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Abstract

The behaviour of the great majority of materials when subjected to complex loadings

is strongly dependent on their microstructure. Therefore, it is widely accepted by both

the scientific and industrial communities that, in order to develop new materials that

are able to satisfy tight criteria, the complete understanding of the relation between

the macroscopic behaviour of the material and its microstructure is vital. This will

be only possible with the formulation and development of new micro-macro strategies.

Within this context, Coupled Multi-Scale Models can be an important ally to address

this challenge. The main objective of this thesis is to develop an efficient framework,

which incorporates several numerical techniques to model the deformation behaviour of

heterogeneous materials at finite strains and predict material failure in relevant practical

problems. For this purpose, the thesis starts with a global overview of the state-of-art

on the present topic. In Chapter 2, the main concepts of the Continuum Mechanics

Theory and the Finite Element Method are briefly reviewed. This chapter is followed

by the introduction of the underlying formulation of First-Order Coupled Multi-Scale

Models. In Chapter 4, the first main contribution of this work is introduced: an adap-

tive sub-incremental strategy for the solution of the micro-scale problem. With this

new strategy it is possible to significantly reduce the CPU cost required to solve the

micro-equilibrium problem, which has a significant repercussion to the global CPU time

which is necessary to solve coupled multi-scale problems. Due to the difficulty to enforce

Periodic boundary conditions in RVEs with non-conform meshes, in Chapter 5, a new

numerical approach to impose a Periodic displacement fluctuation over the boundary of

the RVE based on the Mortar decomposition method is introduced. As demonstrated by

a set of numerical examples, the new strategy is quite robust either for two or three di-

mensional problems. When softening regimes are attained, mesh dependence pathology

is commonly observed. This pathology was addressed in Chapter 6. In order to mini-

mize this problem, two distinct non-local approaches of integral type were suggested for

micro and macro domains. While at the micro-scale the approach proposed significantly

reduced the mesh dependence pathology, at the macro-scale, further work is required to

enhance the numerical framework proposed. In Chapter 7, a new concept of Periodic

boundary condition is proposed, which is able to tackle the presence of a localization

band with an arbitrary shape. Despite of being an embryonic concept and, therefore,

a significant amount of work still needs to be carried out, it has provided interesting

indications. The document finishes with the presentation of the main conclusions of this

work and, in addition, suggestions for future research are made.





Resumo

O comportamento mecânico de um material quando sujeito a diferentes solicitações é

profundamente dependente da sua micro-estrutura. Por sua vez, o desenvolvimento de

complexos sistemas mecânicos passa pelo aparecimento de novos materiais que cumpram

apertados requisitos de projecto. O desenvolvimento de novos materiais apenas é posśıvel

com o aux́ılio de ferramentas numéricas. Assim, os Modelos Acoplados Multi-Escala

poderão ser um aliado neste enorme desafio. É neste contexto que esta dissertação se

enquadra: desenvolvimento do Método Acoplado Multi-Escala para a caracterização de

materiais tendo por base a sua micro-estrutura. Face a este objectivo, esta tese inicia-se,

no Caṕıtulo 1, com uma revisão bibliográfica desta temática. De seguida, no Caṕıtulo 2,

é introduzida uma breve revisão da Teoria dos Meios Cont́ınuos bem como do Método

dos Elementos Finitos (MEF). No caṕıtulo 3, é proposta a formulação subjacente aos

Modelos Acoplados Multi-Escala, onde é dada especial atenção a aspectos computa-

cionais. O caṕıtulo 4 versa sobre um procedimento de incremetação automático para

o método de Newton-Raphson implementado à micro-escala. Com este procedimento

é posśıvel reduzir significativamente o tempo computacional associado a um problema

multi-escala acoplado. Face à dificuldade encontrada na construção de malhas periódicas

em complexos Elementos de Volume Representativos (EVRs), no Caṕıtulo 5 é sugerida

uma nova estratégia numérica de impor condição Periódica. Como comprovado pelos

diferentes resultados, esta contribuição garante claramente uma correcta imposição de

um deslocamento periódico providenciando simultaneamente uma enorme flexibilidade

para o utilizador deste método numérico. A patologia de dependência da malha demon-

strada pelo MEF quando o regime de amaciamento do material é atingido é analisada

no contexto dos modelos acoplados multi-escala no Caṕıtulo 6. Com base em duas abor-

dagens distintas não-locais do tipo integral para o problema à micro e macro escalas, foi

posśıvel atenuar claramente esta patologia em ambos os domı́nios espaciais. No entanto,

enquanto que à micro-escala esta patologia foi praticamete eliminada, à macro-escala é

ainda necessário algum trabalho com o intuito de aprimorar as indicações positivas que

a formulação proposta originou. Face à necessidade da caracterização dos materiais em

diferentes regimes, em particular no regime de amaciamento, no Caṕıtulo 7 é introduzido

um novo conceito de condição Periódica com a capacidade de ter em conta a presença de

uma banda de localização no comportamento global do EVR . Embora seja um conceito

embrionário, foram obtidas indicações positivas quanto à configuração final do EVR

quando esta nova condição de fronteira é prescrita. Por último, são apresentadas as

principais conclusões deste trabalho bem como sugestões de trabalhos futuros.
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A todos, o meu muito Obrigado.
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Chapter 1

Introduction

Over the last decades, scientific and industrial communities have been sharing their

resources and have been working together towards the optimized design of materials

and structures. As a result of this cooperation, new materials, new technologies and

new simulation tools to support design projects have been discovered and developed.

Probably, it is the development of new simulations tools that has had the most significant

impact. This marked evolution may be justified by two reasons: the computational

capacity versus power has had a dramatic increase over the last years and both industrial

and scientific communities are aware that the design of new complex structures and

systems, which simultaneously need to satisfy restrictive safety, mechanical and, in some

cases, economical constraints, is only possible through virtual simulations tools.

Even though significant advances have been achieved on the simulation of different phe-

nomena, there is still the need for further developments. This is particularly true for the

numerical strategies and algorithms that have been used to characterize the behaviour

of materials with a generic microstructures subjected to complex loading conditions.

Basically, two distinct approaches have been followed in order to model the behaviour

of materials: continuum and micromechanical approaches. In the first one, the charac-

terization of the material is accomplished by the development of continuous constitutive

equations. Commonly, these equations are established based on phenomenological as-

sumptions or, in some cases, based on micromechanical considerations. Notable results

have been obtained however, this approach seems to be close to its limits. This is mainly

due to the fact that regardless of the complexity of the continuous equations, they will

never contemplate and include all the phenomena that take place at the micro struc-

tural level such as: phase transformation, thermal conductivity among different phases,

internal deterioration, onset of fracture and so on. The second approach starts from

another point of view: by considering exclusively information from the microstructure,

1
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analytical and semi-analytical solutions are formulated which are able to estimate the

overall properties of the material. Even though considerable efforts have been directed

towards the development of these analytical solutions, they still remain too simple, not

covering a wide range of practical applications.

Faced with the gap between these two approaches, a new framework has been developed

aiming to establish the bridge between pure continuous and micromechanical approaches:

Coupled Multi-Scale Models.

1.1 Heterogeneous materials

Regardless of the kind of material (metal, composite, polymer, natural), the hypothesis

of homogeneity might be a limiting assumption for several reasons. When we dive into

the microstructure of a generic material it is possible to observe different features such as:

second phases, voids, micro-cracks and inclusions. In addition, these features embedded

at the microstructure might interact in a complex manner and have considerable impact

on the overall properties and performance of the material.

Traditionally, a metal alloy such as a carbon-steel alloy is considered isotropically ho-

mogeneous and, in fact, for simple applications this assumption is admissible. However,

when it is necessary to design and construct a structural component, which during its

active live will possibly be subjected to critical external loading conditions bringing the

material close to its limits, we verify that there are significant deviations between the

predicted behaviour and the experimentally observed. This happens mainly due to the

fact that, there is a strong dependence of the overall properties and global performance

of the material on phenomena that take place at its microstructure. Thus, in these cases,

it is imperative to perform structural analyses which take into account information from

the microstructure of the material. Within the context of heterogeneous materials, it is

also important to remark that, since ancient times, we have been manipulating virgin

materials aiming to improve its properties by the introduction of a second phase/con-

stituent into the microstructure of the virgin material. In fact, this is what has been

done with composites materials. One of the advantages of composites materials relies

on the fact that it is possible to define a specific material for each particular application

by manipulating the fibers, the matrix and the manufacture process.

Faced with this undoubtedly relevant evidence, several analytical approaches have been

suggested to quantify the overall properties of heterogeneous materials exclusively by the

analysis of its microstructure. The simplest analytical strategy is the rule of mixtures.

This strategy assumes that the overall properties are calculated as a volume average of
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the corresponding microscopic value of each constituent phase, which is weighted by the

respective volume fraction. In this case, only the spatial configuration of the constituents

and their particular properties are considered, ignoring completely all the other aspects.

A different analytical approach, which is suitable for materials with a regular repetitive

microstructure pattern, was suggested by Eshelby [7]. The global elastic properties of

the heterogeneous material are obtained by the analytical solution of a boundary value

problem of an infinite isotropic matrix containing a circular or ellipsoidal inclusion. This

analytical approach, widely known as the effective medium approach has been generalized

and extended in order to incorporate others aspects such as plasticity and interaction

among inclusions ([8], [9], [10], [11]).

Based on the original work of Eshelby [7], Hill [12] has proposed a new analytical ap-

proach: the self-consistent approach. The fundamental idea was to introduce incremental

solutions for a composite, which is characterized by an inclusion embedded into an infi-

nite homogeneous matrix, and imposing that the properties of the matrix are the same

as the composite. With this analytical framework, Hill [12] obtained closed-forms for

Bulk and shear moduli which have provided reasonable results for composites with a

regular microstructure. Even though the self-consistent approach has undergone some

developments, the results obtained still remain unsatisfactory due to the fact that the

composites that can be analysed are quite simple, not being representative of a real

composite material.

The variational bounding methods have gained importance on the development of analyt-

ical methods to obtain advanced properties of composites. Within this context, pioneer

work was carried out by Hashin and Shtrikman [13], who obtained upper and lower

bounds on the values of overall elastic moduli for materials with irregular microstruc-

ture. Some extensions of this original work have been published i.e. [14–18].

Another approach for analytical methods is provided by the mathematical asymptotic

homogenization theory. This method was initially proposed by Bensoussan et al. [19]

and Sanchez-Palencia [20]. This theory is based on the principle of scale separations,

which means that macro and micro level are naturally distinct. Mathematically, the

asymptotic homogenization theory applies an asymptotic expansion to the displacement

and stress fields which are dependent on the natural length parameter (ratio between

the characteristic size of the heterogeneities and the size of the macrostructure). A more

detailed discussion of this analytical approach may be found in [21–23]. An extensive

overview of the analytical methods mentioned can be found in [24].

More recently, the numerical homogenization procedure has gained a notable popularity

within the composite community. The basic idea is to solve the equilibrium problem of
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a Representative Volume Element (RVE) [25] when it is subjected to admissible kine-

matical boundary conditions (Periodic and Uniform Tractions constraints) and then,

compute the overall properties by homogenization over the RVE’s domain. Compared

with classical analytical approaches, this numerical framework stands out mainly be-

cause it allows to model different phenomena at the microstructure without restrictions.

Some examples of this approach can be found in [26–29] among several others.

1.2 Multi-scale modelling

Despite the notable contributions and results, which have resulted exclusively from mi-

cromechanical analysis, there is still a significant and pronounced gap between the mi-

cromechanical results and the real behaviour of the macroscopic structure. This fact

is more noticeable when we need to analyse the behaviour of the material whenever it

goes beyond the elastic domain. Undoubtedly we recognize that, in parallel with the

macroscopic deformation of the solid, there are inherent evolutions at the microstructure

such as phase transformations, internal deterioration, onset of fracture, propagation of

the micro-cracks that need to be taken into account throughout the analysis for the

appropriate design of the component.

The characterization of these phenomena exclusively by means of analytical and semi-

analytical approaches, which solely take into account information from the virgin mi-

crostructure of the material is far from being ideal.

In recent years a promising numerical tool has attracted considerable amount of ef-

forts: Coupled Multi-Scale Modelling. The underlying principles and concepts, which

constitute the coupled multi-scale theory, were introduced by [30], [31], [32] , [33] and

[34]. This micro-macro modelling procedure defines the stress-strain relation at each

macroscopic point through a homogenization procedure, which involves a solution of a

boundary problem over a statistically Representative Volume Element (RVE). In prac-

tice, considering the finite element method, this numerical approach consists in solving

simultaneously two boundary problems: the macroscopic problem and the micro bound-

ary value problem at each macroscopic integration Gauss point. Compared with the

different approaches mentioned previously, this numerical solution stands out due to the

following reasons:

• There is no constraint with regard to geometry of the microstructure. Complex

and arbitrary geometries can be easily incorporated into a RVE;

• The framework is suitable to model non-linear and time dependent problems;
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• With appropriate algorithms it is possible to include interaction among the dif-

ferent constituents of the microsctructure as well as to characterize the internal

deterioration and phase transformations [35];

• Large deformation can be trivially modelled either at macro or micro-scales;

• Regardless of the phenomena incorporated at the microstructure and their com-

plexity, the overall response at macro-scale is always a consequence of the mi-

crostructure.

Relevant contributions to this field have been made by several authors. Among others,

the work performed by Miehe et al. [36], Miehe and Koch [37] where a crystal plasticity

framework at small and finite strains was established and the work of Kouznetsova

et al. [38], who have proposed a second order coupled-multi scale scheme in order to

introduce the effect of the size of the RVE and its constituents should be highlighted.

More recently, Özdemir et al. [39, 40] have enhanced the coupled multi-scale model in

order to incorporate thermal effects.

With regard to practical applications, Massart et al. [41, 42] using a coupled multi-scale

model, which includes an internal damage variable, performed structural analysis of

masonry walls. A similar study was carried out by Mercatoris et al. [43]. More recently,

Coenen et al. [44] based on classical plate and shells theory has formulated a coupled

multi-scale framework that is able to solve problems involving heterogeneous thin sheets.

In addition to these examples, several others may be found in the literature i.e. [45–48].

One drawback of this numerical framework is the fact that this formulation is rather

computationally expensive. However, this problem may be minimized by employing

parallel computations [49, 50] and by applying selective usage [51], where in some non-

critical parts at the macro-scale, instead of the fully multi-scale analysis, closed-forms

or continuum constitutive laws are adopted.

Notwithstanding the promising capabilities of coupled multi-scale models have shown,

some issues inherent with their youth have been raised. In particular, when they are

used to characterize complex materials over the line which defines the initiation of the

softening regime verified at the macroscopic specimen. In this case, the current formu-

lation of First-Order Coupled Multi-Scale Models fails mainly for three reasons. The

first one is due to the fact that the RVE loses its representativeness when this structural

regime is reached. Several efforts have been directed towards this topic where the work

of Gitman et al. [52, 53] should be pointed out. The second reason is inherent with

the mesh dependence pathology that is verified under these conditions. It is noteworthy
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to mention that since in a coupled multi-scale model at least two spatial scales are in-

cluded on the analysis, this pathology may be observed at both scales. With regard to

this issue, the work of Wu et al. [54] should be highlighted. The third is related to the

necessity of extending First-Order Coupled Multi-Scale Models with strategies that are

able to properly model the presence at both scales of localization bands or discontinuities

(depending on the nomenclature considered). Among several others, the work carried

out by Belytschko et al. [55], Song and Belytschko [56], Souza and Allen [57], Coenen

et al. [58], Nguyen et al. [59], Nguyen et al. [60], Nguyen et al. [61] and Verhoosel et al.

[62] should be highlighted. In addition to the transition of scales, it is still necessary to

pay attention to the kinematical boundary condition enforced at the RVE level in the

presence of a localization band. In the literature, according to the author’s knowledge

only the work carried out by Coenen et al. [63] has addressed this issue. As a matter

of fact, some authors advocate that the enhancement of the scale transition with pa-

rameters, which define a localization band at both domains, dramatically minimizes the

mesh dependence pathology verified at both scales.

The main objective of this thesis is to develop an efficient framework, which incorpo-

rates several numerical techniques, to model the deformation behaviour of heterogeneous

materials at finite strains and predict material failure in relevant practical problems.

1.3 Outline

In order to facilitate the understanding and reading of the present document, in this

section, the main architecture of it is introduced chapter by chapter.

Chapter 2

In Chapter 2, the fundamental concepts of the Continuum Solid Mechanics theory are

introduced as well as the main definitions of the Finite Element Method (FEM). These

concepts will be widely used in the following chapters of this document.

Chapter 3

In Chapter 3, the concepts of First-order coupled multi-scale models are introduced

such as Homogenization, Hill-Mandel principles or even boundary conditions, which

are kinematically admissible within the context of coupled multi-scale models. Special

attention is also given to numerical and computational aspects such as Newton-Raphson
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method applied at each spatial domain and linerization of micro and macro problems.

As a matter of fact, all formulation was introduced under the finite strain assumption.

Chapter 4

In order to reduce the computational cost inherent with coupled multi-scale problems,

in Chapter 4, an adaptive sub-incremental strategy is proposed for the Newton-Raphson

method implemented at the micro-scale domain. For this purpose, Line-Search and

Arc-Length methods were properly modified for the micro-equilibrium problem in order

to guarantee quadratic rates of convergence at both scales. By means of some numer-

ical examples, the new adaptive incremental approach was assessed demonstrating a

significant computational cost reduction.

Chapter 5

In Chapter 5, a new enforcement of Periodic boundary condition was proposed based on

the Mortar decomposition method. The main idea is to impose a periodic displacement

over non-conform meshes. In other words, over meshes with an arbitrary discretization.

The new concept was implemented for either two and three dimensional problems and the

admissibility of the new constraint was demonstrated. In order to assess the robustness

of the new enforcement, some examples were considered where outstanding results were

obtained for either two or three dimensional problems.

Chapter 6

The mesh dependence pathology observed within the context of First-order coupled

multi-scale models was addressed in Chapter 6. In order to minimize this pathology,

which is verified at both scales, two non-local approaches of integral-type were pro-

posed for each scale. Despite sharing the same base, the two approaches considered

are significantly different: while at the micro-scale, a scalar internal variable as con-

sidered as non-local parameter, i.e. the damage associated to the constitutive model,

at the macro-scale, a kinematic tensorial variable was selected, i.e. the macroscopic

deformation gradient. Outstanding results were obtained at the micro-scale, where this

pathology was considerably minimized. In contrast, despite positive indications, the

approach implemented at the macro-scale still needs to be improved.



Chapter 1. Introduction 8

Chapter 7

In Chapter 7, a new concept of Periodic boundary condition that is able to tackle the

presence of a localization band is introduced. The main idea consists on the decompo-

sition of the total RVE domain based on the shape of the localization band. For this

purpose, once again, the Mortar decomposition method is considered. Due to the com-

plexity of the new concept, only a preliminary result was introduced. Nevertheless, a

clearly interesting indication in terms of the final configuration of the RVE was obtained,

which is in agreement with the initial expectation about this concept.

Chapter 8

This document concludes with Chapter 8 where the summary of the main achievements

of this work is presented. Moreover, suggestions for future research are made.

1.4 Related publications

Most of the work of this thesis has either been published, submitted or are currently

in preparation for submission in scientific journals. A list of this contributions is given

herein.

• F.J.P. Reis, F.M. Andrade Pires. An adaptive sub-incremental strategy for the

solution of homogenization-based multi-scale problems, Computer Methods in Ap-

plied Mechanics and Engineering, 257: 164-182, 2013.

• F.J.P. Reis, F.M. Andrade Pires. A mortar based approach for the enforcement of

periodic boundary conditions on arbitrarily generated meshes, Computer Methods

in Applied Mechanics and Engineering - (under review).

• F.J.P. Reis, F.M. Andrade Pires. A Non-local method of integral type for hetero-

geneous media - (in preparation).



Chapter 2

Continuum Mechanics and Finite

Element Method

2.1 Introduction

A coupled multi-scale model can be viewed as an extension of the continuum solid

mechanics theory and most of the definitions of this theoretical field are widely applied

in the formulation of such micro-macro models. Thus, before we proceed with the

introduction of a first-order coupled multi-scale model, a brief revision of continuum

solid mechanics will be addressed in this chapter.

Due to the complexity inherent with solid mechanics problems, and in order to provide an

engineering applicability to these models, suitable numerical tools are required. Within

the context of this work, the Finite Element Method is considered coupled with the

iterative Newton-Raphson method. Whereas the former numerical method is responsible

to perform the spatial discretization of the problem domain and the boundary conditions,

the latter is used to solve with quadratic rates of convergence a non-linear system of

equations.

Before to proceed, it is relevant to emphasize once again, that the main goal of this

chapter is not to provide an detailed an exhaustive introduction neither on Continuum

solid Mechanics nor Finite Element Method but rather to present a short overview of

these topics. Nevertheless, for those who are not familiar and do not have a strong

background in these topics, several famous publications can be consulted for Continuum

Solid Mechanics [6, 64–68] and for Finite Element Method [6, 65, 69–71].

9
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2.2 Kinematics of deformation

Consider a body (B), which in the Euclidean three-dimensional space R3, occupies the

region Ω0 with a regular boundary defined by ∂Ω0 on its initial configuration (see Figure

2.1).

E1

E2

E3

X u (p)

ϕ

e1

e2

e3

x = ϕ (X)

B ϕ (B)

Figure 2.1: Deformation of a body.

After a given motion ϕ of the body which may include a rigid movement (i.e. translation

and/or rotation) within a certain time t, the position of the material particle p at time

t with initial coordinate X is given by

x = ϕ {X , t} , (2.1)

where x is the position in the Euclidean space of the material particle p. By definition,

the displacement field, u, of the material particle p is given by

u {X} = ϕ {X} −X. (2.2)

Manipulating the previous equation, it is possible to obtain an explicit expression for

the position of particle p in the deformed configuration of the solid:

x = X + u {X} . (2.3)

The velocity field is, by definition, the derivative of the displacement with respect to

time, t:

ẋ {X , t} =
∂ϕ {X, t}

∂t
. (2.4)
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Assuming that ϕ {X, t} is invertible, for all instant t, the material points X can be

explicitly defined by its coordinates on the deformed configuration of the solid, x

X = ϕ−1 {x, t} = x− u
{
ϕ−1 {x, t} , t

}
. (2.5)

where ϕ−1 denotes the reference map. With this function at hand it is possible to define

the spatial velocity field:

v {x, t} = ẋ
{
ϕ−1 {x, t} , t

}
. (2.6)

Both fields ẋ and v represent the velocity of the solid during the deformation. However,

they were established in different referentials and for this reason they are different.

With the introduction of the initial and current position of a particle, p, respectively

denoted by X and x, it is possible to define two descriptions which may be used to

characterize the motion of a solid: material and spatial descriptions. The material

description, also called Lagrangian description, characterizes the deformation of the solid

with reference to the initial configuration of the solid. This means that the equilibrium

and dynamic equations which govern the behaviour of the solid, are explicitly dependent

on the original coordinates X and time t. This description basically consists of following

a material particle through the motion and analyse the variables from this point of view.

Alternatively, all fields inherent with the motion of a solid may be described using a

spatial description or Eulerian description. Conversely to the material description, in

this description all fields are functions of the spatial position x. Conceptually, this

description may be described as: in a fixed point of the space observe the motion of the

particles of the solid.

2.2.1 Deformation gradient

Mathematically, the gradient of a generic function (either scalar or vectorial function)

consists the estimation of the evolution of a function in a particular direction. This

operation is widely applied within the context of Continuum Solid Mechanics and in

this document it will be symbolically represented by ∇.

When applying this operator to the motion function results the deformation gradient,

F {X, t}, which is a second order tensor. Considering the material configuration, this

parameter is defined as

F {X, t} = ∇pϕ {X , t} =
∂x

∂X
. (2.7)
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Taking into account expression (2.7) together with the relations introduced in the previ-

ous section and after a straightforward algebra manipulation, the deformation gradient,

F {X, t}, may be re-written as:

F {X, t} = I +∇pu, (2.8)

where I denotes the second order identity tensor. In the spatial description, the defor-

mation gradient is given by the following expression:

F {x, t} =
[
∇xϕ

−1 {x, t}
]−1

= [I −∇xu]
−1 . (2.9)

As can be possible to observe from Equations (2.7) and (2.9), there are two gradient

operators denoted by ∇p and ∇x. The former denotes the material gradient operator

whereas the latter corresponds to the gradient operator defined at the spatial configu-

ration. As a matter of fact, in what follows, this notation will be used.

Polar decomposition of the deformation gradient

In order to distinguish pure stretches from pure rotations, it is possible to perform the

polar decomposition to the deformation gradient, which gives rise to

F = RU = V R, (2.10)

where R denotes the rotation tensor meanwhile tensors U and V are the right and left

stretch tensors. Note that these two tensors are symmetric positive definite second order

tensors and are defined by

U =
√
C, (2.11a)

V =
√
B, (2.11b)

where C and B are respectively the right and left Cauchy-Green strain tensors, which

are mathematically defined by

C = F TF , (2.12a)

B = FF T . (2.12b)
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Decomposition of the deformation gradient

The deformation gradient can be multiplicatively decomposed into two parts: the iso-

choric, F iso, and volumetric, F v parts [64]. Hence, the deformation gradient, F , may

be defined as:

F = F isoF v. (2.13)

In the particular case of three-dimensional spaces, F iso and F v are determined using

the following expressions:

F v = (detF )
1
3 I, (2.14)

F iso = (detF )−
1
3 F , (2.15)

where the volumetric part only contemplates the part of the deformation gradient in-

herent with volume changes of the solid and the isochoric part is exclusively associated

with the material distortion.

2.2.2 Strain measures

Different quantities may be used to characterize the straining phenomenon of a solid.

Even though the different strain quantities represent the same physic phenomenon, its

selection is basically a compromise between the physical phenomenon which is aimed to

be modelled and the mathematical framework which will be used to.

Among others strain measures, probably the most used either in theoretical or numerical

formulations are the Lagrangian and the Eulerian strain tensors. The Lagrangian strain

tensors is mathematically expressed by

Em =





1
m
(U − I) ,m 6= 0,

ln [U ] ,m = 0,
(2.16)

where m is a real number and ln [∗] denotes the logarithm function. The Eulerian strain

tensors are quite similar to the Lagrangian strain family distinguish solely on the stretch

tensor which defines it: the left stretch tensor, V :

Em =





1
m
(V − I) ,m 6= 0,

ln [V ] ,m = 0.
(2.17)

In the present document, the Eulerian logarithmic strain tensor, which corresponds to

the case when m = 0 will be used in the formulation of material constitutive models

defined at the micro-scale level.
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It is important to remark that in case of rigid body rotation or translations, any of the

previous defined deformation tensors vanishes.

2.3 Stress measures

In this section, the different quantities to measure stress in a deformable solid and which

will be used throughout the present document will be briefly reviewed.

2.3.1 Cauchy stress tensor

By definition, the Cauchy stress tensor, σ, is given by

t {n, t} = σn, (2.18)

where t is the surface traction and n is its associated unit outward normal vector. In

the literature, it is commonly used to denominate this stress tensor as true stress tensor

due to the fact that it is defined at the deformed (current) configuration of the solid.

As a particularity of this stress tensor is the fact that it is symmetric.

In line with the deformation gradient which may be split into its volumetric and iso-

choric counterparts, the Cauchy stress tensor may also decomposed into hydrostatic and

deviatoric parts. The former component, also usually called as hydrostatic pressure or

even mean stress is defined as

p =
1

3
tr(σ). (2.19)

The deviatoric stress, s, is given by

s = σ − pI. (2.20)

2.3.2 First Piola-Kirchhoff stress tensor

While the Cauchy stress tensor characterize the stress in a generic point of a continuum

solid with regard to the deformed configuration of the solid, in some circumstances, it

is convenient to define a stress tensor considering the undeformed configuration. Thus,

the material version of the Cauchy stress tensor is known as the First Piola-Kirchhoff

stress tensor, denoted by P , which is mathematically defined as

P = JσF−T , (2.21)
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where J is the determinant of the deformation gradient intrinsic with the motion of the

solid. In contrast with the Cauchy stress tensor, P is generally unsymmetric.

2.3.3 Kirchhoff stress tensor

Using the Cauchy stress tensor as well as the determinant of the deformation gradient,

J , it is possible to define a new symmetric stress tensor: the Kirchhoff stress tensor,

which in this document will be denoted by τ :

τ = Jσ. (2.22)

2.4 Fundamental conservation principles

So far, only the parameters that are used to mathematically define the motion and

stresses in a continuum solid together with forces which a generic solid may be subjected

to were addressed. Nevertheless, now, it is fundamental to introduce the laws, which are

explicitly dependent on the parameters previously introduced, and are responsible for

governing the behaviour of the solid. For convenience, no reference will be given to the

thermodynamic principles. In fact, these principles are out of the scope of this work.

2.4.1 Conservation of mass

The principle of conservation of mass postulates that the following expression needs to

be always satisfied

ρ̇+ ρdivxu̇ = 0, (2.23)

where ρ is the density of the solid and divx(∗) denotes the spatial divergence operator.

2.4.2 Momentum balance principle

Using a spatial description of the motion of a continuum solid, the momentum balance

principle is defined by the following system of equations:




divxσ + b = ρü , in ϕ (B) ,

t = σn , on ϕ (∂B) ,
(2.24)
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where t is the traction vector field on the deformed boundary of the solid, ϕ (∂B), and
n is the outward unit vector normal to ϕ (∂B). In the first expression of the above

equation system, b denotes the body force per unit deformed volume.

The above system can be equivalently re-written in the material configuration (or La-

grangian description) . In this case, this principle is defined by:




divpP +B = ρü , in B

T = PN , on ∂B
(2.25)

where P is the First Piola-Kirchhoff stress tensor, B is the body force measured per

unit reference volume and divp denotes the material divergence operator. In this version

of the momentum balance principle, the density is also described assuming the reference

configuration of B. In the last expression of the previous system of equations, T denotes

the boundary traction force per unit reference area and N is the unit outward vector

normal to the undeformed boundary of B.

Remark 2.1. The equations introduced above, which represent the momentum balance

principle are also widely known as the Strong Equilibrium Equations.

2.5 Weak equilibrium. The principle of virtual work

Having stated the strong equilibrium equations in the previous section, in the present

one, their corresponding weak form will be introduced. The weak form of the strong

equilibrium equations results from the application of the Principle of Virtual Work.

For this purpose, consider again a generic solid B which occupies the region Ω0 ⊂ R3

with boundary ∂Ω0 in its reference configuration and subjected to body forces in its

interior and surface tractions on its boundary.

2.5.1 Spatial version

The spatial version of the Virtual Work Principle states that the solid is in equilibrium

if and only if the following expression is verified:

∫

ϕ(Ω0)
[σ : ∇xη − (b− ρü) .η] dV −

∫

ϕ(∂Ω0)
t.ηdA = 0 ∀ η ∈ V, (2.26)

where b and t are respectively the body force per unit deformed volume and the external

traction forces acting over the deformed boundary of the solid per unit area; η denotes
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the admissible virtual displacements field belonging to the space of virtual displacement

of V.

2.5.2 Material version

The corresponding material version of Equation (2.26) states that the solid is in equi-

librium if and only if the First Piola-Kirchhoff stress tensor satisfies:

∫

Ω0

[P : ∇pη − (B − ρü) .η] dV −
∫

∂Ω0

T .ηdA = 0 ∀ η ∈ V. (2.27)

The previous equation is established by introducing into Equation (2.26) the following

relations

σ =
1

J
PF T , (2.28a)

∇xa = ∇paF
−1. (2.28b)

The second relation of Equation (2.28) holds for a generic vector field a. In addition

to these relations, the ”bridge” between spatial and material was performed using the

standard relation [72]

∫

ϕ(Ω0)
a {x} dV =

∫

Ω0

J {p} a {ϕ {p}} dV, (2.29)

valid for any scalar field a.

2.5.3 Quasi-static formulation

In some cases, the inertial effects are insignificant when compared to others phenomena

inherent with the deformation of the solid. Therefore, in these cases, the inertial effects

can be disregarded from the formulation without loss of accuracy. This particular case

is commonly called as Quasi-Static Problem.

Considering the spatial configuration of the solid, the equation which governs this prob-

lem is given by:

∫

ϕ(Ω0)
[σ : ∇xη − b.η] dV −

∫

ϕ(∂Ω0)
t.ηdA = 0 ∀ η ∈ V, (2.30)

whereas the material description of the problem is given by

∫

Ω0

[P : ∇pη −B.η] dV −
∫

∂Ω0

T .ηdA = 0 ∀ η ∈ V. (2.31)
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2.6 Finite Element Method

It is relatively straightforward to recognize that the equilibrium equations of a continuum

solid, previously introduced, can be highly non-linear thereby, requiring an appropriate

numerical method to solve them. One of those methods, which have been successfully

used either by the scientific community or industry, is the Finite Element Method.

Basically, this numerical method requires the application of the following four funda-

mental steps:

• Integral formulation of the Problem. Describe the equilibrium of a solid

through an integral equation.

• Spatial Discretization. This step is the basis of this method.

• Temporal discretization. If the external loads and prescribed displacements are

dependent on time or even the constitutive model, which models the behaviour of

the material, is dependent on the deformation history.

• Solve the system of equations originated by the two steps aforemen-

tioned. Usually, an iterative numerical method is used (i.e. Newton-Raphson

method).

In the following, these four steps will be carefully introduced and discussed.

2.6.1 Integral formulation of the problem

The integral formulation of the problem can be obtained by applying different methods.

However, the Principle of Virtual Work is commonly adopted. As mentioned before,

the application of this method gives rise to Equation (2.30) if a spatial formulation

is considered or, Equation (2.31) if the motion of a continuum solid is described with

regard to its undeformed configuration.

2.6.2 Spatial discretization of the problem

The spatial discretization of a problem consists of subdividing the continuum domain of

the problem, Ω, in a finite number of sub-domains called finite elements, Ωe. This means

that the continuum domain, Ω, has a discretized counterpart which can be conveniently

defined as

Ω ≈ Ωd =

Nelem⋃

e=1

Ωe. (2.32)
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In the previous equation, the index (∗)d denotes a discretized domain and
⋃

a suitable

assembly operator.

