing A.8

• Rules Defined

– Usage: used for the user to know which rules are defined for a device, and possibly

change them.

– Definition:

∗ "which rules have i defined for the @thing:thing"

∗ "what rules have i defined for the @thing:thing"

∗ "tell me the rules defined for the @thing:thing"

51

Implementation

∗ "tell me the rules for the @thing:thing"

– Example:

∗ "What rules are defined for the living room light?"

– Generated JSON: Appendix A, Listing A.9

• Rules Defined | Change Single Rule

– Usage: possible follow up to the query from the Rules Defined intent. With this query,

the user may change a rule that is active for a certain device by specifying the change

on the rule.

– Definition:

∗ "make that when @event:event"

∗ "change that to when @event:event"

– Example:

∗ "Change that to when the bedroom light turns off."

– Generated JSON: Appendix A, Listing A.10

• Cancel Command

– Usage: used to cancel the last user command. If that was a direct action command,

the action is undone. If the command was a rule command, the rule is cancelled. Note

that this cancellation requires confirmation with the follow up request in the Confirm

Cancel intent.

– Definition:

∗ "Cancel my last command"

– Output context:

∗ "confirm-cancel-event"

– Example:

∗ "Cancel my last command."

– Generated JSON: Appendix A, Listing A.11

• Confirm Cancel

– Usage: used to confirm the cancelled command mentioned in the Cancel Command

intent.

– Definition:

∗ "Sure"

∗ "Yes"

– Input context:

52

Implementation

∗ "confirm-cancel-event"

– Example:

∗ "Yes"

– Generated JSON: Appendix A, Listing A.12

The meaning of each field in the JSON objects generated by Dialogflow is described in the

official documentation 16, but below is a summarized explanation of each of them:

• ’result’: contains the result of processing the query’s entities. In this field it is possible to

find the exact user request (“resolvedQuery”) as well as the present entities along with their

values (“parameters”).

• ’contexts’: array of contexts carried as output from previous requests.

• ’metadata’: this field contains information relative to the intent the DialogFlow engined

associated the query to. Both “intentId” and “intentName” are useful for the Jarvis backend

so that it knows what to do with the query parameters. In other words, the metadata specifies

the intended action or query that the backend should perform.

• ’fulfillment’: specifies a list of “messages” that the DialogFlow engine provides as default

answers to the query. These are usually overridden by the Jarvis backend to match the

query’s result.

All the intents above have fulfillment enabled, which means that the JSON objects listed in

Appendix A are sent to the Jarvis backend which responds with the response it wants the UI to

present to the user. The response must follow the format specified by Dialogflow’s documenta-

tion17. Note that after the project began, Dialogflow has released a newer version of its API18 (V2)

but this project uses the older version (V1).

4.3.3 Jarvis Backend

The Jarvis backend is a JavaEE19 application that provides a REST API to which Dialogflow

requests are sent via a POST URL to compute the replies to user queries as well as perform the

required actions on IoT devices.

For each of the intents mentioned in Section 4.3.2 the backend has an equivalent class that is

responsible for parsing the request and generating a response. Upon receiving a request, each of

the intent classes is responsible for validating the request parameters, to make sure that not only

all required parameters are present (e.g. device names or desired action) but also that the specified

devices, if any, is clear and unique. If the request has errors, an appropriate and explanatory

response should be returned. If the parameters are valid but the intended device is unclear (e.g.

user wants to turn on the "light" but there is a "living room light" and a "bedroom light"), the

16https://dialogflow.com/docs/fulfillment
17https://dialogflow.com/docs/fulfillment
18https://dialogflow.com/docs/reference/v2-agent-setup
19http://www.oracle.com/technetwork/java/javaee/overview/index.html

53

https://dialogflow.com/docs/fulfillment
https://dialogflow.com/docs/fulfillment
https://dialogflow.com/docs/reference/v2-agent-setup
http://www.oracle.com/technetwork/java/javaee/overview/index.html

Implementation

Figure 4.9: Sample activity diagram for the parsing of an intent

device specification context should be added and the response should ask the user to specify the

desired device.

Figure 4.9 demonstrates a sample activity flow for one of the intent classes, in this case, given

the query "Turn on the light.".

To perform the logs of commands and user commands, all actions that can be performed are

represented as commands, therefore using the Command20 design pattern. Each command has

"execute" and "undo", implemented in a way that calling "undo" after "execute" should return the

system to its original state. This pattern can be used to represent both user commands and device

commands. The backend also contains an engine that is responsible for calling the execute and

undo methods of the commands, so that their logging is centralized in a single class.

This engine is a crucial part of the system as it centralizes the main methods related to the

functioning of the whole system, such as command execution, logging and scheduling or database

initialization and population.

With most intents, such as direct actions or "why did something happen?" queries, the effects

are immediate and require no delayed activity from the backend, except for period actions, rules

20http://w3sdesign.com/

54

http://w3sdesign.com/

Implementation

and events. These require a special engineering so that they can perform actions on the backend

without the need of a request to trigger them.

As mentioned in Section 4.3.2, a period action is an action that must be done and then undone

after a certain period of time. This can happen as a result of a query such as "Turn on the light from

4pm to 5pm". As a result of this sort of query, a command is generated. This command includes

an implementation of a state machine in which the state tells whether the first action (4pm) was

not executed yet, the first action was executed but the second (5pm) wasn’t or both have been

executed. Therefore, when the command is executed, it schedules a Java thread to be run at 4pm,

at which time the command is executed again, changing its state and executing the 4pm action.

At this point, a second thread is scheduled for 5pm to execute the second action and move the

command to its final state. The use of the Command pattern is useful as it abstracts from the

engine the notion of direct or delayed commands.

The same concept is used for system rules, which are used for queries such as "Turn on the

light everyday at 5pm". In this case, at first, a thread is scheduled for the following "5pm" to

execute the command for the first time. From then on, everytime the command is executed it

schedules a new thread for the following 5pm, but never leaves this state of rescheduling. The

only way to cancel this action is to call the "undo" method which cancels the currently scheduled

thread.

This thread scheduling mechanism does not work for events because there is not a known time

at which these are executed. Events are a result of queries such as "Turn on the light when the

sensor is activated". In this case, it is necessary for the system to listen to the messaging queues

of the device actions and states. As will be mentioned in Section 4.3.5, each device has messaging

queues that relate to its actions and state changes. Messages are published in the latter by the

device controller everytime its state is changed, which means that listening to those queues allows

a listener to be notified of state changes on the device.

On the backend, it wouldn’t make sense to create a new listener for every event that uses

a certain condition as that would put more load on the messaging queue layer of the backend.

Instead, a different mechanism is used. Upon startup of the backend, a listener is created for

each event queue of each device. These are simple classes that are responsible for receiving

messages published in those queues and notifying the Jarvis backend engine that those messages

were received.

The engine then uses the Observer21 design pattern to allow commands to add observers to

these messages. For example, the query "Turn on the light when the sensor is activated" would

add an observer that would look for messages on the sensor’s event queue with the value "on".

Because of that, the engine would notify this observer of all messages on that queue leading to

the event being executed. The advantage of this technique is that it allows the engine to be a

centralized point through which all messages go through and with which all observers must be

registered.

21http://w3sdesign.com/

55

http://w3sdesign.com/

Implementation

Other patterns are used across the solution such as Builder (for creating IoT device classes),

Singleton (for database and messaging queue networked connections) and Adapter (for abstracting

the networked interactions with the messaging queue for the IoT devices).

One of the main features of this project are the causality queries, the requests through which

the user asks why something happened.

To implement this, the command classes also have a method that determines whether or not

they could have caused a certain condition to be true. Because of that, a simple solution to this

problem is to, given the queried condition, look through the log of commands and user commands

to understand what could have caused that condition.

However, this approach does not work for all the scenarios mentioned in Section 3.4. For

example, Use Case 12 demonstrates a case where, at the moment of the query, multiple rules may

have caused the condition to be true. In these cases, it is not enough to return the latest logged

command that could cause the queried condition. Instead, there are two possible approaches:

• Return earliest possible cause: if multiple rules/events could have caused the queried

condition to be true, choose the one that happened first as that was the cause for the condition

to be true in the first place.

• Use an heuristic to calculate most relevant cause: instead of assuming the best answer is

the earliest cause, use an heuristic to evaluate all the possible causes in terms of relevance

and choose the most relevant. This calculation can use the nature of the cause (caused by

user vs. caused by rule), order by which causes happened, among others.

In the context of this project the implemented solution was to use the earliest possible cause,

but it is important to mention that the alternative would be just as valid and possibly more useful

to the user.

It is also possible that a chain of interconnected rules caused the queried condition to be true, as

is demosntrated by use cases 13 and 14. In this case, it is possible to either reply with the complete

chain of events, the latest possible cause (Use Case 13) or engage in a conversation through which

the user can explore the full chain of events chronologically (Use Case 14).

In the context of this project the solution uses the approach of returning the latest possible

cause. However, with the mindset of creating a helpful and fully capable bot, the best approach

would be to engage in a conversation with the user, not only because it would allow the user to

obtain more information at his own pace but also because it would be possible to make changes

to the rules as he goes. For example, if the user is having that conversation and he decides to

change one of the rules, he can just interrupt the conversation to modify the rule. With the current

approach, that is only possible if the answer contains a single rule or cause to the condition which

in reality is not always the case.

All the techniques mentioned above allow the backend to fulfill all the intents that were defined

in Dialogflow and therefore allow for the management of an IoT system. To use these features in a

production environment, the entire backend system is compiled into a Web Application Resource

56

Implementation

file (.war) which can then be deployed in a regular server equipped with a webserver such as

Glassfish22.

4.3.4 Database

The database has a simple setup yet is very useful for the Jarvis backend to operate. It is a Mon-

goDB23 document store database that runs on Mongo’s official Docker image24 for easy setup and

deployment.

The main purpose of the database is for the backend to store the list of devices and their

capabilities in the same format specified by Mozilla’s Web Thing API, mentioned in Section 2.3.4.

This is essencial in the context of this project since there is no discovery system that dinamically

provides a list of available devices as they are added or removed from the overall system. The

objects that represent the IoT devices are stored in a collection named "things".

The database is also used to keep a log of user commands (collection "userCommands") and

device commands (collection "commands"). User commands represent instructions given by the

user, while device commands are actual commands executed on devices. For example, if a user

says "turn on the light from 5pm to 6pm" this generates a user command and two device commands

(for 5pm and 6pm). The examples for user commands and device commands are available in

Appendix B in listings B.1 and B.2, respectively.

Finally, the database is used to store a log of the events that have been triggered. These

are the events relative to system rules defined by user requests. These are stored in collection

"eventHistory", as can be seen in Listing B.3 from Appendix B

4.3.5 Messaging Queue

The messaging queue acts as a middle-man for the communication between the Jarvis backend

and the IoT controllers. This allows for the backend to be completely unaware of how many

controllers there are, where they are located, how to reach them or how to talk to them. Instead,

it has a single point of communication to know, the messaging queue, and can be abstracted from

everything else.

This is especially useful if there are multiple IoT controllers that may be in different locations.

Without the messaging queue, if the backend needed to interact with a device it would not only

have to know where each of the controllers were but also which devices were connected to each

of them. This does not scale well since having a change in the system’s topology would require a

change in the backend software. Instead, by using the queue the backend communicates only with

it, giving the controllers the responsibility of subscribing to the correct channels in the queue.

22https://javaee.github.io/glassfish/
23https://www.mongodb.com/
24https://hub.docker.com/_/mongo/

57

https://javaee.github.io/glassfish/
https://www.mongodb.com/
https://hub.docker.com/_/mongo/

Implementation

The queue is implemented with a simple RabbitMQ25 Docker image26, which allows for a

quick and easy setup in any server equipped with Docker. RabbitMQ is a messaging framework

that supports several protocols such as AMQP, STOMP and MQTT. Through it, clients can sub-

scribe or publish to messaging channels defined by a URL-like name (e.g. “/house/kitchen”) that

can have different properties in regard to how they operate, i.e. if messages are persisted, if they

are broadcast to all subscribers or delivered to only a single subscriber, among others.

Once the queue is running, both the Jarvis backend and IoT controllers can connect to it with

the configured credentials and IP address.

As mentioned in Section 2.3.4, IoT devices can present URLs for actions (URLs to which sent

requests trigger some sort of action on the device), events (URLs from which other devices can

read messages that convey the information that certain event happened) or properties (URLs from

which other devices can read property changes on the device). Based on thes edifferent URLs, the

interactions may be bi-directional by using RabbitMQ:

• Actions: if the backend intends to perform an action on an IoT device, it should write the

action’s value of that device’s action URL (e.g. write “on” to “/house/living room/living

room light”). On the other hand, that device’s IoT controller should subscribe to that same

URL and act accordingly to the messages it receives there.

• Events: if the backend intents to be notified of changes on a device’s property (e.g. a sen-

sor’s value), it should listen to messages from the device’s property URL (e.g. “/house/living

room/temperature sensor/temperature”) to receive the changes in the format of messages.

On the other hand, that sensor’s IoT controller should be responsible for publishing that

event (in this case, property value change) on that same URL.

4.3.6 IoT System Controllers

Since this component is not under the scope of the project, as was mentioned above in Section 3.3,

its architecture or technologies are not relevant for the purpose of evaluating this project. However,

since it was important in the project’s development, it will be described in this sub-section.

The IoT controllers are middleware devices that send and receive messages from the messaging

queue and deliver them to the appropriate devices. For the purpose of testing this project, each

controller is represented by a RaspberryPi that runs a Python script to write and read messages

to/from the messaging queue and interact with the IoT devices accordingly.

There are two things that these controllers do. On one hand, they perform actions on the de-

vices: if a controller is responsible for turning on/off the kitchen light, it will subscribe to the

“/house/kitchen/kitchen light” queue and turn on or off that light if it receives the messages “on”

or “off”, respectively. On the other hand, controllers can notify the queue of changes to device

status if, for example, a binary sensor or a multivalued sensor changes its value. An example

25https://www.rabbitmq.com/
26https://docs.docker.com/samples/library/rabbitmq/

58

https://www.rabbitmq.com/
https://docs.docker.com/samples/library/rabbitmq/

Implementation

of this would be a controller for a kitchen temperature sensor publishing messages to “/house/k-

itchen/kitchen temperature sensor” publishing the message “21” if the sensor’s value changed to

21 degrees.

1 import RPi.GPIO as GPIO

2 import time

3 import pika

4

5 pin_1 = 18

6 pin_2 = 17

7 host = ’andrelago.eu’

8 username = ’rabbitmq’

9 password = ’rabbitmq’

10 bedroom_queue = ’/house/bedroom_light/actions’

11 living_room_queue = ’/house/living_room_light/actions’

12

13 def initGPIO ():

14 GPIO.setmode(GPIO.BCM)

15 GPIO.setwarnings(False)

16 GPIO.setup(pin_1,GPIO.OUT)

17 GPIO.setup(pin_2,GPIO.OUT)

18

19 def ledOn_1 ():

20 GPIO.output(pin_1, GPIO.HIGH)

21 print "LED 1 on"

22

23 def ledOff_1 ():

24 GPIO.output(pin_1, GPIO.LOW)

25 print "LED 1 off"

26

27 def ledOn_2 ():

28 GPIO.output(pin_2, GPIO.HIGH)

29 print "LED 2 on"

30

31 def ledOff_2 ():

32 GPIO.output(pin_2, GPIO.LOW)

33 print "LED 2 off"

34

35 initGPIO()

36

59

Implementation

37 connection = pika.BlockingConnection(pika.ConnectionParameters(

host, credentials=pika.PlainCredentials(username=username,

password=password)))

38 channel = connection.channel()

39 channel.queue_declare(queue=bedroom_queue)

40 channel.queue_declare(queue=living_room_queue)

41

42 ####################################

43 ######### RECEIVE MESSAGE ##########

44 ####################################

45

46 def callback_bedroom(ch, method, properties, body):

47 print(" [x] Received %r" % body)

48 if body == ’on’:

49 ledOn_1()

50 elif body == ’off’:

51 ledOff_1()

52 else:

53 print("Unrecognized message")

54

55 def callback_living_room(ch, method, properties, body):

56 print(" [x] Received %r" % body)

57 if body == ’on’:

58 ledOn_2()

59 elif body == ’off’:

60 ledOff_2()

61 else:

62 print("Unrecognized message")

63

64 channel.basic_consume(callback_bedroom, queue=bedroom_queue,

no_ack=True)

65 channel.basic_consume(callback_living_room, queue=

living_room_queue, no_ack=True)

66 print(’ [*] Waiting for messages. To exit press CTRL+C’)

67 channel.start_consuming()

Listing 4.1: Python code used by one of the Jarvis IoT controllers

This controller is used to control two lights, living room light and bedroom light. At the

beginning of the code, the pins controlling each of them are defined, as well as the variables that

allow the connection to the messaging queue. Then, after defining the methods to turn on or off

60

Implementation

the lights as well as initiating the connection to the queue, two consumer callbacks are defined for

callback_bedroom and callback_living_room. These callbacks are later setup to be called when

messages are received from both the living room and bedroom light actions URLs (defined at the

beginning of the file). When messages with the value "on" are received, the callbacks turn on the

respective LED, and the opposite is done if the message is "off".

Therefore, with this setup, if the Jarvis backend writes on/off messages to the action queues of

either the bedroom light or living room light, this controller will perform that action on the actual

hardware devices. Note that the backend does not communicate directly with the controller, which

means that if it was intended to move one of the lights to a separate controller there would be no

need to perform changes on the backend.

4.4 Assembling the Solution

By assembling the entire solution it is possible to obtain a voice or text chatbot that manages a

diverse and possibly distributed smart space with natural language commands.

The User Interface is enabled by the integration of Dialogflow, as explained in Section 4.3.2.

The Jarvis backend, database and messaging queue must be able to be connected to each

other and the IoT controllers must also be able to reach the messaging queue, which means some

sort of networked server is required. In the case of this project, the backend, database and mes-

saging queue are setup in a DigitalOcean27 server with domain associated with it (in this case,

andrelago.eu).

Listing 4.2 presents a sample docker-compose.yml file that allows the backend, database and

messaging queue components of the system to be deployed in a server equipped with Docker28

with a single bash command.

1 version: ’3’

2

3 services:

4 backend:

5 container_name: "jarvis_backend"

6 image: oracle/glassfish:5.0

7 ports:

8 - "3001:8080"

9 - "4848:4848"

10 volumes:

11 - ./jarvis-backend:/jarvis-backend

12 - ./jarvis-backend/out/artifacts/jarvis_backend_war:/

glassfish5/glassfish/domains/domain1/autodeploy

27https://www.digitalocean.com/
28https://www.docker.com/

61

https://www.digitalocean.com/
https://www.docker.com/

Implementation

13 entrypoint: asadmin start-domain --verbose

14 links:

15 - db

16 - "rabbit:rabbit"

17 depends_on:

18 - db

19 - rabbit

20

21 db:

22 image: mongo:3.2

23 container_name: "mongodb"

24 environment:

25 - MONGO_DATA_DIR=/data/db

26 - MONGO_LOG_DIR=/dev/null

27 - MONGO_INITDB_ROOT_USERNAME=${MONGO_USR}

28 - MONGO_INITDB_ROOT_PASSWORD=${MONGO_PWD}

29 volumes:

30 - db-data:/data/db

31 ports:

32 - 27017:27017

33 command: mongod --smallfiles --logpath=/dev/null --auth

34

35 rabbit:

36 image: "rabbitmq:3-management"

37 hostname: "rabbit1"

38 environment:

39 RABBITMQ_DEFAULT_USER: ${RABBIT_USR}

40 RABBITMQ_DEFAULT_PASS: ${RABBIT_PWD}

41 ports:

42 - "15672:15672"

43 - "5672:5672"

44 volumes:

45 - "./rabbitmq/enabled_plugins:/etc/rabbitmq/enabled_plugins"

46

47 volumes:

48 db-data:

Listing 4.2: Example docker-compose.yml file which deploys several Jarvis components

62

Implementation

Docker Compose29 is a tool for configuring and running multiple Docker applications that

may be networked or depend on each other. Docker containers are virtual machines that may be

configured to run different operating systems and have installed different applications or technolo-

gies. The syntax of Docker Compose files is thoroughly explained in its official documentation30,

but below is a brief explanation of the values and content shown in Listing 4.2.

The file declares the services "backend", "db" and "rabbit" which respectively represent the

Jarvis backend, the Mongo database and the RabbitMQ. The backend uses the Docker image for

the Glassfish31 web server. The file also exposes the required ports for the server to be exposed to

the web and declares it to be networked with the remaining services. Finally, the file declares that

upon launch the Jarvis ".war" file must be copied into the container and executed at the start. This

service ensures that the Jarvis JavaEE server is properly launched.

The following service, "db", configures the Mongo database. The file specifies the database

credentials and exposes the required ports.

Finally, the file declares the "rabbit" service which configures the messaging queue with the

appropriate credentials and ports.

Because the server is configured with a public domain, all the services mentioned above can

be accessed through that same domain.

Because of this Docker Compose file, all that is required to launch the backend, database and

messaging queue is to download the project code onto the desired server and run "docker-compose

up" at the root of the project.

Once this is done, it is also required to add the server’s URL on the Dialogflow settings panel

so that Dialogflow is able to reach the fulfillment backend.

To complete the setup of the project it is necessary to setup the IoT controllers. Because they

were developed as Python scripts, all that is necessary is to run the scripts on the background of a

device such as a RaspberryPi that is connected to the internet.

Figure 4.10 illustrates what the complete flow of a query is in the assembled system.

Once the query is entered or spoken into the User Interface, it is sent to the Dialogflow backend

for Natural Language Processing. There, the query is associated with an intent and its parameters

(device name, intended action, ...) are parsed into a JSON object that contains all the information

in the query in a language understandable by an application. That JSON is sent to a fulfillment

backend, the Jarvis backend, where the parameters of the query are fully validated. If the param-

eters are valid, the user command is logged into the database and a device command is generated.

That device command is also logged and then executed, to actually perform the desired action on

the physical device(s). Simultaneously, the result is returned to Dialogflow in the form of a JSON

that contains the desired response to be provided to the UI. Dialogflow then sends this reply to the

UI where it is spoken or shown to the user.

29https://docs.docker.com/compose/
30https://docs.docker.com/compose/compose-file/
31https://hub.docker.com/r/oracle/glassfish/

63

https://docs.docker.com/compose/
https://docs.docker.com/compose/compose-file/
https://hub.docker.com/r/oracle/glassfish/

Implementation

Figure 4.10: Sequence diagram for a sample query in the assembled system

4.5 Conclusions

Jarvis takes advantages of technologies and techniques that already exist to provide users with a

complete IoT management experience. From a software standpoint, many of Jarvis’ components

could be easily scalable due to the use of technologies such as RabbitMQ or MongoDB that can

be easily distributed as was detailed in the previous sections.