Inside of each sub-domain, all variables of the problem (i.e. displacements, stress, etc)

are determined by interpolation (Eq. 2.33) through the use of shape functions, which

need to satisfy some constraints (for more details see for instance [70]):

a(x) =

Nnode∑

i=1

N e
i (x)ai. (2.33)

The previous equation defines a typical interpolation procedure for a generic field a(x)

defined over the domain of the element, Ωe, where N e
i (x) denotes the shape function

of the i − th node of the finite element. Note that the value of this shape function is

defined in a generic point x inside of the element and, ai is the nodal value of field a.

For a discretized global domain Ωd, the procedure used is exactly the same:

a(x) =

Npoint∑

i

Ng
i (x)a

i, (2.34)

however, in this case, the shape function Ng
i (x) is related to the entire domain and not

solely to the finite element domain. Generically, the global interpolation matrix for a

problem with npoint points is defined as

N g(x) =
[
diag[Ng

1 (x)] diag[Ng
2 (x)] ... diag[Ng

npoint(x)]
]
, (2.35)

where diag[Ng
npoint(x)] is the diagonal matrix with dimension ndim × ndim (ndim equal

to 2 or 3 for two and three dimensional problems, respectively) with the shape function

of the i− th point.

The spatial discretization requires the introduction of the global discrete material gra-

dient operator, Gg, and global discrete spatial gradient operator, Bg, which are the

discretized versions of operators ∇p(∗) and ∇x(∗), respectively. Both matrices Gg and

Bg need to be established for each type of problem (i.e. plane strain, plane stress,

tree-dimensional problems). For plane-strain problems, Gg is defined as:

Gg =




∂N
g
1

∂x
0

∂N
g
2

∂x
0 ...

∂N
g
npoint

∂x
0

0
∂N

g
1

∂x
0

∂N
g
2

∂x
... 0

∂N
g
npoint

∂x

∂N
g
1

∂y
0

∂N
g
2

∂y
0 ...

∂N
g
npoint

∂y
0

0
∂N

g
1

∂y
0

∂N
g
2

∂y
... 0

∂N
g
npoint

∂y



, (2.36)
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and Bg as

Bg =




∂N
g
1

∂x
0

∂N
g
2

∂x
0 ...

∂N
g
npoint

∂x
0

0
∂N

g
1

∂y
0

∂N
g
2

∂y
... 0

∂N
g
npoint

∂y

∂N
g
1

∂y

∂N
g
1

∂x

∂N
g
2

∂y

∂N
g
2

∂x
...

∂N
g
npoint

∂y

∂N
g
npoint

∂x


 . (2.37)

2.6.2.1 Spatial discretization of the Virtual Work Equation

With the notation introduced above, it is straightforward to perform the spatial dis-

cretization of the virtual work equation. In fact, this procedure resumes to the substitu-

tion of the continuum domain by its discretized counterpart as well as the replacement

of the continuum differential operators by matrices Gg or Bg. For convenience, only

the spatial discretization of the virtual work expression established following an Eule-

rian formulation (Eq. 2.30) is described here. Nevertheless, we remark that the spatial

discretization of the Virtual Work equation defined with regard to the undeformed con-

figuration (following a Lagrangian formulation - Equation (2.31)) is quite similar to the

one that follows.

At the end of the spatial discretization procedure, Equation (2.30) is replaced by the

following one:

{∫

ϕ(Ωd
0)

[
(Bg)T σ − (N g)T b

]
dV −

∫

ϕ(∂Ωd
0)

(N g)T tdA

}T

η = 0 η ∈ Vd. (2.38)

where Vd denotes the discretized version of the virtual displacement space, V.

Since the above expression is satisfied for all admissible η, the term within brackets

has to disappear. Therefore, after some algebraic manipulation and some appropriate

substitutions it is possible to obtain an equation which consists in a difference between

the internal and external forces

f int − f ext = 0, (2.39)

where these forces are defined by the following integrals:

f int =

∫

ϕ(Ωd
0)
(Bg)T σdV, (2.40a)

fext =

∫

ϕ(Ωd
0)
(N g)T bdV +

∫

ϕ(∂Ωd
0)

(N g)T tdA. (2.40b)
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In current finite element procedures, the internal and external forces are computed within

each finite element and then are assembled in the respective global vector:

f int =

nelem⋃

e=1

(
f int
e

)
, (2.41a)

f ext =

nelem⋃

e=1

(
f ext
e

)
. (2.41b)

In the previous equations, the symbol
⋃

denotes an appropriated assembly operator.

The element vectors of f int
e and f ext

e are given by:

f int
e =

∫

ϕ(Ωe
0)
BTσdV, (2.42a)

f ext =

∫

ϕ(Ωe
0)
NTbdV +

∫

ϕ(∂Ωe
0)
NT tdA. (2.42b)

2.6.3 Temporal discretization

Besides a spatial discretization, the modelling of materials that have some kind of history

dependence (e.g. strain-path or strain-rate dependent materials) also requires proper

time discretization. Basically, the procedure for time discretization consists in dividing

the overall time interval [t0, t] into n+1 steps and, for each time step, equilibrium must

be satisfied.

In order to incorporate the history of the deformation into the constitutive equations

which characterize the stress tensor, a set of internal variables, denoted by α, that are

intrinsic with the type of material are required. Using, for instance, the First Piola-

Kirchhoff stress tensor, for the instant tn+1, this tensor is defined as

P n+1 = P̂ {F n+1, αn} , (2.43)

where P̂ {F n+1, αn} is the incremental constitutive functional.

Introducing the incremental constitutive functional of P n+1 into Equation (2.31) and

also performing the temporal discretization of the external forces, the incremental me-

chanical quasi-static boundary value problem is obtained which is described in what

follows:

Given the set αn of internal variables as well as the displacement field at time tn, and

knowing the forces Bn+1 and T n+1 for the current time step, find the displacement field
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un+1 such that

∫

Ω0

[
P̂ {F n+1, αn} : ∇pη −Bn+1.η

]
dV −

∫

∂Ω0

T n+1.ηdA = 0 (2.44)

is satisfied for any η ∈ V.

2.6.4 Newton-Raphson Method

In order to solve the equilibrium equation introduced in the previous section, a robust

and efficient numerical method is required. Even though several methods may be used,

the most popular and widely used by the computational mechanics community is the

Newton-Raphson method. With this particular method it is possible to achieve quadratic

convergence rates if it is correctly implemented.

A typical iteration j of this numerical method scheme consists in solving the linearised

version of the equilibrium equation of the problem for the iterative global displacement

vector, δu(j):

K(j−1)δu(j) = −r(j−1), (2.45)

where r(j−1) denotes the residual vector

r(j−1) = f int
{
u
(j−1)
n+1

}
− f ext

n+1 (2.46)

and K is the global tangent stiffness matrix :

K =
∂r

∂un+1

∣∣∣∣
u
(j−1)
n+1

. (2.47)

With the solution δu(j) at hand, we perform the correction of the global displacement:

u(j) = u(j−1) + δu(j). (2.48)

This procedure is carried out until the convergence criterion is satisfied.

By definition, the global tangent stiffness is established through the linearisation of

the problem. This procedure consists in finding out a closed form for the directional

derivative of the equation which governs the equilibrium of the solid. In Appendix B.1,

a summarized description of the directional derivative is introduced.

One of the main goals of the subsequent chapters of this document is to introduce a

variational formulation for coupled multi-scale models at finite strains. The requisite of

large deformations basically aims to describe the eventual presence of large rigid body
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movements (rotations and translations) and therefore the stress tensor may be a func-

tional dependent on the deformation gradient. In the following section, the linearisation

of Equation (2.44) will be discussed.

2.6.4.1 Linearisation of the virtual work equilibrium equation

The typical unknown in a mechanical quasi-static equilibrium problem is the displace-

ment field u. Thus, according to the linearisation framework described in Appendix

B.1, it is necessary to perform the perturbation of this field:

uε = u+ ε∆u. (2.49)

Introducing uε into the definition of the deformation gradient, results the perturbed

deformation gradient:

F ε = I +∇p (u+ ε∆u) . (2.50)

By definition, the directional derivative of Equation (2.44) is given by (for convenience,

the notation associated with pseudo-time step was omitted as well as the internal vari-

ables):

DG (uε,η) [∆u] =
d

dε

∣∣∣∣
ε=0

∫

Ω0

[
P̂ {F ε} : ∇pη −B.η

]
dV −

∫

∂Ω0

T .ηdA

=

∫

Ω0

∂P̂ {F ε}
∂F ε

:
∂F ε

∂ε
: ∇pηdV

∣∣∣∣∣
ε=0

=

∫

Ω0

A : ∇p∆u : ∇pηdV,

(2.51)

where A is a fourth-order tensor widely known as material tangent modulus.

With the material version of the directional derivative of the equilibrium equation at

hand, it is possible to obtain its spatial version. This is achieved introducing relations

(2.28) and (2.29) into the previous equation, resulting:

DG (uε,η) [∆u] =

∫

ϕ(Ω0)

1

J
A : (∇x∆uF ) : (∇xηF ) dV. (2.52)

The previous equation can be rearranged in the following fashion

DG (uε,η) [∆u] =

∫

ϕ(Ω0)

1

J
a : (∇x∆uF ) : (∇xηF ) dV, (2.53)
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where a is the spatial tangent modulus defined by the following expression

aijkl =
1

J
AimknFjmFln. (2.54)

Taking into account the different forms to describe the stress tensor in a solid,one can

write

Aimkn =
∂

∂Fkn

(
τipF

−1
mp

)

=
∂τip
∂Fkn

F−1
mp + τip

∂F−1
mp

∂Fkn
,

(2.55)

and, with the following relation at hand [73]

∂F−1
mp

∂Fkn
= −F−1

mkF
−1
np , (2.56)

we obtain

Aimkn =
∂τip
∂Fkn

F−1
mp − τipF

−1
mkF

−1
np . (2.57)

Finally, introducing the previous equation into (2.54) and after a straightforward algebra

manipulation, we obtain a closed-form for the spatial tangent modulus, a,

aijkl =
1

J

∂τij
∂Fkm

F−1
lm − σilδjk, (2.58)

where δjk denotes the Kronecker delta.

2.6.5 Pseudo-code of finite element method

In order to conclude the presentation of the finite element method, in Table 2.1 the

global structure of a finite element code in a pseudo-format is presented. We emphasize

that further information as well as further details concerned to programming of a finite

element code may be found in [6] where a ”bridge” between theory and implementation

is well described.

2.7 Conclusions

So far, the main concepts within Continuum Solid Mechanics and suitable numerical

tools which will be widely used either to formulate or implement/program a coupled

multi-scale model have been addressed and discussed throughout this chapter.
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Table 2.1: Newton-Raphson algorithm for solution of the incremental Finite Element
Method [6].

1. Initialize some variables for j = 1 (Newton-Raphson iteration counter)

u
(j)
n+1 = un r(j) = f int

n+1(un)− λn+1f
ext

where r is residual equation and λn+1 is the prescribed load factor at instant tn+1.

2. Increment the counter

j = j + 1

3. Compute the stiffness matrix;

K
(j)
T = ∂r(j)

∂u
(j)
n+1

4. Compute the iterative displacement vector, δu(j+1);

K
(j)
T δu(j+1) = −r(j)

5. Update the global displacements, u
(j+1)
n+1 ;

u
(j+1)
n+1 = u

(j)
n+1 + δu(j+1)

6. Update the deformation gradient, F
(j+1)
n+1 ;

F
(j+1)
n+1 =

(
I −∇xu

(j+1)
n+1

)−1

7. Update stress tensor and internal variables;

σ
(j+1)
n+1 = σ

{
F

(j+1)
n+1 ,αn

}
α

(j+1)
n+1 = α̂

{
F

(j+1)
n+1 ,αn

}

where α̂ denotes an incremental functional which governs the evolution of α.

8. Compute internal forces vector, f int
{
u
(j+1)
n+1

}
;

f int
{
u
(j+1)
n+1

}
=

Nelem⋃

e=1

f int
e

{
u
(j+1)
n+1

}

9. Compute the residual vector, r(j+1);

r(j+1) = f int
{
u
(j+1)
n+1

}
− λn+1f

ext

10. Check the convergence.

IF CONV<TOL THEN New increment ELSE Go to item 2) END IF





Chapter 3

Fundamental Principles of

Coupled Multi-Scale Models

3.1 Introduction

Independently of the material, its behaviour and their global properties are deeply de-

pendent on its microstructure. Nevertheless, this dependence may be more significant

or not according to several factors such as manufacturing process, external loadings and

conditions (temperature, humidity).

Aiming to incorporate the effects originated by the microstructure on the global proper-

ties of the material, some approaches as well as methods have been developed within the

science and academic community. One of those methods, which has gained a notable

popularity, is the Coupled Multi-Scale Method. The success of this tool relies on the

fact that it is generic and universal for all kind of materials. This means that, having

formulated a Coupled Multi-Scale Model, all kind of microstructures of a wide range of

materials may be conveniently and properly treated.

Based on a variational formulation, in the present chapter, the fundamental steps nec-

essary to formulate a First-Order Coupled Multi-Scale Model will be addressed and

discussed.

3.2 General Concepts of Multi-Scale Constitutive Models

In this section, the main principles and governing equations employed in the develop-

ment of First-Order Coupled Multi-Scale Models at finite strains will be briefly reviewed.

27
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A more comprehensive account can be found in references [37, 74–78]. Before we pro-

ceed, we will introduce the notation used throughout the present document. In what

follows, x will denote a generic infinitesimal point at the deformed macro-scale domain

and y represents an infinitesimal point at the deformed fine scale. For example, following

this notation, A {x} and A {y} denote a generic parameter, field or tensor respectively

defined at the coarse and fine scales. In turn, capital letters X and Y denote coordi-

nates of a generic point at the undeformed macro and micro domains respectively. The

notation used is schematically represented in Figure 3.1.

Lmacro

x•
y•

l

d

Figure 3.1: Definition of scales.

The development of a coupled multi-scale model starts from the assumption that, in

a generic solid it is possible to identify and distinguish different scales. In fact, this

assumption is valid for the majority of natural and engineering materials. Based on

this aspect and in order to taken into account information from the different spatial

scales, the coupled multi-scale model assumes that at any point x (macro-scale) there is

an associated Representative Volume Element (RVE) that satisfies the scale separation

principle. This statement implies that, the average size of the singularities and hetero-

geneities present in the RVE, d (Figure 3.1), is much smaller than the characteristic

length of the RVE, l. It is noteworthy mentioning that this last parameter has to be

smaller than the characteristic size of the macro-scale, L. These three parameters are

related by the following inequality:

d ≪ l ≪ L. (3.1)

In addition, in order to ensure that at the micro-scale the continuum hyphothesis is

applicable, l must be large enough when compared with the atomic structures. Some

publications have shed some light on the effects that these parameters have on the global

response of the RVE. Relevant and notable contributions on this topic can be found in

references [52, 79–83] and more recently in [84].
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3.2.1 Averaging procedures

Within the context of coupled multi-scale models, the averaging procedures play a crit-

ical role on the definition of stress and deformation quantities. Hence, for a generic

macroscopic point and at any instant in time t, the macroscopic deformation gradient,

F {x, t}, and the First Piola-Kirchhoff stress tensor, P {x, t}, are defined as the volume

average of their microscopic counterparts, F {y, t} and P {y, t} respectively, over the

undeformed configuration of the RVE:

F {x, t} =
1

V0

∫

Ω0

F {y, t} dV = I +
1

V0

∫

Ω0

∇pu {y, t} dV, (3.2)

P {x, t} =
1

V0

∫

Ω0

P {y, t} dV =
1

V0

∫

∂Ω0

T ref {y, t} ⊗ Y dA

− 1

V0

∫

Ω0

Bref {y, t} ⊗ Y dV,

(3.3)

where V0 denotes the volume of the undeformed RVE, I is the second order identity

tensor and Ω0 represents the undeformed microscopic integration domain. In Equa-

tion (3.2) and in what follows, the symbol ∇p denotes the material gradient operator.

Furthermore, T ref {y, t} and Bref {y, t} (see Equation (3.3)) denote, respectively, the

reference boundary traction force and the reference body force fields of the RVE.

3.2.2 Definition of the microscopic displacement field

Without loss of generality, the displacement field at the micro-scale, u {y, t}, may be

split in the following fashion:

u {y, t} = [F {x, t} − I]Y + ũ {y, t} , (3.4)

where the first term on the right hand side is the Linear displacement (varies linearly

with Y - reference coordinates of the RVE) and the second one is the displacement

fluctuation denoted by ũ {y, t}.

With the present definitions of the microscopic displacement field (Equation (3.4)) and

the macroscopic deformation gradient (Equation (3.2)), can one define the minimal

kinematical admissible constraint :

∫

∂Ω0

ũ {y, t} ⊗N {Y } dA = 0, (3.5)

where N {Y } denotes the outward unit vector to the undeformed boundary ∂Ω0 of the

RVE.
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3.2.3 Equilibrium of the RVE

Under the assumption of finite strains, the strong form of the equilibrium problem at

the micro-scale is given by the following system of equations




divP {y, t}+Bref {y, t} = 0 ∀ y ∈ Ω0,

P {y, t}N {Y }+ T ref {y, t} = 0 ∀ y ∈ ∂Ω0,
(3.6)

where div (∗) denotes the divergence operator. The weak format of the micro-equilibrium

problem can be defined by means of the virtual work principle, giving rise to the following

expression

∫

Ω0

P {y, t} : ∇ηdV −
∫

Ω0

Bref {y, t} .ηdV

−
∫

∂Ω0

T ref {y, t} .ηdA = 0 ∀ η ∈ V.
(3.7)

The symbol V represents the space of the virtual admissible displacement fluctuation

field, η. Here, for simplicity, we have assumed that internal traction forces arising from

frictional contact on crack surfaces or internal pressure of fluids contained within RVE

voids have been ommited. They can, however, be incorporated into the theory.

3.2.4 Hill-Mandel Principle

A fundamental concept in multi-scale constitutive theories is the Hill-Mandel principle

of Macro-Homogeneity [12, 85]. This principle requires the macroscopic stress power

to equal the volume average of the microscopic stress power over Ω0, establishing the

bridge between scales:

P {x, t} : Ḟ {x, t} =
1

V0

∫

Ω0

P {y, t} : Ḟ {y, t} dV, (3.8)

which can be equivalently re-written in terms of the RVE boundary traction force,

T ref {y, t}, and body force, Bref {y, t}, fields:
∫

∂Ω0

T ref {y, t} .ηdA = 0 ∀ η ∈ V, (3.9)

∫

Ω0

Bref {y, t} .ηdV = 0 ∀ η ∈ V. (3.10)

With the previous result at hand, a crucial conclusion can be drawn from the Hill-

Mandel principle: the body and traction forces are, in fact, reaction forces associated



Chapter 3. Fundamental Principles of Coupled Multi-Scale Models 31

to the enforced kinematical constraints applied to ũ {y, t} at the boundary of the RVE,

∂Ω0.

3.2.5 Macroscopic equilibrium problem

A generic multi-scale constitutive model is obtained from the solution of the RVE equi-

librium problem (Equation (3.7)) in which the constraints associated to the Hill-Mandel

principle are taken into account, for a given macroscopic deformation gradient. After

finding the solution for ũ {y, t}, the macroscopic stress tensor, P {x, t}, is computed

according to the averaging relation (3.3). At the macro-scale, the equilibrium of the

problem is therefore defined by:

∫

Θ0

[
1

V0

∫

Ω0

P {y, t} dV
]
: ∇pζdV −

∫

Θ0

Bref {x, t} .ζdV

−
∫

∂Θ0

T ref {x, t} .ζdA = 0 ∀ ζ ∈ U ,
(3.11)

where Θ0 corresponds to the undeformed macroscopic integration domain where the

macroscopic equilibrium equation needs to be satisfied and U is the space of the virtual

displacement at the macro-scale domain, ζ. In turn, T ref {x, t} and Bref {x, t} denote

the external traction force and the body force fields respectively defined over the unde-

formed configuration of the macroscopic solid. The solution of a multi-scale constitutive

model, in the present context, requires the nested solution of equations (3.7) and (3.11),

which establish the equilibrium at both scales.

3.2.6 Admissible kinematical boundary conditions

Three distinct kinematical boundary constraints have been most commonly adopted

within multi-scale constitutive models: Linear, Periodic and Uniform Traction boundary

conditions. In what follows, a brief revision of these three boundary constraints will be

introduced.

3.2.6.1 Linear Boundary Condition

The Linear boundary condition assumes that at the boundary of the RVE, the displace-

ment fluctuation field is null:

ũ {y, t} = 0 ∀ y ∈ ∂Ω. (3.12)
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Thus, the minimal kinematical admissible constraint (Equation (3.5)) as well as the first

Hill-Mandel ’s condition (Equation (3.9)) are automatically satisfied. Nevertheless, the

second Hill-Mandel ’s condition (Equation (3.10)) is only satisfied if Bref {y, t} = 0,

revealing that the deformation of the RVE occurs in the absence of body forces and

accelerations.

3.2.6.2 Periodic Boundary Condition

This kinematical constraint requires that the boundary of the RVE is always divided into

positive, Γ+ and negative parts Γ−, such that each point y+ ∈ Γ+
i has its counterpart

point y− ∈ Γ−
i with associated outward normal vector n+ = −n− (Figure 3.2). Thus,

Γ−
2

Γ−
1

Γ+
1

Γ+
2

N+
2

N+
1

N−

2

N−

1

Figure 3.2: Decomposition of the boundary of the RVE for Periodic boundary con-
dition.

the Periodic boundary condition is expressed by a periodic displacement fluctuation field

and an anti-periodic traction field:

ũ
{
y+, t

}
= ũ

{
y−, t

}
, (3.13)

T ref
{
Y +, t

}
= −T ref

{
Y −, t

}
. (3.14)

With the two relations above introduced, we trivially conclude that the first Hill-

Mandel ’s condition (Equation (3.9)) and the minimal kinematical admissible constraint

(Equation (3.5)) are satisfied. Similar to what happens with Linear boundary condi-

tions, the Hill-Mandel condition inherent with volume body forces (Equation (3.10)) is

only satisfied if Bref {y, t} = 0.
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3.2.6.3 Uniform Traction Condition

The Uniform Traction boundary constraint is based on the minimal kinematical admis-

sible constraint (Equation 3.5)) which is recovered here for convenience:

∫

∂Ω0

ũ {y, t} ⊗N {Y } dA = 0. (3.15)

Once again, the Hill-Mandel condition associated with body forces (Equation (3.10)) is

only satisfied if Bref {y, t} = 0. Under the assumption of the minimally constraint for

the displacement fluctuation field and taking into account expression (3.9) related to

the Hill-Mandel principle, it is possible to demonstrate that the traction over the RVE’s

border is uniform and equal to the traction of the average stress:

P {y, t}N {y, t} = P {x, t}N {y, t} . (3.16)

It is for this reason that this boundary condition, which starts from the assumption of

the minimal kinematical admissible constraint, is known as Uniform Traction Boundary

Condition [86].

3.2.7 Remarks on the different boundary conditions

The boundary conditions previously introduced can be hierarchically sorted starting by

the lowest constraint condition to the highest one. In this context, results the following

order which starts with the Uniform Traction boundary condition followed by Periodic

boundary condition and ended with Linear constraint. It is also noteworthy to mention

that, among these three boundary constraints, some authors argue that Periodic bound-

ary condition is the one which converges faster to the theoretical/effective solution. In

others words, this means that for the same RVE size, it is the Periodic boundary con-

dition which origins the closest result to the effective value [87, 88]. Note that, in the

limit, when the size of the RVE reaches a certain dimension, the results obtained with

the three above mentioned boundary constraints will coincide.

It is also noteworthy to mention a relevant aspect concerned to the Uniform Traction

boundary constraint. Since this kinematical constraint is based on the minimal kine-

matical admissible constraint (Equation 3.5)) in some cases, particularly when large

deformations of the RVE are involved, spurious effects may appear as reported by [63].

As a consequence, in these situations the result obtained are unrealistic not having a

physical meaning.

Remark 3.1. As previously pointed out, in order to satisfy the Hill-Mandel principle,

the body forces, Bref {y, t}, need to be equal to zero for both Linear, Periodic and
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Uniform Traction boundary conditions. Therefore, Equation (3.3) can be re-written as:

P {x, t} =
1

V0

∫

Ω0

P {y, t} dV =
1

V0

∫

∂Ω0

T ref {Y , t} ⊗ Y dA. (3.17)

3.3 Numerical approximation

In this section, several numerical aspects required for the computational implementation

of First-Order Coupled Multi-Scale Models within a generic non-linear implicit finite

element framework at finite strains will be discussed.

3.3.1 The incremental equilibrium problem

In general, the constitutive characterization of the RVE constituents and phases can

be performed by means of conventional internal variable-based dissipative constitutive

models, which are described by a set of ordinary differential equations. Among others,

the elasto-plastic and visco-plastic models are very often adopted for the task. For

these cases, numerical approximations based on Euler -type methods (for more details

see [6, 89–91]) to integrate the constitutive equations of the model are widely used.

Considering a typical time interval (or pseudo-time), [tn, tn+1], and knowing the set

of internal variables βn {y} at tn, the updated stress tensor at the fine-scale domain,

P n+1 {y} at tn+1, is a function of the microscopic deformation gradient F n+1 {y}. This
relation can be symbolically represented by:

P n+1 {y} = P̂ {F n+1 {y} ,βn {y}} , (3.18)

where P̂ denotes a generic algorithm intrinsic with the constitutive model selected.

The last expression leads to the definition of the incremental version of the homogenized

stress tensor:

P n+1 {x} =
1

V0

∫

Ω0

P̂ {F n+1 {y} ,βn {y}} dV. (3.19)

Based on the definition of the deformation gradient and considering once more the

definition of the microscopic displacement field (Equation (3.4)), the previous equation

can be re-written as

P n+1 {x} =
1

V0

∫

Ω0

P̂ {F n+1 {x}+∇pũn+1 {y} ,βn {y}} dV. (3.20)
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t0 ... tn tn+1

...

...

•

↓

•

↓F n+1 {x}

•

↑ P n+1 {x}
An+1 {x}

−→S. Micro. Prob.

βn {y} βn+1 {y}

Figure 3.3: Schematic illustration of a homogenization-based coupled multi-scale
model.

Taking into account the constraints imposed by the Hill-Mandel principle (Equations

(3.9) and (3.10)), the final time-discrete version of the micro-equilibrium problem (Equa-

tion (3.7)) is simply given by:

∫

Ω0

P̂ {F n+1 {x}+∇pũn+1 {y} ,βn {y}} : ∇ηdV = 0 ∀ η ∈ V. (3.21)

On the other hand, the temporal discretization of Equation (3.11) follows the same

strategy as used in a conventional solid mechanical problem, distinguishing solely on

the approach used to determine the stress tensor in a generic point at the macro-scale.

Therefore, considering once again the time interval [tn, tn+1], the discrete time version

of Equation (3.11) is given by:

∫

Θ0

[
1

V0

∫

Ω0

P̂ {F n+1 {x}+∇pũn+1 {y} ,βn {y}} dV
]
: ∇pζdV

−
∫

Θ0

B
ref
n+1 {x} .ζdV −

∫

∂Θ0

T
ref
n+1 {x} .ζdA = 0 ∀ ζ ∈ U .

(3.22)

In order to make the temporal discretization (which has to be performed simultaneously

at both spatial domains) as clear as possible, a schematic representation of a First-Order

Coupled Multi-Scale model is presented in Figure 3.3.

In this context, in the course of the macro-scale solution governed by Equation (3.22),

the macroscopic stress tensor, P n+1 {x}, at a point x is extracted from the RVE by

subjecting the RVE to the macroscopic deformation gradient, F n+1 {x}. In addition to

P n+1 {x}, it is also necessary to extract the macroscopic tangent, An+1 {x}, which will

be described in Section 3.3.2.6. Since there is no explicit constitutive formulation at the
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macro-scale, the set of internal variables, βn {y}, is only known for each microstructural

point through the micro-scale constitutive formulation.

Remark 3.2. It is noteworthy to mention that, in this work, a Total Lagrangian formu-

lation was adopted and, as a consequence, all parameters and variables are defined with

regard to the initial configuration in both spatial domains.

3.3.2 Finite element approximation

The final step required to numerically implement a First-Order Coupled Multi-Scale

Model consists in performing the spatial discretization at both domains: macro and

micro. For this purpose, the well established Finite Element Method is considered.

3.3.2.1 Micro-scale discretization.

The finite element discretized version of Equation (3.21) is obtained by replacing the

functional set V with a discrete counterpart, Vd, composed by the finite element shape

functions of a mesh d, and the domain Ω0 is replaced with an approximated counterpart

Ωd
0, composed by the assembly of finite element domains,

∫

Ωd
0

GT P̂ {F n+1 {x}+Gũn+1 {y} ,βn {y}} .ηdV = 0 ∀ η ∈ Vd, (3.23)

where G denotes the global discrete gradient matrix containing the shape functions

derivatives and P̂ is the incremental constitutive model at the RVE level that computes

the array of First Piola-Kirchhoff stress components, P n+1 {y}. Since the previous

equation is satisfied for all admissible vectors η, Equation (3.23) can be reduced to the

following expression:

f int {un+1 {y}} = 0. (3.24)

where f int {un+1 {y}} is the internal force vector.

The Newton-Raphson method is adopted due to its quadratic asymptotic rate of con-

vergence for the solution of the problem at the fine scale. However, this requires

the proper linearization of the microscopic discretized variational equilibrium Equation

(3.24), which in the present case leads to:

f int {un+1 {y}}(j) +KT {un+1 {y}}(j) δũ {y}(j+1) = 0, (3.25)

whereKT {un+1 {y}} denotes the RVE global stiffness matrix. In the previous equation,

(j) denotes the iteration number of the Newton-Raphson method at the micro-scale
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and δũ {y}(j+1) is the unknown iterative nodal displacement fluctuation vector. With

δũ {y}(j+1) at hand, the total displacement fluctuation field for (j + 1) is given by:

ũ
(j+1)
n+1 {y} = ũ

(j)
n+1 {y}+ δũ(j+1) {y} . (3.26)

3.3.2.2 Micro-scale discretized kinematical constraints.

It is noteworthy mentioning that Equation (3.25) is generic and does not take into ac-

count the constraints enforced on the boundary. Thus, in the following, a generic numer-

ical framework will be introduced, which can be used to solve the equilibrium problem

at the micro-scale for a wide variety of admissible kinematical boundary conditions.

Without loss of generality, the displacement fluctuation field ũ {y} may be decom-

posed in its respective free ũf {y}, independent ũi {y}, dependent ũd {y} and prescribed

ũp {y} counterparts:

ũ {y}T =
{

ũf ũi ũd ũp
}T

. (3.27)

The free sub-domain corresponds to the degrees of freedom in the interior of the RVE

and all others are related with the degrees of freedom at the boundary of the RVE. The

sub-domain ũd is associated with ũi and can generically be expressed by a linear relation

between these two parts:

ũd {y} = α.ũi {y} . (3.28)

In the previous equation, α denotes the dependency matrix, which is defined according

to the boundary constraint adopted.

At the fine scale, the internal forces are a consequence of the displacement fluctuation

field, ũ {y}, and, therefore, the same decomposition can be performed:

f {y}T =
{

f f f i fd fp
}T

. (3.29)

Introducing the previous two relations (Equations (3.27) and (3.29)) into Equation (3.25)

and performing the same decomposition to the global stiffness matrix of the RVE, results:





f f

f i

fd

fp





(j)

n+1

+




kff kfi kfd kfp

kif kii kid kip

kdf kdi kdd kdp

kpf kpi kpd kpp




(j)

n+1





δũf

δũi

δũd

δũp





(j+1)

= {0} . (3.30)
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With Equation (3.28) at hand and knowing that ũp = {0}, Equation (3.30) can be

re-written as:

[
kff kfi + kfdα

kif +αTkdf kii + kidα+αTkdi +αTkddα

](j)

n+1

{
δũf

δũi

}(j+1)

= −
{

ff

f i +αTfd

}(j)

n+1

. (3.31)

From the solution of the previous equation system results the displacement fluctuation

of the free, δũf(j+1)

, and independent, δũi(j+1)

, degrees of freedom. With these at hand,

together with Equation (3.26), we finally obtain the total displacement fluctuation field

of the RVE:

ũ
(j+1)T

n+1 {y} =
{

ũf ũi ũd
0

}(j)T

n+1
+
{

δũf δũi αδũi
0

}(j+1)T

. (3.32)

In Appendix A.1, Equation (3.31) is particularised for Linear, Periodic and Uniform

Traction boundary conditions.

3.3.2.3 Discretized homogenized stress tensor.

To compute the homogenized First Piola-Kirchhoff stress tensor, which will be sent to

the macro-scale, two approaches may be used (see second and third terms of expression

(3.17)). In the first one, this stress tensor is computed by volume averaging of its

microscopic counterpart over the undeformed configuration of the RVE. The second

approach uses the third term of expression (3.17) to compute it. The latter option is

clearly simpler, and the computational burden associated is also smaller. However, in

order to compute the macroscopic stress tensor, it is necessary to adapt it. As pointed

out by [92], in the limit, T ref
n+1 {Y } dA is equal to tn+1 {y} da, where tn+1 {y} denotes

the traction acting over the deformed boundary of the RVE. Thus, expression (3.17) can

be re-written as:

P n+1 {x} =
1

V0

∫

∂Ω
tn+1 {y} ⊗ Y da. (3.33)

Following this approach, the finite element discretization of the previous equation is

trivial:

P n+1 {x} =
1

V0
DbF

int
bn+1

, (3.34)
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where Db denotes the reference nodal coordinate matrix, which exclusively includes the

nodes on the boundary of the RVE

Db =
[
D1 D2 · · · Dnb

]
, (3.35)

and Dnb
is defined as

D
T
nb

=

[
Y1 0 Y2 0

0 Y1 0 Y2

]T
. (3.36)

In turn, the matrix F
int
bn+1

contains the internal nodal forces over the deformed boundary

of the RVE for tn+1.