It becomes important to understand exactly how well the system works and how it delivers

its proposed features. Chapter 5 describes the methods used to evaluate the obtained results and

presents the solutions drawn from the testing of the system.

64

Chapter 5

Validation

This section demonstrates how the solution implemented for this project accomplishes the features

proposed in Chapter 3.

At first a critical overview of how many of the proposed features were delivered will be made,

with a reflexion on how well they work and how advantageous they might be when compared to

the tools that are already available on the market. This is an objective measure over the technical

progress made in terms of creating a more capable voice assistant in the domain of IoT manage-

ment.

Then, the description of the user study made will be presented. The goal of the study is to

understand whether Jarvis makes it more easy and comfortable to manage an IoT system and

whether it could replace the tools and techniques currently being used.

5.1 Simulated Scenarios

The simulated scenarios are an execution of the features proposed in the use cases described in

Section 3.4. Their purpose is to objectively evaluate how the features were accomplished using a

test scenario that simulates a real IoT environment.

To simulate this scenario, all that is required is to have an assembled solution as mentioned

in Section 4.4. In this case, the IoT controller is a single RaspberryPi device that is connected to

two LED’s that represent the living room and bedroom lights. The RaspberryPi is also connected

to a binary sensor (in this case, a button) which represents a living room motion sensor. Note that

although this was chosen as the intended use for the button, it could also represent other kinds of

binary sensors such as pressure sensors.

Note that other kinds of devices such as temperature sensors or thermostats could have been

used for a more diverse representation of an IoT system, but they were kept out of the this evalua-

tion method because their use is similar to the devices chosen and the specified assembled solution

is enough to stress the features being tested.

65

Validation

Figure 5.1: Assembled RaspberryPi with 2 LEDs and 1 button

Figure 5.1 displays the assembled RaspberryPi with the connected LED’s and button. The

RaspberryPi is also connected to the internet via an ethernet cable. This is required so that the

Python controller can communicate with the Rabbit messaging queue. The Python controller is a

simple script very similar to the one previously described in Listing 4.1.

The chosen User Interface for this test was Slack, but any other interface such as the Google

Assistant would perform the same way due to Dialogflow’s built-in integrations.

Below, all the performed test scenarios are described, along with the use cases from Section 3.4

they exercise. For each of the scenarios, the performed steps are presented along with the expected

and obtained results, as well as a brief comparison to some of the currently available tools and

products. In this case, Node-RED was chosen to represent Visual Programming Platforms and the

Google Assistant was chosen to represent voice assistants. At the end, a comparison table will be

presented to provide a more compact comparison of Jarvis, Node-RED and the Google Assistant

in terms of provided features.

5.1.1 Scenario 1 - one-time action

• Conversation:

– User: "Turn on the living room light.”

– Jarvis: "Done!”

• Expected behavior: Living room LED turns on.

• Comparison to other tools:

– Google Assistant: performs the same task with very similar queries, but is limited to

vendor devices that are support by the Assistant1.

1https://assistant.google.com/intl/en_us/resources/#partners

66

https://assistant.google.com/intl/en_us/resources/#partners

Validation

– Node-RED: can perform the same task with UI buttons that the user can press to

trigger certain actions.

• Fulfilled use cases: Use Case 1.

5.1.2 Scenario 2 - one-time action with uncertainty of device

• Conversation:

– User: "Turn on the light.”

– Jarvis: "Do you mean the living room light or the bedroom light?”

– User: "The first.”

– Jarvis: "Okay, done!”

• Expected behavior: Living room LED turns on.

• Comparison to other tools:

– Google Assistant: feature not supported.

– Node-RED: the rules in Node-RED are device-specific and therefore this type of fea-

ture is not supported.

• Fulfilled use cases: Use Case 2.

• Notes: although this feature has been exemplified only for Use Case 2 it is also possible in

all other use cases where there is only one specified device.

5.1.3 Scenario 3 - delayed one-time action

• Conversation:

– User: "Turn on the living room light in 5 minutes.”

– Jarvis: "Sure.”

• Expected behavior: Living room LED turns on 5 minutes after the initial query.

• Comparison to other tools:

– Google Assistant: feature not supported.

– Node-RED: can perform the same task with a UI button that is connected to a timer

block that generates the intended delay.

• Fulfilled use cases: Use Case 3.

5.1.4 Scenario 4 - delayed period action

• Conversation:

– User: "Turn on the living room light from 4pm to 5pm.”

– Jarvis: "Sure.”

67

Validation

• Expected behavior: Living room LED is turned on at the first instance of 4pm after the

initial query, and is turned of at the following 5pm.

• Comparison to other tools:

– Google Assistant: feature not supported.

– Node-RED: can perform the same task with a UI button that is connected to timers

that change the light status at the desired times.

• Fulfilled use cases: Use Case 4.

5.1.5 Scenario 5 - daily repeating action

• Conversation:

– User: "Turn on the bedroom light everyday at 9am.”

– Jarvis: "Okay, will do.”

• Expected behavior: Bedroom LED turns on at 9am everyday.

• Comparison to other tools:

– Google Assistant: feature not supported.

– Node-RED: can perform the same task with an automated timer that triggers the action

to turn on the light at the desired time every day.

• Fulfilled use cases: Use Case 5.

5.1.6 Scenario 6 - daily repeating period action

• Conversation:

– User: "Turn on the bedroom light everyday from 8am to 10am.”

– Jarvis: "Will do.”

• Expected behavior: Bedroom LED turns on at 8am and turns off at 10am every day.

• Comparison to other tools:

– Google Assistant: feature not supported.

– Node-RED: can perform the same task with automated timers that trigger the actions

to turn on or off the light at the desired times every day.

• Fulfilled use cases: Use Case 6.

5.1.7 Scenario 7 - cancel last command

• Conversation:

– User: "Cancel my last command.”

68

Validation

– Jarvis: "Are you sure you want to cancel the command ’turn on the bedroom light at

9pm’?”

– User: "Yes.”

– Jarvis: "Okay, cancelled.”

• Expected behavior: Bedroom LED does not turn on at 9pm.

• Comparison to other tools:

– Google Assistant: feature not supported for IoT management commands, although it

is supported for other sorts of actions such as restaurant bookings.

– Node-RED: with Node-RED the user defines a model of rules that is then deployed

into a host device. Because of that, cancelling is not possible not only because the UI

does not provide an ’undo’ feature but also because it is not possible to re-deploy a

previous instance of the rule model.

• Fulfilled use cases: Use Case 7.

• Notes: this scenario is valid under the assumption that the command "Turn on the bedroom

light at 9pm" was sucessfully executed beforehand.

5.1.8 Scenario 8 - event rule

• Conversation:

– User: "Turn on the living room light when the living room motion sensor is activated.”

– Jarvis: "Will do.”

• Expected behavior: Living room LED turns on when button is pressed, simulating sensor

activation.

• Comparison to other tools:

– Google Assistant: feature not supported.

– Node-RED: can perform the same task by connecting the block representing the sen-

sor to the one representing the light, configuring the messages to be sent appropriately.

Note that to change the rules it would be necessary to manually change the model in

Node-RED’s UI and then deploy the new model.

• Fulfilled use cases: Use Case 8.

5.1.9 Scenario 9 - rules defined for device

• Conversation:

– User: "What rules are defined for the bedroom light?”

– Jarvis: "You told me to turn on the bedroom light everyday at 8am.”

– User: "Change that to 8:30am.”

69

Validation

– Jarvis: "Okay, I’ve changed that rule.”

• Expected behavior: Bedroom LED turns on everyday at 8:30am.

• Comparison to other tools:

– Google Assistant: feature not supported.

– Node-RED: it is not possible to query Node-RED for all the rules defined for a device.

However, it is possible to look through all the rules and check which ones are related

to a device and then change them.

• Fulfilled use cases: Use Case 9, Use Case 10.

• Notes: this scenario is valid under the assumption that the command "Turn on the bedroom

light everyday at 8am" was sucessfully executed beforehand.

5.1.10 Scenario 10 - causality query

• Conversation:

– User: "Why did the bedroom light turn on?”

– Jarvis: "You told me to turn on the bedroom light when the living room light is turned

on.”

• Expected behavior: the answer should be correct under the assumption that a rule to turn

on the bedroom light when the living room light turns on exists and that light was turned on.

• Comparison to other tools:

– Google Assistant: feature not supported.

– Node-RED: it is not possible to make such a query in Node-RED. However, techni-

cally it is possible to obtain the same information by looking at all the rules defined

in Node-RED’s model and understanding how they could have caused the condition to

be true.

• Fulfilled use cases: Use Case 11, Use Case 12, Use Case 13, Use Case 14, Use Case 15.

• Notes: this behavior would be expected even if a set of chained rules caused the light to

turn on (e.g. there was also a rule to turn on the living room light if the living room motion

sensor was activated).

5.1.11 Test Results

Table 5.1 displays a brief comparison on how Jarvis, the Google Assistant and Node-RED fulfill

the different test scenarios defined above. Green checkmarks denote scenarios that the tool in that

column can fulfill, while red crosses represent the opposite.

As shown in the picture, Jarvis clearly outperforms the Google Assitant when it comes to the

management features represented through the test scenarios. This means that Jarvis is capable of

a more complete set of IoT management tasks which in turn provide users with more flexibility to

70

Validation

Scenario Jarvis Google Assistant Node-RED

1

2

3

4

5

6

7

8

9

10
Table 5.1: Simulated scenarios fulfillment in Jarvis, Google Assistant and Node-RED

manage the system. The Assistant is limited to direct actions on devices which lacks far behind

the diverse range of features provided by Jarvis.

It is important to note that the Google Assistant does not specialize in IoT management, instead

being a more generic chatbot that can aid users with a lot of different tasks, many of which have

nothing to do with IoT.

The difference is not so big with Node-RED. Although many cells have red crosses, the notes

on the scenarios above demonstrate that the same functionality can be achieved with workarounds

that still allow users to obtain the information they desire or perform the tasks they want.

However, as will be seen in Section 5.2, the main advantage of Jarvis in all of the scenarios

is the increased comfort it provides. Regardless of the feature, Node-RED requires users to use a

computer in order to interact with the system, while Jarvis can be used by talking to a phone while

sitting on a couch without even touching the phone2.

In sum, the test scenarios demonstrate that, for the sort of features they simulate, Jarvis is able

to provide a wider range of possibilities for users to manage their IoT systems. Although this

might not necessarily be enough to make Jarvis better, it proves that Jarvis exhibits progress made

in terms of using natural language interfaces to better manage an IoT system.

2This is possible with, for example, the Google Assistant, since interactions are automatic based on trigger phrases
such as "Ok Google" (https://support.google.com/assistant/answer/7394306).

71

Validation

5.2 User Study

Although the simulated scenarios described in Section 5.1 evaluate Jarvis regarding its feature

completion and diversity, it does not evaluate whether it is or isn’t easier and better to use when

compared to other tools such as the Google Assistant or Node-RED.

To do such evaluation, this user study was performed to measure how fast users can get tasks

done using Jarvis and whether they prefer it over a non-conversational interface. It is important

to note that this study does not perform a direct comparison to the Google Assistant since it is the

same behavior-wise but less complete in terms of IoT management features.

5.2.1 Study Description

The study was done with 17 participants with ages ranging from 18 to 51. The main goal on ob-

taining the test participants was to obtain a significant age range but also to include mostly people

without a background in technology to understand whether the language capabilities of Jarvis are

enough for the users to interact with it. Because of that, 14 of the participants did not have a

background in software development although they were familiar with different technologies such

as smartphones and the internet.