In order to eliminate possible inconsistencies it is important to shed some light on the

following aspects. According to the general and well established concepts of Continuum

Solid Mechanics, the Cauchy, σ, and the First Piola-Kirchhoff, P , stress tensors are

related as follows:

σ =
1

det (F )
P [F ]T . (3.37)

Even though the philosophy under a First-Order Coupled Multi-Scale model is quite

different from a classical continuum constitutive model, the previous relations are still

valid. At the macroscopic scale, the macroscopic Cauchy stress tensor can be defined as

σ {x, t} =
1

det (F {x, t})P {x, t} . [F {x, t}]T . (3.38)

However, a recent study has shown that the macroscopic Cauchy stress tensor is not

equal to the homogenized microscopic counterpart in some particular cases. This means

that, in a generic case:

∫

ϕ(Ω)
σ {y, t} dV 6= 1

det
[

1
V0

∫
Ω0

F {y, t} dV
] 1

V0

∫

Ω0

P {y, t} dV.
[
1

V0

∫

Ω0

F {y, t} dV
]T

.

(3.39)

According to [93], this is a consequence of the description (Eulerian or Lagrangian

description) used to characterize the deformation of the RVE when it is subjected to

finite strains. Nevertheless, in a recent contribution, de Souza Neto and Feijóo [94] have

proved that the inequality (3.39) is only verified when a Uniform Boundary Condition

is adopted to model the behaviour of the RVE.

In order to avoid any possible mistake, in the present work the macroscopic Cauchy

stress tensor, σ {x, t}, is computed using the relation (3.38).
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3.3.2.4 MSP code

After introduction of the numerical framework, which allows the solution of the equilib-

rium equation of the RVE when it is subjected to different boundary conditions, in Table

3.1, the structure of a code devoted to solve exclusively the micro-equilibrium problem

when a RVE is subjected to a particular deformation gradient, is introduced. The name

of the code isMicro-Scale Problem code (MSP).

The MSP code was totally implemented from the scratch in Fortran 90 R© and there

is a parallelized version which includes the MUMPS parallel solver. The utility of this

code is rapidly and easily obtain homogenized properties of a heterogeneous material for

a particular deformation state.

3.3.2.5 Macro-scale discretization.

The spatial discretization of the macroscopic equilibrium equation (Equation (3.22)) by

means of the finite element method gives rise to the following expression

{∫

Θd
0

G
T

[
1

V0

∫

Ωd
0

P̂ {F n+1 {x}+Gũn+1 {y} ,βn {y}} dV
]
dV

−
∫

Θd
0

N
T
B

ref
n+1 {x} dA−

∫

∂Θd
0

N
T
T

ref
n+1 {x} dA

}
.ζ = 0 ∀ ζ ∈ Ud,

(3.40)

which, in fact, is completely analogous to the discretized equilibrium equation of a

conventional solid mechanics problem, apart from the approach used to compute the

stress tensor. In the previous equation, G and N denote respectively the discrete full

material gradient and the global interpolation matrix, both at the macro-scale domain.

The symbol Θd
0 denotes the discretized undeformed macroscopic domain. Once again,

the well-established Newton-Raphson method is used to solve the previous equation (for

more details see [6, 91]).

3.3.2.6 Discretized homogenized material tangent modulus.

The conventional strategy employed to compute the algorithmic consistent tangent op-

erator consists in the direct linearization of the weak equilibrium equation problem at

the macro-scale (Equation (3.11)) [95]. Even though this approach is conceptually well

established, within the present context, it has not been widely used due to the com-

plexity that this method involves. A different approach has been advocated by several
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Table 3.1: Structure of Micro-Scale Problem code, MSP.

1. Read the input file with information about:

• Mesh;

• Constitutive models and material properties;

• Problem type - Plane Stress or Plane Strain;

• Number of increments for the problem at the micro-scale, Ninc {y};
• Boundary conditions;

• Macroscopic deformation gradient.

2. Identify the nodes inside of the RVE, at the bottom, right, top and left borders and corners.
Determine the dependency matrix, α, according to the boundary condition selected;

3. Compute the incremental Linear displacement vector:

∆u∗ {y} =
1

Ninc {y}
(F {x} − I)Y .

4. Increment the counter N = N + 1 (increment number);

(a) Increment the Newton-Raphson iteration counter, j = j + 1

(b) Update the total displacement vector:

u
(j)
n+1 {y} = ∆u∗ {y}+ ũ

(j)
n+1 {y}

(c) Compute the global internal force vector, f int
{
u
(j)
n+1 {y}

}
;

(d) Check convergence:

IF CONV<TOL THEN

Compute and store the macroscopic stress tensor (Section 3.3.2.3).

IF N = Ninc {y} THEN

EXIT

ELSE

Go to 4.

END IF

END IF

(e) Solve the micro-equilibrium problem (Section 3.3.2.2)

(f) Update displacements;

ũ
(j+1)
n+1 {y} = ũ

(j)
n+1 {y}+ δũ(j+1) {y}

Go to a)
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authors ([36, 37, 74, 75, 92, 96, 97]), the so-called Condensation method, which takes

into account the decomposition of the displacement field carried out at the micro-scale.1

The Condensation method starts from the basic definition of the consistent matrix,

which is given by the differentiation of the First Piola-Kirchhoff stress tensor (Equation

(3.34)) with regard to the macroscopic deformation gradient:

An+1 {x} =
∂P n+1 {x}
∂F n+1 {x}

=
∂

∂F n+1 {x}

(
1

V0
DbF

int
bn+1

)
=

1

V0
Db

∂Fint
bn+1

∂F n+1 {x}
. (3.41)

All details inherent with the condensation method are described in detail in Appendix

A.2 which also includes particularizations of this method for Linear, Periodic and Uni-

form Traction boundary conditions.

Remark 3.3. With the macroscopic material tangent modulus at hand (Equation (3.41)),

it is possible to compute its spatial counterpart if required. This task can be performed

by using the well established relation from the Continuum Solid Mechanics theory (for

more details [94]):

aijkl =
1

detF
AimknFjmFln. (3.42)

3.3.2.7 CMSP code

The numerical implementation of a coupled multi-scale model is a hard and complex

task mainly by two motives: the first one is related to the equilibrium of the RVE and

to the establishment of the ”bridge” between fine and coarse scales; the second obstacle

stems from the fact that it is necessary to manipulate with a considerable amount of

data either from the macro or micro-scale.

So far, there is still no commercial code available that is able to solve coupled multi-scale

problems (according to the author’s knowledge). In fact, this new numerical tool has

been basically confined to the academic community. However, within this community,

some authors have been publishing parts of their codes [99].

In order to conclude this chapter, a summary structure of Coupled Multi-Mcale Problem

code, CMSP, in a pseudo-algorithmic format is introduced in Table 3.2. Once again,

this code was implemented from the scratch and Fortran 90 R© language was used.

1There is a third possible approach, which is a pure numerical method, where the computation of
the macroscopic tangent operator is obtained by perturbation of the macroscopic deformation gradient
[98]. Nevertheless, this approach requires a huge computational cost and therefore it is not attractive
from the computational point of view.
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3.4 Conclusions

Throughout this chapter the fundamental ingredients required to formulate a First-Order

Coupled Multi-Scale Model under the assumption of finite strains were reviewed. In ad-

dition, numerical schemes were described in order to numerically implement this model.

Special attention was given to the imposition of the kinematical admissible boundary

conditions at the micro-scale domain as well as to the derivation of the macroscopic tan-

gent operator which is computed taking into account information from the microscopic

domain.

At the end of the present chapter two codes were presented. As pointed out previously,

MSP code is devoted exclusively to solve the micro-equilibrium problems i.e. subjecting

the RVE to a particular deformation gradient. This code is particularly useful to obtain

homogenized material properties of materials with heterogeneous micro-structures. In

turn, the CMSP code is a code implemented to solve a First-Order Coupled Multi-Scale

Model under the assumption of finite strains.

In the following chapters, new numerical schemes will be proposed in order to enhance

the formulation proposed in this introductory chapter as well as to optimize and to

increase the attractiveness of this model.
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Table 3.2: Structure of Coupled Multi-Scale Problem code, CMSP

1. Read data with information of the macro and micro domains and the number of increments
for the problem at the macro-scale, Ninc {x};

2. Increment the counter N = N + 1 (macroscopic increment number);

3. Set up the initial values:

u
(0)
n+1 {x} = un {x} r

(0)
n+1 {x} = −λn+1f

ext {x}

where r
(0)
n+1 {x} is residual equation.

(a) Increment the iteration counter of the Newton-Raphson method at the macro-scale,
k = k + 1;

(b) Assemble the global macroscopic tangent stiffness K
(k)
T {x}:

IF N = 1 AND K = 1 THEN

Compute K
(k)
T {x} assuming an elastic domain for whole macroscopic struc-

ture

ELSE

Use K
(k)
T {x} obtained at micro-scale.

END IF

(c) Compute the macroscopic incremental displacements:

K
(k)
T {x} δu(k+1) {x} = −r

(k)
n+1 {x}

(d) Update the macroscopic displacements:

u
(k+1)
n+1 {x} = u

(k)
n+1 {x}+ δu(k+1) {x}

(e) For each macroscopic integrationGauss point, compute the macroscopic deformation
gradient:

F
(k+1)
n+1 {x} = I +∇pu

(k+1)
n+1 {x}

(f) Solve the microscopic equilibrium problem

• GO TO point 2) of Table 3.1 - solve the micro-equilibrium problem considering
only one increment;

• Compute the macroscopic tangent operator (Appendix A.2) and assemble

K
(k+1)
T {x} using information from micro-scale.

(g) Compute the macroscopic internal forces vector

(h) Actualize the residual vector

r
(k+1)
n+1 {x} = f int

{
u
(k+1)
n+1 {x}

}
− λn+1f

ext {x}

(i) Check the convergence.

IF CONV<TOL THEN

IF N = NM
inc {x} THEN

EXIT

ELSE

Go to 2.

END IF

ELSE

Go to a)

END IF



Chapter 4

An adaptive sub-incremental

strategy for the solution of

homogenization-based multi-scale

problems

4.1 Introduction

In the past decade, the modelling of heterogeneous materials by continuous interchange

of informations between scales has been a topic of extensive research. Among various

approaches and techniques for the micro-macro modelling, we will focus on those where

the macroscopic stress and strain tensors are defined as volume averages of their mi-

croscopic counterparts over a Representative Volume Element (RVE) of material [see

30–34, among others]. Due to their suitability for implementation within non-linear fi-

nite element frameworks, this class of homogenization techniques, which are collectively

called computational homogenization, have emerged as a very effective way to describe

complex microstructural geometries, arbitrary constitutive material behaviour and mi-

crostructural evolution. Of particular interest to the modelling of dissipative media is

the so-called multilevel finite element framework (ML-FEM) or FE2. This method is

based on the nested solution of two coupled problems, one at a macro-scale and other at

the micro-scale, where a micro-scale computation is conducted over a statistically rep-

resentative volume element in order to extract quantities required for the macro-scale.

A considerable number of publications have focused on this multi-scale modelling ap-

proach, where we highlight the pioneering work of Miehe and co-workers, that have

45
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established a crystal plasticity framework at both small and finite strains [36, 37] and

the work of Kouznetsova and co-workers [38], that have proposed a second order multi-

scale scheme to address the effect of the RVE size and its constituents. The modelling

framework has been extended to incorporate thermal effects [39, 40] and include the

presence of discontinuities, which are the outcome of dissipative phenomena that take

place at the micro-scale [55, 56, 63]. Recently, the method has been successfully applied

for stress and structural damage analysis of masonry walls [41–43, 100] and the formu-

lation enhanced to perform the mechanical analysis of heterogeneous thin sheets [44].

Many more contributions can be found in the literature on this rapidly expanding field

[see 45–48, among others]. In parallel to the development of the method, several nu-

merical issues inherent to the formulation of multi-scale constitutive models have been

extensively addressed, such as the definition of the RVE size [52, 83] or the effect of

the spatial discretization at both scales [53], whose associated shortcomings have been

overcome in recent years.

In the ML-FEM framework, the macroscopic equilibrium problem is solved simultane-

ously with one microscopic RVE problem for each point of the macroscopic finite element

mesh. Therefore, as the size of the macroscopic and/or microscopic problem increases,

memory storage and computational requirements can become excessive, making the so-

lution of realistic problems extremely challenging. This is one of the major drawbacks

associated with the ML-FEM, which makes it difficult to be adopted in an industrial en-

vironment. Nevertheless, various strategies have been suggested to tackle the problem,

where we highlight the use of parallel processing techniques [49, 50], the selective usage

[51] and the reduction of the problem at the RVE domain [101–104]. Although these ap-

proaches considerably enhance the computational efficiency of the ML-FEM framework,

the robustness of the solution procedure also has an important impact on the overall

computational time. For instance, if the solution of one microscopic RVE equilibrium

problem cannot be found, the macroscopic solution algorithm has to be stopped and

reinitiated with a reduced load increment. Therefore, the failure of the microscopic

problem has a crucial repercussion on the overall computational time. Convergence dif-

ficulties at the micro-scale equilibrium problem are surely more pronounced whenever

material and geometrical non- linearities are encountered in the solution. Nevertheless,

similar problems appear in the solution of conventional dissipative phenomenological

constitutive models, which have been significantly alleviated by using well-established

numerical tools [105–108].

The present contribution proposes advanced solution procedures to improve the effi-

ciency and robustness of multi-scale problems in the finite deformation regime including

inelastic behaviour at the micro-scale. These schemes are inspired on the idea of ensuring
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convergence of the solution algorithm, in the presence of several sources of non-linearity,

for larger increments.

The potential lack of robustness of the Newton- Raphson method, which in multi-scale

constitutive models can emerge either in the solution of the macro or micro-scale equilib-

rium problems, is the central motivation of this work. The aims of the work are twofold.

First, two well-established numerical strategies, the so-called Line Search procedure and

the Arc-Length method, are modified and extended for the solution of the discrete RVE

boundary value problem. An adaptive strategy, where the sub-increment size is auto-

matically defined according to the problem evolution, is proposed. This strategy helps

circumventing the numerical problems that arise at the micro-scale when complex RVEs

are considered, clearly improving the robustness of the solution procedure. Therefore,

the finite element analysis of a single RVE under prescribed macroscopic strain histories,

can be performed for significantly larger deformation gradients. As a second purpose

of this contribution, the solution of fully coupled multi-scale finite element analyses of

solids, within the ML-FEM framework will be addressed. Here, the solution obtained

for the micro equilibrium problem with the adaptive sub-incremental strategy proposed

is employed as an improved initial guess, for an additional step at the micro- scale, to

ensure the consistency of the macroscopic equilibrium problem. This methodology criti-

cally reduces the computational times of the ML-FEM analyses under finite strains with

inelastic material behaviour and preserves the quadratic rates of asymptotic convergence

that characterize the Newton-Raphson scheme at the macroscopic level.

The present chapter is organized as follows. In Section 4.2, the enhanced solution proce-

dures for multi-scale problems, are introduced and discussed in detail. The effectiveness

of the numerical strategies proposed is demonstrated in Section 4.3 through the anal-

ysis of three distinct problems. Finally, in Section 4.4, the main conclusions of this

contribution is introduced.

4.2 Enhanced solution procedures for multi-scale problems

The solution procedure, for the generic finite element-based framework for homogenization-

based multi-scale analysis of heterogeneous solids, involves a combination two fullNewton-

Raphson methods at different scales. Although, this nested approach is well established

and is the basis for most non-linear problems, additional sophistications are required to

produce effective and robust solution algorithms.

In this section, two well established numerical strategies, in non-linear solid mechanics

problems, the so-called Line Search procedure and the Arc-Length method, are modified
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and extended for the solution of the micro-scale RVE boundary value problem. An

adaptive strategy to automatically adjust the sub-increment size, taking into account

the nature and evolution of the problem at the micro-scale is proposed.

4.2.1 Line Search Method

Different versions of the Line Search method emerged in 80’s proposed by several authors

[105, 109]. The main goal of this numerical scheme is to improve the convergence rate

of iterative solution procedures. To achieve this purpose, a new variable η - commonly

called iterative step-length - is introduced that performs a correction on the displace-

ment field of the conventional incremental non-linear finite element problem. Thus, the

displacement field is defined as:

un+1 = un + η.δu, (4.1)

where un is the displacement field converged in the previous increment and δu is the

iterative displacement. The total potential energy, Φ, which governs the equilibrium of

a solid, is typically used to determine the new parameter, η. The truncated Taylor’s

expansion of this function is given by:

Φ (u+ δu) = Φ0 (u) +
∂Φ

∂u
δu+

1

2
δuT ∂

2Φ

∂u2
δu+ ... . (4.2)

In the previous equation, the derivative ∂Φ/∂u is the equilibrium force vector, r (u) =
(
f int − f ext

)
, of a conventional finite element problem and, the second derivative of the

potential Φ, is the tangent stiffness matrix, KT . The equilibrium of the solid is verified

when Φ reaches a stationary value for a particular value of η. Considering a similar

Taylor’s expansion for Φ dependent on η results

Φ (η + δη) = Φ0 (η) +
∂Φ

∂η
δη +

1

2
δη

∂2Φ

∂η2
δη + ... , (4.3)

where the displacement field and the external force vector are constant and only the

correctional factor is unknown. From the mathematical point of view, the stationary

value of Φ corresponds to:

s (η) =
∂Φ

∂η
= δuT (η)

[
f int (u (η))− f ext

]
= δuT (η) r (u (η)) = 0. (4.4)

In general, the previous relation is not employed since it is extremely difficult, from the

numerical point of view, to satisfy. Therefore, it is replaced by an iterative scheme where
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the iterative step-length η is computed whenever the following inequality is verified:

∣∣∣∣∣
s(η)

(j),(l)
n+1

s
(j),(0)
n+1

∣∣∣∣∣ < β. (4.5)

In the previous equation s(η)
(j),(l)
n+1 and s

(j),(0)
n+1 are computed by the inner product between

the out-of-balance force vector r (u (η)) and the iterative displacement vector δu (see

Equation (4.4)) for every j − th iteration of the Newton-Raphson method. However,

s
(j),(0)
n+1 is only defined once, at the beginning of the Line Search iterative scheme and

s(η)
(j),(l)
n+1 is defined for each l−th iteration. The parameter β is the Line Search tolerance,

which according to [109, chap. 9] as well as to our experience, provides satisfactory

results for values around 0.8. If inequality (4.5) is not satisfied, an extrapolation or

interpolation procedure is carried out to update η and a new iteration is undertaken.

For more details on how these operations are performed see [109, chap. 9].

4.2.1.1 Micro-scale Line Search Method.

The implementation of the Line Search method for the solution of the micro-equilibrium

problem requires some modifications due to the specific nature of the kinematical ad-

missible constraints enforced on the boundary of the RVE. In contrast to conventional

solid mechanics problems, where the difference between internal and external forces is

well defined and characterized, we realise that f ext is null at the micro-scale domain

for the present case. Another difference emerges as a consequence of the decomposition

of the displacement field. Thus, taking into account Equations (3.27) and (3.29), the

parameter s(η)
(j),(l)
n+1 is defined by:

s(η)(j),(l) = δũf(j),(l)

n+1 {y}.f f(j),(l)

n+1 + δũi(j),(l)

n+1 {y}.f i(j),(l)

n+1

+ δũd(j),(l)

n+1 {y}.f d(j),(l)

n+1 + δũp(j),(l)

n+1 {y}.fp(j),(l)

n+1

⇔ s(η)(j),(l) = δũf(j),(l)

n+1 {y}.f f(j),(l)

n+1 + δũi(j),(l)

n+1 {y}.f i(j),(l)

n+1

+αδũi(j),(l)

n+1 {y}.f d(j),(l)

n+1 .

(4.6)

The previous equation is valid for all admissible boundary conditions that can be formu-

lated based on the displacement field decomposition. However, for Linear and Periodic

boundary conditions, they can be dramatically simplified. We start with the simplest

case: Linear boundary condition. The Linear constraint restricts the fluctuation field

to the nodes in the interior of the RVE, which means that ũi{y} and ũd{y} are null.

Thus, s (η) is determined by:

s(η)(j),(l) = δũf(j),(l)

n+1 {y}.f f(j),(l)

n+1 (4.7)
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The same expression for parameter s (η) is obtained for Periodic boundary condition.

This is due to the fact that at the boundary of the RVE there are an anti-periodic

traction force field. In order to clarify how this numerical method can be incorporated

into the Newton-Raphson procedure for the solution of the micro-equilibrium problem,

in Table 4.1 we introduce, in pseudo-code format, the structure of the algorithm.

Table 4.1: The combined Newton-Raphson/Line Search method for solution of the
non-linear micro-scale finite element equation.

Given the total macroscopic deformation gradient, Fn+1{x}, and knowing the set of internal variables of the RVE, βn, at
time tn, do:

1. Compute the increment of the Linear displacement ∆uLin
n+1:

∆uLin
n+1 =

(
Fn+1{x} − I

)
Y − uLin

n .

2. Set initial guess for total displacement and iterative displacement fluctuation, j = 0 and l = 0:

u
(0),(0)
n+1

{y} = un {y} + ∆uLin
n+1 ; δũ(j){y} = 0

3. Set the iteration counter of the Newton-Raphson method, j = j + 1.

(a) Set the iteration counter of the Line Search scheme, l = l + 1

i. Update the total displacement:

IF (l = 1) THEN η(l) = 1 ENDIF

u
(j),(l)
n+1 {y} = u

(j−1),(l)
n+1 {y} + η(l)δũ(j){y}.

ũ
(j),(l)
n+1 {y} = ũ

(j−1),(l)
n+1 {y} + η(l)δũ(j){y}.

ii. Compute the internal force vector fint {
un+1 {y}

}(j),(l).
IF (j > 2) THEN

Compute s
(j),(l)
n+1

(η) (Equation (4.7)).
ELSE

GOTO (b).
ENDIF

iii. Check condition (4.5).
IF condition (4.5) is verified THEN

GOTO (b).
ELSE

Compute η(l+1). For more details see [109, chap. 9].
GOTO (a).

ENDIF

(b) Check the convergence of the Newton-Raphson method.

IF (CONV < TOL) THEN

• Compute and store the macroscopic stress tensor Pn+1{x} (Equation (3.34)).

• Compute and store the material tangent modulus An+1 {x} (Equation (3.41)).

• EXIT

ENDIF

(c) Assemble RVE global stiffness and solve for δũ(j+1) {y} (Equation (3.31)).

fint {
un+1 {y}

}(j),(l) + KT

{
un+1 {y}

}(j) δũ(j+1) {y} = 0

(d) Compute s
(j+1),(0)
n+1 .

s
(j+1),(0)
n+1 = δũ

f(j),(l)

n+1 {y}.f
f(j),(l)

n+1

(e) Reset the counter l and GOTO 3.

4.2.2 Micro-Scale Incremental Procedure

The combination of the conventional Newton-Raphson method with a Line Search tech-

nique for the solution of the micro-scale problem might not guarantee convergence at

this scale within just one step. This pathology is also encountered on the solution of
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conventional non-linear finite element problems. The usual course of action in such cases

is to apply the load in several incremental steps.

A similar approach can be devised for the micro-equilibrium problem. Within the generic

finite element-based framework for multi-scale analysis previously presented, the RVE

equilibrium is governed by Expression (3.24). This expression is a function of the mi-

croscopic displacement field un+1 {y} which is, by definition, expressed by:

un+1 {y} = (F n+1 {x} − I)Y + ũn+1 {y} ,

⇔ un+1 {y} = uLin
n+1 + ũn+1 {y} ,

(4.8)

where uLin
n+1 is the Linear displacement prescribed over the RVE.

In order to define an incremental procedure for the solution of the micro-equilibrium

problem it is necessary to select a suitable parameter/variable that is incremented

through the problem. Based on the definition of the microscopic displacement field

(Equation (4.8)) together with the expression which governs the equilibrium of the RVE

(Equation (3.24)), we have selected the Linear displacement uLin
n+1. Thus, for a generic

time tn+1 at the macro-scale, the total microscopic displacement can be incrementally

defined as

um
n+1 {y} = uLin

n + λm∆uLin
n+1 + ũm

n+1 {y} ,

= uLin
n +

(
λm−1 +∆λm

)
∆uLin

n+1 + ũm
n+1 {y} ,

(4.9)

where ∆uLin
n+1 is the incremental Linear displacement at instant t = n+ 1 defined by

∆uLin
n+1 = (F n+1 {x} − I)Y − uLin

n , (4.10)

m denotes the microscopic increment number and λm is the displacement factor, which

defines the prescribed Linear displacement at increment m. This parameter ranges

between 0 and 1, which defines the beginning and end of the incremental scheme at the

micro-scale. In addition, based on Equation (4.9), it is possible to define the increment

of the microscopic displacement field associated with the microscopic increment m:

∆um
n+1 {y} = ∆λm∆uLin

n+1 +∆ũm
n+1 {y} , (4.11)

Different approaches may be used to define the incremental displacement factor ∆λm.

The simplest case consists on the definition of the number of increments for each problem.

Despite its simplicity, this approach might be inefficient since, in many circumstances, it

is not easy to anticipate the appropriate number of sub-increments for a specific problem.
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A cutting procedure is commonly employed, where the load increment is cut in half and

an attempt to solve the new incremental problem is made. This procedure is carried

out as many times as required until convergence is reached. However, this strategy can

lead to a significant number of increments, which can have a significant repercussion on

the computational cost. In addition, in some problems involving instabilities and saddle

points it may be impossible to obtain a solution.

In the following, a strategy to determine the incremental displacement factor, ∆λm,

for the problem at the micro-scale is proposed which is related to the nature and the

evolution of the problem. This strategy is inspired on the standard Arc-Length method.

4.2.2.1 Micro-scale Arc-Length Method.

Considering the Arc-Length method, in addition to the microscopic displacement fluc-

tuation field ũ {y}, the incremental displacement factor ∆λm is also an unknown of the

problem. With this assumption, Equation (3.24) can be re-defined as

f int
{
um
n+1 {y} ,∆λm

}
= 0. (4.12)

Considering the previous equation and upon its linearization results:

∂f int
{
um
n+1 {y} ,∆λm

}

∂um
n+1 {y}

∂um
n+1 {y}

∂ũm
n+1 {y}

δũ {y}+
∂f int

{
um
n+1 {y} ,∆λm

}

∂um
n+1 {y}

∂um
n+1 {y}

∂∆λm
δλ = −Res

⇔ K
m,(j)
T δũ(j+1) {y}+K

m,(j)
T ∆uLin

n+1δλ
(j+1) = −Res(j),

(4.13)

where K
m,(j)
T is the global stiffness matrix of the RVE. Once again, the index (∗)m,(j)

denotes the iteration number of the Newton-Raphson method but, in this case, associated

with the microscopic increment m. For convenience, we assume that K
m,(j)
T ∆uLin

n+1 =

f ext, where fext represents the external force vector which is a consequence of the

uniform deformation prescribed over the RVE. Thus, results

K
m,(j)
T δũ(j+1) {y}+ f extδλ(j+1) = −Res(j). (4.14)

At this point, it is important to highlight the fact that the different boundary conditions

were not yet considered. Considering the previous equation, it possible to define an

explicit expression for δũ(j+1) {y}:

δũ(j+1) {y} = −
[
K

m,(j)
T

]−1
Res(j) −

[
K

m,(j)
T

]−1
fextδλ(j+1). (4.15)

Defining δuIte = −
[
K

m,(j)
T

]−1
Res(j) as being the iterative displacement and δuTan =

−
[
K

m,(j)
T

]−1
f ext as the tangential displacement, we obtain a compact expression for
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δũ(j+1) {y}:
δũ(j+1) {y} = δuIte + δuTanδλ(j+1). (4.16)

Taking into account the previous definitions and knowing that ∆λm,(j+1) = ∆λm,(j) +

δλ(j+1), the increment of the microscopic displacement field at the microscopic increment

m (Equation (4.11)) and iteration j + 1 is given by:

∆u
m,(j+1)
n+1 {y} =

(
∆λ

m,(j) + δλ
(j+1)

)
∆u

Lin
n+1 +∆ũ

m,(j)
n+1 {y}+ δũ

(j+1)

=
(
∆λ

m,(j) + δλ
(j+1)

)
∆u

Lin
n+1 +

(
∆ũ

m,(j)
n+1 + δu

Ite + δλ
(j+1)

δu
Tan

)

=
(
∆λ

m,(j)∆u
Lin
n+1 +∆ũ

m,(j)
n+1

)
+ δu

Ite +
(
δu

Tan +∆u
Lin
n+1

)
δλ

(j+1)

= ∆u
m,(j)
n+1 {y}+ δu

Ite +
(
δu

Tan +∆u
Lin
n+1

)
δλ

(j+1)
.

(4.17)

Since an extra unknown was added (the incremental displacement factor, ∆λ), it is

necessary to introduce an additional equation. For this purpose the well known Arc-

Length cylinder equation is considered:

[
∆u

m,(j+1)
n+1 {y}

]T
∆u

m,(j+1)
n+1 {y} = lm

2
, (4.18)

where lm
2
denotes the arc length of the cylinder at the m microscopic increment. In-

troducing the definition of the incremental microscopic displacement (Equation (4.17))

and after algebraic manipulations results:

aδλ2 + bδλ+ c = lm
2

(4.19)

where the parameters a, b e c are defined by:

a =
(
δuTan +∆uLin

n+1

)T
.
(
δuTan +∆uLin

n+1

)
, (4.20a)

b = 2
[(
δuTan +∆uLin

n+1

)T
.∆u

m,(j)
n+1 {y}+

(
δuTan +∆uLin

n+1

)T
.δuIte

]
, (4.20b)

c = ∆u
m,(j)
n+1 {y}T ∆u

m,(j)
n+1 {y}+ 2∆u

m,(j)
n+1 {y}T δuIte + δuIteT δuIte. (4.20c)

Since expression (4.19) is a quadratic equation, it is possible to easily determine δλ and,

upon the correct selection of the appropriate root, the increment of the displacement

factor is updated:

∆λm,(j+1) = ∆λm,(j) + δλ(j+1). (4.21)

Conceptually, the selection of the appropriate root relies on the one which originates the

smallest angle between ∆u
m,(j)
n+1 {y} and ∆u

m,(j+1)
n+1 {y}. From the mathematical point

of view, the minimum value corresponds to the maximum value of the inner product

between ∆u
m,(j)
n+1 {y} and ∆u

m,(j+1)
n+1 {y}.
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The length of the incremental solution l is updated at the end of a converged increment,

usually taking into account the number of iterations used. Different strategies can be

pursued (for more details [109]) but, in this work, the following relation was adopted:

lm+1 = lm
NITER

NITER(j)
, (4.22)

where NITER represents the ideal number of iterations and NITER(j) the number of

iterations used by the Newton-Raphson method at the m− th microscopic increment.

The predictor solution

In the first iteration, j = 1, of each increment the determination of the root that

yields the minimum angle between ∆u
m,(0)
n+1 {y} and ∆u

m,(1)
n+1 {y} can not be done since

∆u
m,(0)
n+1 {y} is equal to zero. In addition, δuIte is also equal to zero and, therefore,

Equation (4.19) is reduced to the solution of:

δλ1,2 = ± lm√({
δuTan +∆uLin

n+1

})T
.
{
δuTan +∆uLin

n+1

} . (4.23)

As it is possible to observe, the previous expression yields a pair of equal and symmetric

roots. Within the context of a conventional finite element program, which incorporates

the Arc-Length method, the total external factor may increase or decrease throughout

a complex trajectory and, therefore, the proper selection of the root is crucial. How-

ever, at the RVE domain, since at the end of the micro-equilibrium problem all Linear

displacement have to be completely prescribed, δλ always needs to be positive.

Remark 4.1. According to the authors’ experience, the roots which are obtained at each

iteration (Equation (4.19)) are quite small when compared with the values which define

the transition of successive increments (Equation (4.23)) (usually less than 1.0E − 05).

Since this difference is not appreciable, the authors recommend to use this formulation

exclusively to define the successive increments.

Introduction of the boundary conditions

The incremental scheme introduced in the previous section does not address the different

admissible boundary constraints. As stressed out in Section 3.3.2.1, for each admissible

boundary condition the displacement fluctuation field ũ {y} as well as the system of

equations have to be established according to the basic assumptions which define it.

In this context, the modified Arc-Length method introduced in the previous section nec-

essarily needs to reflect the dependence of the boundary condition with the displacement

fluctuation field. This aspect is materialized on the condensation of the external force

vector, f
ext

, as well as on the computation of the tangential displacement vector, δu
Tan

.
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The global vector of external forces is determined by the product between the RVE global

stiffness tangent matrix, K
m,(j)
T and the increment of the global Linear displacement:

fext = K
m,(j)
T .∆uLin

n+1. (4.24)

It is relevant to note that these two parameters are independent of the type of boundary

condition selected. Nevertheless, the tangential displacement vector, δu
Tan

, which is

determined using the following expression clearly depends on the type of boundary

conditions selected:

δu
tan

= −
[
K

m,(j)
Bound

]−1
f
ext

, (4.25)

where, K
m,(j)
Bound, denotes the boundary stiffness matrix used to solve the equilibrium

problem at micro-scale (Equations (A.2) and (A.4) for Linear and Periodic boundary

conditions respectively) and f
ext

is the condensated external force vector. The conden-

sation procedure of δu
Tan

and f
ext

is performed according to the decomposition defined

by expressions (3.27) and (3.29).

4.2.2.2 Micro-scale Improved Initial Guess for ML-FEM.

The solution of the micro-equilibrium problem using the incremental strategy instead of

a single step, leads to the loss of consistency of the macroscopic equilibrium problem.

The updated macroscopic tensor P n+1 {x}, which is computed after the sub-division

of the time-step into a number of sub-steps at the micro-scale, is not consistent with

the macroscopic constitutive tangent operator. This inconsistency leads to the loss of

quadratic rate of asymptotic convergence of the macroscopic equilibrium problem.

The problem of loss of consistency between the numerical integration scheme, employed

to solve the local problem with the use of sub-steps, and the consistent tangent ma-

trix has been the subject of study in conventional non-linear finite element problems.

This problem has similarities with the present context since the solution of the RVE

problem can be interpreted as the stress-update procedure of a non-linear algorithm. In

particular, under the assumption of small deformations, a sub-stepping framework was

proposed by [110] which guarantees the consistency of the problem by properly defin-

ing a tangent matrix, dependent on m sub-matrices associated with m sub-steps used

during the state-update framework. Even though remarkable results were obtained, its

applicability is still restricted to a limited number of problems. This is mainly due to the

fact that this framework has not been extended (according to the authors’ knowledge)

to finite strains and, in addition, the degree of complexity associated with its numerical

implementation is considerable.



Chapter 4. An adaptive sub-incremental strategy 56

tn
βn

tn+1

βn+1

∆uLin
n+1 = (F n+1 {x} − I)Y − uLin

n Fails

Increment 1 Increment 2 Fails

Increment 2 Increment 3 Fails

...

Incr. m − 1 Incr. m

Using ũest solve the Micro Eq. Problem
considering ∆uLin

n+1 = (Fn+1 {x} − I)Y − uLin
n and compute A

Figure 4.1: Improved initial guess scheme for the ML-FEM where the microscopic
increments are automatically determined.

In the particular case of the ML-FEM framework, the inconsistency issue may be cir-

cumvented by using a similar strategy as proposed by [111]. Generically, this strategy

consists in performing an additional increment, which starts from instant tn considering

all the internal variables as well as the parameters that define the configuration of both

scales at this instant. Then, the guess for the displacement fluctuation vector ũest to be

employed by the Newton-Raphson method is the displacement fluctuation vector, which

resulted from the previously converged sub-stepping scheme. In this additional step, the

deformation of the RVE is driven by the total increment of the Linear displacement,

∆uLin
n+1. This strategy is schematically represented at the bottom of Figure 4.1.

Finally, it is important to highlight the fact that, in [111], the sub-increments are defined

by the direct decomposition of the macroscopic deformation gradient which, in turn, is

always the half of the last step (i.e., 1.0, 0.5, 0.25, etc.). However, within the framework

presented in this contribution, the successive increments are defined by an algorithm

(Section 4.2.2.1), which can assume any real value (say, 1.0, 0.837, 0.654), that is,

any combination is possible. This is, in fact, a direct consequence of the Arc-Length

algorithm since it is driven by the evolution of the problem.

Remark 4.2. It is important to emphasize that, if the final step it is not performed, the

problem at the macro-domain still converges. However, the convergence rates are not

quadratic, leading to a greater number of iterations at this level.

In Table 4.2, a summary of the new incremental scheme to solve the micro-equilibrium

problem is presented in a pseudo-code format.
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Table 4.2: The incremental strategy combined with the Newton-Raphson/Arc-Length
scheme for solution of the non-linear micro-equilibrium problem.

Whenever the standard Newton-Raphson method fails to converge, for the prescribed Linear displacement in one increment,
the following procedure should be applied. Given the total macroscopic deformation gradient, Fn+1{x}, and knowing the set of
internal variables βn at tn, do:

1. Compute the incremental Linear displacement:

∆uLin
n+1 =

(
Fn+1 {x} − I

)
Y − uLin

n

2. Set the counter of the incremental procedure, m = m + 1;

3. Assemble the RVE global stiffness and compute the external force vector;

fext = Km
T .∆uLin

n+1

4. Perform the condensation of the stiffness matrix and external force vector according to the boundary condition selected;

5. Compute the condensated tangential displacement vector:

δu
Tan

= −
[
Km

Bound

]
−1 f

ext
;

6. Compute the incremental factor:

δλ = abs


 lm√(

δuTan+∆u
Lin
n+1

)T
.
(
δuTan+∆u

Lin
n+1

)




7. Update the incremental and total displacement factor:

∆λm = δλ ; λm = λm−1 + ∆λm

8. Define the increment of the microscopic displacement field and the total microscopic displacement field:

∆um
n+1 =

(
∆uLin

n+1 + δuTan
)
∆λm ; um

n+1 {y} = u
m−1
n+1 {y} + ∆um

n+1

9. Solve the micro-equilibrium problem with λ = Constant:

fint
{
u

m,(j)
n+1 {y}

}
+ KT

{
u

m,(j)
n+1 {y}

}
δũ {y}m,(j+1) = 0

IF (Fails) THEN:

• Redefine l, lm = 0.5lm

• GOTO (3).

ELSEIF (Converge) THEN:

IF (λm = 1) THEN

• Compute and store the macroscopic stress tensor Pn+1 {x} (Equation (3.34));

• Consider ũest as the initial guess for the Newton-Raphson method and using βn compute the tangent operator
tensor An+1 {x} (exclusively for coupled multi-scale problems) by using Equation (3.41).

• EXIT

ELSE

• Update l according to the number of iterations used (Expression (4.22));

• GOTO (2).

ENDIF

ENDIF
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4.2.3 Solution Procedure

In the previous sections, we have addressed different numerical techniques that can be

used, either separately or combined, with the Newton-Raphson method to build a more

advanced solution procedure for multi-scale models. These strategies can be used in two

main contexts: for the analysis of a single RVE under prescribed macroscoscopic strain

histories or for fully coupled multi-scale analysis with the ML-FEM framework.

For the ML-FEM analysis there are several well established solution strategies available

for the macro-scale problem which are addressed in detail in the literature [6, 65, 106,

107], but fall outside of the scope of this work.

4.3 Numerical results

In this section, the effectiveness of the numerical strategies addressed in this docu-

ment will be investigated through the analysis of three distinct problems. In the first

one, a honeycomb RVE will be subjected to a purely compressive deformation gradi-

ent, which simultaneously triggers material and geometrical non-linearities. Then, a

square RVE containing a circular void at the center will be subjected to a wide range of

macroscopic deformation gradients. Finally, a homogenization-based multi-scale prob-

lem, whose associated macro-structure is a plane-strain specimen commonly employed

for the characterization of ductile materials, will be presented.

4.3.1 Hexagonal honeycomb RVE

The main goal of this numerical example is to assess the ability of the proposed numerical

schemes to solve a problem where both material and geometrical non-linearities take

place. It is worth mentioning that this kind of problems can be extremely challenging

using conventional solution strategies. In fact, without resorting to improved numerical

tools, the solution of problems involving phenomena like softening, snap-through and

snap-back may be extremely inefficient and computationally expensive.

The two dimensional honeycomb RVE presented in Figure 4.2 was discretized with the

eight-noded isoparametric quadrilateral element, amounting to a total of 1804 elements.

This element was used with a four-Gauss point reduced numerical integration rule (2×
2 Gauss points instead of 3 × 3) to avoid the phenomenon of volumetric ”locking”.

Each segment has a length equal to 0.1 mm and a thickness of 0.01 mm. For the

present example, a plane strain condition was assumed. With regard to the material, an
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hyperelastic Ogden constitutive model was selected. The material parameters are listed

in Table 4.3.

Figure 4.2: Mesh of the hexagonal honeycomb RVE.

Table 4.3: Properties for the honeycomb RVE.

Parameter Value

µ1 5MPa
α1 2
µ2 2MPa
α2 −2

Bulk Modulus, B 50MPa

In order to trigger geometrical instabilities (i.e., causing buckling effects), the RVE is

subjected to a purely compressive deformation gradient

F =

[
1.0 0.0

0.0 0.85

]
. (4.26)

Only the Linear boundary condition has been assumed. Note that providing a detailed

comparison between the physical behaviour of foams with homogenization-based RVE

analysis is out of the scope of this contribution. A discussion related to this issue may

be found in [112]. Our intention here is rather to show the enhancement achieved in

the convergence when the proposed numerical schemes are adopted. It is also relevant

to mention that, for this particular example, the parameter NITER(j) used in the Arc-

Length method was set to 5. With regard to the maximum number of Line Search

iterations, it was set to 5. Moreover, since the main goal is to follow a complex path

inherent with the compression of an unstable RVE rather than to obtain exclusively the

final configuration/point of its deformation, the displacement factor λ was set to 0.01

at the beginning of the problem.

In Figure 4.3(a), the evolution of the P22 component of the homogenized First Piola-

Kirchhoff stress tensor is plotted as a function of the displacement factor λ. It is easy

to conclude that the evolution obtained is highly non-linear incorporating some regions

which make its characterization quite complex and difficult to follow from the numerical
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(a) Evolution of P22.

(b) Initial configuration. (c) Point A (λ = 0.0892). (d) Point B (λ = 0.134).

(e) Point C (λ = 0.196). (f) Point D (λ = 0.596). (g) Final configuration (λ =
1.00).

Figure 4.3: Deformation evolution of the foam RVE.

point of view. The first aspect is concerned with the presence of a severe ”knee”,

which defines the transition between the linear behaviour, and the ”plateau” (transition

between points A and B). In fact, this transition is well-know for promoting the failure

of the Newton-Raphson scheme whenever this class of problems is analysed. From the

physical point of view, the transition between the linear and ”plateau” regimes is a

consequence of the buckling phenomena of the ligaments which are illustrated in Figures

4.3(d) and 4.3(e).

The second source of non-linearity appears in the ”plateau” region. With a more closer

inspection to the curve it is possible to see that P22 increases and decreases slightly with

the applied displacement, resembling a smooth ”snap-through” effect (between points B
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and D). These effects are a consequence of the loss of the stiffness of the RVE inherent

with the buckling phenomena followed by a stiffening of the RVE which results from the

bending of the ligaments. It is important to note that more severe ”snap-through” may

take place at the RVE domain and these effects are similar to the ones which occur on

conventional macro-scale problems.

Due to the presence of different sources of non-linearity in this problem, two different

solution procedures were used to solve the problem. Both employ the incremental di-

vision of the Linear displacement (described in Section 4.2.2) and the use of the Line

Search method described (Section 4.2.1). Nevertheless, one of the solution procedures

is combined with the modified Arc-Length technique.

The solution procedure which incorporates the modified Arc-Length technique has shown

a remarkable ability to follow the equilibrium path with reasonably sized load increments.

A total number of 62 increments was used. On the other hand, when trying to solve the

same problem without the Arc-Length technique enormous difficulties were encountered,

particularly in the transition from the elastic region to the ”plateau” and whenever there

was a drop on P22 followed by an increase, failing to converge in most circumstances

and requiring an excessive number of increments to achieve the final solution.

4.3.2 RVE with a circular void at its center

The main goal of this example is to show that the convergence of the micro-equilibrium

problem can be achieved for larger macroscopic deformation gradients with the use of

the numerical strategies proposed in this contribution. To this end, a square RVE with a

circular void at center corresponding to a void volume fraction of 12.5%, is modelled by

a non-linear constitutive law and is subjected to a wide range of admissible deformation

states in the volumetric and pure shear strain directions. In order to promote different

deformations states, the RVE is subjected to the following deformation gradient:

F =

[
1.0 + α× 0.05 β × 0.05

0.0 1.0 + α× 0.05

]
, (4.27)

where α and β are parameters which can range between 0 and 1. In the limit, when

α = 1 and β = 0 the RVE is subjected to a pure bi-axial traction. In turn, α = 0 and

β = 1 corresponds to a pure shear deformation state.

The RVE was discretized using 320 quadratic quadrilateral elements (8-noded) with

reduced integration (2×2) and plane strain condition was considered (Figure 4.4). A von

Mises elasto-plastic constitutive model was adopted with Young ’s modulusE = 70 GPa,
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Poisson ratio v = 0.3, initial yield stress σ0 = 243 MPa and linear hardening modulus

H = 0.2 GPa.

Figure 4.4: Mesh of the RVE: 320 quadratic quadrilateral elements (8-noded) with
reduced integration.

Similar to the previous example, the maximum number of Line Search iterations was

set to 5. However, for this example, the ideal number of iterations for the modified

Arc-Length method coupled with the Incremental scheme, NITER(j), was set to 8.

4.3.2.1 RVE with a circular void at the center - Line Search.

We start by presenting the numerical results obtained when only the Line Search strategy

is employed to solve the equilibrium of the RVE (that is, the incremental strategy is

inactive). A limit number of 15 iterations for the Newton-Raphson method has been

considered in the present study, that is, if convergence has not been attained within 15

iterations, it is considered that convergence has not been achieved.

The results obtained for different deformation states associated with Linear and Periodic

boundary conditions are respectively given in Figures 4.5(a) and 4.5(b). The dark region

corresponds to combinations of α and β where the solution was found applying the

standard Newton-Raphson method. Nevertheless, the light grey region corresponds to

combinations of α and β where the equilibrium problem is only solved when the Line

Search method is used. Close observation to the diagrams shows that the total number of

deformation states that can be solved with the combined Newton-Raphson/Line Search

method is significantly higher when compared to the number of cases solved exclusively

by the Newton-Raphson scheme. Note that this conclusion is valid either for Linear or

Periodic boundary conditions.

In Table 4.4, the convergence rates for the strain state associated with parameters α =

0.1 and β = 0.2, for both boundary conditions analysed in this work are presented. In

this table, the values in bold highlight the effect that the Line Search approach has on

the solution of the problem. While the standard Newton-Raphson scheme diverges after

a certain number of iterations (4 for Linear and 3 for Periodic), with the correction
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Figure 4.5: Map of results obtained when only the Line Search technique is used.

carried out by the Line Search method, the combined Newton-Raphson/Line Search

scheme is able to solve the problem.

Table 4.4: Convergence rates for α = 0.1 and β = 0.2.

Linear Boundary Condition Periodic Boundary Condition
W/out L. S. W/ L. S. L. S. Iter.
0.931960 0.931960 0
0.697790 0.697790 0
1.48615 0.640464 2
99.7177 0.521248 2
Diverg. 0.429722 2

0.293908 1
0.279117E − 1 0
0.165097E − 2 0
0.494053E − 4 0
0.250414E − 8 0

W/out L. S. W/ L. S. L. S. Iter.
44.8259 44.8259 0
76.0714 76.0714 0
208.246 87.6270 2
Diverg. 80.6496 3

74.6134 2
60.6393 1
7.83018 0
1.27382 0
0.243087 0

0.260192E − 02 0
0.334930E − 06 0

4.3.2.2 RVE with a circular void at the center - Modified Arc-Length method.

In this case, only the modified Arc-Length method coupled with the incremental strategy

proposed in this work is assessed under the same conditions of the previous example.

For this case, it is necessary to define in advance the maximum number of admissible

increments to solve the problem. According to the authors’ experience, 10 increments

(including the extra step to guarantee the consistency of a coupled multi-scale model)

is a reasonable value. This means that if the problem needs more than 10 increments

to achieve solution, it is considered that convergence has not been attained. In Figures

4.6(a) and 4.6(b) it is plotted, in colour coded tables, the number of steps required by the

incremental algorithm for attaining convergence for different strain states, when Linear

and Periodic boundary conditions are enforced. Each color corresponds to a specific

number of increments used and, in turn, the unfilled region is associated to deformation

states where more than 10 increments are necessary to solve the equilibrium of the RVE.
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Figure 4.6: Map of results obtained when exclusively the modified Arc-Length method
coupled with the incremental scheme is used.

Analysing Figures 4.6(a) and 4.6(b), it is possible to conclude that, with the incremental

approach introduced in this work, the solution of the RVE problem can be found for

a wider range of deformation states. Nevertheless, this result is more pronounced for

Linear boundary condition. It is important to note that the solution of the micro-

equilibrium problem without the proposed incremental algorithm is only achieved for a

small range of deformation gradients represented by the one step region of Figures 4.6(a)

and 4.6(b) (the grey region). It is also possible to conclude that the beneficial effect of

the incremental approach is more noticeable when the prescribed deformation gradient

has a dominant strength component.

The solution of the problem could also be obtained using the incremental strategy with

a fixed number of increments, without the use of the modified Arc-Length technique. In

this case, all increments would have the same size, which results from the division of the

total increment by the maximum number of increments defined for the problem. This

strategy is clearly not very efficient since it is not related to the nature of the problem

and its evolution. On the other hand, the solution presented here with the modified

Arc-Length technique coupled with the incremental strategy is able to efficiently solve

the problem. Although it is necessary to solve an additional system of equations for the

calculation of the tangential displacement, δuTan, as well as the increment displacement

factor, ∆λm, since the tangential displacement field is also used to update the total

microscopic displacement field, the number of iterations required to attain convergence

within each increment is significantly smaller. In addition, since the increment size is

adaptively determined, this approach can increase or decrease the size depending on the

nature of the problem, leading to a more efficient and robust solution.
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Figure 4.7: Map results obtained when both Line Search and modified Arc-Length
schemes are used.

4.3.2.3 RVE with a circular void at the center - Line Search & Modified

Arc-Length method.

In this case, both numerical schemes introduced in this document are combined to solve

the problem under analysis in this sub-section. It is also important to remark that the

assumptions inherent to each numerical scheme are also kept for this case.

Figures 4.7(a) and 4.7(b) show, for Linear and Periodic assumption respectively, the

number of sub-steps required for achieving convergence for different strain states, de-

fined by parameters α and β. Performing a simple comparison with the results presented

in 4.3.2.2, we observe that when the incremental approach is used in conjunction with the

combined Newton-Raphson/Line Search method, the number of increments is remark-

ably lower. Note that, in case of Periodic boundary condition, for almost the complete

range of deformation states triggered by (4.27), it is possible to solve the micro-boundary

problem. It clearly illustrates the improvements obtained with the numerical strategies

proposed.

The fact that it is possible to achieve convergence of the micro-equilibrium problem for

larger macroscopic deformation gradients, when using the numerical strategies addressed

in this contribution, has a significant impact on the computational cost. Even though

this reduction in the computational burden is, at first glance, restricted to the micro-

scale, it has enormous repercussion on the global overall computation time necessary

for the solution of coupled multi-scale problems, as it will be discussed in the following

example.
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4.3.3 Coupled multi-scale test

The purpose of this example is to illustrate the reduction on overall computational cost

achieved, with the use of the numerical strategies proposed in the solution of a cou-

pled multi-scale problem. The example consists of a tensile test where the macroscopic

specimen is a flat grooved specimen. The geometry of the specimen is illustrated in

Figure 4.8(a). The macrostructure was discretized with 80 quadratic quadrilateral finite

elements (8-noded) with reduced (2×2) integration (Figure 4.8(b)). With regard to the

RVE, the same RVE used in Section 4.3.2 was considered as well as the same material

properties. Once again, plane strain condition was assumed.

The macro-structure was subjected to a prescribed vertical displacement of 0.2 mm.

The loading scheme adopted in this example consists in incrementally applying a uni-

form vertical displacement to the top edge of the mesh considering the total number of

macroscopic load increments equal to 30. Four different possibilities have been consid-

ered in the solution of the present problem: in the first case, the problem was solved

using the Newton-Raphson method without modifications at the micro-scale; in the

second case, the modified Newton-Raphson method with the Line Search scheme was

adopted; the modified Arc-Length method coupled with the incremental approach was

used in the third case and, finally, in the fourth case, the problem was solved considering

both numerical schemes at the fine scale. The list of algorithmic parameters used in the

solution of this problem can be found in Table 4.5.

Table 4.5: Algorithmic parameters used in the solution of the coupled multi-scale
problem.

Algorithmic variables Value
Maximum number of Line Search iterations 5
Ideal number of iterations for the modified 8

Arc-Length scheme, NITER(j)

Maximum number of iterations at each microscopic increment 15
Maximum number of increments at micro-scale 10
(including the extra step to guarantee the consistency of a
coupled multi-scale model)

As it is possible to observe in Figure 4.9, regardless of the numerical strategy adopted

to solve the micro-equilibrium problem, the reaction curves are coincident. However,

in order to highlight the benefits of the strategies proposed in the present work, a

detailed comparison of the number of increments at the macro-scale, necessary to solve

the coupled problem for Linear and Periodic boundary conditions, as well as the relative

CPU time is performed1. In Figures 4.10 and 4.11 these two parameters are presented

for Linear and Periodic boundary conditions respectively. Taking as reference the case

1The computation of the relative CPU time took as reference value the lowest CPU time used to
solve the coupled problem for each boundary condition.
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(a) Geometry (in mm).

E •

(b) Mesh.

Figure 4.8: Specimen for coupled multi-scale problem.
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Figure 4.9: Reaction curves for Linear and Periodic boundary conditions obtained
with different numerical strategies.

where the standard Newton-Raphson is used to solve the micro-equilibrium problem

(labeled W/out L.S. and W/out Inc. Apr. in Figures 4.10 and 4.11), it is clear that the

number of macroscopic increments and the relative CPU time significantly decreased

with the numerical strategies discussed in this work.

When the conventional Newton-Raphson is used, 235 and 111 increments are necessary

at the macro-scale to solve the coupled problem for Linear and Periodic boundary condi-

tions respectively. This means that, due to the failure of the standard Newton-Raphson

scheme at the micro-scale, it was necessary to cut the macroscopic load increment in half

and try to solve the new macroscopic increment. This procedure was repeated when-

ever necessary. However, when this method is combined with the Line Search scheme

(labeled ”W/ L.S. and W./out Inc. Apr.” in Figures 4.10 and 4.11), it is possible to

reduce these numbers to 144 and 85 respectively. In addition, the use of this strategy

has a significant influence on the reduction of the computational time, 33%/18% for Lin-

ear/Periodic boundary conditions. In turn, when the modified Arc-Length coupled with

the incremental method was adopted (labeled ”W/out L.S. and W/ Inc. Apr.” in Fig-

ures 4.10 and 4.11), for both boundary conditions, the problem was solved using just 30
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increments, which was the target number of macroscopic increments. The overall reduc-

tion of the computational time, for this numerical strategy was remarkable: 78%/49%

for Linear/Periodic boundary conditions. When both numerical methods were simulta-

neously used, once more the problem was solved using just 30 macroscopic increments.

The reduction of the computational time, when both strategies are combined, is equal

to 78%/64% for Linear/Periodic boundary conditions, which means that there was an

additional reduction for Periodic boundary conditions. With a deeper analysis of the

results, it is possible to conclude that from the two numerical schemes proposed in this

document, the modified Arc-Length coupled with the incremental framework is the one

which leads to the more noticeable CPU reduction time. However, the implementation

of both numerical schemes ensures that the problem will be always efficiently solved.
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Figure 4.10: Number of macroscopic increments and relative CPU time for Linear
boundary condition.

0

20

40

60

80

100

120

 

 
Increments

 

 

0

0.5

1

1.5

2

2.5

3

Relative CPU time

M
ac
ro
sc
op

ic
n
u
m
b
er

of
in
cr
em

en
ts

R
el
at
iv
e
C
P
U

ti
m
e

W/out L. S.
W/out Inc. Apr.

W/ L. S.
W/out Inc. Apr.

W/out L. S.
W/ Inc. Apr.

W/ L. S.
W/ Inc. Apr.

111

85

30 30
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The convergence rate of the macroscopic Newton-Raphson procedure at the 20th macro-

scopic increment is listed in Table 4.6(a) when Periodic boundary condition is consid-

ered. In Table 4.6(b), the convergence of the residuals for the micro Newton-Raphson

procedure, for the RVE located in point E (Figure 4.8(b)), at the 3rd iteration of the

20th macroscopic increment is listed. The first attempt to solve the micro-equilibrium

problem, with a displacement factor of λ = 1, fails and the modified Arc-Length method

coupled with the incremental procedure is activated. This solution procedure computes

a new displacement factor, λ1 = 0.6003, and tries to find a solution. The solution of

the first microscopic increment, associated with λ1 = 0.6003 requires seven iterations

to converge resorting to the use of the Line Search method twice (in iterations 2 and

3). After the solution for the first microscopic increment, a new displacement factor is

computed, λ2 = 1.0000. The solution of the second microscopic increment associated

with λ2 only requires three iterations to converge and does not resort to the use of the

Line Search technique. Finally, the total displacement fluctuation field obtained at the

end of the second microscopic increment is employed, in an additional increment, as an

improved initial guess by the Newton-Raphson method. In this last stage, the RVE is

subjected to the total Linear displacement, which results from the total macroscopic

deformation gradient.

As expected, the convergence of residuals at both macro and micro scales is quadratic

as it is possible to observe in Table 4.6. This is a direct consequence of the use of the

exact tangent matrices at both micro and macro scales, and the use of the final step at

the micro scale to ensure the consistency of the macroscopic problem.

Table 4.6: ML-FEM problem: convergence rates at macro and micro domains for
point E (Figure 4.8 b)) at the macroscopic increment number 20 for Periodic boundary

condition.

(a) Macroscopic convergence

Iterations at the Macro-scale Convergence
1 0.1026
2 0.6745E − 03
3 0.6915E − 07

(b) Microscopic convergence for macroscopic iteration number 3.

Incremental displacement factor, λ Iterations L. S. Iterations Convergence
First attempt, λ = 1 FAILS - -

λ1 = 0.6003 1 0 21.0109
2 2 20.4726

3 1 36.4287

4 0 1.5292
5 0 0.7201E − 01
6 0 0.8435E − 04
7 0 0.2539E − 09

λ2 = 1.0000 1 0 0.4755
2 0 0.1402E − 02
3 0 0.5414E − 07

Extra increment 1 0 0.2622
λ = 1.0000 2 0 0.6856E − 03

3 0 0.1853E − 07
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4.4 Conclusions

In this work, several numerical strategies have been investigated to develop more efficient

and robust solution procedures for homogenization-based multi-scale constitutive models

at finite strains. Firstly, the well-established Line Search method which is typically

employed in conventional non-linear finite element problems was conveniently modified

and extended in the solution of the discrete RVE boundary value problem. Finally, a

new adaptive incremental approach for the solution of the micro-equilibrium problem

was proposed inspired on the standard Arc-Length method. To ensure the consistency

of the macroscopic equilibrium problem, the solution of the micro-equilibrium problem

was employed as an improved initial guess, in the solution of ML-FEM problems.

The presented numerical examples have demonstrated that the proposed procedures pro-

duce a dramatic improvement in the robustness and efficiency of the Newton-Raphson

scheme of the discrete RVE boundary value problem. The examples clearly illustrate

that these procedures are able to ensure the convergence of the solution algorithm in

the presence of several sources of non-linearity allowing larger macroscopic deformation

gradients to be prescribed. The improvement is particularly noticeable when all the tech-

niques are combined, nevertheless, they can also be employed separately. The proposed

methodologies also dramatically reduce the overall computational cost of ML-FEM anal-

yses, which was reduced up to four times in our analyses, and preserve the quadratic

rates of asymptotic convergence that characterize the Newton-Raphson scheme at the

macroscopic level.



Chapter 5

A new enforcement of Periodic

boundary condition for arbitrary

meshes based on Mortar

decomposition method

5.1 Introduction

The design of new materials is one of the most challenging tasks in engineering science

that has been continuously fostered by the increasing requirements of novel applications.

Since the response of the material at the macroscopic level is a direct consequence of

the material microstructural geometry and evolution, the establishment of relationships

between the microstructure and the macroscopic properties of materials has attracted

considerable research efforts. In recent years, a general modelling framework, the so-

called multilevel finite element framework (ML-FEM) or FE2 [36, 37, 92, 95, 96], has

been developed to capture the behaviour of heterogeneous materials. The underlying

idea of the method is to extract the quantities required for the macro-scale by solving a

micro-scale problem over a statistically representative volume element (RVE). This mod-

elling framework allows an effective description of complex microstructural geometries,

arbitrary constitutive material behaviour and microstructural evolution. Nevertheless,

some disadvantages have also been associated with the ML-FEM such as the computa-

tional cost that the solution of multi-scale problems incurs [49, 50, 103, 104, 113] or the

loss of representativeness of the RVE when softening regimes are reached [52, 84].

71
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In the ML-FEM framework, the definition of the size of the RVE problem is extremely

important since it should be large enough to statistically represent the microstructure

of the material. In contrast, as the size of the RVE problem increases, memory storage

and computational requirements can become prohibitive. This is due to the fact that in

the ML-FEM framework the macroscopic equilibrium problem is solved simultaneously

with one microscopic RVE problem for each point of the macroscopic mesh. Another

important feature of this technique is the definition of the boundary condition to apply

for the RVE problem. There are three classic kinematical constraints: Linear boundary

displacements, Uniform boundary Tractions and Periodic boundary fluctuations. Several

numerical studies have shown [87, 88] that the Periodic boundary condition (PBC) is

the one that converges faster to the theoretical/effective solution when the RVE size

increases. This means that for the same RVE size, the PBC delivers a better estimation

of the effective properties. Therefore, due to its representativeness and computational

efficiency, this contribution focuses on the enforcement of PBCs for randomly generated

meshes.

The classical approach for applying the PBC consists on the enforcement of an identical

displacement fluctuation field for each pair of corresponding boundaries of the RVE.

This forces the RVE to be discretized with a conform mesh on opposite boundaries, i.e.

the finite element mesh topology has to be such that a one-to-one correspondence exists

between nodes of opposing sides of the RVE boundary [37, 78]. Although for some simple

RVE geometries this requirement may be easily met using commercial pre-processors or

even dedicated mesh generation algorithms [114], this is not generally the case. For

instance, if the microstructure does not have geometrical periodicity, which is the most

frequent case for microstructures obtained from real image processing, the mesh will

not probably be conform. Furthermore, this requirement is also quite restrictive within

the context of the finite element method. In particular, it is extremely challenging to

develop an adaptive remeshing strategy, which employs an unstructured mesh generator,

that always generates a conform mesh. In addition, the introduction of discontinuities

at the RVE level, which is a rapidly expanding topic [55, 56, 59, 62, 63], would also be

very difficult to accommodate.

In order to circumvent the requirement of having conform meshes, several solutions have

been proposed. A surface-to-surface constraint has been suggested in [115, 116], which

can be found in some commercial finite element codes. In this case, the boundary of

the RVE is split into master and slave parts where the nodes embedded in the slave

domain are prescribed and defined by the closest nodes on the opposite edge/surface

(master domain) by interpolation. Despite its simplicity, this approach suffers from lack

of robustness when the master and slave edges/surfaces have a different node density. A

slightly different approach was proposed in [117] and recently enhanced and optimized
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in [118]. In this approach, the displacement field at two opposite sides of the RVE

is interpolated by linear combinations of shape functions which need to satisfy some

constraints. A different solution was proposed in [119] by introducing an independent

finite element discretization of the boundary tractions.

In this work, a different strategy is proposed to enforce PBCs on RVE problems with

an arbitrary finite element mesh discretization. This approach is inspired on the mortar

method [1], which was originally introduced in the context of domain decomposition

techniques. This method is able to efficiently enforce interface constraints over inter-

acting non-conform domains in a variationally consistent way based on the Lagrange

multiplier method. An essential feature of the method is the introduction of interface

conditions in an integral (weak) form instead of strong, point wise constraints. Fur-

thermore, the mortar method is able to preserve optimal convergence rates from the

finite element methods as long as appropriate mortar spaces are chosen. The use of the

so-called dual Lagrange multipliers spaces [120] allows for an efficient local elimination

of the discrete Lagrange multipliers by static condensation. These advantages have led

to the application of the mortar method in different computational fields such as contact

problems [5, 121–125] and recently in fluid-solid interaction problems [126].

The present Chapter is structured as follows. In Section 5.2, the new strategy to enforce

PBC is introduced where the spatial discretization of the RVE equilibrium problem based

on standard and dual bases is presented, followed by details on the evaluation of the

integrals, for both two and three dimensional problems. Finally, in order to demonstrate

the efficiency of the method, Section 5.3 presents several numerical examples to assess

the results, followed by some conclusions.

5.2 Periodic boundary condition enforcement

A new approach for the enforcement of PBCs based on the Mortar decomposition

method will be introduced in this Section for two and three dimensional problems.

The mortar discretization will be combined with the Lagrange multiplier method in an

integral (weak) form. Spatial discretization of the RVE equilibrium problem based on

standard and dual Lagrange multipliers will be presented followed by details on the nu-

merical integration of the Mortar coefficients. Two alternative schemes are obtained: a

Force-Displacement (where the Lagrange multipliers method is considered) or a Fully-

Displacement based scheme.

Remark 5.1. In line with the standard admissible kinematical boundary conditions in-

troduced in Section 3.2.6, the body force field will be considered null, B {y, t} = 0. This

is a necessary assumption in order to satisfy the Hill-Mandel condition (3.10).
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Remark 5.2. For sake of clarity, the nomenclature concerned with the time/pseudo-

time in the present Chapter will be omitted since all parameters and variables, which

will be used in what follows, are defined at instant tn+1. Furthermore, the explicit

representation of the set of internal variables in the First Piola-Kirchhoff stress tensor

will also be dropped.

5.2.1 Mixed variational formulation

Expressing the equation that governs the RVE equilibrium problem, Equation (3.21), as

a function of the displacement fluctuation field, leads to:

∫

Ω0

P̂ {F {y}} : ∇pũ {y} dV −
∫

∂Ω0

T ref {y} .ũ {y} dA = 0. (5.1)

Due to the decomposition of the boundary of the RVE for PBC, described in Section

3.2.6.2, the previous equation can be re-written as:

∫

Ω0

P̂ {F {y}} : ∇pũ {y} dV −
∫

Γ+
0

T ref
{
y+
}
.ũ
{
y+
}
dA

−
∫

Γ−
0

T ref
{
y−
}
.ũ
{
y−
}
dA = 0,

(5.2)

where the integral over ∂Ω0 was conveniently split. Owing to the anti-periodic traction

field (Equation (3.14)) associated to a PBC, we eliminate the integral over the negative

part of the boundary, Γ−
0 , and Equation (5.2) can be simplified:

∫

Ω0

P̂ {F {y}} : ∇pũ {y} dV +

∫

Γ+
0

T ref
{
y−
}
.
(
ũ
{
y+
}
− ũ

{
y−
})

dA = 0. (5.3)

Considering relation (3.13), it is possible to define a gap function, g, as being the dif-

ference between the displacement fluctuation of a node on the positive domain, ũ {y+},
and the displacement fluctuation of a node on the negative domain, ũ {y−}, located on

opposite sides of the RVE, with the same relative coordinates:

g = ‖ũ {y} ‖ = ũ
{
y+
}
− ũ

{
y−
}
= 0, (5.4)

where the symbol ”‖ ∗ ‖” denotes the ”jump” of variable ” ∗ ”. Thus, with g function at

hand, it is possible to write

∫

Ω0

P̂ {F {y}} : ∇pũ {y} dV +

∫

Γ+
0

T ref
{
y−
}
.g dA = 0. (5.5)
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The last term of the previous equation represents the global constraint for a PBC, which

takes into account constraints (3.13) and (3.14). Thus, it is possible to conclude that

the Hill-Mandel condition (3.9) and the minimal kinematical constraint, mathematically

defined by Equation (3.5), are automatically satisfied.