Each participant was given a set of 5 tasks (1 control task and 4 study tasks) that they were

supposed to get done with the help of Jarvis, using the Google Assistant as the user interface. The

only instructions given were that they must talk to the phone in the way that feels the most natural

to them in order to complete the tasks at hand.

Besides the set of tasks, participants were given the list of IoT devices available in the simu-

lated smart house they would be attempting to manage through Jarvis. To increase the diversity

and reduce the bias of the study, two different sets of devices and tasks were created, so that

different smart house topologies were tested. The participants were assigned one of the test sets

randomly.

For each of the tasks, the study administrator would take note of whether each participant

was able to complete each of the tasks, the time it took to complete the task and the count of

unsuccessful queries. This count was made separately for queries that were not understood by

the Assistant’s speech recognition capabilities, for queries the user mispronounced and for queries

that were correct but Jarvis was unable to process. After completing the tasks, the administrator

would explain to participants that an alternative to Jarvis to perform the tasks at hand was a non-

conversational visual interface such as Node-RED, giving an example of how the same tasks would

be performed using that tool. After that, the administrator would ask participants what they believe

are the advantages of Jarvis over such a tool, if they find any, and whether they would prefer Jarvis

over any non-conversational tool. Finally, the participants would be asked what they think could

be improved about Jarvis and the way it handles smart space management.

It is important to note that participants could have been required to use Node-RED to perform

the same tasks in order to compare the execution times of both. However, this was not done

because Node-RED would require slightly more training and instructions to participants as it is

72

Validation

not as intuitive as a conversational interface that users can simply talk to without being given any

sort of previous instructions.

As an example, this is one of the task sets given to participants (the other set was very similar):

• Available Devices: living room light, bedroom light and living room motion sensor.

• Task 0: turn on the living room light.

– Note: this is a control task used to get the participant familiarized with the interface.

• Task 1: make the living room light turn on in 5 minutes.

• Task 2: make the living room light turn on when the living room motion sensor is turned

on.

• Task 3: check the current rules defined for the bedroom light and make it turn on everyday

at 10pm.

• Task 4: the bedroom light turned on but you don’t know why. Ask Jarvis why it happened

and decide whether the answer was explanatory.

5.2.2 Results

Table 5.2 compiles the results observed during the study. Each row represents one of the tasks

given to participants. The numbers displayed by the table are analyzed further in Section 5.2.3 and

the meaning of each column is as follows:

• "Task:" number of the task (0-4) and the task set number in parenthesis (1/2).

• "Done:" percentage of participants that were able to complete the task successfully.

• "Time:" average ("Avg") and median ("Med") time, in seconds, that participants took to

complete the task.

• "IQ (Ast):" average ("Avg") and median ("Med") times that queries were incorrect due to

the Google Assistant not properly recognizing the user’s speech (due to microphone mal-

function, background noise, ...).

• "IQ (User):" average ("Avg") and median ("Med") times that queries were incorrect due to

the user not speaking a valid query (e.g. saying "Turn up the lighting").

• "IQ (Jvs):" average ("Avg") and median ("Med") times that queries were incorrect due to

Jarvis not recognizing a valid query.

• "IQ:" average ("Avg") and median ("Med") times queries were incorrect (sum of "IQ (Ast)",

"IQ (User)" and "IQ (Jvs)").

In terms of the questions asked to participants regarding the performance of Jarvis and its

comparison to visual programming tools, all participants mentioned that in a real life scenario

they would prefer a conversational assistant such as Jarvis due to its greater "ease of use" and

"commodity". Most pariticipants considered that the main disadvantage of visual tools to be the

need of a physical device such as a computer as well as a "knowledge of how the hardware works".

Some participants also mentioned that although Jarvis allows for complex management features

73

Validation

Time IQ (Ast) IQ (User) IQ (Jvs) IQ
Task Done Avg Med Avg Med Avg Med Avg Med Avg Med
0 (1) 94% 6.4 6 0.13 0 0.25 0 0.13 0 0.5 0
1 (1) 94% 7.1 7 0.38 0 0.5 0.5 0 0 0.5 0.5
2 (1) 88% 10 10 0.75 0.5 0.63 0.5 0.25 0 1 1
3 (1) 100% 20 19.5 0.13 0 0.13 0 0.75 1 1 1
4 (1) 94% 9 8 0.25 0 0.38 0 0 0 0.63 0
0 (2) 100% 6.4 6 0.33 0 0 0 0.33 0 0.67 0
1 (2) 94% 7.6 7 0.11 0 0 0 0.44 0 0.56 0
2 (2) 100% 9.9 10 0 0 0.11 0 0.78 1 0.89 1
3 (2) 88% 19.44 19 0.33 0 0.33 0 0.22 0 0.89 1
4 (2) 100% 8.33 8 0.33 0 0.22 0 0.22 0 0.78 1

Table 5.2: User Study results (task completion rate, task time and incorrect queries).

not supported by visual tools, these also have certain tools that Jarvis doesn’t such as integrations

with Twitter3 or IFTTT4. Finally, participants also remarked that although Jarvis has an increased

"accessibility" due to its conversational interface, there is a "margin of error that comes with voice

recognition" that can cause a worse user experience.

5.2.3 Analysis

In terms of the spoken queries as well as their response, the complexity increases from task 0

to task 3 since the queries require more words or interactions. This is reflected by the task time

that also increases from task 0 to task 3 in both the average and median values and in both task

sets. Other than that, it is hard to use the task times as means of comparison to visual tools since

no comparison study was done. However, since using a visual tool such as Node-RED involves

moving to a computer, opening the platform, dragging blocks and then configuring their options,

we consider that in any case the overall task would take longer in a visual tool than it does with

Jarvis.

The numbers related to incorrect queries also bring some interesting conclusions about the

system’s performance. The table shows that there were some incorrect queries for the Assistant

which means that the Assistant’s speech recognition failed to correctly translate what the partic-

ipants said. However, this was mostly due to the participant’s pronounciation since none of the

speakers had English as their main language. This does not have implications to the evaluation of

Jarvis, but it does indicate that this sort of systems might be harder to use if they do not support

the user’s native language.

It can also be noted that there were a few instances of incorrect queries that were the user’s

fault ("IQ (User)"). These were cases where user queries were gramatically incorrect and therefore

did not match the sample queries defined in Dialogflow. For example, a query like "Turn on lights"

is not a considered the user’s fault since the correct one would be "Turn on the lights", however,

3https://twitter.com/
4https://ifttt.com/

74

https://twitter.com/
https://ifttt.com/

Validation

it still carries enough information to understand what the user’s intent is. More reflexion on these

cases will be done below in Section 5.2.4.

There is a significant number of incorrect queries due to Jarvis ("IQ (Jvs)"), meaning that the

user’s query was valid but its meaning was not understood by Jarvis. This can be caused by either

a mispronounciation of a device’s name (e.g. saying "Turn on the living room lights" instead of

"Turn on the living room light") or a sentence structure that is valid but is not recognized due to

the sample queries inserted into Dialogflow. This possibly represents the most serious downside

of this project, but its severity and possible solutions are discussed below in Section 5.2.4.

It is also important to note that despite the numbers for incorrect queries, the success rate

of all tasks is very high, which indicates that the system is intuitive enough to be used without

previous instruction or formation. This proves that not only the features work on the smart space

management side, but also that the conversational interface is well designed and works as expected.

All of the reflexions made above are reflected by the participants’ answers to the questions

made, since they reiterate that Jarvis is easy to use and provides "accessibility" and "commodity".

This is very important since it is the deciding factor for participants to prefer Jarvis over a non-

conversational interface, which they still consider to have some advantages over Jarvis.

5.2.4 Validation Threats

The study results present some threats to the validation of this project along with its goals, de-

scribed in Chapter 3.

One one hand, there are the incorrect queries that are due to the user either having a bad

pronounciation or providing incorrect sentences. For example, a query like "Turn up lights" is not

a valid query since that would be "Turn on the lights", however, it still carries enough information

to understand what the user’s intent is. As it stands, Jarvis does not support this sort of queries.

However, including gramatically incorrect queries in Dialogflow’s system would make Jarvis more

accept these partially incorrect queries, making it more flexible to these scenarios and therefore

improve the user experience.

On the other hand, there are queries that are valid but fail because Jarvis fails to recognize

them. This is concerning because if the user feels that a query didn’t work because his pronoun-

ciation or grammar was bad he repeats the query and does not blame the system. However, if the

user feels he said what was supposed to be said but the system did not understand it properly, he

loses motivation to use the system and feels like it doesn’t work, which is bad and goes against the

goals of Jarvis. The positive remark is that in most cases the flaw was due to the user mispronounc-

ing the device name, e.g. saying "Turn on the living room lights" instead of "Turn on the living

room light". This could easily be fixed by adapting the way Jarvis detects devices. Currently, it

looks for devices that match the exact same name that was provided in the user query. If, instead,

Jarvis looks for similar names that are not an exact match, the number of incorrect queries due to

Jarvis can be significantly reduced, therefore minimizing this problem and improving the system’s

functioning.

75

Validation

There were also the cases that failed due to Jarvis due to a sentence structure that was not in-

cluded in the sample queries configured in Dialogflow. This happened because the sample queries

configured in Dialogflow were not enough to cover all the different ways that the same command

can be given, resulting in an increased error rate for queries. For example, in the intent "Rules

Defined" defined in Section 4.3.2, a query like "What are the rules for the bedroom light?" would

be considered invalid since none of the sample queries is similar to it, despite it being a completely

valid query to ask for the rules for a device. To fix this problem it is important to detect other ways

of providing the same commands already represented by the intents that are already defined, for

example by looking at the failed queries from the user study, to increase the range of commands

that Jarvis can parse. Doing this reduces the error rate of queries, which improves the system’s

flexibility even further.

5.3 Conclusions

The simulated scenarios demonstrate that Jarvis is a rather complete system in terms of smart

space management features, clearly outperforming current conversational assistants. The wide

variety of management features that were made possible with a natural language interface make

the system very capable and able to perform complex tasks with nothing but voice commands.

The user study helped to clarify some of the problems of Jarvis and its embedded natural

language interfacing capabilities, while simultaneously reinforcing the idea that a conversational

interface can be better for smart space management due to its increased comfort as long as it still

presents comlex management features.

The study showed that the participants prefer a conversational interface over a visual interface

due to its greater ease of use. Simultaneously, the experiences of participants in the study showed

that the main problem with Jarvis might be its reduced flexibility to partially incorrect queries.

While this is a clear problem for the system’s user experience, it is a problem that can easily be

fixed in the future work of Jarvis and that can significantly improve its ease of use.

Overall, we are satisfied with the evaluation of this project since it has proved that it is capa-

ble of the management features it aimed to support and the natural language interface problems

brought up by the user study have simple solutions that shall be addressed in the future work

described further in Section 6.4.

76

Chapter 6

Conclusions and Future Work

This chapter is a reflexion on the entire work done for this project, gathering what was learned

with it. At first, we will present the main difficulties felt with the project, then moving to the main

contributions and conclusions collected from this dissertation. At the end of the chapter, we look

at possible future work on this project that could increase its scientific contributions and make it a

better system.

6.1 Main Difficulties

One of the main challenges of developing an IoT management tool is that there are already many

different product ecosystems in place, mainly the Apple, Amazon and Google ecosystems. The

problem with this is that there are no common standards for communication with devices or other

common functionalities which in turn makes it hard to create a "one fits all" solution, i.e. a solution

that simultaneously works with all ecosystems. An example of this is the Dialogflow platform,

which doesn’t work with the Apple ecosystem although it is a very popular integration platform.