In preparation of a mixed variational formulation, the Lagrange multiplier method is

employed here to enforce the global constraint introduced in Equation (5.5). In fact,

the use of the Lagrange multiplier method can be viewed as a requisite of the Mortar

method since, the key idea of the method consists on a suitable spatial discretization

of the Lagrange variable, which will be derived in Section 5.2.2. Replacing the traction

force field, T ref {y−}, with the Lagrange multiplier vector, λ, in Equation (5.5) results:

∫

Ω0

P̂ {F {y}} : ∇pũ {y} dV +

∫

Γ+
0

λ.gdA = 0. (5.6)

It is important to mention that the vector, λ, includes both normal and tangential trac-

tions forces acting over the boundary of the RVE, ∂Ω0. By performing the infinitesimal

variation of Equation (5.6), we finally arrive to the weak form of the equilibrium problem

at the RVE level for PBC:

∫

Ω0

P̂ {F {y}} : ∇p δ ũ {y} dV +

∫

Γ+
0

δλ.g + λ.δgdA = 0. (5.7)

It is possible to distinguish three terms inherent to the deformation of the RVE for

PBC in Equation (5.7). The first, which corresponds to the volume integral, repre-

sents the variation of the virtual work associated with the internal forces of the different

constituents/phases embedded in the RVE. The remaining two terms, represent, respec-

tively, the enforcement of the kinematical constraints and the variation of the virtual

work associated with the traction forces, λ, acting over Γ+.

5.2.2 Spatial discretization with the Mortar Element Method

The spatial discretization of the RVE equilibrium equation for PBC (Equation (5.7)) will

be presented in this Section. The mortar element method, which is usually employed

to couple fields between potentially mismatched surfaces in a weak integral sense, is

employed here as an alternative spatial discretization method. Firstly, the spatial dis-

cretization of the RVE domain, Ω, is performed with the finite element method. The

usual finite dimensional subspaces of solution, Vd ⊂ V, and weighting spaces, Ud ⊂ U ,
are introduced. Therefore, the spatial discretization of the RVE domain, Ω, using a set
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of of finite elements is given by:

Ω0 ≈ Ωd
0 =

Nelem⋃

e=1

Ω0e , (5.8)

where the index (∗)d denotes the discretized version of the variable/domain (∗) and the

symbol
⋃

represents an appropriate assembly operator. As a consequence, we obtain

the RVE surface finite dimensional subspace Wd ⊂ W, which is a simple trace space

restriction of Vd to the respective RVE surfaces. In this work, for two-dimensional prob-

lems, we use bilinear finite elements (4 nodded elements) to discretize the domain of the

RVE. The shape functions for the mortar approximation on the surfaces of the RVE are

directly related to the shape functions on the domain due to the trace property. There-

fore, the surface interpolation consists of linear line elements (2 nodded elements). In

the three dimensional case, we focus on linear Lagrangian elements (4 nodded elements)

for the domain and two dimensional linear triangular elements (3 nodded elements) for

the RVE surface interpolation. Nevertheless, the approach can be extended for use with

higher order elements without conceptual difficulty.

Let us assume that the positive, Γ+
0 , and negative, Γ−

0 , domains of the undeformed

boundary of the RVE, ∂Ω0, are discretized by a different number of surfaces:

Γ+
0 ≈ Γ+,d

0 =

N+
s⋃

s=1

Γ+
s0
, (5.9a)

Γ−
0 ≈ Γ−,d

0 =

N−
s⋃

s=1

Γ−
s0
, (5.9b)

where Γ+,d
0 and Γ−,d

0 denote, respectively, the discretized positive and negative domains

whereas N+
s and N−

s correspond to the number of elements used in the discretization

of Γ+
0 and Γ−

0 . In agreement, Γ+
s0

and Γ−
s0

denote the domain of an element at positive

and negative surfaces.

Based on the above definitions, the discretized version of Equation (5.7) is given by:

∫

Ωd
0

GT P̂ {F {y}} dV δ ũ+

N+
s⋃

s=1

∫

Γ+
s0

δλs.gs + λs.δgsdA = 0, (5.10)

where matrix G denotes the discretized version of the gradient operator, ∇p. However,

since opposite surfaces of the RVE may be discretized with a different number of ele-

ments, the gap function, g, and the Lagrange parameter, λ, need to be conveniently

discretized in order to take into account the different densities of elements at opposite

surfaces.
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For a generic point p, the displacement fluctuation, ũp, and its local coordinates, yp,

can be determined by interpolation of their nodal counterparts, ũn and yn as:

On the positive surface, Γ+
s0

: ũ+
p {ξ} =

∑Nnodes
i=1 Ni

{
ξp
}
ũ+
ni
,

y+
p {ξ} =

∑Nnodes
i=1 Ni

{
ξp
}
y+
ni
,

On the negative surface, Γ−
s0

: ũ−
p {ζ} =

∑Nnodes
i=1 Ni

{
ζp
}
ũ−
ni
,

y−
p {ζ} =

∑Nnodes
i=1 Ni

{
ζp
}
y−
ni
.

(5.11)

where Ni

{
ξp
}
and Ni

{
ζp
}
denote, respectively, the interpolation functions associated

to an element at the positive and negative domains with Nnodes nodes. At this moment,

it is convenient to introduce the nomenclature commonly used when the Mortar de-

composition method is applied, which will be followed in this work. Hence, the surface

where the global kinematical constraint is defined (surface integral of Equation (5.7))

will correspond to the non-Mortar domain, Γ+
0 , whereas the other surface, Γ−

0 to the

Mortar domain. Moreover, in what follows, symbols ξ and ζ will represent, respectively,

an integration Gauss point at the positive/non-Mortar and negative/Mortar domains.

The Lagrange multipliers, which represents the traction forces acting over the boundary

of the RVE, is defined at the discretized non-Mortar surface by means of the interpola-

tion functions, Mi

{
ξp
}
:

λp {ξ} =

Nnodes∑

i=1

Mi

{
ξp
}
λni

, (5.12)

where λni
denotes the nodal traction forces of the non-Mortar segment. In order to

obtain a consistent discretization of the Lagrange parameter, the interpolation functions,

Mi

{
ξp
}
, need to satisfy the Babuska-Brezzi (B-B) condition (for more details see [1,

127, 128]). These interpolation functions will be presented in detail, for two and three

dimensional cases, in Section 5.2.4.

It is desirable to have a smooth evolution of the gap function, g, throughout the dis-

cretized boundary of the RVE, ∂Ωd. This is achieved by establishing a relation between

ξ and ζ. As can be seen in Figure 5.1 for two dimensional problems, for each integra-

tion Gauss point of the non-Mortar domain, ξp, there is a corresponding point, ζ
{
ξp
}
,

at the Mortar domain, which needs to be determined with the base of interpolation

functions used. Thus, for an arbitrary integration Gauss point ξp, the associated gap

function, gp, is given by:

gp {ξ} = ũ+
p {ξ} − ũ−

p {ζ}

=

Nnodes∑

i=1

Ni

{
ξp
}
ũ+
ni

−
Nnodes∑

i=1

Ni

{
ζ
{
ξp
}}

ũ−
ni
.

(5.13)
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Figure 5.1: Relation between ξp and ζ
{
ξp
}
for two dimensional problems.

It is possible to write the previous equation in a matrix format as:

gT
p {ξ} = wT

pBp, (5.14)

where wp is a matrix which includes the displacement fluctuations and the traction

forces associated to ξp. The matrix Bp represents an interpolation matrix for point ξp.

Both matrices are defined as follows:

wT
p =

[
ũ+T

n1
· · · ũ+T

nNnodes
ũ−T

n1
· · · ũ−T

nNnodes
λT
n1

· · · λT
nNnodes

]
, (5.15a)

BT
p =

[

N1

{
ξp

}
I · · · NNnodes

{
ξp

}
I −N1

{
ζ
{
ξp

}}
I · · · −NNnodes

{
ζ
{
ξp

}}
I 0 · · · 0

]
.

(5.15b)

With this matrix format, it is also possible to rewrite Equation (5.12) as:

λT
p {ξ} = wT

pMp, (5.16)

where matrix Mp is, once again, an interpolation matrix that includes the interpolation

functions, Mi

{
ξp
}
:

MT
p =

[
0 · · · 0 0 · · · 0 M1

{
ξp
}
I · · · MNnodes

{
ξp
}
I

]
. (5.17)

The variation of the gap function, δgp, as well as the variation of the Lagrange parameter,

δλp, for point ξp, can then be defined as:

δgT
p {ξ} = δwT

pBp, (5.18a)

δλT
p {ξ} = δwT

pMp, (5.18b)



Chapter 5. A new enforcement of Periodic boundary condition 79

where δwT
p consists on the variation of matrix (5.15a):

δwT
p =

[
δũ+T

n1
· · · δũ+T

nNnodes
δũ−T

n1
· · · δũ−T

nNnodes
δλT

n1
· · · δλT

nNnodes

]
.

(5.19)

Taking into account the relations defined above and using a Gaussian quadrature rule

to numerically evaluate the surface integral, Equation (5.10) can be re-written as:

∫

Ωd
0

GT P̂ {F {y}} dV δũ+

N+
s⋃

s=1

NGauss∑

p=1

[
δwT

s,p

(
Bs,pM

T
s,p +M s,pB

T
s,p

)
ws,p

]
Jpwp = 0,

(5.20)

where Jp and wp denote, respectively, the determinant of the Jacobian matrix and the

Gaussian weight associated to ξp. It is noteworthy to mention that since a total Total

Lagrange formulation is adopted in this work, the integrals of the previous equation need

to be determined over the reference configuration of the RVE. Therefore, the computa-

tion of Jp needs to account for this aspect.

Since the previous equation is satisfied for all admissible δũ and δwp, splitting the total

displacement fluctuation field in its interior and boundary counterparts, denoted respec-

tively by ũi and ũb, and properly modifying matrices Bp, M p and wp, the previous

equation can be conveniently expressed as a system of equations:





f i {y} = 0

f b {y}+
N+

s⋃

s=1

NGauss∑

p=1

[(
Bs,pM

T
s,p

)
λs,p

]
Jpwp = 0

N+
s⋃

s=1

NGauss∑

p=1

[(
M s,pB

T
s,p

)
ws,p

]
Jpwp = 0,

(5.21)

where f i {y} and f b {y} denote, respectively, the internal forces inside and at the

boundary of the RVE. The matrices Mp, Bp, wp and λp are defined as:

M
T
p =

[
M1

{
ξp
}
I · · · MNnodes

{
ξp
}
I

]
, (5.22a)

B
T
p =

[
N1

{
ξp
}
I · · · NNnodes

{
ξp
}
I −N1

{
ζ
{
ξp
}}

I · · · −NNnodes

{
ζ
{
ξp
}}

I

]
,

(5.22b)

wT
p =

[
ũ+T

n1
· · · ũ+T

nNnodes
ũ−T

n1
· · · ũ−T

nNnodes

]
, (5.22c)

λ
T

p =
[
λT
n1

· · · λT
nNnodes

]
. (5.22d)

The previous system of equations is formally equivalent to the one derived in [92] where

the Lagrange Multiplier method was used to enforce PBC on RVE problems discretized

with conform meshes. The main difference relies on the fact that, in the scheme proposed
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by [92], the integrals over the boundary are replaced by simple matrices fulfilled with

−1, 0 and 1 values. These matrices are responsible for linking each pair of nodes, with

equal relative coordinates, at the corresponding boundaries of the RVE. Therefore, it is

possible to conclude that the formulation expressed by the system of equations (5.21)

has to recover, as a limiting case, the strategy proposed in [92] whenever the RVE is

discretized by a conform mesh.

The previous system of equations is usually non-linear and, therefore, a suitable numer-

ical strategy is required to solve it. Here, the well established iterative Newton-Raphson

method was adopted, which requires the proper linearisation of (5.21). In the present

case, this leads to:




Kii Kib 0

Kbi Kbb

N+
s⋃

s=1

NGauss∑

p=1

[
Bs,pM

T

s,p

]
Jpwp

0

N+
s⋃

s=1

NGauss∑

p=1

[
Ms,pB

T

s,p

]
Jpwp 0




(j)





δũi

δũ
b

δλ





(j+1)

=

−






f i {y}

f
b {y}+

N+
s⋃

s=1

NGauss∑

p=1

[(
Bs,pM

T

s,p

)
λs,p

]
Jpwp

N+
s⋃

s=1

NGauss∑

p=1

[(
Ms,pB

T

s,p

)
ws,p

]
Jpwp






(j)

,

(5.23)

where (j) denotes the iteration number of the Newton-Raphson method and K∗∗ the

stiffness sub-matrices associated with the interior, i, and boundary, b, of the RVE.

It is relevant to emphasize that with the present Mortar formulation, the integration

Gauss points, ξp and ζ
{
ξp
}
, are independent of the displacement fluctuation field, δũ,

since there is no relative displacement between adjacent surfaces of the RVE. This is

an important aspect because it considerably simplifies the linearisation of the system of

equations (5.21).

With the solution for δũ and δλ for (j+1) at hand, the global displacement fluctuation

and the traction field can be updated as follows:

ũ (j+1) = ũ (j) + δũ (j+1), (5.24a)

λ(j+1) = λ(j) + δλ(j+1). (5.24b)

In computational terms, we have obtained a force-displacement algorithm where both

displacement fluctuation, ũ, and traction force field, represented by the Lagrange pa-

rameter, λ, are unknowns of the problem.
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5.2.3 Displacement based formulation

In Section 5.2.1, the enforcement of PBC was accomplished with a mixed variational

formulation, which lead to a force-displacement algorithm. However, it is possible to

re-formulate the problem into a weak form having the displacement fluctuation as the

only unknown. This would lead to a smaller size of the system of equations, which

requires less memory, and would increase the computational speed. With this objective

in mind, a relation between non-Mortar and Mortar domains needs to be established,

which can be derived from the last expression of (5.21):

N+
s⋃

s=1

NGauss∑

p=1

[(
M s,pB

T
s,p

)
ws,p

]
Jpwp = 0. (5.25)

Considering the definition of matrices Mp and Bp (Equations (5.22a) and (5.22b),

respectively), it is possible to write:
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M s,pB
T
s,p =




M1

{
ξp
}
N1 {ξp} I · · · M1

{
ξp
}
NNnodes

{ξp} I −M1

{
ξp
}
N1 {ζ {ξp}} I · · · −M1

{
ξp
}
NNnodes

{ζ {ξp}} I
... · · · ...

... · · · ...

MNnodes
{ξp}N1 {ξp} I · · · MNnodes

{ξp}NNnodes
{ξp} I −MNnodes

{ξp}N1 {ζ {ξp}} I · · · −MNnodes
{ξp}NNnodes

{ζ {ξp}} I


 .

(5.26)
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With the previous matrix at hand, it is possible to re-write expression (5.25) as:

N+
s⋃

s=1

NGauss∑

p=1

(
anm
s,p ũ

nm
s,p − am

s,pũ
m
s,p

)
Jpwp = 0, (5.27)

where matrices anm
s,p and am

s,p are given by:

anm
s,p =




M1

{
ξp
}
N1 {ξp} I · · · M1

{
ξp
}
NNnodes

{ξp} I
... · · · ...

MNnodes
{ξp}N1 {ξp} I · · · MNnodes

{ξp}NNnodes
{ξp} I


 , (5.28)

am
s,p =




M1

{
ξp
}
N1 {ζ {ξp}} I · · · M1

{
ξp
}
NNnodes

{ζ {ξp}} I
... · · · ...

MNnodes
{ξp}N1 {ζ {ξp}} I · · · MNnodes

{ξp}NNnodes
{ζ {ξp}} I


 . (5.29)

In turn, ũnm
s,p and ũm

s,p correspond to the nodal displacement fluctuation vectors, re-

spectively, at the non-Mortar and Mortar domains associated to the integration Gauss

point, ξp,

ũnmT

s,p =
[
ũnmT

n1
· · · ũnmT

nNnodes

]
=
[
ũ+T

n1
· · · ũ+T

nNnodes

]
, (5.30)

ũmT

s,p =
[
ũmT

n1
· · · ũmT

nNnodes

]
=
[
ũ−T

n1
· · · ũ−T

nNnodes

]
. (5.31)

After the assembly of all integrals associated with N+
s elements at the discretized non-

Mortar surface, a global expression is obtained:

Anm ũnm −Am ũm = 0, (5.32)

where in this case, unm and um denote, respectively, the global vectors with the nodal

displacement fluctuation at the non-Mortar and Mortar domains:

ũnmT

=
[
ũ+T

1 ũ+T

2 ũ+T

3 . . . ũ+T

N+

]
, (5.33)

ũmT

=
[
ũ−T

1 ũ−T

2 ũ−T

3 . . . ũ−T

N−

]
. (5.34)

The scalars N+ and N− denote, respectively, the total number of nodes at the positive

and negative domains. Finally, by a straightforward algebraic manipulation of Equation

(5.32), we arrive at a closed form, which establishes a relation between non-Mortar and
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Mortar displacements fields:

ũnm = [Anm]−1
Amũm,

ũ+ = [Anm]−1
Amũ−.

(5.35)

Based on the previous relation, it is possible to define the dependency matrix α,

α = [Anm]−1 Am, (5.36)

which is typically introduced in the context of the Condensation method [78, 86, 113].

Therefore, in the following and for the sake of completeness, we will conveniently modify

and extend the equations of the condensation method to include the proposed strategy.

The first step consists on the decomposition of the displacement fluctuation field, ũ, in

its respective free ũf , negative ũ−, positive ũ+ and prescribed ũp counterparts:

ũT =
{

ũf ũ− ũ+ ũp
}T

. (5.37)

The free sub-domain, ũf , corresponds to the degrees of freedom in the interior of the

RVE and all others are related with the degrees of freedom at the boundary of the RVE.

The prescribed set, ũp, corresponds to the nodes with a null displacement fluctuation.

This constraint is required in order to avoid rigid body displacements and rotations.

In the mixed variational formulation described in Section 5.2.1, the Hill-Mandel con-

straints associated to the traction forces acting over the boundary of the RVE (Equation

(3.9)) as well as the minimum kinematical constraint (Equation (3.5)) are directly in-

corporated into the system of equations, which governs the equilibrium of the RVE.

Nevertheless, in a displacement based scheme, this constraint is satisfied a priori. This

means that, Equation (3.9) is a consequence of the definition of the dependency matrix

(5.36). Therefore, the discretized equation that governs the equilibrium of the RVE is

simply given by:

∫

Ωd
0

GT P̂ {F {y}} dV = 0,

⇔ f int {u {y}} = 0,

(5.38)

where f int {u {y}} denotes the internal forces at the RVE level.

Once again, in order to solve the previous equation, which is highly non-linear in practical

problems, a suitable numerical method is required. Thus, the Newton-Raphson method
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is selected for this purpose, demanding the linearisation of (5.38), which leads to:

f int {u {y}}(j) +KT {u {y}}(j) δũ(j+1) = 0, (5.39)

where KT {u {y}} denotes the RVE global stiffness matrix, δũ is the unknown iterative

nodal displacement fluctuation vector and ”j” the iterative number of the Newton-

Raphson method. It is important to highlight the fact that the previous equation is

generic does not take into account the different admissible kinematical boundary condi-

tions.

Performing a similar decomposition to the global stiffness matrix, KT {u {y}}, and

internal force vector, f int {u {y}}, as described for the displacement fluctuation field,

ũ {y} (Equation (5.37)), the previous equation can be re-written as follows:





f f

f−

f+

fp





(j)

+




kff kf− kf+ kfp

k−f k−− k−+ k−p

k+f k+− k++ k+p

kpf kp− kp+ kpp




(j)


δũf

δũ−

δũ+

δũp





(j+1)

= {0} . (5.40)

Finally, with (5.35) at hand and knowing that ũp = {0}, the previous system of equations

can be condensated as:

[
kff kf− + kf+α

k−f +αTk+f k−− + k−+α+αTk+− +αTk++α

](j){
δũf

δũ−

}(j+1)

=

−
{

ff

f− +αTf+

}(j)

.

(5.41)

From the solution of the previous system of equations results the displacement fluctu-

ation of the free, δũf(j+1)

, and negative, δũ−(j+1)

, degrees of freedom. With these at

hand, for each ”j− th” iteration of the Newton-Raphson method, the total displacement

fluctuation field of the RVE is updated according to the following expression:

ũ(j+1)T =
{

ũf ũ− ũ+
0

}(j)T

+
{

δũf δũ− αδũ−
0

}(j+1)T

. (5.42)

Remark 5.3. The approach proposed in this contribution for the enforcement of PBC

on RVE problems, with either mixed or displacement based formulations, can be easily

incorporated into FE2 multi-scale finite element codes. For this purpose, close form

expressions for the macroscopic material tangent modulus,

A =
∂P {x}
∂F {x} ,
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when a displacement algorithm is employed are given in Appendix A whilst for force-

displacement based scheme they can be found in the literature [92].

5.2.4 Interpolation functions

A crucial feature inherent with the Mortar decomposition method is the selection of

the interpolation function base, Mi (ξ), to use over potentially mismatched surfaces

(Equation (5.12)). In the literature, two admissible interpolation function bases have

been commonly adopted, which satisfy the Babuska-Brezzi condition [1, 127]: Standard

and Dual bases. In the following, these two bases will be addressed for both two and

three dimensional problems.

5.2.4.1 Standard Base

The Standard base corresponds to the shape functions usually employed to interpolate

the geometry and displacement field within the finite element method, which are widely

described in the literature [70]. In this case, for both two and three dimensional prob-

lems, the Lagrange multipliers, λ, are approximated with the shape functions at the

boundary, Ni (ξ):

λ {ξ} =

Nnodes∑

i=1

Ni {ξ}λni
, (5.43)

where λni
denotes the nodal traction forces.

5.2.4.2 Dual base

Recently, an admissible interpolation function base has been proposed for the interpola-

tion of the Lagrange multipliers, λ, in the Mortar method, the so-called Dual base [120].

This basis of functions as to satisfy a biorthogonality condition besides the Babuska-

Brezzi condition. This constraint is mathematically expressed by:

∫

Γ+
s0

Mj {ξ}Ni {ξ} dA = δji

∫

Γ+
s0

Ni {ξ} dA. (5.44)

where δji denotes the Kronecker operator. The dual shape functions are represented

by Mj {ξ} and Ni {ξ} are the usual finite element shape functions, which are defined

with regard to a surface parametrization ξ. Due to the biorthogonality condition of the

basis of functions, Mj {ξ}, it will be possible to decouple the nodes where the periodicity

constraint is being enforced rendering a more efficient numerical implementation than

the Standard base.
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The difference between Standard and Dual basis can be easily understood by analysing

Figure 5.2, where a simple problem with non-conform meshes is schematically illustrated

[1]. In Figures 5.2 (a) and (b), the light grey area at the Mortar domain, Γm, denotes a

segment whose nodal displacements are influenced by the segments at the non-Mortar

domain, Γnm, represented by the dark grey zones. When the Standard interpolation base

is considered, all non-Mortar segments have influence on the nodal displacement of the

Mortar segment. In contrast, for the Dual base, only the non-Mortar segments which are

in the neighbourhood of the Mortar segment have influence on its nodal displacement.

Thus, it is possible to conclude that the Standard base, Figure 5.2(a), assumes a global

support whereas the Dual base, Figure 5.2(b), a local support. From the mathematical

ΓcΓnm Γm

(a) Standard interpolation function
base.

ΓcΓnm Γm

(b) Dual interpolation function base.

Figure 5.2: Interpolation basis for the Lagrange parameters (Taken from [1]).

point of view, the difference between global and local support is materialized in matrix

Anm, defined in Equation (5.32). Due to the global support of the Standard base, Anm

is a square matrix fulfilled of non-zero terms. However, when a Dual base is considered,

the matrix Anm becomes diagonal. This feature is very important for the numerical

efficiency of the strategy presented when a displacement based scheme is adopted. In

this case, the dependency matrix, α, can be easily obtained by inverting a diagonal

matrix, Anm,

α = [Anm]−1
Am,

⇔ α = [Dnm]−1 Am.
(5.45)

which is more convenient from the computational point of view.

5.2.4.3 Dual base - Two dimensional problems

For two dimensional problems, it is possible to find in the literature [120, 128] closed

forms for the Dual base interpolation functions. In Table 5.1, we list the shape functions

employed in this work to interpolate the geometry, the displacement field and Lagrange

parameter for both linear and quadratic elements.
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Table 5.1: Dual interpolation functions base for two dimensional problems.

Linear Segment Quadratic Segment
ξ, ζ ∈ [−1, 1] ξ, ζ ∈ [−1, 1]

non-Mortar domain:
Displacement field and coordinates

N1 {ξ} = 1
2 (1− ξ)

N2 {ξ} = 1
2 (1 + ξ)

N1 {ξ} = 1
2

(
1− ξ2

)

N2 {ξ} =
(
1− ξ2

)

N3 {ξ} = 1
2

(
1 + ξ2

)

non-Mortar domain:
Lagrange parameter

M1 {ξ} = 1
2 (1− 3ξ)

M2 {ξ} = 1
2 (1 + 3ξ)

M1 {ξ} = 5ξ2−2ξ−1
4

M2 {ξ} = 3−5ξ2

2

M3 {ξ} = 5ξ2+2ξ−1
4

Mortar domain:
Displacement field and coordinates

N1 {ζ} = 1
2 (1− ζ)

N2 {ζ} = 1
2 (1 + ζ)

N1 {ζ} = 1
2

(
1− ζ2

)

N2 {ζ} =
(
1− ζ2

)

N3 {ζ} = 1
2

(
1 + ζ2

)

5.2.4.4 Dual base - Three dimensional problems

For three dimensional problems, there are no closed forms for the Dual interpolation

function base. This is a consequence of the shape that a surface of a three dimensional

finite element may assume. Therefore, in order to circumvent this shortcoming, a nu-

merical strategy has been proposed [129] where the interpolation functions M {ξ {ξ, η}}
are determined according to the shape of the non-Mortar surface and taking into ac-

count the biorthogonality constraint. This strategy can be applied for either linear or

quadratic tetrahedral elements and also for hexahedral finite elements.

This approach starts with the assumption that the interpolation function Mi

{
ξp {ξ,η}

}

is determined by mapping the Nj

{
ξp {ξ,η}

}
interpolation functions as follows:

Mi

{
ξp {ξ, η}

}
=

Nnodes∑

j=1

bijNj

{
ξp {ξ, η}

}
, (5.46)

where bij is square matrix with dimensions [Nnodes, Nnodes] containing the mapping coef-

ficients. By introducing the mapping scheme of the interpolation function, Mi {ξ {ξ, η}},
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defined by Equation (5.46), into expression (5.44) results:

∫

Γ+
s0

Mj {ξ {ξ, η}}Ni {ξ {ξ, η}} dΓ = δji

∫

Γ+
s0

Ni {ξ {ξ, η}} dΓ,

⇔
∫

Γ+
s0

Nnodes∑

k=1

bjkNk {ξ {ξ, η}}Ni {ξ {ξ, η}} dΓ = Dji {ξ {ξ, η}} ,

⇔
Nnodes∑

k=1

bjk

∫

Γ+
s0

Nk {ξ {ξ, η}}Ni {ξ {ξ, η}} dΓ = Dji {ξ {ξ, η}} ,

⇔
Nnodes∑

k=1

bjkMki {ξ {ξ, η}} = Dji {ξ {ξ, η}} ,

⇔ bM {ξ {ξ, η}} = D {ξ {ξ, η}} .

(5.47)

In the previous equation, matrix D {ξ {ξ, η}} is commonly called the diagonal matrix

whereas matrix M {ξ {ξ, η}} is considered the mass matrix of the surface. With the

previous expression at hand, we finally arrive at the definition of the coefficient matrix

b:

b = D {ξ {ξ, η}} [M {ξ {ξ, η}}]−1 . (5.48)

A detailed description of this numerical strategy is carried out in [129] where the con-

struction of matrices D {ξ {ξ, η}} and M {ξ {ξ, η}} is presented in detail for surfaces

with 4 nodes having an arbitrary shape. After the construction of matrix b, the inter-

polation function Mi

{
ξp {ξ, η}

}
for a generic Gauss point with coordinates, ξp {ξ, η},

can be conveniently determined using Equation (5.46).

5.2.5 Numerical integration

In this section, an integration framework is introduced to evaluate the Mortar coeffi-

cients included in the integrals of Equations (5.23) or (5.27), depending on the numerical

scheme selected: force-displacement or fully-displacement based algorithm. This frame-

work will be described for both two and three dimensional problems.

Before proceeding, it is important to state the two underlying requisites that we have

followed in the development of the numerical integration framework. The first is con-

cerned with the accuracy of the numerical solution. Therefore, regardless of the order of

the interpolation functions considered (linear or quadratic), the strategy should always

guarantee an exact result. The second is related to the generality of the approach such

that the basic principles of the integration framework could be applied to both two and

three dimensional problems.
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5.2.5.1 Two dimensional problems

There are essentially two approaches to evaluate the integrals for two dimensional prob-

lems: segment integration and projected segment. In the following, a summarized dis-

cussion of the relative merit of each approach is introduced to justify the option that

was followed in this work.

Segment integration . In this approach, the integration domain for each segment,

Γ+
s0
, at the non-Mortar surface, Γnm

0 , coincides with the integration domain of the non-

Mortar segment, as schematically illustrated in Figure 5.3(a). Despite its simplicity, this

approach has some weaknesses that should be pointed out. The first one and probably

the most relevant is concerned with its accuracy. When this strategy is implemented

in conjunction with a Gaussian quadrature rule, the final solution is dependent on the

number of integration points employed. As pointed out in [122], for some cases, in order

to obtain an exact solution (or at least, very close to the analytical one), it is necessary

to use more than 7 Gauss points uniformly distributed at the non-Mortar segment, Γ+
s0
.

The error is proportional to the number of Mortar segments, N−
s , whose projections

into the non-Mortar domain intersect the integration domain defined by the non-Mortar

segment, Γ+
s0
. Therefore, in order to obtain an exact result, it is necessary to know a

priori the ideal number of integration points, which is not trivial. A possible solution to

circumvent this shortcoming consists in analytically implementing this scheme. However,

with this solution, a second shortcoming arises: it is necessary to particularize for each

interpolation function base and for each element type the analytical integration scheme.

This is particular cumbersome for three dimensional problems.

Projected segment . This approach consists in defining a virtual integration surface,

denoted by ΓInt in Figure 5.3(b), which results from the projection of the non-Mortar

surface into the Mortar surface and vice-versa. After the construction of this virtual

surface, the integration is no longer carried out at the non-Mortar domain but at the

virtual integration surface, ΓInt. Therefore, it is necessary to correctly map the different

parameters defined at both non-Mortar and Mortar domains to the virtual surface. As

a consequence, the integral over Γnm
s0

, present in Equations (5.23) or (5.27), is replaced

by smooth sub-integrals associated to each segment of ΓInt. Despite this fragmentation

of the integration domain, it is always possible to obtain an exact solution using a rea-

sonable number of integration points (i.e. 2 and 3 for linear and quadratic segments,

respectively) and to guarantee the continuity of the global integral. Obviously, an ana-

lytical scheme can be also applied however, once again, it needs to be particularized for

the set of interpolation functions and finite element type used.
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(a) Segment integration.
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ξ
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(b) Projected segment.

Figure 5.3: Definition of the integration limits for two different numerical frameworks.

Due to the higher accuracy of this approach and the fact that it can be easily extended for

three dimensional problems, it will be used in this work and described in the following.

Remark 5.4. The description of the projected integration approach will made here for

linear finite elements, which correspond to 2−noded segments at both non-Mortar and

Mortar domains, for the sake of simplicity. Nevertheless, the extension for higher order

elements is straightforward. For linear elements, only two integration Gauss points are

required to obtain an exact solution.

As previously stressed out, when the projected integration approach is considered, the

integration of the Mortar coefficients is carried out at the virtual integration surface,

ΓInt. Each particular segment is defined by the initial and final node with coordinates

Y Int
1 and Y Int

2 respectively. These nodes correspond to particular points ξ1,2 and ζ1,2

at the non-Mortar and Mortar domains, respectively (Figure 5.4). At the non-Mortar

surface, ξ1,2 is determined by solving the following expressions:

Y Int
1 = Y nm

s1 + ξ1 (Y
nm
s2 − Y nm

s1 ) , (5.49a)

Y Int
2 = Y nm

s1 + ξ2 (Y
nm
s2 − Y nm

s1 ) , (5.49b)

whereas, for Mortar domain ζ1,2 are determined by:

Y Int
1 = Y m

s1 + ζ1 (Y
m
s2 − Y m

s1) , (5.50a)

Y Int
2 = Y m

s1 + ζ2 (Y
m
s2 − Y m

s1) . (5.50b)
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Figure 5.4: Schematic illustration of the projected segment strategy.

An extra coordinate system is required to numerically evaluate the integrals with the

well established Gaussian quadrature rule. For this purpose, a local coordinate system

ω (ω ∈ [−1, 1]) is introduced, which is defined for every segment of ΓInt. Hence, the

interpolation functions Ni

{
ξp
}
, Ni

{
ζp
}

and Mi

{
ξp
}

need to be mapped into this

coordinate system, giving rise to Ni {ξ {ωp}}, Ni {ζ {ωp}} and Mi {ξ {ωp}} respectively.

This mapping is schematically illustrated in Figure 5.4.

Since three coordinate systems are involved in the integral (which correspond to two

mappings: from the global coordinates to ξ and then from ξ to ω), it is necessary to

perform the ”bridge” among these three coordinate systems by means of the Jacobian

J :

Jp =
∂Y s

∂ξ

∂ξ

∂ωp
. (5.51)

Denoting anmsij as the (i, j) term of matrix anm
s of Equation (5.27) (this also applies for

integrals of system of equations (5.23)) associated to Mi {ξ} and Nj {ξ} interpolation
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functions for s non-Mortar segments, it is possible to write:

anmsij =

NInt
s∑

k=1

2∑

p=1

Mi {ξ {ωk,p}}Nj {ξ {ωk,p}}
∂Y s

∂ξ

∂ξ

∂ωk,p
wp, (5.52)

whereN Int
s denotes the number of virtual segments at ΓInt, which define the non-Mortar

segment, s.

Remark 5.5. For the so-called Dual interpolation function base and whenever i 6= j, the

coefficient anmsij is null due to the biorthogonality constraint (Equation (5.44)).