Another adversity with IoT and smart spaces when it comes to developing management tools

is the huge diversity of devices available. As was described in Section 2.2.2, there are many

different IoT devices that range from remote light switches to smart refrigerators, and this brings

extra complexity for management tools, especially for the conversational ones. In the case of

Jarvis, this diversity means not only considering the many different device types when specifying

the user queries, but also supporting the interactions with this devices. This problem is made even

worse due to the fact that there is no common communication protocol in place for IoT devices.

Despite of Mozilla’s attempt at a Web Thing API1 described in Section 2.3.4, the lack of a common

interface for IoT devices means that most hardware interactions are "hard coded" for each type of

device, giving these systems less flexibility.

1https://iot.mozilla.org/wot/

77

https://iot.mozilla.org/wot/

Conclusions and Future Work

In the case of a conversational assistant such as Jarvis, many of the problems faced were related

to the very nature of a natural language interface. When designing the system and defining sample

user requests, it is often hard to imagine the different ways the same command can be given by

different people, which was detected during the user study described in Section 5.2. The user

study also helps minimize this problem since, once new queries are discovered it is very easy to

add them to Dialogflow’s system, therefore improving the experience for future users.

Another slight difficulty of using third-party platforms such as Dialogflow for NLP tasks is that

it becomes hard to control the latency of the system as a whole. Looking at it from a user’s point

of view it is clear that having a high latency can cause problems to the user experience because it

makes the conversation less fluid or natural. With a completely specialized tool it is easier to make

performance optimizations in tune with the platform’s goal, but with a generic external tool that is

just not possible.

6.2 Main Contributions

As was mentioned in Chapter 3, the main contributions of Jarvis are focused on new IoT man-

agement features for conversational assistants. Because of that, the main contributions of this

dissertation are the following:

• Delayed, period and repeating actions: the ability for users to perform queries such as

"Turn on the light in 5 minutes" or "Turn on the light everyday at 8am".

• Use contextual awareness for more natural conversations: the ability to have conversa-

tions that last for multiple sentences to provide a more intuitive converstation. This is started

by queries such as "What rules do I have defined for the living room light?".

• Event management: this is used to create interactions and dependencies between devices

that might not necessarily know that each other exists. This is used for queries such as "Turn

on the light when the motion sensor is activated".

• Causality queries: the ability to understand how the system operates simply by asking it,

with queries such as "Why did the light turn on?".

A paper summarizing this project’s contributions can be found in [LF18].

6.3 Conclusions

The main conclusion of this project is that it is possible to use a conversational interface to provide

a useful management tool for smart spaces. As was mentioned in Section 2.3.3, current conversa-

tional bots already have the capacity to interact with IoT devices, so an integration of the features

of Jarvis would make them more complete and useful to users.

At the same time, through stages of the development such as the user study mentioned in

Section 5.2 it becomes clear that natural language is a tricky part of the process. The user study

showed how hard it is to predict the many user queries that have the same intrinsic meaning,

78

Conclusions and Future Work

and this problem would only be increased if multiple languages were targeted. This wouldn’t

have implications on the complexity of tasks that the bot does, but considering multiple languages

would bring additional problems not only for defining user queries but also for establishing the

representation of entities such as devices.

Another conclusion drawn from the use of a conversational interface is that there are additional

problems when the responses to the user are two long. Comments on the user study state that when

the responses provided by the system are too long they may get harder to understand since there is

more information to be conveyed. A possible solution for this problem would be to use a hybrid

interface that provides both visual and audio interactions, but there could be other approaches such

as an interactive dialogue that shortens sentences.

We believe that the contribution of Jarvis is clear, as it outperforms current conversational

assistants in terms of supported features while simultaneously being easier to use for users (as seen

by the user study). Additionally, throughout the document the many research questions defined

in Section 3.5 were answered. Even if some of them could be answered differently, the project

presents a functioning solution for all of them that could be used in real user products, therefore

making it easier for more people to start using IoT in their homes.

6.4 Future Work

As mentioned in Section 3.4.16, alias commands were seen as a stretch goal for this project due to

the time constraints of the dissertation. However, Section 4.3.2 showcases some of the work done

to implement alias commands such as the query definitions in Dialogflow. Although some work

was done towards creating alias commands, it still needs refinement in order to provide a complete

feature and therefore we believe this would be useful for the future of this project.

Section 3.4.15 mentions causality queries for undocumented relations of events. This was not

possible in the span of the project mostly because it involves serious considerations on how the

induction of relationships between events can be done. One possible approach to this would be

considering events that happened close to each other to possibly be related, but this could not be a

sufficient criteria in many scenarios. Therefore, we believe that a further study of event relations

that are not explicit to be an important future step for Jarvis and for conversational smart space

management tools.

As was mentioned in this project’s assumptions listed in Section 3.3, the addition or removal

of devices was not considered for the development of this project. However, it would obviously be

important for a user product in order to allow users to dinamically add or remove devices to their

smart spaces. This would be very useful for the evolution of Jarvis and another big step towards

making conversational systems able to fully manage smart spaces.

As was discussed in Section 5.2, the user study that was made revealed that the system’s over-

all flexibility could be improved by increasing the sample requests in Dialogflow since many of

the failed queries in the study carried enough information for them to be understood. Therefore,

improving the selection of sample requests to include partially invalid queries or rephrasing the

79

Conclusions and Future Work

current ones can improve the system’s perfomance by reducing its error rate and therefore improv-

ing the user experience.

A useful future feature for Jarvis would be a "What can you do?" query that prompts the

system to explain to a user what it can do. This can be used to create an interactive dialogue that

can be used as a tutorial for a beginner user which in turn makes the system even easier to use. We

believe this would be a very important feature for users that are less acquainted with technology,

since they learn the types of queries and supported features more intuitively.

Finally, we believe a major feature that could be made available in conversational assistants

would be complex boolean logic. For example, when defining event rules, it would be useful to use

multiple conditions with the "and" or "or" boolean operators. An example of this feature would be

the query "Turn on the bedroom light if the motion sensor is activated and it’s after 9pm", where

both conditions would have to be true in order to the action to be executed. This would provide

conversational assistants with increased complexity and usefulness, which in turn would make

them even more powerful tools for users.

Overall, considering Jarvis’ goal of making IoT easier to use for users that are not very com-

fortable with technology, many of the future work tasks mentioned in this section aim to make

interactions even more intuitive and easier to use, without requiring a technical knowledge of how

the devices operate.

80

References

[abi12] 1.5 Million Home Automation Systems Installed in the US This Year. ABI Research,
available at https://www.abiresearch.com/press/15-million-home-
automation-systems-installed-in-th/, 2012.

[All17] Darren Allan. The best voice recognition software of 2017. TechRadar, 2017.

[Bir17] Joe Birch. Exploring Dialogflow: Understanding Agent Interaction. Medium,
retrieved from https://medium.com/@hitherejoe/exploring-
dialogflow-understanding-agent-interaction-8f3323e3b738,
October 2017.

[Bro17] Peter Brown. 20 Billion Connected Internet of Things De-
vices in 2017, IHS Markit Says. Electronics360, retrieved from
http://electronics360.globalspec.com/article/8032/20-billion-connected-internet-
of-things-devices-in-2017-ihs-markit-says, 2017.

[bur17] Average hours per day spent in selected activities by sex and day. Bureau of Labor
Statistics, retrieved from https://www.bls.gov/charts/american-time-
use/activity-by-sex.htm, 2017.

[Cho03] Gobinda G. Chowdhury. Natural language processing. Annual Review of Information
Science and Technology, 37(1), jan 2003.

[CXL+14] Shanzhi Chen, Hui Xu, Dake Liu, Bo Hu, and Hucheng Wang. A vision of IoT:
Applications, challenges, and opportunities with China Perspective, Aug 2014.

[Dav17] Olga Davydova. 25 Chatbot Platforms: A Comparative Table. Medium, re-
trieved from https://chatbotsjournal.com/25-chatbot-platforms-
a-comparative-table-aeefc932eaff, May 2017.

[Dee98] Stephen E Deering. Internet protocol, version 6 (ipv6) specification. 1998.

[Den13] Andrew K Dennis. Raspberry Pi home automation with Arduino. Packt Publishing
Ltd, 2013.

[DKJG17] Ali Dorri, Salil S. Kanhere, Raja Jurdak, and Praveen Gauravaram. Blockchain for
IoT security and privacy: The case study of a smart home. In 2017 IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops (Per-
Com Workshops), pages 618–623. IEEE, Mar 2017.

[Dr.] Dr. Brian M. Pierce. Autonomous Real-time Ground Ubiquitous Surveil-
lance - Infrared (ARGUS-IR). DARPA, retrieved from https://www.
darpa.mil/program/autonomous-real-time-ground-ubiquitous-
surveillance-infrared.

81

https://www.abiresearch.com/press/15-million-home-automation-systems-installed-in-th/
https://www.abiresearch.com/press/15-million-home-automation-systems-installed-in-th/
https://medium.com/@hitherejoe/exploring-dialogflow-understanding-agent-interaction-8f3323e3b738
https://medium.com/@hitherejoe/exploring-dialogflow-understanding-agent-interaction-8f3323e3b738
https://www.bls.gov/charts/american-time-use/activity-by-sex.htm
https://www.bls.gov/charts/american-time-use/activity-by-sex.htm
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://www.darpa.mil/program/autonomous-real-time-ground-ubiquitous-surveillance-infrared
https://www.darpa.mil/program/autonomous-real-time-ground-ubiquitous-surveillance-infrared
https://www.darpa.mil/program/autonomous-real-time-ground-ubiquitous-surveillance-infrared

REFERENCES

[FS16] A. Florea and V. Sgârciu. Smart refrigerator : A next generation refrigerator con-
nected to the IoT. In Proceedings of the 8th International Conference on Electronics,
Computers and Artificial Intelligence, ECAI 2016, pages 1–6. IEEE, Jun 2016.

[Gri97] M.L. Griss. Software reuse architecture, process, and organization for business suc-
cess. In Proceedings of the Eighth Israeli Conference on Computer Systems and
Software Engineering. IEEE Comput. Soc, 1997.

[Gua10] Massimo Guarnieri. The roots of automation before mechatronics. In IEEE Industrial
Electronics Magazine, volume 4, pages 42–43, Jun 2010.

[Her84] Andy Hertzfeld. It Sure Is Great To Get Out Of That Bag! Folklore, 1984.

[HRS+17] Nicolas Hunke, Michael Rüßmann, Florian Schmieg, Akash Bhatia, and Ninpun
Kalra. Winning in IoT: It’s All About the Business Processes. Boston Consulting
Group, retrieved from https://www.bcgperspectives.com/content/
articles/hardware-software-energy-environment-winning-in-
iot-all-about-winning-processes/, 2017.

[ISA10] ISA. What is Automation? - ISA. Retrieved from https://www.isa.org/
about-isa/what-is-automation/, 2010.

[Jer34] Harry Jerome. Mechanization in Industry. National Bureau of Economic Research,
page 158, 1934.

[JR04] B H Juang and Lawrence R Rabiner. Automatic Speech Recognition – A Brief His-
tory of the Technology Development. 2004.

[Kev09] Kevin Ashton. That ’Internet of Things’ Thing. RFID Journal, retrieved from http:
//www.rfidjournal.com/articles/view?4986, 2009.

[LF18] André Sousa Lago and Hugo Sereno Ferreira. Conversation-based complex event
management in smart-spaces. arXiv, retrieved from https://arxiv.org/abs/
1807.07047, 2018.

[LL15] In Lee and Kyoochun Lee. The Internet of Things (IoT): Applications, investments,
and challenges for enterprises. Business Horizons, 58(4):431–440, Jul 2015.

[Mar16] Bernard Marr. 15 noteworthy facts about Wearables in 2016. Forbes, re-
trieved from https://www.forbes.com/sites/bernardmarr/2016/
03/18/15-mind-boggling-facts-about-wearables-in-2016/
{#}79ad0f5e2732http://www.forbes.com/sites/bernardmarr/
2016/03/18/15-mind-boggling-facts-about-wearables-in-
2016/{#}389fed3f4773, 2016.

[McF17] Matt McFarland. Why Volvo’s self-driving garbage truck spends most of its time in
reverse. CNN Money, retrieved from http://money.cnn.com/2017/05/18/
technology/volvo-garbage-truck/index.html, May 2017.

[Mou17] Rahul Mourya. IoT applications spanning across industries. IBM Blog,
available at https://www.ibm.com/blogs/internet-of-things/iot-
applications-industries/, Apr 2017.

82

https://www.bcgperspectives.com/content/articles/hardware-software-energy-environment-winning-in-iot-all-about-winning-processes/
https://www.bcgperspectives.com/content/articles/hardware-software-energy-environment-winning-in-iot-all-about-winning-processes/
https://www.bcgperspectives.com/content/articles/hardware-software-energy-environment-winning-in-iot-all-about-winning-processes/
https://www.isa.org/about-isa/what-is-automation/
https://www.isa.org/about-isa/what-is-automation/
http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
https://arxiv.org/abs/1807.07047
https://arxiv.org/abs/1807.07047
https://www.forbes.com/sites/bernardmarr/2016/03/18/15-mind-boggling-facts-about-wearables-in-2016/{#}79ad0f5e2732 http://www.forbes.com/sites/bernardmarr/2016/03/18/15-mind-boggling-facts-about-wearables-in-2016/{#}389fed3f4773
https://www.forbes.com/sites/bernardmarr/2016/03/18/15-mind-boggling-facts-about-wearables-in-2016/{#}79ad0f5e2732 http://www.forbes.com/sites/bernardmarr/2016/03/18/15-mind-boggling-facts-about-wearables-in-2016/{#}389fed3f4773
https://www.forbes.com/sites/bernardmarr/2016/03/18/15-mind-boggling-facts-about-wearables-in-2016/{#}79ad0f5e2732 http://www.forbes.com/sites/bernardmarr/2016/03/18/15-mind-boggling-facts-about-wearables-in-2016/{#}389fed3f4773
https://www.forbes.com/sites/bernardmarr/2016/03/18/15-mind-boggling-facts-about-wearables-in-2016/{#}79ad0f5e2732 http://www.forbes.com/sites/bernardmarr/2016/03/18/15-mind-boggling-facts-about-wearables-in-2016/{#}389fed3f4773
https://www.forbes.com/sites/bernardmarr/2016/03/18/15-mind-boggling-facts-about-wearables-in-2016/{#}79ad0f5e2732 http://www.forbes.com/sites/bernardmarr/2016/03/18/15-mind-boggling-facts-about-wearables-in-2016/{#}389fed3f4773
http://money.cnn.com/2017/05/18/technology/volvo-garbage-truck/index.html
http://money.cnn.com/2017/05/18/technology/volvo-garbage-truck/index.html
https://www.ibm.com/blogs/internet-of-things/iot-applications-industries/
https://www.ibm.com/blogs/internet-of-things/iot-applications-industries/

REFERENCES

[MR69] Albert Edward Musson and Eric Robinson. Science and technology in the industrial
revolution. Manchester University Press, 1969.

[Oli17] Oliver Balch. Automated mining will cost jobs and tax income: it’s time for govern-
ments to act. The Guardian, retrieved from https://www.theguardian.com/
sustainable-business/2017/jan/20/autonomous-mining-will-
cost-jobs-and-tax-income-its-time-for-governments-to-act,
2017.

[Pat17] Kevin Patel. 6 Benefits of Internet of Things for Hospitals and Healthcare.
IBM IoT Blog, retrieved from https://www.ibm.com/blogs/internet-of-
things/6-benefits-of-iot-for-healthcare/, 2017.

[Pet17] Hayley Peterson. How automation will impact the retail industry. Busi-
ness Insider, retrieved from http://www.businessinsider.com/how-
automation-will-impact-the-retail-industry-2017-5, 2017.

[Ran03] Dave Randall. Living inside a smart home: A case study. In Inside the smart home,
pages 227–246. Springer, 2003.

[Ras14] Katharina Rasch. An unsupervised recommender system for smart homes. Journal
of Ambient Intelligence and Smart Environments, 6:21–37, 2014.

[RvdM14] Janessa Rivera and Rob van der Meulen. Gartner Says 4.9 Billion Connected
"Things" Will Be in Use in 2015. Gartner - Newsroom, pages 9–10, 2014.

[SDPA14] P. Suresh, J. Vijay Daniel, V. Parthasarathy, and R. H. Aswathy. A state of the art re-
view on the Internet of Things (IoT) history, technology and fields of deployment. In
2014 International Conference on Science Engineering and Management Research
(ICSEMR). IEEE, Nov 2014.

[Sea03] Sean Dodson. The internet of things. The Guardian, retrieved from https://www.
theguardian.com/technology/2003/oct/09/shopping.newmedia,
2003.

[SRC+16] Joao Santos, Joel J. P. C. Rodrigues, Joao Casal, Kashif Saleem, and Victor Denisov.
Intelligent Personal Assistants Based on Internet of Things Approaches. IEEE Sys-
tems Journal, pages 1–10, 2016.

[Tec17] Maruti Techlabs. Exploring Dialogflow: Understanding Agent Interaction. Medium,
retrieved from https://chatbotslife.com/which-are-the-best-on-
site-chatbot-frameworks-3dbf5157fb57, April 2017.

[vdM17] Rob van der Meulen. Gartner Press Release, Gartner Says 8.4 Billion Connected
"Things" Will Be in Use in 2017, Up 31 Percent From 2016, 2017.

[XHL14] Li Da Xu, Wu He, and Shancang Li. Internet of things in industries: A survey. IEEE
Transactions on Industrial Informatics, Nov 2014.

[XYWV12] Feng Xia, Laurence T Yang, Lizhe Wang, and Alexey Vinel. Internet of Things.
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS Int. J. Commun.
Syst. Int. J. Commun. Syst, 25(25), 2012.

83

https://www.theguardian.com/sustainable-business/2017/jan/20/autonomous-mining-will-cost-jobs-and-tax-income-its-time-for-governments-to-act
https://www.theguardian.com/sustainable-business/2017/jan/20/autonomous-mining-will-cost-jobs-and-tax-income-its-time-for-governments-to-act
https://www.theguardian.com/sustainable-business/2017/jan/20/autonomous-mining-will-cost-jobs-and-tax-income-its-time-for-governments-to-act
https://www.ibm.com/blogs/internet-of-things/6-benefits-of-iot-for-healthcare/
https://www.ibm.com/blogs/internet-of-things/6-benefits-of-iot-for-healthcare/
http://www.businessinsider.com/how-automation-will-impact-the-retail-industry-2017-5
http://www.businessinsider.com/how-automation-will-impact-the-retail-industry-2017-5
https://www.theguardian.com/technology/2003/oct/09/shopping.newmedia
https://www.theguardian.com/technology/2003/oct/09/shopping.newmedia
https://chatbotslife.com/which-are-the-best-on-site-chatbot-frameworks-3dbf5157fb57
https://chatbotslife.com/which-are-the-best-on-site-chatbot-frameworks-3dbf5157fb57

REFERENCES

84

Appendix A

Sample Intent JSON Representations

This appendix includes sample JSON representations of intents defined in Jarvis’ Dialogflow

project.

A.1 Direct Action Intent

1 {

2 "id": "5615a93a-a265-4d27-841c-9cec1f19e6b2",

3 "timestamp": "2018-06-09T16:17:21.698Z",

4 "lang": "en",

5 "result": {

6 "source": "agent",

7 "resolvedQuery": "turn on the light",

8 "action": "",

9 "actionIncomplete": false,

10 "parameters": {

11 "action": {

12 "action-onoff": {

13 "status": "on",

14 "actuator": {

15 "light-switch": "light"

16 }

17 }

18 }

19 },

20 "contexts": [

21 {

22 "name": "confirm-thing-choice",

85

Sample Intent JSON Representations

23 "parameters": {

24 "request": "{\"result\":{\"actionIncomplete\":false,\"

score\":1,\"metadata\":{\"intentName\":\"Direct

Action\",\"intentId\":\"8b4ac42a-6b56-43a0-9fbb-

ca5da1e7d6d1\",\"webhookUsed\":\"true\",\"

webhookForSlotFillingUsed\":\"false\"},\"

resolvedQuery\":\"turn on the light\",\"speech

\":\"\",\"action\":\"\",\"source\":\"agent\",\"

contexts\":[],\"fulfillment\":{\"speech\":\"Sorry, I

was not able to help.\",\"messages\":[{\"speech\":\"

Sorry, I was not able to help.\",\"type\":0}]},\"

parameters\":{\"action\":{\"action-onoff\":{\"

actuator\":{\"light-switch\":\"light\"},\"status\":\"

on\"}}}},\"id\":\"5615a93a-a265-4d27-841c-9

cec1f19e6b2\",\"sessionId\":\"de3a07c8-6a90-bb4a-341d

-d694317dac53\",\"lang\":\"en\",\"timestamp

\":\"2018-06-09T16:17:21.698Z\",\"status\":{\"code

\":200,\"errorType\":\"success\"}}",

25 "choices": [

26 "bedroom light",

27 "living room light"

28],

29 "intent": "OnOffSubIntent"

30 },

31 "lifespan": 1

32 }

33],

34 "metadata": {

35 "intentId": "8b4ac42a-6b56-43a0-9fbb-ca5da1e7d6d1",

36 "webhookUsed": "true",

37 "webhookForSlotFillingUsed": "false",

38 "webhookResponseTime": 5129,

39 "intentName": "Direct Action"

40 },

41 "fulfillment": {

42 "messages": [

43 {

44 "speech": "Do you mean bedroom light or living room

light?",

45 "type": 0

86

Sample Intent JSON Representations

46 }

47]

48 },

49 "score": 1

50 },

51 "status": {

52 "code": 200,

53 "errorType": "success"

54 },

55 "sessionId": "de3a07c8-6a90-bb4a-341d-d694317dac53"

56 }

Listing A.1: JSON object generated by Dialogflow for the intent "Direct Action"

A.2 Delayed Action Intent

1 {

2 "id": "64f0ac94-4e63-4011-a526-f4dfe63bc730",

3 "timestamp": "2018-03-07T15:53:22.624Z",

4 "lang": "en",

5 "result": {

6 "source": "agent",

7 "resolvedQuery": "turn the light on tomorrow at 5pm",

8 "action": "",

9 "actionIncomplete": false,

10 "parameters": {

11 "time": {

12 "date-time": "2018-04-09T19:52:00Z"

13 },

14 "action": {

15 "action-onoff": {

16 "actuator": {

17 "light-switch": "bedroom light"

18 },

19 "status": "on"