In agreement with the previous manipulations, if we denote amsij as the (i, j) term of

matrix am
s of Equation (5.27) where once again i is related with Mi {ξ} and, in this

case, j with the interpolation functions at the Mortar domain, Nj {ζ}, it is possible to

determine amsij by using the following expression:

amsij =

NInt
s∑

k=1

2∑

p=1

Mi {ξ {ωk,p}}Nj {ζ {ωk,p}}
∂Y s

∂ξ

∂ξ

∂ωk,p
wp. (5.53)

It is important to note that the only difference between Equations (5.52) and (5.53)

relies on the definition of Ni {ζ {ωk,p}}. Everything else is equal including the location

of the Gauss points.

Finally, with anmsij and amsij at hand, the assembly of all contributions associated to all

segments at both non-Mortar and Mortar domains is performed.

5.2.5.2 Three dimensional problems

The basic ingredients for integrating the Mortar coefficients for three dimensional prob-

lems have already been introduced in the previous section. However, some modifications

are necessary to extend the projected segment strategy for three dimensional problems

[121, 123, 130]. The main differences between two and three dimensional problems rely

on: the definition of the virtual integration surface, ΓInt, and the numerical rule em-

ployed to integrate the Mortar coefficients over areas with an arbitrary shape. While

the virtual integration surface, ΓInt, in two dimensional problems results from the pro-

jection of segments, in three dimensional problems, ΓInt consists on a virtual plane with

the projections of non-Mortar and Mortar surfaces. Since both surfaces have the same

associated outward normal vector, N+ = −N−, due to the PBC enforcement, the vir-

tual plane, ΓInt, can be coincident with either the Mortar, Γm
0 , or non-Mortar, Γnm

0 ,

domains (see Figure 5.5(a)). Moreover, in three dimensional problems, the definition of

the intersected polygon in the virtual plane (Figure 5.5(b)) is not straightforward, being
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Figure 5.5: Illustration of the numerical strategy for three dimensional problems.

necessary to use a suitable clipping algorithm [131]. After the definition of the intersec-

tion polygon, it is necessary to map this polygon to the spaces ζ {ζ, ς} and ξ {ξ, η}, as
schematically illustrated in Figures 5.5(c) and 5.5(d).

With regard to the integration rule, an extension of the Gaussian quadrature rule is used:

the Gauss-Radau rule [132]. Essentially, this integration method consists in dividing the

intersection polygon, which results from the clipping algorithm, into nT triangles and

then, perform the integration over each triangle. The final result is obtained by summing

the sub-integrals of all triangles. For sake of completeness, the numerical framework

that has been used to integrate the Mortar coefficients for three dimensional problems

is presented in Table 5.2 in pseudo-code format.
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Table 5.2: Numerical framework for the integration of the Mortar coefficients for
three dimensional problems.

1. Loop over non-Mortar surfaces, s = 1, N+
s (number of surfaces at non-Mortar domain).

IF (Dual interpolation function base) THEN.
Determine b matrix for s non-Mortar surface (Section 5.2.4.4).

ENDIF

2. Project non-mortar surface, s, into Mortar domain;

3. Loop over Mortar surfaces, r = 1, N−

s (number of surfaces at Mortar domain);

(a) Run a polygon algorithm to check if the non-Mortar surface, s, intersects Mortar
surface, r.

IF (Intersection) THEN

i. Use a clipping algorithm to define the intersection polygon (Figure 5.5(a)). A
detailed discussion of clipping algorithms can be found in [131].

ii. Compute the geometric center (xc, yc) of the intersection polygon using the
following expressions (Figure 5.5(b)):

xc =

∑np

l=1 (xl+1 + xl) (xlyl+1 + ylxl+1)

A
, (5.54a)

yc =

∑np

l=1 (yl+1 + yl) (xlyl+1 + ylxl+1)

A
, (5.54b)

where np denotes the number of points of the polygon and A corresponds to the
area of the intersection polygon, which can be determined by:

A =
1

2

np∑

l=1

(xlyl+1 − ylxl+1) . (5.55)

iii. Considering the np points which define the intersection polygon and its cen-
ter (xc, yc), divide the polygon into nT triangles with xT coordinates (Figure
5.5(b)).

iv. For each triangle, use the Gauss-Radau rule [132] to define the coordinates of
the integration points (ξT , ηT ) and the respective integration weights, wT .

v. Calculate the global coordinates associated to (ξT , ηT ):

xGP =

3∑

I=1

NI (ξT , ηT )xTI
. (5.56)

vi. Determine the coordinates (ξ, η) for the non-Mortar domain and (ζ, ς) for the
Mortar surfaces associated to xGP .

vii. Evaluate the coefficients anmsij and anmsij (Figures 5.5(c) and 5.5(d)):

anmsij =

nT∑

k=1

ATri
k

NGauss∑

p=1

Mi {ξ {ξk,p, ηk,p}}Nj {ξ {ξk,p, ηk,p}}wk,p, (5.57a)

amsij =

nT∑

k=1

ATri
k

NGauss∑

p=1

Mi {ξ {ξk,p, ηk,p}}Nj {ζ {ζk,p, ςk,p}}wk,p. (5.57b)

where ATri
k denotes the area of k − th triangle.

viii. Assemble the contributions anmsij and amsij .

ELSE

GO TO 3.

ENDIF
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5.3 Numerical examples

In this section, the ability of the proposed approach, to enforce PBCs on RVE problems

with arbitrary meshes at finite strains is assessed through the analysis of four numerical

examples. The first two examples demonstrate that all the assumptions made during the

formulation of the method are satisfied. Furthermore, the accuracy of the method and

the stability of the fully linearised Newton procedure are verified. The last two examples

highlight the robustness of the method and the quality of results in three dimensions.

Before proceeding, it is important to remark that all the results presented in this section

were obtained with the formulation described in Section 5.2.3 combined with a linear

dual base for the interpolation functions. This choice is advocated by the authors since

it preserves the displacement based structure of FE 2 codes and it does not lead to an

increase in the system size.

5.3.1 RVE with periodic configuration

As previously mentioned, the approach proposed in this work to enforce PBCs should

recover, as a limiting case, the classical method whenever the RVE is discretized with

a periodic mesh. In addition, the two methods should provide similar results for the

same configuration/geometry of the RVE and should be relatively independent of the

spatial discretization. Hence, in this example, these premises are analysed. With this

objective in mind, a square RVE with a periodic configuration of voids was considered

(see Figure 5.6). The RVE dimensions are 2mm × 2mm and each circular void has a

radius of 0, 2mm centred in a square of 1mm × 1mm. This geometry was discretized

with three different meshes depicted in Figure 5.6.

10 10
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10

10

10

10 10

(a) Periodic mesh: 1600 linear
quadrilateral elements.

15 10

7

20

17

13

10 16

(b) Non-periodic mesh A: 1880 lin-
ear quadrilateral elements.

10 16

17

13

7

20

15 10

(c) Non-periodic mesh B: 1880 lin-
ear quadrilateral elements.

Figure 5.6: Finite element meshes of the RVE with a periodic configuration. The
numbers indicate the total number of elements at the boundary of each square.

From Figure 5.6, it is possible to conclude that the first mesh (Figure 5.6(a)) is periodic

since a one-to-one correspondence exists between nodes on opposing sides of the RVE
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boundary. Therefore, the classical method for applying PBCs, which consists on the

enforcement of an identical displacement fluctuation field for each pair of corresponding

boundaries of the RVE, is employed. The results obtained with this method will be

considered as reference for this numerical example. The remaining two meshes are

non-periodic (Figures 5.6(b) and (c)) having an arbitrary number of elements at the

boundary. Nevertheless, we have forced mesh A (Figure 5.6(b)) to be the ”mirror”

of mesh B (Figure 5.6(c)) in order to assess the influence of selecting different non-

Mortar and Mortar surfaces on the solution. All three meshes are discretized with

linear quadrilateral elements and plane strain assumption was considered. With regard

to the material constitutive model employed, a linear elastic law was considered with

Young’s modulus, E = 70GPa, and Poisson’s ratio, v = 0.3. The RVE was subjected

to the following macroscopic deformation gradient:

F {x} =

[
1.0 0.1

0.1 1.0

]
. (5.58)

The results obtained for the three different meshes at the final stage are listed in Table

5.3. In the first column, the homogenized First Piola-Kirchhoff, P {x}, is presented.

The second column lists the solution of the integral (3.9), which imposes the Hill-Mandel

Principle. Finally, the third column presents the maximum relative error of the homog-

enized shear component of the First Piola-Kirchhoff stress tensor, P12. The results

associated to the two non-periodic meshes are very close to the periodic mesh. This

indicates that the selection of the non-Mortar and Mortar domains does not affect the

quality of the result. In fact, this is an advantage of the current method when compared

with other approaches commonly employed to enforce PBC for RVEs with non-conform

meshes [115, 116]. In these cases, in order to obtain accurate results, it is necessary

to select for master surface the one which has a higher node density. In addition, it is

possible to conclude that integral (3.9) is satisfied, which demonstrates that the method

proposed here to enforce PBCs is kinematically admissible when a fully displacement

based algorithm is used. It is relevant to mention that when this algorithm is consid-

ered, the traction forces acting over the boundary of the RVE are a consequence of the

displacement field. Finally, the maximum relative error obtained is smaller than 0.14%,

which can be considered negligible.

In order to evaluate the efficiency of the proposed approach to enforce PBCs, we give

an overview of the convergence behaviour in terms of the total residual norm during

a non-linear Newton iteration. This is exemplified in Table 5.4 for one of the twenty

equally spaced increments of the analysis. It can be observed that the approach proposed
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Table 5.3: Numerical results for the RVE with a periodic configuration.

P {x} H-M C. Error (%)

Periodic mesh P =




−533.834 3658.730 0.000
3658.400 −530.483 0.000
0.000 0.000 −99.782


 0.00 · · ·

Non-periodic mesh A P =




−531.893 3654.430 0.000
3654.050 −528.113 0.000
0.000 0.000 −98.748


 1.16E − 16 0.118%

Non-periodic mesh B P =




−531.551 3653.750 0.000
3653.040 −528.000 0.000
0.000 0.000 −98.651


 1.19E − 16 0.136%

Table 5.4: Convergence behaviour in terms of the total residual norm for a represen-
tative step.

Iteration Number Convergence

1 8.47687
2 0.203536
3 0.134021E − 04
4 0.358867E − 11

yields excellent convergence behaviour in this example as would be expected from the

full linearisation of all non-linear quantities.

5.3.1.1 Non-linear constitutive model

The problem described in Section 5.3.1 was analysed again after changing the material

constitutive model and the type of finite element employed. In this case, the von Mises

elasto-plastic model was used with the same elastic parameters, with an initial yield

stress, σy = 200 MPa, and a constant hardening modulus, H = 400 MPa. The

linear quadrilateral finite element was replaced with its quadratic version with reduced

integration (2 × 2 integration points) to avoid the phenomenon of volumetric locking

observed under near incompressibility conditions. All the remaining conditions are kept

the same, namely, the enforced macroscopic deformation gradient and the plane strain

assumption.

In Figure 5.7, the evolution of the P12 term of the homogenized First Piola-Kirchhoff

stress tensor, P {x}, against the prescribed load is plotted. As it is possible to observe,

there is an excellent agreement between the solutions obtained with each of the different

meshes. In Figure 5.8, the contours of the von Mises equivalent stress can be observed.

Once again there are no appreciable differences. This conclusion applies not only to the
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Figure 5.7: Evolution of the P12 term of the homogenized First Piola-Kirchhoff stress
tensor, P {x}, for the RVE with periodic configuration modelled with an elasto-plastic

constitutive model.

value of the von Mises equivalent stress but also to the final deformed configuration of

the RVEs.

(a) Periodic mesh. (b) non-Periodic mesh A. (c) non-Periodic mesh B.

Figure 5.8: Contours of the von Mises equivalent stress for the three different meshes.

From the previous results, it is possible to conclude that the method proposed can also be

used to model material non-linear constitutive behaviours at the micro structural level.

It is important to remark that in this problem, the linear dual base for the interpolation

functions was used in conjunction with quadratic finite elements. This was achieved

by considering that each segment of a quadratic element is defined by a set of linear

interpolation functions. This strategy has provided accurate results and has been used,

with rather satisfactory results, in computational contact mechanics solution algorithms.

5.3.2 RVE with a non-periodic configuration

In this example, the convergence of average properties with increasing RVE size for

different boundary conditions is analysed. Several numerical studies [87, 88] have shown
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that the PBC, for a given RVE size, provides a better estimation of the average properties

than the linear displacement or than the uniform traction boundary conditions. This

conclusion holds if the micro structure possesses geometrical periodicity or not [87, 88].

Therefore, this evidence will be verified for non-periodic configurations by comparing the

method proposed in this work, denoted Mortar Periodic, with two classical kinematical

constraints: linear boundary displacements and uniform tractions, which correspond to

the upper and lower bounds of the solution for the same RVE size.

In these analyses, the RVE micro structure is composed by circular inclusions randomly

distributed in the matrix, which is typical of unidirectional fibre reinforced composite

materials. The matrix-inclusion interaction is neglected. Due to the dependence of

the results with the configuration of the RVE (distribution of the inclusions), for each

characteristic size of the RVE, 10 randomly generated micro structures were created in

order to perform a statistical analysis. The volume fraction of inclusions was set to

f = 20% and the radius of all inclusions is r = 4 mm. With regard to the dimension

of the square RVE, 6 distinct sizes were considered: 10 mm, 20 mm, 30 mm, 40 mm,

50 mm and finally 60 mm. In what follows, the smallest RVE dimension, L = 10 mm,

corresponds to the reference size, Lref . The generation of random micro structures with

these specifications was undertaken with the algorithm proposed in [133]. In Table 5.5,

the elastic material properties used in this problem are listed. All micro structures were

discretized with linear triangular elements and, once again, plane strain condition was

assumed. The macroscopic deformation gradient enforced is the same employed in the

previous example.

Table 5.5: Material properties for the convergence analysis problem.

Matrix Inclusion

Young’s Modulus, E (GPa) Em = 3 Einc = 60
Poisson’s ratio, v vm = 0.3 vinc = 0.3

In Figure 5.9, the evolution of the homogenized shear modulus, G, is shown as a func-

tion of the RVE size for the three different boundary conditions under analysis. In

Figures 5.9 (a), (b) and (c), we have plotted not only the discrete numerical values

obtained for each RVE configuration but also a trend line with the average value. In

Figure 5.9 (d) only the trend line with the average value for each boundary condition

is plotted. In addition, we have superimposed in all Figures several solutions available

in the literature, which are independent of the type of boundary condition enforced, for

comparison purposes. In particular, the upper and lower Hashin-Shtrikman limits [13]

(labelled as ”Hashin +” and ”Hashin -”, respectively) as well as the analytical result of

G, which was obtained based on a dilute distribution of aligned fibres in the absence of

matrix-inclusion interaction [24] (labelled by ”DDFA”), are included.
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(a) Linear boundary condition.
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(b) Mortar Periodic boundary condition.
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(c) Uniform Traction boundary condition.
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Figure 5.9: Homogenized shear modulus, G, for different boundary conditions as a
function of the RVE size.

The results obtained for the homogenized shear modulus with the Linear boundary

condition (see Figure 5.9(a)) have a significant dependence with the RVE size. For

this boundary condition, the average value only stabilizes for an RVE size L/Lref ≥ 4.

This behaviour is not observed for the other two two boundary constraints (Figures

5.9(b) and (c)) since the numerical results converge for the same value of G for an

RVE size L/Lref ≥ 2. However, from the comparison of the evolution of the Mortar

Periodic and Uniform Traction constraints it is not possible to conclude which boundary

condition converges faster to the solution. Notwithstanding, we confirm that for the RVE

size range analysed, the homogenized shear modulus value, G, obtained with Mortar

Periodic constraint (Figure 5.9(b)) is within the bounds defined by the Linear and

Uniform Traction boundary conditions, which is in agreement with the studies described

in the literature [87, 88]. A second observation that can be made is concerned with the

variability of results for the same RVE size with different boundary conditions. As

it is possible to observe from Figure 5.9(a), for low values of L/Lref , the numerical

results clearly depend on the configuration of the RVE for Linear boundary condition.

This observation is also applicable to Mortar Periodic and Uniform Traction boundary

constraints with a significant lower dispersion of results (Figure 5.9(b) and (c)).

Comparing the analytical and numerical results in Figure 5.9(d), we observe that the

DDAF result is quite close to the numerical ones for large values of L/Lref . In contrast,

it is clear that, for this particular example, the upper Hashin-Shtrikman bound (labelled

as ”Hashin +”) is significantly higher than all the numerical results obtained whereas
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the lower bound is slight above the numerical results, which is in agreement with the

result obtained in [76].

In Figure 5.10, the effective stress contour at the final configuration of the RVEs is

presented for Linear, Mortar Periodic and Uniform Traction boundary conditions for

different RVE sizes. At first glance, it is clear that the final configuration inherent with

L/Lref = 1 L/Lref = 3 L/Lref = 4

Linear boundary condition

Mortar boundary condition

Uniform Traction boundary condition

Figure 5.10: Final configuration of the RVE for Linear, Mortar Periodic and Uniform
traction boundary conditions.

the Linear constraint is quite different from the other two due to the severe constraint

enforced at the boundary of the RVE. However, when Mortar and Uniform Traction

boundary conditions are compared, the differences at the final configuration are only no-

ticeable for small RVE sizes (L/Lref = [1, 3]). For larger values of L/Lref ((L/Lref ≥ 4)
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the RVE deformation and stress contours are nearly identical. It is also noteworthy to

mention that the new boundary condition promotes, regardless of the spatial discretiza-

tion, a smooth deformation pattern over the boundary of the RVE as can be observed

in Figure 5.10.

5.3.3 Three dimensional RVE with a periodic configuration

In this example, we validate the approach proposed in the three dimensional setting and

analyse the quality of results. To achieve this purpose, an RVE with a simple geometry

was studied in order to facilitate the generation of a periodic mesh which is vital for

the enforcement of the classic PBC. The results obtained with the periodic mesh will be

considered as reference for this example.

The geometry of the cubic RVE is depicted in Figure 5.11. The RVE dimensions are

10mm× 10mm× 10mm, the top left hole has a radius of 1mm and the other two holes

have a radius of 1.5mm. The two top holes are centred in cubes of 5mm×5mm×10mm

and the bottom hole is centred in a cube of 10mm × 5mm × 10mm. The two meshes

considered for this problem are illustrated in Figure 5.11. With regard to the periodic

mesh (Figure 5.11(a)), a structured mesh with 3 500 linear hexahedral elements was

employed for the spatial discretization. Conversely, for the non-periodic mesh (Figure

5.11(b)), linear tetrahedral elements were used, resulting in a non-conform mesh with

68 128 elements. The substantial difference between the total number of elements used to

discretize the domain, with either linear tetrahedral and hexahedral elements, is needed

in order to obtain a solution with a similar accuracy. In this example, the material

(a) Periodic mesh with 3 500 hexahedral
elements and 4 433 nodes.

(b) Non-Periodic mesh: with 68 128
tetrahedral elements and 13 345 nodes.

Figure 5.11: Two meshes used to discretize the three dimensional RVE with a periodic
configuration.

constitutive law selected is the same employed in Section 5.3.1. Furthermore, the same

material properties were used and the following macroscopic deformation gradient was
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considered:

F {x} =




1.0 0.1 0.0

0.1 1.0 0.0

0.0 0.0 1.0


 . (5.59)

We start the analysis by presenting the configuration of the RVE at the end of the

deformation process. From Figure 5.12, it is possible to conclude that both final config-

urations are quite similar. In fact, there is no visible difference between them. This is

a clear indication that the new approach for the enforcement of the PBC was properly

extended for three dimensional problems and successfully implemented. In Table 5.6,

Periodic Mesh

non-Periodic Mesh

Figure 5.12: Final configuration of the three-dimensional RVE with different meshes.

the homogenized macroscopic First Piola-Kirchhoff stress tensor, P {x}, is listed for

periodic and non-periodic meshes. From the analysis of results, we conclude that both

solutions are quite close. In particular, if we consider the P12 component, we observe

that the maximum relative error is around 0.4%. As previously pointed out, this level

of error, within the context of numerical methods, can be considered negligible.

The efficiency of the proposed approach for three-dimensional problems, not reported

here to avoid repetition, is similar to the one obtained for two-dimensions (see Table 5.4).

Again, the typical convergence rates of the Newton Raphson method were observed.
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Table 5.6: Homogenized First Piola-Kirchhoff for the three dimensional RVE with
periodic configuration.

P {x} Error (%)

Periodic mesh P =




−453.485 3340.72 0.00
3348.90 −535.197 0.00
0.00 0.00 −97.6710


 · · ·

Non-periodic mesh P =




−455.601 3353.57 0.00
3361.86 −538.487 0.00
0.00 0.00 −99.9863


 0.383%

5.3.4 Non-periodic three-dimensional RVE with a non-conform mesh

The simulation of a complex three-dimensional RVE under an arbitrary load is carried

out in this example. This problem will be used to illustrate the robustness and general-

ity of the proposed approach for the enforcement of PBC. The geometry of the RVE is

illustrated in Figure 5.13 and represents a composite material composed by undulated

fibres (Figure 5.13(a)) embedded in the matrix (Figure 5.13(b)). The RVE dimensions

are 10mm× 10mm× 10mm and the diameter of the fibres is 2.5mm. It is important to

note that the geometry of the RVE was arbitrarily created and, therefore, no detailed in-

formation about the geometry is provided. The geometry of the problem was discretized

with 31 300 elements for the matrix and 15 314 elements for the fibres amounting to a

total of 45 614 linear tetrahedral elements (Figure 5.13(c)). The material properties and

(a) Fibres. (b) Matrix. (c) Mesh with 45 614 linear tetra-
hedral elements.

Figure 5.13: Geometry and mesh of the three dimensional RVE with a non-periodic
configuration.

the material constitutive behaviour employed are the same used in Section 5.3.2. In this
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case, the following deformation gradient was enforced:

F {x} =




1.0 0.1 0.1

0.1 1.0 0.1

0.1 0.1 1.0


 . (5.60)

From the analysis of Figure 5.13, it is possible to conclude that it would be extremely

difficult (if not impossible), for the great majority of commercial mesh generators, to

create a mesh with a one to one correspondence between nodes on opposite surfaces

of the RVE. For cases like this, it is compulsory to use enhanced approaches for the

enforcement of PBCs. In Figure 5.14, the effective stress contour of the RVE from

different viewpoints at the end of the deformation process is shown. It is possible to

observe that the approach proposed is able to accurately enforce a periodic configuration

at the boundary of the RVE in spite of the non conformity of the mesh employed. In fact,

all surfaces and edges assume a perfectly periodic shape at the end of the deformation

process. Therefore, it is possible to conclude that the proposed formulation is robust

Figure 5.14: Effective stress contour at the final configuration of the non-periodic
three-dimensional RVE with a non conform mesh.

and can be used to efficiently enforce PBC over complex non-periodic three-dimensional

meshes.

5.4 Conclusions

In this contribution, a new approach for the enforcement of PBCs on complex micro-

structures with non-conform meshes based on the Mortar decomposition method was

proposed. The numerical strategy was presented for both two and three dimensional

problems at finite strains. The method was formulated with a mixed variational formula-

tion and a displacement based formulation. The description of the numerical integration

framework employed to evaluate the Mortar coefficients was undertaken. The Newton
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based finite element solution procedure for the RVE discrete equilibrium problem was

presented in detail.

A comprehensive set of numerical results was presented to assess the strategy proposed

and illustrate the generality of the approach. It was demonstrated that the enforce-

ment of PBC proposed is kinematically admissible. This was achieved by analysing the

traction forces acting over the boundary of the RVE, which are imposed by the Hill-

Mandel principle. The accuracy of the method and the stability of the fully linearized

Newton procedure were verified. Furthermore, the Mortar PBC converges to a stable

solution when the size of a RVE increases as would be expected. Finally, the robust-

ness of the method and the quality of results were confirmed, in the three dimensional

setting, demonstrating the suitability of the approach for the enforcement of periodic

configurations over complex RVEs with randomly generated finite element meshes.





Chapter 6

A non-local approach of

integral-type within the context

of a coupled multi-scale model.

6.1 Introduction

The quest to extend the range of applicability of coupled multi-scale models is one of the

biggest challenge that the scientific community has faced over the last decade. While

the applicability of these models is well established with sound valid arguments in the

linear elastic and hardening regimes, this is not true when the structure crosses the bor-

der which defines the softening regime. It is noteworthy to mention that, in a general

sense, the softening regime is a consequence of several phenomena that take place at the

microstructure of the material, i.e., nucleation, growth and coalescence of voids which

lead to damage accumulation, crack propagation, rupture of the matrix-fiber interface

among several others. Despite significant progress on the characterization of these phe-

nomena by means of constitutive models based on either micro-mechanical information

[134, 135] or phenomenological assumptions [136], it seems that this approach is reaching

its limit. Indeed, it is almost impossible to enhance these models with features which in

some way replicate the different and complex phenomena that take place at the grain

and phase domain of the material. Nevertheless, this difficulty may be circumvented by

using coupled multi-scale models where the different phenomenon may be directly mod-

elled: interface contact between fiber and matrix; propagation of a micro-crack which

will give rise to a macro-crack; the correct characterization of the growth of a void under

different stress states.

109
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However, there are some issues which limit the applicability of coupled multi-scale mod-

els when softening regimes are reached. One of these issues is the mesh dependence

pathology that these models suffer. As well established, when softening regimes are

reached the loss of ellipticity of the equilibrium equations takes place which gives rise to

a problem dependent on the spatial discretization considered [137–141]. It is relevant to

emphasize that this issue is much more pronounced in coupled multi-scale models since

at least two scales are considered.

In order to minimize this mesh dependence pathology, non-local approaches have been

developed over the last years. Generally speaking, the main idea behind the formulation

of non-local constitutive models is to introduce an intrinsic length into the standard

constitutive models in order to properly define the localization zone. Two different

approaches, within the context of non-local formulations, can be found in the literature:

gradient-type and integral-type theories [142–145]. In the former, an additional equation

is added to the structural problem - the diffusivity equation - and the non-local variables

is considered as an additional unknown of the global problem. Thus, at the structural

level a bigger problem is obtained which may have a considerable repercussion on the

CPU time and, due to the presence of an extra variable, suitable constraints need to

be introduced in order to have a well-posed problem. In fact, these two aspects can be

critical whenever two different materials are modelled in the structure. On the other

hand, this approach keeps the material constitutive level unchanged being an advantage

which should be taken into account.

On the other hand, the non-local approach of integral-type follows a distinct philosophy.

The non-locality effect is embedded at the material level instead of the structural domain.

Hence, no modification is required at the global problem. However, whenever a new

constitutive model is developed it is necessary do redefine the constitutive equations

to comply with the non-local integral-type rules. Over the last decades, the non-local

model of gradient-type has been the focus of many works and therefore, this approach

has developed significantly with regard to its formulation. Nevertheless, the non-local

method of integral-type has been recently improved for elasto-plastic materials which

resulted in a more attractive model [146–148]. In this case, the extension of this model

to large strains and the derivation of a closed form for the tangent material modulus are

improvements which should be pointed out Andrade et al. [149].

In this chapter, a non-local approach of integral type is suggested for both macro and

micro domains. Despite the fact that the formulation shares the same concepts, the nu-

merical strategies will be rather than different due to the nature of the micro and macro

equilibrium problems. Whilst at the micro-scale it is possible to find a heterogeneous

media and therefore, different state variables may be considered as non-local variables,
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at the macro-scale only kinematic and primary variables (i.e. macroscopic deformation

gradient) are available. In fact, the possibility to considering as a non-local variable a

kinematic tensor, which drives the micro-equilibrium problem, is a novelty.

The present chapter is organized in the following fashion. In Section 6.2, a brief revision

of the non-local theory of integral type is introduced. For more details see references [86,

139, 142, 148]. Then, in Section 6.3 a non-local framework of integral type is proposed

for heterogeneous media modelled by means of isotropic explicit damage models. In this

section, particular attention is given to the numerical aspects such as the integration

algorithm and definition of the tangent operator. In Section 6.4, a non-local approach for

the macroscopic equilibrium problem is proposed once again based on non-local theory

of integral type. Finally, in Section 6.5 these two numerical frameworks are assessed by

means of a set of numerical examples.

6.2 Non-Local theory of integral type

In general, a non-local approach of integral type consists in replacing a local variable,

A {y}, which has a potential impact on the mesh dependence pathology by its non-local

counterpart, A {y}, which is defined by the following integral:

A {y} =

∫

Ωnl

β {y, ξ}A {ξ} dV {ξ} , (6.1)

where β {y, ξ} denotes the non-local averaging operator (in some references, this oper-

ator is called as kernel [150]) and Ωnl denotes the non-local integration domain. The

operator β {y, ξ} is always defined taking into account two points with global coordi-

nates y and ξ1 . In order to obtain an uniform evolution of β {y, ξ}, this operator needs
to satisfy the normalising condition which is given by

∫

Ωnl

β {y, ξ} dV {ξ} = 1. (6.2)

Aiming to satisfy the condition above defined, a regularization procedure is carried out

using the following relation

β {y, ξ} =
α {y, ξ}∫

Ωnl α {y, ξ} dV {ξ} , (6.3)

where α {y, ξ} consists on the weighting function. In the present contribution, α {y, ξ}
is given by

α {y, ξ} =

〈
1− ‖y − ξ‖

L2

〉
. (6.4)

1In this chapter, ξ is not related to the Mortar integration scheme.
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In the preceding equation, 〈∗〉 consists on the Macauley brackets and L denotes the

non-local intrinsic length which is responsible for the incorporation of a characteristic

structural length into the constitutive equations. Generally speaking, this parameter

is considered an intrinsic material parameter and, as a consequence, it needs to be

experimentally calibrated. Typically, inverse numerical procedures are considered for

this purpose [139].

Before proceeding, it may be important to shed some light on some aspects concerned

to the non-local averaging operator, β {x, ξ} (Equation (6.3)). With definition (6.3), we

observe that the non-local averaging operator, β {x, ξ}, is non-symmetric [140, 141]. In

other words, this means that, in some cases we may observe that

β {x, ξ} 6= β {ξ,x} . (6.5)

This particular case takes place when the non-local circumference defined by the non-

local intrinsic length, L, intersects the boundary of the structure. Under these con-

ditions, we observe that the volume integral, in the denominator of Equation (6.3), is

not equal for points x and ξ. As a consequence, it leads to a non-symmetric tangent

stiffness required in the iterative Newton-Raphson method, which from the CPU time

is not beneficial.

In order to circumvent this issue, different definitions for the non-local averaging op-

erator have been suggested [151]. Nevertheless, since the definition above introduced

for the non-local averaging operator has been widely and successfully used in non-local

approaches of integral type, it will be used in what follows.

6.2.1 Non-local averaging strategy and basic assumptions behind non-

local approach

With regard to the strategies for the non-local averaging procedure expressed by Equa-

tion (6.1), there are three possibilities: Eulerian-type, Lagrangian-type and updated

Lagrangian-type. In the former approach, the non-local integral is determined over the

deformed configuration of the structure. When the second approach is considered, the

integral is always defined over the initial configuration of the solid. The last can be

viewed as a mixture of the other two strategies.

Since the non-local approach will be consistently integrated into a coupled multi-scale

model under finite strains (i.e. Lagrangian approach), the same strategy for the non-local

integral will be used. It is important to note that this approach has some advantages:
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the integral is only numerically determined once, at the beginning of the problem and the

numerical implementation is rather simple when compared to the other two strategies.

Remark 6.1. As a matter of fact, a comparative analysis among the three cited strategies

was performed by Andrade et al. [148], Andrade [152] where pronounced differences

among the numerical results were not observed.

Finally, it is relevant to mention an important assumption typically adopted with non-

local approaches of integral type: the invariability of the kernels, β {x, ξ}. In other

words, this means that β {x, ξ} is independent of the history of the problem. From the

mathematical point of view, this means that

β̇ {y, ξ} = 0. (6.6)

As a matter of fact, this hypothesis has also been advocated by Andrade et al. [148].

6.3 Isotropic explicit damage model extended with a non-

local approach of integral type

Under the assumption of isotropy as well as bulk and shear component of the stress

tensor equally penalized by an isotropic damage variable, D, it is possible to define an

isotropic damage model such that

σ∗ = (1−D)σ, (6.7)

where σ∗ denotes the effective stress tensor and σ denotes the standard Cauchy stress

tensor. In case of a virgin material, D is equal to 0 whereas, in the opposite limit,

when the material loses the complete stiffness capacity, variable D is equal to 1. In the

literature, different definitions of effective stress tensor may be found and probably, the

most widespread effective stress tensor definition was proposed by Lemaitre [136, 153].

According to Lemaitre [136, 153], the difference between the standard stress tensor, σ,

and the effective stress tensor, σ∗, relies on the fact that the later reflects the internal

degradation of the material. Note that the stress tensor, σ, does not contemplate this

information, assuming that the deformation of the the material occurs in the absence of

internal damage.

In general, the stress tensor, σ, and damage variable, D, can be defined by means of

functionals. These functionals needs to be developed and specified according to the



Chapter 6. A non-local approach of integral-type 114

material under analysis. With this hypothesis in mind, it is possible to write

σ = σ̂ {F ,α} , (6.8a)

D = D̂ {F ,α,σ} , (6.8b)

where σ̂ and D̂ denote, respectively, the stress and damage functionals. It is noteworthy

to mention that, in Equation (6.8a), functional σ̂ is independent of the damage variable

whereas the damage functional, D̂, is a function of the stress tensor, internal variables,

α, and a deformation quantity, which under large strain assumption is the deformation

gradient F . This is the main characteristic of an explicit damage model. In other words,

the difference between explicit and implicit damage model relies on the fact that, in case

of an implicit isotropic damage model, the functional σ̂ is also a function of the damage

variable and vice-versa. This leads to a coupled and nested model which, in general,

demands far more complex algorithms to solve it. Examples of implicit damage models

can be found in [134–136, 154]. Notwithstanding, it is also important to highlight the

fact that the enhancement of these damage models with a non-local framework is far

more complex [86, 148].