20 }

21 }

22 },

87

Sample Intent JSON Representations

23 "contexts": [],

24 "metadata": {

25 "intentId": "36e77c05-5ada-404d-8de5-cf7a7c1f2f96",

26 "webhookUsed": "false",

27 "webhookForSlotFillingUsed": "false",

28 "intentName": "Delayed Action"

29 },

30 "fulfillment": {

31 "speech": "Delayed? Sure",

32 "messages": [

33 {

34 "type": 0,

35 "speech": "Delayed? Sure"

36 }

37]

38 },

39 "score": 1

40 },

41 "status": {

42 "code": 200,

43 "errorType": "success",

44 "webhookTimedOut": false

45 },

46 "sessionId": "8e854d8c-db7b-487d-a248-f8b9eeca3ad1"

47 }

Listing A.2: JSON object generated by Dialogflow for the intent "Delayed Action"

A.3 Confirm Thing Choice Intent

1 {

2 "id": "8f12acf6-7868-4aa9-bfac-d90bd48bfcab",

3 "timestamp": "2018-06-09T16:28:41.284Z",

4 "lang": "en",

5 "result": {

6 "source": "agent",

7 "resolvedQuery": "the first",

8 "action": "",

88

Sample Intent JSON Representations

9 "actionIncomplete": false,

10 "parameters": {

11 "thing": "",

12 "ordinal": 1

13 },

14 "contexts": [],

15 "metadata": {

16 "intentId": "5f3f7eb8-c2dc-42db-9f59-38a9bf0c3a52",

17 "webhookUsed": "true",

18 "webhookForSlotFillingUsed": "false",

19 "webhookResponseTime": 2363,

20 "intentName": "Confirm Thing Choice"

21 },

22 "fulfillment": {

23 "messages": [

24 {

25 "speech": "Done!",

26 "type": 0

27 }

28]

29 },

30 "score": 1

31 },

32 "status": {

33 "code": 200,

34 "errorType": "success"

35 },

36 "sessionId": "de3a07c8-6a90-bb4a-341d-d694317dac53"

37 }

Listing A.3: JSON object generated by Dialogflow for the intent "Confirm Thing Choice"

A.4 Repeating Intent

1 {

2 "id": "d0616836-4331-4b23-895d-182f9aedb94c",

3 "timestamp": "2018-03-19T12:43:38.313Z",

4 "lang": "en",

89

Sample Intent JSON Representations

5 "result": {

6 "source": "agent",

7 "resolvedQuery": "turn on the light everyday at 5pm",

8 "action": "",

9 "actionIncomplete": false,

10 "parameters": {

11 "action": {

12 "action-onoff": {

13 "status": "on",

14 "actuator": {

15 "light-switch": "light"

16 }

17 }

18 },

19 "periodtime": {

20 "time": "17:00:00"

21 }

22 },

23 "contexts": [],

24 "metadata": {

25 "intentId": "977ef8d4-1096-4733-b724-82bad2931fc8",

26 "webhookUsed": "false",

27 "webhookForSlotFillingUsed": "false",

28 "intentName": "Repeating Intent"

29 },

30 "fulfillment": {

31 "speech": "Well, okay",

32 "messages": [

33 {

34 "type": 0,

35 "speech": "Well, okay"

36 }

37]

38 },

39 "score": 1

40 },

41 "status": {

42 "code": 200,

43 "errorType": "success",

44 "webhookTimedOut": false

90

Sample Intent JSON Representations

45 },

46 "sessionId": "7c3e8cc7-b596-4dcf-9709-a4f4d618e8b5",

47 "alternativeResultsFromKnowledgeService": {}

48 }

Listing A.4: JSON object generated by Dialogflow for the intent "Repeating Intent"

A.5 Event Intent

1 {

2 "id": "bfdbc989-e113-4fd6-b7b7-956282d16031",

3 "timestamp": "2018-03-29T14:28:57.939Z",

4 "lang": "en",

5 "result": {

6 "source": "agent",

7 "resolvedQuery": "turn on the bedroom light when the living

room light turns off",

8 "action": "",

9 "actionIncomplete": false,

10 "parameters": {

11 "action": {

12 "action-onoff": {

13 "status": "on",

14 "actuator": {

15 "light-switch": "bedroom light"

16 }

17 }

18 },

19 "event": {

20 "on-off-actuator": {

21 "light-switch": "living room light"

22 },

23 "on-off-status": "off"

24 }

25 },

26 "contexts": [],

27 "metadata": {

28 "intentId": "d234e808-2fd7-420f-9aef-1852750f8bc6",

91

Sample Intent JSON Representations

29 "webhookUsed": "false",

30 "webhookForSlotFillingUsed": "false",

31 "intentName": "Event Intent"

32 },

33 "fulfillment": {

34 "speech": "Sorry, I was unable to help.",

35 "messages": [

36 {

37 "type": 0,

38 "speech": "Sorry, I was unable to help."

39 }

40]

41 },

42 "score": 1

43 },

44 "status": {

45 "code": 200,

46 "errorType": "success",

47 "webhookTimedOut": false

48 },

49 "sessionId": "41d7872b-eb38-4e5f-84aa-03f7db824748"

50 }

Listing A.5: JSON object generated by Dialogflow for the intent "Event Intent"

A.6 Why Did Something Happen Intent

1 {

2 "id": "49b3c4e3-9317-499e-9464-bdaec4b04b85",

3 "timestamp": "2018-04-07T13:41:07.296Z",

4 "lang": "en",

5 "result": {

6 "source": "agent",

7 "resolvedQuery": "why did the living room light turn on",

8 "action": "",

9 "actionIncomplete": false,

10 "parameters": {

11 "action-past": {

92

Sample Intent JSON Representations

12 "action-past-onoff": {

13 "actuator": {

14 "light-switch": "bedroom light"

15 },

16 "status": "on"

17 }

18 }

19 },

20 "contexts": [],

21 "metadata": {

22 "intentId": "a835dba1-f963-4b82-a41f-c8dbf6eb8c19",

23 "webhookUsed": "false",

24 "webhookForSlotFillingUsed": "false",

25 "intentName": "Why did something happen?"

26 },

27 "fulfillment": {

28 "speech": "I’m sorry but I was not able to help.",

29 "messages": [

30 {

31 "type": 0,

32 "speech": "I’m sorry but I was not able to help."

33 }

34]

35 },

36 "score": 1

37 },

38 "status": {

39 "code": 200,

40 "errorType": "success",

41 "webhookTimedOut": false

42 },

43 "sessionId": "8290b4d1-4f06-4fdc-a40e-d01736c58ad7"

44 }

Listing A.6: JSON object generated by Dialogflow for the intent "Why did something happen?"

A.7 Alias Intent

93

Sample Intent JSON Representations

1 {

2 "id": "0ff9ee90-3cba-4067-a49e-bf2b68748eae",

3 "timestamp": "2018-05-02T16:20:13.249Z",

4 "lang": "en",

5 "result": {

6 "source": "agent",

7 "resolvedQuery": "create an alias for turn up the heat",

8 "action": "",

9 "actionIncomplete": false,

10 "parameters": {

11 "alias": "turn up the heat"

12 },

13 "contexts": [],

14 "metadata": {

15 "intentId": "b9038171-11bb-4024-91b4-cad41fdcc9e6",

16 "webhookUsed": "true",

17 "webhookForSlotFillingUsed": "false",

18 "webhookResponseTime": 8499,

19 "intentName": "Alias Intent"

20 },

21 "fulfillment": {

22 "speech": "Sorry, I was not able to help.",

23 "messages": [

24 {

25 "type": 0,

26 "speech": "Sorry, I was not able to help."

27 }

28]

29 },

30 "score": 1

31 },

32 "status": {

33 "code": 206,

34 "errorType": "partial_content",

35 "errorDetails": "Webhook call failed. Error: 503 Service

Unavailable"

36 },

37 "sessionId": "857547d2-9e74-43b0-af54-c95459b486a4",

38 "isStackdriverLoggingEnabled": false

39 }

94

Sample Intent JSON Representations

Listing A.7: JSON object generated by Dialogflow for the intent "Alias Intent"

A.8 Set Alias Type Intent

1 {

2 "id": "4fe0e2d7-67e1-4873-a178-d19ad4d8d3fe",

3 "timestamp": "2018-05-02T16:24:37.74Z",

4 "lang": "en",

5 "result": {

6 "source": "agent",

7 "resolvedQuery": "execute turn on the light",

8 "action": "",

9 "actionIncomplete": false,

10 "parameters": {

11 "event": "",

12 "action": {

13 "action-onoff": {

14 "status": "on",

15 "actuator": {

16 "light-switch": "light"

17 }

18 }

19 }

20 },

21 "contexts": [

22 {

23 "lifespan": 1,

24 "name": "alias-creation-context",

25 "parameters": {

26 "alias": ""

27 }

28 }

29],

30 "metadata": {

31 "intentId": "99637bce-5049-4fc4-92f6-da12110059ed",

32 "webhookUsed": "true",

33 "webhookForSlotFillingUsed": "false",

95

Sample Intent JSON Representations

34 "webhookResponseTime": 2946,

35 "intentName": "Alias Intent | Set Alias Type"

36 },

37 "fulfillment": {

38 "speech": "Sorry, I was not able to help.",

39 "messages": [

40 {

41 "type": 0,

42 "speech": "Sorry, I was not able to help."

43 }

44]

45 },

46 "score": 1

47 },

48 "status": {

49 "code": 206,

50 "errorType": "partial_content",

51 "errorDetails": "Webhook call failed. Error: 503 Service

Unavailable"

52 },

53 "sessionId": "857547d2-9e74-43b0-af54-c95459b486a4",

54 "isStackdriverLoggingEnabled": false

55 }

Listing A.8: JSON object generated by Dialogflow for the intent "Alias Intent | Set Alias Type"

A.9 Rules Defined Intent

1 {

2 "id": "1abcefa2-d854-4840-b063-9a6b0aff30d2",

3 "timestamp": "2018-04-09T15:50:52.161Z",

4 "lang": "en",

5 "result": {

6 "source": "agent",

7 "resolvedQuery": "what rules are defined for the living room

light",

8 "action": "",

9 "actionIncomplete": false,

96

Sample Intent JSON Representations

10 "parameters": {

11 "thing": {

12 "light-switch": "living room light"

13 }

14 },

15 "contexts": [],

16 "metadata": {

17 "intentId": "51d173a2-2efd-4641-befa-b06dc692f155",

18 "webhookUsed": "false",

19 "webhookForSlotFillingUsed": "false",

20 "intentName": "Rules Defined"

21 },

22 "fulfillment": {

23 "speech": "Sorry, I was not able to help with that.",

24 "messages": [

25 {

26 "type": 0,

27 "speech": "Sorry, I was not able to help with that."

28 }

29]

30 },

31 "score": 0.8299999833106995

32 },

33 "status": {

34 "code": 200,

35 "errorType": "success",

36 "webhookTimedOut": false

37 },

38 "sessionId": "8290b4d1-4f06-4fdc-a40e-d01736c58ad7"

39 }

Listing A.9: JSON object generated by Dialogflow for the intent "Rules Defined"

A.10 Change Single Rule Intent

1 {

2 "id": "3412015b-1f94-4a2a-acaf-991e000486b1",

3 "timestamp": "2018-04-11T23:42:46.52Z",

97

Sample Intent JSON Representations

4 "lang": "en",

5 "result": {

6 "source": "agent",

7 "resolvedQuery": "change that to when the living room light is

on",

8 "action": "",

9 "actionIncomplete": false,

10 "parameters": {

11 "event": {

12 "on-off-actuator": {

13 "light-switch": "living room light"

14 },

15 "on-off-status": "on"

16 }

17 },

18 "contexts": [

19 {

20 "lifespan": 1,

21 "name": "edit-single-rule",

22 "parameters": {

23 "event": "{\"id\":\"2144309538794832901\",\"tag\":\"

booleanEventHandler\",\"value\":false,\"consumer

\":{\"event\":{\"ON_OFF\":{\"unit\":\"boolean\",\"

description\":\"Whether light is on\",\"href\":\"/

house/living room light/events/ON_OFF\",\"type\":\"

boolean\"}},\"thing\":{\"name\":\"living room light

\",\"description\":\"On/Off light switch\",\"links

\":{\"actions\":\"/house/living room light/actions

\",\"properties\":\"/house/living room light/

properties\",\"events\":\"/house/living room light/

events\"},\"type\":\"onOffLight\",\"properties\":{\"

status\":{\"description\":\"Describes current state

of the switch (true=on)\",\"type\":\"boolean\"}},\"

events\":{\"ON_OFF\":{\"unit\":\"boolean\",\"

description\":\"Whether light is on\",\"href\":\"/

house/living room light/events/ON_OFF\",\"type\":\"

boolean\"}}}},\"command\":{\"id

\":6840089621934373932,\"type\":\"onOffCommand\",\"

thing\":\"bedroom light\",\"status\":true}}"

24 }

98

Sample Intent JSON Representations

25 }

26],

27 "metadata": {

28 "intentId": "9798598e-cb3c-4bcc-bb68-3721a1ec3b23",

29 "webhookUsed": "false",

30 "webhookForSlotFillingUsed": "false",

31 "intentName": "Rules Defined | Change Single Rule"

32 },

33 "fulfillment": {

34 "speech": "",

35 "messages": [

36 {

37 "type": 0,

38 "speech": ""

39 }

40]

41 },

42 "score": 1

43 },

44 "status": {

45 "code": 200,

46 "errorType": "success",

47 "webhookTimedOut": false

48 },

49 "sessionId": "a4bb052c-5238-4a73-a7f9-95595bffa42f"

50 }

Listing A.10: JSON object generated by Dialogflow for the intent "Rules Defined | Change Single

Rule"

A.11 Cancel Command Intent

1 {

2 "id": "fbcf0b39-a211-4f6a-a51c-fddfdf8ca8d3",

3 "timestamp": "2018-04-02T16:03:55.586Z",

4 "lang": "en",

5 "result": {

6 "source": "agent",

99

Sample Intent JSON Representations

7 "resolvedQuery": "cancel my last command",

8 "action": "",

9 "actionIncomplete": false,

10 "parameters": {},

11 "contexts": [

12 {

13 "name": "confirm-cancel-event",

14 "parameters": {},

15 "lifespan": 1

16 }

17],

18 "metadata": {

19 "intentId": "62544394-9d76-42da-a40b-6a6cda34066b",

20 "webhookUsed": "true",

21 "webhookForSlotFillingUsed": "false",

22 "webhookResponseTime": 2284,

23 "intentName": "Cancel Command"

24 },

25 "fulfillment": {

26 "messages": [

27 {

28 "speech": "Sorry, I found no command to cancel.",

29 "type": 0

30 }

31]

32 },

33 "score": 1

34 },

35 "status": {

36 "code": 200,

37 "errorType": "success",

38 "webhookTimedOut": false

39 },

40 "sessionId": "41d7872b-eb38-4e5f-84aa-03f7db824748"

41 }

Listing A.11: JSON object generated by Dialogflow for the intent "Cancel Command"

A.12 Confirm Cancel Intent

100

Sample Intent JSON Representations

1 {

2 "id": "70caa64e-9a81-4d73-9115-c939a12b0392",

3 "timestamp": "2018-04-02T20:05:32.543Z",

4 "lang": "en",

5 "result": {

6 "source": "agent",

7 "resolvedQuery": "yes",

8 "action": "",

9 "actionIncomplete": false,

10 "parameters": {},

11 "contexts": [

12 {

13 "name": "confirm-cancel-event",

14 "parameters": {

15 "commandId": "6053189115902158217"

16 },

17 "lifespan": 1

18 }

19],

20 "metadata": {

21 "intentId": "145e7d3b-9105-4bfb-8c6a-78c3e5c2783b",

22 "webhookUsed": "true",

23 "webhookForSlotFillingUsed": "false",

24 "webhookResponseTime": 522,

25 "intentName": "Confirm Cancel"

26 },

27 "fulfillment": {

28 "messages": [

29 {

30 "speech": "Sorry, I was not able to cancel that event.",

31 "type": 0

32 }

33]

34 },

35 "score": 1

36 },

37 "status": {

38 "code": 200,

39 "errorType": "success",

101

Sample Intent JSON Representations

40 "webhookTimedOut": false

41 },

42 "sessionId": "41d7872b-eb38-4e5f-84aa-03f7db824748"

43 }

Listing A.12: JSON object generated by Dialogflow for the intent "Confirm Cancel"

102

Appendix B

Sample Jarvis MongoDB Documents

This appendix includes examples of objects stored in Jarvis’ Mongo database for commands, event

history and user commands.

B.1 Commands

1 {

2 "_id":"5ae9e3ae55d6b72c3cf71984",

3 "undo":false,

4 "success":true,

5 "commandText":"[OnOffCommand] Executed device on (living room

light)",

6 "command":{

7 "id":"614569302563896791",

8 "type":"onOffCommand",

9 "thing":"living room light",

10 "status":true

11 },

12 "timestamp":"1525277614116"

13 }

Listing B.1: JSON stored in the database representing a command

B.2 User Commands

1 {

103

Sample Jarvis MongoDB Documents

2 "_id":"5ae9e39755d6b72c3cf71982",

3 "undo":false,

4 "success":true,

5 "commandText":"[Event] do [OnOffCommand] Executed device on (

living room light) when living room motion sensor is

activated",

6 "command":{

7 "id":"3210187144565540456",

8 "type":"eventCommand",

9 "event":{

10 "on-off-status":"on",

11 "binary_sensor":"living room motion sensor"

12 },

13 "command":{

14 "id":"614569302563896791",

15 "type":"onOffCommand",

16 "thing":"living room light",

17 "status":true

18 }

19 },

20 "timestamp":"1525277591322"

21 }

Listing B.2: JSON stored in the database representing a user command

B.3 Event History

1 {

2 "_id":"5ae9e3ae55d6b72c3cf71986",

3 "event":{

4 "condition":true,

5 "id":"6942623486896140466",

6 "tag":"binaryTriggerEventHandler",

7 "consumer":{

8 "event":{

9 "TRIGGER":{

10 "unit":"boolean",

11 "description":"If sensor is activated",

104

Sample Jarvis MongoDB Documents

12 "href":"/house/living room motion sensor/events/

trigger",

13 "type":"trigger"

14 }

15 },

16 "thing":{

17 "name":"living room motion sensor",

18 "description":"Binary Sensor",

19 "links":{

20 "actions":"/house/living room motion sensor/actions"

,

21 "properties":"/house/living room motion sensor/

properties",

22 "events":"/house/living room motion sensor/events"

23 },

24 "type":"binarySensor",

25 "properties":{

26 "value":{

27 "description":"Is triggered (\"on\") if the

sensor is activated",

28 "href":"/house/living room motion sensor/

properties/value",

29 "type":"boolean"

30 }

31 },

32 "events":{

33 "TRIGGER":{

34 "unit":"boolean",

35 "description":"If sensor is activated",

36 "href":"/house/living room motion sensor/events/

trigger",

37 "type":"trigger"

38 }

39 }

40 }

41 },

42 "command":{

43 "id":"614569302563896791",

44 "type":"onOffCommand",

45 "thing":"living room light",

105

Sample Jarvis MongoDB Documents

46 "status":true

47 }

48 },

49 "timestamp":"1525277614852"

50 }

Listing B.3: JSON stored in the database representing an event

106

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem Definition
	1.3 Motivation and Goals
	1.4 Report Structure

	2 State of the Art
	2.1 Automation
	2.2 Internet of Things
	2.2.1 History
	2.2.2 IoT Applications

	2.3 Interaction with Smart Spaces
	2.3.1 Visual Programming Platforms
	2.3.2 Technologies for Natural Language Interaction
	2.3.3 Chatbots and Intelligent Assistants
	2.3.4 IoT Communication Protocols

	2.4 Chatbot Development Platforms
	2.5 Summary

	3 Problem Statement
	3.1 Current Issues
	3.2 Proposal
	3.3 Assumptions
	3.4 Desiderata
	3.4.1 Use Case 1: one-time action query
	3.4.2 Use Case 2: one-time action query with uncertainty of device
	3.4.3 Use Case 3: delayed one-time action query
	3.4.4 Use Case 4: delayed period action query
	3.4.5 Use Case 5: daily repeating action query
	3.4.6 Use Case 6: daily repeating period query
	3.4.7 Use Case 7: cancel last command query
	3.4.8 Use Case 8: event rule query
	3.4.9 Use Case 9: rules defined for device query
	3.4.10 Use Case 10: change device rule query
	3.4.11 Use Case 11: causality query (single possible answer)
	3.4.12 Use Case 12: causality query (parallel possible causes)
	3.4.13 Use Case 13: causality query (documented chained causality, single answer)
	3.4.14 Use Case 14: causality query (documented chained causality, contextual conversation)
	3.4.15 Use Case 15: causality query (undocumented chained causality)
	3.4.16 Use Case 16: alias definition query

	3.5 Research Questions
	3.6 Validation
	3.7 Summary of Contributions
	3.8 Conclusions

	4 Implementation
	4.1 Overview of a Chatbot
	4.2 Solution Overview
	4.3 Component Overview
	4.3.1 User Interface
	4.3.2 Dialogflow Backend
	4.3.3 Jarvis Backend
	4.3.4 Database
	4.3.5 Messaging Queue
	4.3.6 IoT System Controllers

	4.4 Assembling the Solution
	4.5 Conclusions

	5 Validation
	5.1 Simulated Scenarios
	5.1.1 Scenario 1 - one-time action
	5.1.2 Scenario 2 - one-time action with uncertainty of device
	5.1.3 Scenario 3 - delayed one-time action
	5.1.4 Scenario 4 - delayed period action
	5.1.5 Scenario 5 - daily repeating action
	5.1.6 Scenario 6 - daily repeating period action
	5.1.7 Scenario 7 - cancel last command
	5.1.8 Scenario 8 - event rule
	5.1.9 Scenario 9 - rules defined for device
	5.1.10 Scenario 10 - causality query
	5.1.11 Test Results

	5.2 User Study
	5.2.1 Study Description
	5.2.2 Results
	5.2.3 Analysis
	5.2.4 Validation Threats

	5.3 Conclusions

	6 Conclusions and Future Work
	6.1 Main Difficulties
	6.2 Main Contributions
	6.3 Conclusions
	6.4 Future Work

	References
	A Sample Intent JSON Representations
	A.1 Direct Action Intent
	A.2 Delayed Action Intent
	A.3 Confirm Thing Choice Intent
	A.4 Repeating Intent
	A.5 Event Intent
	A.6 Why Did Something Happen Intent
	A.7 Alias Intent
	A.8 Set Alias Type Intent
	A.9 Rules Defined Intent
	A.10 Change Single Rule Intent
	A.11 Cancel Command Intent
	A.12 Confirm Cancel Intent

	B Sample Jarvis MongoDB Documents
	B.1 Commands
	B.2 User Commands
	B.3 Event History