It is widely established that the introduction of a damage variable into the constitutive

model promotes softening regimes and, hence, problems inherent with the loss of ellip-

ticity of the equilibrium equations emerges. Since the source of this pathology is well

identified, it is possible to remedy the problem replacing the local damage variable, D,

by its non-local counterpart, D. Thus, Equation (6.7) can be re-written as

σ∗ =
(
1−D

)
σ, (6.9)

where D is given by the following integral

D {y} =

∫

Ωnl
0

β {y, ξ}D {ξ} dV. (6.10)

6.3.1 Non-local explicit damage model applied to an heterogeneous

media

When the behaviour of one material is studied by means of micromechanical analysis,

through homogenization techniques over representative volume elements (RVEs), in or-

der to obtain reliable results, each constituent or phase at the micro-structure needs to

be properly characterized with a constitutive model. Assuming that each constituent of

the micro-structure is modelled by means of (possibly different) isotropic explicit damage
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models, such as the one described in Section 6.3, each constituent can individually pro-

mote the well-know mesh dependence pathology. Therefore, it is convenient to develop

a strategy where an individual non-local approach may be defined for each constitutive

model. In Figure 6.1, a schematic representation of a microstructure with two different

phases (matrix and inclusions) is depicted where this concept is illustrated.

L1

L2

Inclusion

Matrix

Figure 6.1: Schematic representation of non-local averaging scheme in an heteroge-
neous media.

The enhancement of each isotropic explicit damage model with a non-local approach of

integral-type demands the definition of individual non-local averaging operators (ker-

nels), βm {y, ξ}, for each m − th constituent. Thus, the non-local isotropic damage

variable, D
m
, related to m− th constituent is given by

D
m {y} =

∫

Ωnl,m
0

βm {y, ξ}Dm {ξ} dV m {ξ} . (6.11)

It is noteworthy to mention that, due to the presence of m kernels, there will be m

non-local characteristic lengths, Lm.

Despite of being simple to understand, two fundamental geometric considerations are

required for a correct numerical implementation and to obtain reliable results, where

the concept introduced. The former constraint is associated with the definition of the

integration domain in an heterogeneous media. In this case, a generic point y which

belongs to phase m is only affected by points ξ of the same constituent. From the

geometric point of view, this means that, when the non-local circumference defined by

Lm intersects a different phase, the points which belong to this second phase are not

considered for the numerical integration for phase m. The later constraint is concerned

with the definition of the non-local internal variable that models the behaviour of a

specific phase or grain. This means that, the non-local variable at point y is exclusively

affected by points ξ which are inside the non-local circumference and simultaneously

belong to the same phase or grain. In these cases, each inclusion or grain should be

considered as an independent solid.
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Remark 6.2. As a matter of fact, it is important to emphasize that the probability of

obtaining a non-symmetric homogenized operator, βm {y, ξ}, in heterogeneous media is

relatively high due to the previous geometrical considerations.

6.3.2 Spatial discretization of the problem

The spatial discretization of the problem is performed by using the well-established

Gaussian quadrature rule. Thus, for each generic point y and ξ there is one integration

Gauss point associated [140, 146]. Based on these ideas, the discretized version of

Equation (6.11) is given by

D
m
i =

Nnl
Gauss∑

j=1

wjJjβ
m
ijD

m
j , (6.12)

where Jj denotes the determinant of the jacobian matrix associated with the j − th

Gauss point which is inside the non-local circumference and wj is the associated weight

parameter. From the previous equation, we conclude that points y and ξ are linked

respectively to i and j Gauss points.

Based on the previous relation, it is possible to introduce the discretized version of the

effective stress, σ∗,m (Equation (6.9)) for m− th constituent

σ
∗,m
i =

(
1−D

m
i

)
σm
i

=


1−

Nnl
Gauss∑

j=1

wjJjβ
m
ijD

m
j


σm

i .
(6.13)

6.3.3 Temporal discretization

The temporal discretization of the micro-equilibrium problem enhanced with a non-

local approach of integral type follows the same framework as discussed in Section 3.3.1.

However, in order to highlight the main differences, in Table 6.1, the fundamental steps

of the algorithm developed are summarily introduced.

6.3.4 Linearization of a non-local Model

In order to conclude the numerical implementation of a non-local explicit damage model

for an heterogeneous media, in the present section, the associated consistent stiffness

tangent is described. Once again, it is noteworthy to mention that this tangent plays a
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Table 6.1: Algorithm to implement a non-local explicit damage model for heteroge-
neous media (at micro-scale).

1. For each i Gauss point, determine the weight of the non-local integral related to
j gauss point, βij

βm
ij =

αm
ij

∑NNL
Gauss

j=1 αm
ijJjwj

.

Note that in case of the Lagrangian approach, the previous step is only carried
out once at the beginning of the problem.

2. State-update over all integration Gauss points, i, (Local Approach);

σm
n+1,i = σ̂m

{
F n+1,i,α

m
n,i

}
;

3. Update the local damage law for all i Gauss points (Local Approach);

Dm
n+1,i = D̂m

{
F n+1,i,α

m
n+1,i,σ

m
n+1,i

}
;

4. Determine the non-local damage variable for all Gauss points i, D
m
n+1,i;

D
m
n+1,i =

Nnl
Gauss∑

j=1

wjJjβ
m
ijD

m
n+1,j;

5. Compute the effective stress tensor for all integration Gauss points, i;

σ
∗,m
n+1,i =

(
1−D

m
n+1,i

)
σm
n+1,i.

critical role within the context of the iterative Newton-Raphson method which is applied

to solve the micro-equilibrium problem.

In the literature, the consistent linearization of an explicit isotropic damage model en-

hanced with a non-local framework of integral type has been already presented [146].

However, the range of applicability of this approach is limited: it is only valid for homo-

geneous media and is restricted to small deformations. In contrast, in the present work,

this approach will be modified for heterogeneous media and extended to large strains.

With regard to the large strain extension, the work of carried out by Andrade et al.

[149] was followed.

Remark 6.3. For sake of simplicity, the nomenclature associated to the discretized time

(or pseudo-time), t will be dropped. Note that when the tangent operator is determined

all variables are defined at the same instant tn+1.
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We start the derivation of this operator by recovering the equation that governs the

equilibrium problem at the micro-scale (Equation (3.24))

f int {u} = 0, (6.14)

which, by definition, can be re-written as

f int {u} =

∫

Ωd

BTσ∗,mdV. (6.15)

In the previous equation, BT denotes the discrete symmetric gradient operator. It is

also important to note that, if the m−th constituent is modelled by a constitutive model

that does not have internal deterioration (i.e. in absence of internal damage), we verify

that σ∗,i ≡ σi.

Remark 6.4. Once again, Equation (3.24) was considered for the linearization procedure,

neglecting the term associated to the traction forces acting over the RVE. Note that this

term is not directly affected by the introduction of the non-local technique and, hence,

it has not got impact on the linearization of the problem.

The spatial discretized version of the previous equation is simply given by

f int {u} =

NGauss∑

i=1

BT
i σ

∗,m
i wiJi, (6.16)

where NGauss denotes the total number of Gauss points of the mesh (at the micro-scale)

and wi and Ji are respectively the weight and the determinant of the Jacobian matrix

of Gauss point i.

By definition, the tangent stiffness matrix is given by the derivative of the internal forces

with regard to the displacement field (at the micro-scale). Thus, it is possible to write

KNl
T =

∂f int {u}
∂u

,

=

NGauss∑

i=1

BT
i

∂σ∗,m
i

∂u
wiJi.

(6.17)

The derivative of the effective stress tensor, σ∗,m, can be defined by the following com-

pact expression [146, 149]

∂σ∗,m
i

∂u
=

∂σ∗,m
i

∂ε1

∂ε1
∂u

+ · · ·+ ∂σ∗,m
i

∂εNGauss

∂εNGauss

∂u
,

=

NGauss∑

j=1

∂σ∗,m
i

∂εj
Bj.

(6.18)
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Denoting the derivative of the effective stress tensor, σ∗,m
i , in relation to the deformation

strain tensor at j− th integration Gauss point, εj, by Dm
ij , and introducing the previous

relation into Equation (6.17), it is possible to write

KNl
T =

NGauss∑

i=1

wiJiB
T
i

NGauss∑

j=1

Dm
ijBj . (6.19)

The fourth order tensor, Dm
ij , is given by

Dm
ij =

∂

∂εj

[(
1−D

m
i

)
σm
i

]

=
(
1−D

m
i

)
D

Mat,m
ij − ∂D

m
i

∂εj
⊗ σm

i ,

(6.20)

where symbol ⊗ denotes the dyadic tensorial product. In the previous equation, ten-

sor D
Mat,m
ij consists on the local consistent tangent operator associated to the m − th

constitutive material defined by

D
Mat,m
ij =

∂σm
i

∂εj
. (6.21)

It is important to mention that since the functional of the stress tensor is still local, we

conclude that D
Mat,m
ij is null whenever i 6= j. Finally, the derivative of the non-local

damage variable, D
m
i , in relation to the strain tensor, εj is given by

∂D
m
i

∂εj
=

Nnl
Gauss∑

k=1

wkJkβ
m
ik

∂Dm
k

∂εj
. (6.22)

Note that, once again, when k 6= j,
∂Dm

k

∂εj
= 0. It is also relevant to remark that the

fourth order tensor, DMat,m
ij and the derivative

∂Dm
k

∂εj
are a directly consequence of the

local constitutive material and local damage laws.

6.3.5 Extension to finite strains

The derivation of the tangent operator, for a problem enhanced with a non-local ap-

proach of integral type presented in the previous section, was carried out in the spirit

of infinitesimal strains. However, since this approach will be implemented into a finite

element code (MSP code) which uses a hyperelastic-based multiplicative framework

proposed by [89, 155], additional algebraic operations are required.

In Section B.2.1 of Appendix B, these algebraic manipulations are described in detail.

Here, for convenience, only the final result is presented which consists in the following
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expression

DG {u,η} [d] =
∫

ϕ(Ω)
a : ∇x,ξd : ∇xηdV. (6.23)

Note that, in the previous equation, symbols ∇x and ∇x,ξ denote, respectively, the

continuum spatial gradient operator at points y and ξ. Moreover, ϕ (Ω0) denotes the

spatial configuration of the RVE (deformed domain). Applying the conventional spatial

discretization rules to the previous equation and considering the Gauss quadrature rule

to perform the numerical integration, one can write

KNl
T =

NGauss∑

i=1

wiJiG
T
i

NGauss∑

j

amijGj, (6.24)

where Gi and Gj are the discrete gradient operators at the integration Gauss points i

and j and amij the spatial tangent modulus. This fourth-order tensor is given by Equation

(B.17) in a continuum shape and its local discretized version is given by

amij =
1

2det (F i)
Dm

ij : Lj : Bj − [Σm
i ]|i=j . (6.25)

Note that, Dm
ij denotes the tangent modulus at infinitesimal strains defined by Equation

(6.20). In the last expression, the fourth-order tensor Σm is given by

Σijkl,m
i = σil,m

i δjk. (6.26)

With regard to tensors Lj and Bj, they are respectively defined by

Lj =
∂ ln

[
Be trial

j,n+1

]

∂Be trial
j,n+1

, (6.27)

B
ijkl
j = δik

(
Be trial

j,n+1

)jl
+ δjk

(
Be trial

j,n+1

)il
. (6.28)

6.3.6 Damage law

In this work, a simple explicit damage law coupled with the von Mises elasto-plastic

constitutive model is considered. The damage law is simply governed by the evolution

of the rate of accumulated plastic strain, ε̇
p
, affected by a scalar parameter,εf , which

can be viewed as a critical value of the accumulated plastic strain, εp. Saying that, it is

possible to write

Ḋ =
ε̇
p

εf
. (6.29)

In Section B.3, the derivation of the consistent tangent modulus is presented for this

damage law.



Chapter 6. A non-local approach of integral-type 121

6.4 Non-local approach at macro-scale domain

The non-local framework described in the previous section is exclusively dedicated to

the micro-scale problem and, therefore, its regularizing effect only takes place exclu-

sively at the RVE domain. Nevertheless, mesh dependence issues may also appear at

the macro-scale. Therefore, we conclude that it is also necessary to enhance the for-

mulation at the macro-scale. This is critical in case of First-Order Coupled Multi-Scale

Models. As a matter of fact, in Second order coupled multi-scale problems [38], the mesh

dependence issue at the macro-scale is less pronounced. This is due to the fact that,

the bridge between macro-to-micro domains and vice-versa is not solely preformed by

the macroscopic deformation gradient, F {x, t}, and homogenized First Piola-Kirchhoff

stress tensor, P {x, t}. For this formulation, in addition to these two variables, their

gradients are also included. Despite minimizing the mesh dependence pathology, this

coupled multi-scale formulation has not gained notable popularity due to the complex-

ity that emerges either from the formulation and numerical implementation. Note that

second order finite element codes are rare, only being used to solve very particular

problems.

Having in mind the limitation concerned with mesh dependence at the macro-scale that

First order coupled multi-scale models suffers, we conclude that, this issue should be

controlled by means of a suitable numerical scheme. However, due to the nature of

the macro-scale problem, where there is a lack of variables at the macro-scale domain

which can be considered as non-local variables, the formulation and implementation of

non-local approach will different to perform.

As stressed out in Chapter 3, the micro-equilibrium problem can be viewed as the state-

update of a standard solid mechanic problem and, hence, at the macro-scale domain

there are no internal variables which may be used as non-local variable. Due to this lack

of internal variables at the structural level, the implementation of a non-local frame-

work is limited either to the displacements or the deformation gradient. Recently, Wu

et al. [54] has proposed a multi-scale method where a non-local framework of gradient

type was implemented at both scales. At the RVE level, a standard non-local approach

of gradient type was adopted where particular attention was given to the definition of

the boundary constraints which may be applied to the non-local variable when different

phases exist at the RVE level. However, at the macro-scale, due to the non-existence

of internal variables, the non-local variable was defined as being the homogenized ac-

cumulated plastic strain over the RVE domain. Then, with this variable at hand, the

diffusivity equation, which defines the non-local approach of gradient type, is added to

the macroscopic equilibrium problem. Despite of the remarkable results obtained, in

view of the author’s opinion, the homogenization of internal variables defined at the
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RVE level such as accumulated plastic strain, damage, plastic multipliers among several

others is questionable. Moreover, the enhancement of the bridge between micro and

macro domains with this type of parameters demands additional non-trivial energetic

considerations which are still under analysis.

Based on the previous observations, in what follows, a non-local approach of integral

type will be proposed for the macroscopic problem where the non-local variable is the

macroscopic deformation gradient - a kinematic variable. It is relevant to emphasize that,

according to the author’s knowledge, a full non-local approach of integral type with a

kinematical non-local variable has never been proposed not even within the context of

standard solid mechanics problems.

Notwithstanding, in the literature it is possible to find explicit damage models enhanced

with a non-local formulation of integral type where the non-local parameter is a kine-

matical variable: deformation tensor [156] or displacement field [157, 158]. Nevertheless,

these two approaches mentioned are clearly different than the scheme herein proposed.

Whilst in references [156–158] the non-local variable is exclusively used on the definition

of the explicit damage functional (defined in Section 6.3.1), in the present contribution,

the non-local macroscopic deformation gradient will be responsible for driving whole

micro-equilibrium problem (i.e. state update).

In what follows, this new non-local framework will be introduced where the main differ-

ences in relation to the standard coupled multi-scale model will be highlighted. More-

over, special attention will be given to the derivation of the macroscopic tangent opera-

tor.

6.4.1 Definition of non-local macroscopic deformation gradient

The mathematical approach followed to define the non-local macroscopic deformation

gradient, F {x}, is exactly the same as used for scalar variables (Section 6.3.1). Thus,

by using the standard non-local operator previously defined (Equation (6.1)), F {x}, is
given by

F {x} =

∫

Ωnl
0

β {x, ξ}F {ξ} dV {ξ} . (6.30)

In Figure 6.2, a schematic representation of the First order coupled multi-scale model

enhanced with a non-local approach of integral type at the macro-scale is introduced.

Comparing the strategy described in Chapter 3 and illustrated in Figure 3.3 with the

approach schematically presented in Figure 6.2, we observe that the only difference

relies on the deformation gradient which is sent to the micro-scale: in this case, the local

macroscopic deformation gradient, F {x, t}, is replaced by its non-local counterpart,
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t0 ... tn tn+1

...

...

•

↓
•

↓F n+1 {x}

•

↑Pn+1

{
Fn+1 {x}

}

An+1

{
Fn+1 {x}

}

−→S. Micro. Prob.

βn {y} βn+1 {y}

Figure 6.2: Schematic illustration of a First order coupled multi-scale model en-
hanced with a non-local framework of integral-type at the macro-scale: macroscopic

deformation gradient as non-local parameter, F n+1 {x}.

F {x, t}. It is noteworthy to mention that, the implementation of this approach does not

demand any change in the algorithm employed at the micro-scale, neither on the tangent

operator, An+1

{
F n+1 {x}

}
, which corresponds to the derivative of P n+1

{
F n+1 {x}

}

in relation to F n+1 {x}. Notwithstanding, the macroscopic consistent tangent modulus

includes other fourth-order tensors due to the modification of the non-local macroscopic

deformation gradient, F n+1 {x}. This issue will be discussed in the following section.

6.4.2 Linearization of the macroscopic problem enhanced with a non-

local approach of integral type

The linearization of the macroscopic problem enhanced with non-local approach of inte-

gral type where the non-local variable is the macroscopic deformation gradient, F {x, t},
is a lengthy procedure involving several non-trivial algebraic and mathematical opera-

tions. Thus, in Section B.4, all operations are described in detail. The final result of

this linearization is given by the following expression

K {x} =

∫

ϕ(Ω0)
GT {x} (q1 + q4)G {x} dV

+ α {x, ξ}
∫

ϕ(Ω0)
GT {x} (q2 + q3 − q5)G {ξ} dV,

(6.31)

where G {x} and G {ξ} are the discrete spatial gradient operator at points x and ξ

respectively. The scalar, α {x, ξ} denotes the non-local averaging operator at the macro-

scale (introduced in Section 6.2). The fourth order tensors q1, q2, q3, q4 and q5 in
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Einstein’s notation are given by:

qimkl
1 = Fmj

[(
σ
{
F
}
F−T

)
⊗ I

]ijkl
, (6.32a)

q
iomp
2 =

1(
detF

)F ojAilmn
(
F ξ
)pn (

F
lk
)T (

F kj
)−T

, (6.32b)

q
iomp
3 =

1(
detF

)F ojP̂ ik (IT )
klmn

(
F ξ
)pn (

F−T
)lj

, (6.32c)

q
iomp
4 = F ojσil

(
∂F−T

∂F

)ljmn

F pn, (6.32d)

q
iomp
5 = F oj

(
F

−T
)mn (

F ξ
)pn

σil
(
F−T

)lj
, (6.32e)

where IT denotes a fourth order tensor defined by

IT =
∂AT

∂A
, (6.33)

and P̂ is expressed by

P̂ {x} =
(
detF {x}

)
σ {x}F−T {x} . (6.34)

6.5 Numerical results

Aiming to assess the efficiency of the non-local frameworks proposed, three numerical ex-

amples are used. The first two examples are exclusively devoted to assess the robustness

of the non-local approach described in Section 6.3, which is responsible to minimize the

mesh dependence pathology that takes place at the micro-scale. Thus, in the first exam-

ple, a micro-mechanical analysis was carried out where a micro-structure representative

of an heterogeneous material was considered. In the second example, this numerical

framework was assessed within the context of a First order coupled multi-scale prob-

lem. Finally, in the last example, the non-local approach formulated specifically for the

macroscopic equilibrium problem is analysed by means of a coupled problem where the

specimen at the macroscopic domain is a double notched plate.

Remark 6.5. Before proceeding, it is important to note that the author is aware that

in the presence of softening behaviours, suitable homogenization procedures should be

used in order to guarantee the representativeness of the RVE. Nevertheless, this issue is

out of the scope of the present work. Nevertheless, for those who are interested in this

research field, references [52, 53] may be consulted.
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6.5.1 Micro-mechanical problem

We start the analysis of the non-local framework proposed in Section 6.3 by considering

a heterogeneous media which includes different phases and voids with a periodic configu-

ration. In order to construct the geometry of the RVE, two steps were performed. In the

first, an algorithm developed by Miranda et al. [133] was used to generate the geometry

of the RVE. Basically, this algorithm defines the center of circles (i.e. circular inclu-

sions) over the total domain of the RVE taking into account the concept of periodicity.

It is noteworthy to mention that this concept postulates that the total micro-structure

may be modelled by successive RVEs positioned side-by-side. For this purpose, some

variables were defined: dimension of the square RVE, 40 mm; void volume fraction of

inclusions, 40 %; and the diameter of the circular inclusions, 6 mm. Finally, in the sec-

ond, meshes were created where 8 circles which are completely inside of the RVE were

arbitrarily chosen to be voids (the remaining were considered inclusions). This solution

was employed in order to promote more severe and visible softening regimes in these

type of micro-structures. Note that this softening regime is characterized by a decrease

of a specific component of the homogenized First Piola-Kirchhoff stress tensor, P {x},
associated with the preferential mode of deformation considered.

Since the goal is to analyse the mesh dependence pathology, two meshes with different

refinement levels were considered, which are introduced in Figure 6.3. In both meshes,

quadratic quadrilateral elements were considered with reduced integration (2 × 2 in-

tegration Gauss points). As usually, in the present thesis, plane strain condition was

considered.

(a) Mesh 1: 2377 quadratic
quadrilateral elements.

(b) Mesh 2: 4041 quadratic
quadrilateral elements.

Figure 6.3: Mesh refinement levels considered for the heterogeneous RVE with peri-
odic configuration.

With regard to the material constitutive models, the matrix of the RVE was modelled

by means of the explicit damage model presented in Section 6.3.6 coupled with the

standard elasto-plastic von Mises constitutive model. On the other hand, the inclusions

were modelled by a linear elastic law. The material properties for these two constitutive
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models are listed in Table 6.2. Finally, in this problem, the macroscopic deformation

Table 6.2: Material properties for the heterogeneous RVE with periodic configuration.

Matrix Inclusion

Young’s Modulus, E (GPa) 30 74
Poisson’s ration, v 0.3 0.2
Yield Stress, σ0 (MPa) 93 -
Hardening Modulus, H (GPa) 0.1 -
Critical accumulated plastic strain, εf 0.8 -

gradient enforced to the RVE is given by

F {x} =

[
1.0 0.02

0.02 1.0

]
, (6.35)

and Mortar Periodic boundary condition was considered.

In Figures 6.4 and 6.5, the contour plots of the damage variable for the two meshes are

either for both local or non-local approaches. As it is possible to observe, when the local

approach is applied (Figures 6.4(a) and 6.4(b)), the level of damage reached at the same

incremental factor is notoriously different for the two meshes considered. As expected,

when the number of elements increases (Figure 6.4(b)), the evolution of the damage

variable is more pronounced and, as a consequence of this phenomenon, a more severe

softening regime results. This softening regime, associated to the fine mesh, is clear in

Figure 6.6(a) where the evolution of term P12 of the homogenized First Piola-Kirchhoff,

P {x}, is plotted.

(a) Local result, Mesh 1. (b) Local result, Mesh 2.

Figure 6.4: Contour plots of the damage variable for local approach when the incre-
mental factor is equal to 0.4.

However, when the non-local approach described in Section 6.3 is applied to solve the

same problem, it is clear that there is a notable attenuation of the mesh dependence

pathology. This attenuation is perceptible either from the contour plots of Figure 6.5
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(a) Non-Local result, Mesh 1, L = 0.5mm,
NNL

Gauss = 20.
(b) Non-Local result, Mesh 2, L = 0.5mm,
NNL

Gauss = 23.

(c) Non-Local result, Mesh 1, L = 1.0mm,
NNL

Gauss = 43.
(d) Non-Local result, Mesh 2, L = 1.0mm,
NNL

Gauss = 61.

(e) Non-Local result, Mesh 1, L = 1.25mm,
NNL

Gauss = 58.
(f) Non-Local result, Mesh 2, L = 1.25mm,
NNL

Gauss = 89.

Figure 6.5: Contour plots of the damage variable for non-local approach when the
incremental factor is equal to 0.4.

or evolution of term P12 presented in Figure 6.6(b). From the damage plots, it is

clear that with the increase of the non-local characteristic length, L, the value of the

damage variable attained with the two meshes is closer. This is particularly true for

L = 1.25 mm, as it is possible to observe in Figures 6.5(e) and 6.5(f). This conclusion

is also corroborated by analysing the evolution of P12 term for L = 1.25 mm in Figure
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6.6(b), where both curves (associated to each mesh) are in close agreement throughout

the whole deformation process.
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(b) Non-local approach.

Figure 6.6: Evolution of term P12 of the homogenized First Piola-Kirchhoff stress
tensor, P {x}.

From Figure 6.6 it is also possible to conclude that, in general sense, there is a relation

between L and the evolution of the P12 term of the homogenized First Piola-Kirchhoff

stress tensor, P {x}. Thus, it is vital that the user of such numerical tools is aware that

unrealistic and non-physical results may appear for large values of L. As pointed out

previously, in order to avoid this issue, a calibration procedure for L should be performed

for each micro-structure.

In Table 6.3, the convergence behaviour of the Newton-Raphson scheme developed to

solve the micro-equilibrium problem enhanced with a non-local approach of integral type

is illustrated. This convergence was obtained for L = 1.25 mm when the incremental

factor was equal to 0.4. As it is possible to observe, a quadratic asymptotic convergence

rate was obtained. This is a clear evidence that the linearization procedure was properly

carried out as well as its extension to large strains.

Finally, in Figure 6.7 it is possible to observe the sparsity of the RVE global stiffness

matrix for the problem with local and non-local approaches. As expected, the band
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Table 6.3: Convergence rates obtained with the linearization described in Sections
6.3.4 and 6.3.5 (for incremental factor equal to 0.4 and L = 1.25 mm).

Iteration number Convergence

1 18.1886
2 9.11023
3 16.4940
4 0.649614
5 0.884217E − 02
6 0.303750E − 03
7 0.361128E − 09

(a) Local approach. (b) Non-local approach, L = 0.5 mm.

(c) Non-local approach, L = 1.0 mm. (d) Non-local approach, L = 1.25 mm.

Figure 6.7: Sparsity of the RVE global stiffness matrix at incremental factor equal to
0.4 for mesh 1.

width of the matrix is higher when the non-local approach is used compared to the

local counterpart. Moreover, inherent with a larger value of the non-local characteristic

length, L, a large band width of the matrix was obtained as expected.
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6.5.1.1 Periodic integration scheme

Since both the Periodic boundary condition and the non-local approach of integral

type incorporate geometrical considerations, a different approach to define the non-local

integration domain, Ωnl, for integral (6.11) may be used for this boundary condition.

This approach is schematically illustrated in Figure 6.8. The main idea consists in

l

Figure 6.8: Schematic representation of the modified non-local averaging scheme for
Periodic boundary condition.

mirroring the part of Ωnl defined by L which is outside the RVE domain with the sub-

domain in the opposite side. Note that this approach is based on the periodicity concept

and, therefore, its application is circumscribed to RVEs with periodic configurations.

In Figure 6.9, the results obtained with this approach are introduced for the coarse mesh

and L = 0.5 mm. Surprisingly, the final results remained the same, not being possible

to observe any difference. After a carefully analysis, it was possible to conclude that this

modified approach leads to a redundant constraint imposed to the system of equations

which governs the micro-equilibrium problem. This is due to the fact that this modified

integration scheme is equivalent to the enforcement of a periodic displacement field over

the boundary of the RVE.

(a) With standard integration scheme. (b) With modified integration scheme.

Figure 6.9: Contour plots of the damage variable for different integration schemes for
Mesh 1 and L = 0.5 mm (incremental factor equal to 0.4).
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6.5.2 Coupled multi-scale problem: mesh dependence at micro-scale

domain

In this section, the robustness of the non-local approach proposed to minimize the mesh

dependence at the micro-scale is again assessed. However, in the present case, its effi-

ciency is checked when it is employed within a coupled multi-scale code (CMSP code

described in Section 3.3.2.7). For this purpose, a flat grooved specimen at the coarse

scale was considered where its geometry is illustrated in Figure 6.10(a). Due to the

symmetry of the specimen, only one quarter was modelled by imposing appropriate

boundary constraints (Figure 6.10(a)). Aiming to promote a tensile stress state at the

critical section of the macroscopic specimen, a vertical displacement of 0.2 mm was

prescribed to the top surface of the specimen.

(a) Geometry of the Flat Grooved spec-
imen (units in mm).

• A
(b) Macroscopic mesh with 70
quadratic quadrilateral elements.

Figure 6.10: Flat Grooved specimen.

With regard to the micro-structure, a simple RVE with a centered circular void corre-

sponding to a void volume fraction equal to 12.5 % was considered. As a matter of fact,

the RVE consists on a square with dimension 1 mm.

Since the main goal of the present numerical example is to assess the micro-scale non-

local approach, only one mesh at the macro-scale was considered (Figure 6.10(b)) with

quadratic quadrilateral elements and reduced integration (2 × 2 Gauss points). Con-

versely, at the micro-scale, two refinement mesh levels were considered as illustrated in

Figure 6.11 where, once again, quadratic quadrilateral elements with reduced integration

scheme were applied. It is noteworthy to mention that, with this approach, involving
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only one spatial discretization at the macro-scale, the mesh dependence pathology is

restricted to the micro-scale domain. In line with the previous example, plane strain

condition was considered as well as Periodic boundary condition.

(a) Mesh 1: 128 elements
quadratic quadrilateral elements.

(b) Mesh 2: 288 elements
quadratic quadrilateral elements.

Figure 6.11: Refinement mesh levels at the micro-scale.

With regard to the material constitutive model, the explicit damage model coupled

with the elasto-plastic von-Mises model described in Section 6.3.6 was considered (at

the micro-scale) with the same material properties used for the matrix of the previous

numerical example.

In Figure 6.12, the vertical reaction force at the macro-scale is plotted for local and

non-local approaches. From the analysis of Figure 6.12(a), it is possible to conclude

that there is a clear dependence of the results with the spatial discretization applied at

the RVE level and it is convenient to use an appropriate numerical strategy to alleviate

the dependence. It is relevant to emphasize that although the source of the mesh de-

pendence is circumscribed at the micro-scale domain, there is a significant repercussion

at the macroscopic domain, in particular with regard to the reaction forces. However,

surprisingly, there are no appreciable differences between the contour plots of the von

Mises equivalent stress at macro-scale, which can be observed in Figures 6.13(a) and

6.13(b).

Notwithstanding, it is important to note that, similar to what happens with standard

finite element problems involving softening regimes, a more marked localization occurs

for a higher number of degrees of freedom at the micro-scale (Figure 6.13(b)).

When the non-local approach is applied at the micro-scale, a regularization of the prob-

lem takes place. As pointed out in the previous section, this regularization is deeply

dependent on the characteristic length, L. Thus, it is possible to conclude from Fig-

ure 6.12(b) that a tenuous regularization for L = 0.05 mm is obtained, but when this

parameter is set up to L = 0.1 mm, quite satisfactory results are achieved. This regular-

ization effect for L = 0.1 mm is materialized either from closer reaction curves (Figure
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(a) Local result.
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(b) Non-local result.

Figure 6.12: Vertical reaction force curves for local and non-local approaches.

6.12(b)) or from similar contour plots of the accumulated plastic strain at the micro-

scale (Figures 6.13(e) and 6.13(f)). Note that despite the fact that the values of the

accumulated plastic strain do not perfectly match for the same prescribed displacement

(for u = 0.023 mm), they are relatively close.

6.5.3 Coupled multi-scale problem: mesh dependence at the macro-

scale domain

Finally, in this section, the non-local approach proposed for the macroscopic domain is

assessed by means of a numerical example where the macroscopic specimen is a double

notched plate originally proposed by Mediavilla et al. [2]. The geometry of the specimen

is given in Figure 6.14. With regard to the spatial discretization of the macro-scale

specimen, three refinement levels were considered as illustrated in Figure 6.15. For all

cases, quadratic quadrilateral elements with reduced integration scheme (2 × 2 Gauss

points) were adopted.

Since the main goal of the present example is exclusively to assess the applicability and

reliability of the non-local developed for the macroscopic domain, the micro-scale domain

was not changed. This means that, a unique mesh at the micro-scale was considered

for all macro-scale meshes as well as the same conditions (i.e. boundary conditions,

material constitutive law). With this strategy, it is possible to analyse the macroscopic

mesh dependence since the source of the problem is circumscribed to the macroscopic

domain. Saying that, the same RVE used in Section 4.3.2 was again considered with the

same material parameters. As a matter of fact, plane strain condition was applied in this

problem and Periodic boundary condition was prescribed. Finally, a displacement equal
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(a) Local result, Mesh 1. (b) Local result, Mesh 2.

(c) Non-local result, L = 0.05 mm, Mesh 1. (d) Non-local result, L = 0.05 mm, Mesh 2.

(e) Non-local result, L = 0.1 mm, Mesh 1. (f) Non-local result, L = 0.1 mm, Mesh 2.

Figure 6.13: Contour plots of the von Mises equivalent stress at the macro scale and
accumulated plastic strain at the RVE level at point A of the flat grooved specimen

(defined in Figure 6.10(b)) for prescribed displacement equal to 0.023 mm.
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u = 0.3 mm

Figure 6.14: Geometry of the macroscopic specimen: double notched specimen (units
in mm) [2].

(a) Mesh 1: 144 quadratic quadri-
lateral elements.

(b) Mesh 2: 256 quadratic quadri-
lateral elements.

(c) Mesh 3: 576 quadratic quadri-
lateral elements.

Figure 6.15: Mesh refinement considered for the double notched specimen.

to 0.3 m was applied to the top of the macroscopic specimen and 100 equal increments

were considered to run this problem.

We start the analysis of this problem by observing the typical convergence behaviour ob-

tained when a non-local approach is used at the macro-scale, which is listed in Table 6.4.

As a matter of fact, this convergence evolution was obtained for mesh 3 with L equal to

0.25 mm. As it is possible to observe, the convergence rate is quadratic demonstrating

that the linearization of the macroscopic equilibrium problem was correctly performed

(Appendix B). It is relevant to emphasize that within the context of an implicit formu-

lation, which is the present case, the correct linearization of the problem plays a critical

role since it has a significant impact on the performance of the algorithm.

After the analysis of the efficiency and robustness of the algorithm employed, it is funda-

mental to analyse the quality of the numerical results. For this purpose, in Figure 6.16,

the reaction forces for local and non-local problem are introduced. From Figure 6.16(a),

it is clear that at the macro-scale there is an issue concerned with mesh dependence.
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Table 6.4: Convergence rates at macro-scale for the macroscopic equilibrium problem
enhanced with a non-local approach of integral type where the non-local variable is the

macroscopic deformation gradient, F {x, t} - L = 0.25 mm.

Iteration number Convergence

1 1.67060
2 0.800135E − 01
3 0.139756E − 03
4 0.646328E − 09

It is notorious that when the softening regime is attained, the three reaction curves

diverge. However, when the non-local scheme herein proposed is used, this divergence is

minimized, as can be observed from Figure 6.16(b). This feature is clear for the curves

associated to mesh 1 and 2 for a characteristic length L equal to 0.25 mm. Nevertheless,

as highlighted in Figure 6.16(b), for the same characteristic length, hourglass modes ap-

peared for mesh 3. This effect is plainly illustrated in Figure 6.17 where a zoom factor

of 10 was considered to highlight this issue. As it is possible to observe from this figure,

an irregular shape of the specimen was obtained.

Finally, in Figures 6.18 and 6.19 the contour plots of the von Mises equivalent stress

are introduced for both local and non-local problems. Unfortunately, it is impossible to

withdrawn a definite conclusion from these contour plots.

At the end of the present example, it is important to make some comments. Although

the results were not as good as initially expected, it is important to note that it was

only possible to run the problem with a very small characteristic length in order to

avoid the appearance of hourglass modes. Nevertheless, this formulation has provided

positive indications like the improvement of the reaction forces obtained when the non-

local approach at macro-scale was used. Saying that, the author believes that different

strategies to define the non-local macroscopic deformation gradient should be studied. A

possible solution may consist in using a similar strategy as considered on the development

of B-Bar [159] or F-Bar [160, 161] finite element technologies. This means that the use

of either the isochoric or volumetric components of the macroscopic deformation gradient

as a non-local variable may provide good results.

The second and final remark is concerned with the definition of the present numerical

approach. In fact, observing the present non-local formulation from other perspective,

it can be understood as the development of a new type of finite element suitable for

problems involving softening regimes where mesh dependence pathology is a reality.

With this idea in mind and after the elimination of the hourglass modes, it may be

possible to extrapolate this framework proposed and developed within the context of

coupled multi-scale models to standard finite element codes, which have been used to



Chapter 6. A non-local approach of integral-type 137

0 0.05 0.1 0.15 0.2 0.25 0.3
0

200

400

600

800

1000

1200

1400

Displacement (mm)

R
ea

ct
io

n
F
or

ce
(N

)

 

 

Mesh 1 − Local
Mesh 2 − Local
Mesh 3 − Local

(a) Local approach
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×−→ Hourglass modes appear for mesh 3

(b) Non-Local approach

Figure 6.16: Reaction forces for the double notched specimen.

Figure 6.17: Hourglass phenomenon which takes place at fine macroscopic mesh for
L = 0.25 mm.
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(a) Mesh 1: local. (b) Mesh 2: local. (c) Mesh 3: local.

Figure 6.18: Contours plots of the von Mises equivalent stress for u = 0.2 mm for
the local problem.

(a) Mesh 1: non-local. (b) Mesh 2: non-local.

Figure 6.19: Contours plots of the von Mises equivalent stress for u = 0.2 mm for
the non-local approach, L = 0.25 mm.

solve fracture solid mechanics problems. With this approach at hand, it will be avoidable

to implement a suitable non-local approach for each material constitutive model.

Remark 6.6. As a matter of fact, a different example was considered in order to assess

the robustness of the proposed non-local approach: a tensile test of a notched round

bar. Nevertheless, similar conclusions were withdrawn and, hence, it was not included

in the present chapter.

6.6 Conclusions

In this chapter, the mesh dependence pathology that inherently affects softening media

within the context of coupled multi-scale models was addressed. Based on a set of

numerical examples it was clear that coupled multi-scale models are highly affected by

this pathology. Moreover, it was demonstrated that this pathology takes place either at

the micro or macro domains limiting the range of applicability of this numerical approach

to solve fracture solid mechanics problems.
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Aiming to minimize this issue, two non-local approaches of integral type were developed

for the micro and macro domain. Although both approaches use the same base for their

formulation, the resulting frameworks are quite different. While in the former approach,

an explicit damage variable was selected to be the non-local parameter, in the latter,

due to the lack of internal variables at the macro-scale, the macroscopic deformation

gradient was defined as non-local variable. In fact, as stressed out previously, according

to the knowledge of the author this is a novelty.

With regard to the formulation and implementation of both non-local approaches, it

was demonstrated, by means of a set of numerical examples, that these developments

were properly conducted. This is particularly true for the implementation of the tangent

operators. However, with regard to the impact of these two numerical approaches, only

the one implemented at the micro-scale gave effective results. With this approach,

notable results were attained where a significant minimization of the mesh dependence

pathology was observed. On the other hand, despite the positive indications provided

by the non-local framework implemented at the macro domain, there is still future work

to do with this concept. This is due to the fact that, when the non-local characteristic

length reaches a certain value, hour-glass modes appear, resulting non-physical results.





Chapter 7

New Periodic boundary condition

for strain localization with

randomly configurations

7.1 Introduction

There is an enormous expectation around coupled multi-scale models and associated

versions with regard to their potential in characterizing complex materials over a wide

spectrum of regimes and under arbitrary loading conditions. For instance, the behaviour

of an elasto-plastic material under: linear elastic, hardening and softening regimes needs

to be understood for the appropriate design and optimization of components. In ad-

dition, thermal effects and cyclic loads, which are inevitably associated to creep and

fatigue phenomena, are among the most relevant loading conditions that define the ap-

plicability of a material. It is noteworthy to mention that the full characterization and

numerical simulation of the material over these three regimes and under these two load-

ing conditions are critical within the context of technologically advanced industries such

aeronautic or automotive, where complex mechanical systems need to be designed to

simultaneously meet high performance criteria and tight safety requirements.

Whilst for linear and hardening regimes coupled multi-scale models have already demon-

strated their potential even for complex micro-structure (i.e. [36–38, 44, 45], among

several others), for softening regimes and under thermal and cyclic loads there are still

some questions without answer. As a matter of fact, according to the knowledge of the

author, fatigue and creep phenomena have not been analysed by this particular multi-

scale approach even though, some efforts have been directed towards the introduction of

141
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thermals effects into coupled multi-scale models formulation where the work carried out

by Özdemir et al. [39], Özdemir et al. [40] and Giusti et al. [162] should be highlighted.

Considering the particular case of softening regimes, one of the most relevant question is

concerned with the kinematical boundary condition which should be prescribed over the

frontier of the RVE. The difficulty inherent with the selection of an appropriate boundary

condition is related to the fact that, when this regime is reached, it is common to

observe at the microstructure of the material the appearance of a localization band which

consists on a zone where high strains are concentrated. This zone is a consequence of a

combination of phenomena such as nucleation, growth and coalescence of voids and small

zones with high strain concentrations. Even though the origin of this physical feature

(localization band) takes place at the micro-structure of the material, beyond a critical

dimension it is also observable at the macroscopic level. Based on these two physical

aspects, it is possible to conclude that, in order to use multi-scale models to simulate

the behaviour of the material under softening regimes, a suitable kinematical boundary

condition needs to be used. This boundary condition should be able to properly tackle

the presence of a localization band and, an enhancement of the macro-to-micro ”bridge”

and vice-versa needs to be carried out in order to guarantee the consistency of the

presence of a localization band at both scales.

This last issue has been addressed by several authors over the last few years. Among

others, the work carried out by Belytschko et al. [55], Song and Belytschko [56], Souza

and Allen [57], Coenen et al. [58], Nguyen et al. [59], Nguyen et al. [60], Nguyen et al. [61]

and Verhoosel et al. [62] should be highlighted. Despite major differences, all approaches

share the idea of increasing the number of variables and parameters that establish the

bridge between different scales, which are responsible to define the presence of a lo-

calization band (or a discontinuity according to the nomenclature considered) in both

scales. Depending on the approach considered, in some cases, a displacement jump or a

traction field associated to the localization band is sent from one scale to another and

vice-versa, which are a consequence of the evolution of the equilibrium problem.

Nevertheless, the development of kinematical boundary conditions that are able to take

into account the presence of localization bands into the global response of the RVE is

still limited and, just few efforts have been carried out. As a matter of fact, in [55–57] the

Uniform Traction has been selected whereas in [59–62] the standard Periodic boundary

condition was prescribed over the boundary of the RVE. Note that in this case, the

discontinuity needs to be parallel to the borders of the RVE (i.e. in case of a square

RVE, vertical or horizontal localization band). Thus, the RVE needs to be rotated

according to the crack propagation direction, which is a non-physical approach. In

addition, it is noteworthy to mention that this strategy is circumscribed to proportional
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loads and simple stress states (i.e. pure traction, shear or compression). It is important

to mention that the three commonly used boundary conditions, Linear, Periodic and

Uniform Traction, have shown some shortcoming to accomplish this task. While Linear

is to restrictive, not allowing any effect of the localization band into the final shape of

the boundary of the RVE, the Periodic boundary condition only allows the presence of

horizontal or vertical localization bands. Finally, when Uniform Traction is prescribed,

spurious effects may appear due to the minimal constraint enforced at the frontier of the

RVE. Taking into account these issues, Coenen et al. [63] have proposed a new concept

of periodicity, which allows the presence of a localization band randomly propagating

through the RVE domain. The main idea consists on the alignment of the displacement

fluctuation field according to an average direction of the localization band. Despite this

artificial definition of the localization band, the numerical approach has demonstrated

interesting results but it is still limited to some particular cases: proportional loads and

simple stress states. Moreover, since the global response of the RVE is dependent on

an artificial localization band defined by an average direction, the presence of inclusions

and phases with non-conventional shape will not be reflected on the final behaviour of

the material.

Based on the idea that a more robust kinematical boundary condition, which simultane-

ously does not suffer from the pathology observed under Linear and Uniform Traction

constrains and able to tackle the presence of a localization band with arbitrary shape,

in this chapter, a new concept of Periodic boundary condition is proposed. The main

idea consists on the definition of arbitrary sub-domains defined by the shape of a lo-

calization band. For this purpose, in order to guarantee the correct domain definition

and application of Periodic boundary conditions over non-standard domains, the Mortar

decomposition method is used once again. As above pointed out, this new boundary con-

dition consists on an embryonic concept where unfortunately, only the main foundations

are described in detail. This is due to the fact that it is quite challenging either from

the of formulation or numerical implementation points of view. Nevertheless, the author

really believes that in future iterations of the work all potentialities and capacities of

the new concept will be explored.

The present chapter has the following architecture: in Section 7.2, the concept of domain

decomposition is proposed as well as the proof that the new Periodic boundary condi-

tion is kinematically admissible. In Section 7.3, the Mortar decomposition method is

particularized and elaborated for the new concept. Moreover, attention to all geometric

possible cases is given and details of the integration scheme are described. This section

is followed by the introduction of a preliminary assessment of the new concept in 7.4.

Finally, in Section 7.5 the conclusions of this work are introduced and future iterations

are pointed out.
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7.2 Periodic boundary condition enhanced with a localiza-

tion band

In this section, a new admissible kinematical boundary condition based on periodic

displacement and anti-periodic traction concepts is introduced. This boundary condition

is able to tackle the presence of a localization band which randomly propagates over the

domain of the RVE, Ω0.

In order to start the formulation of the new boundary constraint, we recover the two

fundamental equations, which respectively define the micro-equilibrium problem and the

minimal kinematical admissible constraint,

∫

Ω0

P {y, t} : ∇pηdV −
∫

Γ0

T ref {y, t} .ηdΓ = 0 ∀ η ∈ V, (7.1a)

∫

Γ0

ũ {y, t} ⊗N {Y } dΓ = 0, (7.1b)

where, once again, V denotes the space of the virtual admissible displacement fluctuation

field, η. As pointed out throughout the present document, the equilibrium of the RVE

is achieved when both previous equations are satisfied.

Under critical loads and conditions, it is common to observe the appearance of local-

ization bands with high levels of strains in the structure. Inherent to these bands, it

is common to observe a reduction of the load capacity of the structure. This physical

phenomena is explained by the loss of resistance and strength of the material in the

neighbourhood of the band. Thus, based on this physical aspect, in the present formu-

lation, the deformation band will be responsible for splitting the total RVE domain into

two semi-dependent domains.

As highlighted in the introduction of the present chapter, this new boundary condition

consists on a embryonic concept inspired on the Mortar decomposition method. Thus,

some assumptions need to be considered at this stage of the work which, in some cases,

may not completely represent the physical phenomena involved on the deformation of

the material. One of the assumptions consists on the definition of the localization band.

In the current stage of the formulation of this kinematical boundary constraint, the

localization band needs to intersect to distinct edges of a square RVE in order to have

impact on the overall response of the RVE. In other words, before the intersection of

two distinct edges of the RVE by the localization band, the micro-structure is modelled

using the Mortar Periodic boundary condition introduced in Chapter 5 (or standard

Periodic boundary condition in case of a conform mesh). Nevertheless, the author is

completely convinced that with addition work, the new kinematical boundary condition
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will be able to tackle the complete evolution of the localization band. This means

that, with additional developments, an admissible kinematical boundary condition based

on periodicity concepts will be obtained, which is able to properly characterize the

propagation of a localization band over the RVE domain.

Taking into account the assumptions above pointed out, it is possible to split the to-

tal RVE domain, Ω0, into two sub-domains, denoted respectively by Ω1
0 and Ω2

0, as

schematically illustrated in Figure 7.1. Moreover, each domain, Ω1
0 and Ω2

0, is confined

by boundary Γ1
0 and Γ2

0, respectively. These boundaries can also be decomposed into

standard, Γ
i
, and discontinuity boundaries, Γi

D, such that

Γ1
0 = Γ

1 ∪ Γ1
D, (7.2a)

Γ2
0 = Γ

2 ∪ Γ2
D, (7.2b)

where the standard boundary, Γ
i
, only includes part of the original boundary of the

RVE, Γ0.

= +

Ω0, Γ0

ΓDisc

Ω1
0, Γ

1
0 Ω2

0, Γ
2
0

Γ
1

Γ1
D

Γ2
D

Γ
2

T 1
D {y, t}

N1
D {Y }

N2
D {Y }

T 2
D {y, t}

Figure 7.1: Decomposition of the RVE considering the discontinuity.

Remark 7.1. In what follows, index (∗)i will denote a variable, parameter associated to

sub-domain i.

Nevertheless, it is still necessary to define the discontinuity boundary Γi
D. For this

purpose, in Figure 7.2, all possible shapes that a localization band may assume are

given. As it is possible to observe, this boundary for each sub-domain, Ωi
0, will not

contemplate exclusively the localization band, denoted by Γi
Disc (see Figure 7.1). In

fact, depending on the shape of Γi
Disc, boundary Γi

D may also contemplate part of the

initial boundary of the RVE, Γ0. As a matter of fact, Γ1
Disc = Γ2

Disc and Γi
D ⊂ Γi

Disc.

Remark 7.2. In order to clarify possible incongruities concerned to nomenclature, once

again, all integrals used in the formulation of the new kinematical constraint are defined

over the undeformed configuration of the RVE. Note that, a finite strains approach has

been considered throughout this document.
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Based on the decomposition concept above introduced, Equations (7.1a) and (7.1b) can

be re-written as:

∫

Ω1
0

P {y, t} : ∇pηdV −
∫

Γ1
0

T ref {y, t} .ηdΓ = 0 ∀ η ∈ V, (7.3a)

∫

Γ1
0

ũ {y, t} ⊗N {Y } dΓ = 0, (7.3b)

∫

Ω2
0

P {y, t} : ∇pηdV −
∫

Γ2
0

T ref {y, t} .ηdΓ = 0 ∀ η ∈ V, (7.3c)

∫

Γ2
0

ũ {y, t} ⊗N {Y } dΓ = 0. (7.3d)

Despite of the decomposition considered for Ω0, both sub-domains, Ω1
0 and Ω2

0, are

still linked. Hence, an extra constraint needs to be added to the previous system of

equations. This relation between the two sub-domains is attained by imposing an anti-

periodic traction field over the localization band, Γi
Disc. Note that this assumption

simply consists on the Third Law of Newton, commonly called action-reaction law. Thus,

in the present case, this physical feature is modelled by

T ref
{
y1
Disc, t

}
= −T ref

{
y2
Disc, t

}
, (7.4)

where yi
Disc denotes points located at Γi

Disc (see Figure 7.1).

7.2.0.1 Kinematical constraints over each sub-domain

Having defined the global problem in the previous section, now, it is time to introduce

some constraints to either the displacement fluctuation or to the traction force fields for

each sub-domain in order to obtain an admissible kinematical constraint. Note that a

boundary condition is only admissible from the kinematical point of view when both

minimal kinematical constraint, defined by Equation (3.5), and Hill-Mandel principle

(Section 3.2.4) are simultaneously satisfied for each sub-domain.

For this purpose, consider the equation which governs the equilibrium of sub-domain

i (Equation 7.3a or Equation 7.3c) as a function of the fluctuation displacement field,

ũ {y, t}, ∫

Ωi
0

P {y, t} : ∇pũ {y, t} dV −
∫

Γi
0

T ref {y, t} .ũ {y, t} dΓ = 0. (7.5)
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Taking into account the decomposition previously described for Γi
0, it is possible to write

∫

Ωi
0

P {y, t} : ∇pũ {y, t} dV −
∫

Γi
0

T ref {y, t} .ũ {y, t} dΓ = 0,

⇔
∫

Ωi
0

P {y, t} : ∇pũ {y, t} dV −
∫

Γ
i
T ref

{
yi, t

}
.ũ {y, t} dΓ

−
∫

Γi
D

T ref
{
yi
D, t
}
.ηdΓ = 0,

(7.6)

where yi denotes a point at Γ
i
0.

The concept of anti-traction field previously introduced in Section 3.2.6.2 will be properly

extrapolated for the current new kinematical constraint. The first change is concerned

with the boundary where this constraint is prescribed. Hence, in the current case, it

will be prescribed over the boundary of each sub-domain, Γi
0, instead to the total RVE

frontier, Γ0. The second change is concerned with how this constraint is applied in each

Γi
0. Whilst in the standard Periodic boundary condition or Mortar Periodic boundary

condition (see Chapter 5), the opposite boundaries of the RVE are always parallel, in this

case, the discontinuity may assume an arbitrary configuration. Therefore, the approach

considered to prescribe an anti-periodic traction field needs to be modified in order to

accommodate the possibility of non-parallel surfaces. Based on these aspects, the anti-

traction constraint applied to each sub-domain, Ωi
0, should be such that: the traction

force in a generic point, yi
D, of Γ

i
D is equal and symmetric to the traction force in a

generic point, yi
∗, at Γ

i
, which is determined by projecting point yi

D towards its normal

vector, N
{
Y i

D

}
. Mathematically, this constraint is expressed

T ref
{
yi
D, t
}
= −T ref

{
yi
∗, t
}
. (7.7)

Following the same approach as used above for the traction field and in agreement with

the standard Periodic boundary condition, it is possible to write

ũ
{
yi
D, t
}
= ũ

{
yi
∗, t
}
. (7.8)

Based on the previous two equations, it is possible to conclude that a periodic constraint

has been applied to a RVE with arbitrary geometry.

Taking into account Equations (7.7) and (7.8), the equation which defines the equilibrium

of sub-domain Ωi
0 (Equation (7.6)) may be re-written into the following fashion

∫

Ωi
0

P {y, t} : ∇pηdV +

∫

Γi
D

T ref
{
yi
D, t
}
.
(
ũ
{
yi
D, t
}
− ũ

{
yi
∗, t
})

dΓ = 0. (7.9)
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As it is possible to observe from the previous equation, theHill-Mandel constraint related

to the traction force field is enforced with the equation used to define the equilibrium

of each sub-domain, Ωi
0, and, similarly to the Mortar Periodic boundary condition

(Chapter 5), it is automatically satisfied.

However, it is still necessary to prove that the minimal kinematical constraint is satisfied

for sub-domains with non conventional shapes. For this purpose, Equations (7.3b) and

(7.3d) need to be satisfied. This proof starts by performing the decomposition of integral

(3.5) taking into account, once again, the definition of Γi
0 (Equation (7.2a) or Equation

(7.2b)). Thus, one can write

∫

Γi
0

ũ {y, t}⊗N {Y } dΓ =

∫

Γ
i
ũ
{
yi
∗, t
}
⊗N

{
Y i

∗

}
dΓ+

∫

Γi
D

ũ
{
yi
D, t
}
⊗N

{
Y i

D

}
dΓ = 0

(7.10)

where Y i
∗ and Y i

D denote points at the reference configuration of boundaries Γ
i
and Γi

D

respectively. Note that in the first surface integral at the right hand side of the previous

equation, ũ
{
yi, t

}
was replaced by ũ

{
yi
∗, t
}
since both points with coordinates yi and

yi
∗ belong to the same boundary, Γ

i
.

For each sub-domain, Ωi, there are two orthonormal referentials as illustrated in Figure

7.3. The referential defined by the orthonormal base {E1,E2} is associated to the refer-

ence configuration of the RVE, and the other, defined by {S1,S2} with the localization

band. With regard to this orthonormal referential, direction S1 is always tangent to

Γi
D, whereas direction S2 is always normal to this boundary. Taking into account these

two orthonormal referentials, Equation (7.10) can be redefined such as

∫

Γi
0

ũ {y, t} ⊗N {Y } dΓ =

∫

Γ
i
ũ
{
yi
∗, t
}
⊗N

{
Y i

∗

}
dΓ.

(−→
S 1 ⊗

−→
S 1

)

+

∫

Γ
i
ũ
{
yi
∗, t
}
⊗N

{
Y i

∗

}
dΓ.

(−→
S 2 ⊗

−→
S 2

)

+

∫

Γi
D

ũ
{
yi
D, t
}
⊗N

{
Y i

D

}
dΓ = 0.

(7.11)

where the first integral at the right hand side of Equation (7.10) was mapped to {S1,S2}
referential. After some tensorial manipulations, the previous equation can be re-written

into the following format

∫

Γi
0

ũ {y, t} ⊗N {Y } dΓ =

∫

Γ
i
ũ
{
yi
∗, t
}
⊗
[
S1

(
N
{
Y i

∗

}
S1dΓ

)
+ S2

(
N
{
Y i

∗

}
S2dΓ

)]

+

∫

Γi
D

ũ
{
yi
D, t
}
⊗N

{
Y i

D

}
dΓ = 0.

(7.12)
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From the previous equation and taking into account the normal outward directions, it is

possible to build a link between dΓ
i
and dΓi

D, which is given by the following equation:

N
{
Y i

D

}
dΓi

D = −S1

(
N
{
Y i

∗

}
S1dΓ

i
)
− S2

(
N
{
Y i

∗

}
S2dΓ

i
)
. (7.13)

Before proceeding with the proof of admissibility of the present Periodic boundary con-

dition, it is relevant to shed some light on the previous result. For this purpose, consider

Figure 7.4 where a schematic representation of the simplest shape configuration of a

localization band is given: parallel to one pair of edges of the RVE. In this case, since

N
{
Y i

∗

}
is normal to Si

1 and, in turn, N
{
Y i

∗

}
is co-linear with Si

2, the previous equa-

tion is dramatically simplified, which gives rise to

dΓi
D = dΓ

i
. (7.14)

The previous result is obvious due to the fact that, when Γ
i
and Γi

D are parallel to each

other, their infinitesimal variation is exactly the same.

Introducing expression (7.13)into (7.12), the initial equation which defines the minimal

kinematical constraint is re-written as follows

∫

Γi
0

ũ {y, t} ⊗N {Y } dΓ = −
∫

Γi
d

ũ
{
yi
∗, t
}
⊗N

{
Y i

D

}
dΓ

+

∫

Γi
d

ũ
{
yi
D, t
}
⊗N

{
Y i

D

}
dΓ

=

∫

Γi
D

(
ũ
{
yi
D, t
}
− ũ

{
yi
∗, t
})

⊗N
{
Y i

D

}
dΓ = 0.

(7.15)

Since a periodic fluctuation field is considered for each sub-domain (Equation (7.8)), we

finally conclude that the new boundary condition based on the concept of decomposition

domain is kinematically admissible.

7.2.1 The incremental equilibrium problem

With the previous mathematical manipulation, we are able to redefine up the micro-

equilibrium problem when a strain localization band takes place at the micro sample.

Considering a typical time interval (or pseudo-time), [tn, tn+1], and knowing the history

of the problem and F {x, t}, find the displacement fluctuation field, ũn+1 {y}, as well as
the traction force field acting over the boundary of the RVE, T ref

n+1 {y}, by solving the
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following system of equations:





∫
Ω1

0
P n+1 {y} : ∇pũn+1 {y} dV +

∫
Γ1
D
T

ref
n+1

{
y1
D

}
.
(
ũn+1

{
y1
D

}
− ũn+1

{
y1
∗

})
dΓ = 0,

∫
Ω2

0
P n+1 {y} : ∇pũn+1 {y} dV +

∫
Γ2
D
T

ref
n+1

{
y2
D

}
.
(
ũn+1

{
y2
D

}
− ũn+1

{
y2
∗

})
dΓ = 0,

T
ref
n+1

{
y1
Disc

}
= −T

ref
n+1

{
y2
Disc

}
,

(7.16)

where ũn+1 {y} and T
ref
n+1

{
yi
D

}
are the unknowns of the problem.

Remark 7.3. In what follows, the nomenclature concerned to the time (or pseudo-time)

will be dropped down since all variables which will be used are defined at instant tn+1.

7.3 Mortar Decomposition Method

Probably, the key feature of the present kinematical boundary condition consists on the

domain decomposition approach. It is important to emphasize that this feature is not

critical exclusively from the geometrical point of view. In fact, the approach considered

needs to be robust enough in order to impose a new concept of Periodic boundary

constraint over each sub-domain which results from the decomposition of the initial

RVE domain into arbitrary sub-domains (in the present stage of the work, only into two

sub-domains). Moreover, the framework should be coupled with an integration strategy

which guarantees an exact result. Taking into account these requirements, the Mortar

decomposition method will be applied in the present formulation as used in Chapter 5.

In fact, the kinematical constraint introduced in Chapter 5 can be viewed as a particular

case of this new kinematical boundary condition enhanced with the possibility of tackling

a localization band. Whilst the Mortar approach described in Chapter 5 is exclusively

used to prescribe a Periodic boundary condition over RVEs with non-conform meshes,

in the present formulation, the priority of this numerical method is to impose a modified

version of the Periodicity constraint described in Section 7.2.0.1 over each sub-domains

with eventual non-parallel surfaces (and therefore, with non-conform meshes).

In the spirit of Mortar decomposition method, the enforcement of the global constraint

described by the boundary integrals of system of equations (7.16), is imposed by means of

the Lagrange multiplier method. Thus, the traction force field, T ref
{
yi
D

}
is replaced by

the Lagrange multiplier vector, λi
D. Thus, the equation which establishes the equilibrium

of sub-domain i is given by

∫

Ωi
0

P {y} : ∇pũ {y} dV +

∫

Γi
D

λi.
(
ũ
{
yi
D

}
− ũ

{
yi
∗

})
dΓ = 0. (7.17)
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Similar to the development of the Mortar boundary condition described in Chapter 5,

λi
D consists on a vector which includes normal and tangential traction forces acting over

Γi
D.

In order to simplify the previous equation as well as forthcoming mathematical expres-

sions, a new function g is defined:

gi = ũ
{
yi
D

}
− ũ

{
yi
∗

}
. (7.18)

Introducing the previous relation into Equation (7.17) results

∫

Ωi
0

P {y} : ∇pũ {y} dV +

∫

Γi
D

λi
D.g

idΓ = 0. (7.19)

With Equations (7.17) and (7.18) at hand, it is possible to arrive to the weak form of

the system of equations which governs the micro-equilibrium problem at the micro-scale

when the new kinematical boundary condition is prescribed





∫
Ω1

0
P {y} : ∇pδũ {y} dV +

∫
Γ1
D
δλ1

D.g
1 + λ1

D.δg
1dΓ = 0,

∫
Ω2

0
P {y} : ∇pδũ {y} dV +

∫
Γ2
D
δλ2

D.g
2 + λ2

D.δg
2dΓ = 0,

λ1
Disc = −λ2

Disc.

(7.20)

7.3.1 Spatial discretization of the problem

Inevitably, the spatial discretization of each sub-domain, Ωi, is performed using the

standard finite element method. Therefore, the continuum sub-domain, Ωi
0, is replaced

by a set of finite elements, Ωi
e,0 such that

Ωi
0 ≈ Ωi,d

0 =

Nelem⋃

e=1

Ωi
e,0, (7.21)

where the index, (∗)d, denotes the discretized version of a variable/domain, symbol
⋃

represents a suitable assembly operator and Nelem the number of elements. Extrapo-

lating this approach to the boundary, it is possible to decompose the different parts of

the boundary considered in the present formulation as a sum of segments or surfaces
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depending on the problem

Γ
i ≈ Γ

i,d
=

Ns⋃

e=1

Γ
i,d
e , (7.22a)

Γi
D ≈ Γi,d

D =

Ns⋃

s=1

Γi,d
D,s, (7.22b)

where Ns denotes the number of segments. In agreement with the spatial discretization,

the virtual admissible displacement fluctuation field, V, is replaced by its discretized

counterpart, Vd.

Remark 7.4. As mentioned in the introduction of this chapter, this new boundary con-

dition is a concept and therefore, it will be introduced as simple as possible. Thus, in

what follows, the formulation will be presented exclusively for two-dimensional analysis.

Based on the above definitions, the discretized version of the system of equations (7.16)

is given by





∫

Ω1,d
0

GTP {y} dV δũ {y}+
N1

s⋃

s=1

∫

Γ1,d
D,s

δλ1
D,s.g

1
s + λ1

D,s.δg
1
sdΓ = 0,

∫

Ω2,d
0

GTP {y} dV δũ {y}+
N2

s⋃

s=1

∫

Γ2,d
D,s

δλ2
D,s.g

2
s + λ2

D,s.δg
2
sdΓ = 0,

λ1
Disc = −λ2

Disc,

(7.23)

where G denotes the discretized version of the gradient operator, ∇p

The next key step, required for the spatial discretization of the problem, consists on the

definition of Mortar and non-Mortar domains (boundaries). In this case, Γi
D will be

defined as non-Mortar boundary, Γi,nm whereas Γ
i
as Mortar frontier, Γ

m,i
:

Γi
D ≡ Γi,nm, (7.24a)

Γ
i ≡ Γi,m. (7.24b)

Having defined the non-Mortar and Mortar boundaries of each sub-domain Ω1
0 and Ω2

0,

it is necessary to introduce the interpolation scheme inherent with the Mortar decom-

position method which allows the correct enforcement of a particular condition over

non-conform discretized domains. As a matter of fact, this scheme has already been

introduced in Section 5.2.2 and, hence, only the vital steps will be restated here.
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It is well-known that the interpolation scheme allows us to determine the value of a field

in a particular point p within a segment defined by its nodes when the nodal values of

this field is known. Based on this concept, for non-Mortar and Mortar domains it is

possible to define the coordinates and displacements for a point p such that

On the non-Mortar surface, Γi,nm
s : ũi,nm

p {ξ} =
∑Nnodes

i=1 Ni

{
ξp
}
ũi,nm
ni

,

y
i,nm
p {ξ} =

∑Nnodes
i=1 Ni

{
ξp
}
y
i,nm
ni ,

On the Mortar surface, Γi,m
s : ũm

p {ζ} =
∑Nnodes

i=1 Ni

{
ζp
}
ũi,m
ni

,

y
i,m
p {ζ} =

∑Nnodes

i=1 Ni

{
ζp
}
y
i,m
ni ,

(7.25)

where, once again, Ni

{
ξp
}

and Ni

{
ζp
}

denote the interpolation function of node i

at non-Mortar and Mortar boundaries. Once again, ξ and ζ will denote an integra-

tion Gauss point at non-Mortar and Mortar domains. Due to the use of the Mortar

decomposition method, the Lagrange multiplier, λi
D,p, is interpolated using ”special”

interpolation functions Mi

{
ξp
}
defined over the non-Mortar boundary, Γi,nm 1.

λi
D,p {ξ} =

Nnodes∑

i=1

Mi

{
ξp
}
λi
D,ni

, (7.26)

With the previous definition at hand, the gap function defined at point p of the non-

Mortar domain gi
s,p {ξ} is defined as

gi
s,p {ξ} = ũi,nm

{
ξp
}
− ũi,m

{
ζ
{
ξp
}}

=

Nnodes∑

i=1

Ni

{
ξp
}
ũi,nm
ni

−
Nnodes∑

i=1

Ni

{
ζ
{
ξp
}}

ũi,m
ni

.
(7.27)

In the previous equation, ζ
{
ξp
}
denotes a point at theMortar surface, which is obtained

by projecting the integration Gauss point, ξp, located at the non-Mortar segment s

towards the associated unit outward normal vector, N
{
ξp
}
. This approach will be

carefully explained in Section 7.3.1.1 where the numerical integration scheme for this

boundary condition will be introduced. In matrix format, the previous equation is given

by

gi
s,p {ξp} = wiT

s,pB
i
s,p, (7.28)

1It is important to note that (∗)i denotes the sub-domain whereas (∗)i the node index of the segment.
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where wi
s,p and Bi

s,p are given by

wiT

s,p =
[
ũnmT

n1
· · · ũnmT

nNnodes
ũmT

n1
· · · ũmT

nNnodes
λT
D,n1

· · · λT
D,nNnodes

]
,

(7.29a)

BiT

s,p =

[

N1

{
ξp

}
I · · · NNnodes

{
ξp

}
I −N1

{
ζ
{
ξp

}}
I · · · −NNnodes

{
ζ
{
ξp

}}
I 0 · · · 0

]
.

(7.29b)

Applying the same strategy above introduced to the Lagrange multipliers, λ, (Equation

(7.26)), it is possible to write

λD,p {ξ} = wiT

s,pM
i
s,p, (7.30)

where matrix M i
s,p is given by

M s,p =
[
0 · · · 0 0 · · · 0 M1

{
ξp
}
I · · · MNnodes

{
ξp
}
I

]
. (7.31)

Finally, with the previous relations at hand, it is possible to write the spatial discretized

version of system of equations (7.16):





∫

Ω1,d
0

GTP {y} dV δũ {y}+
N

1,nm
s⋃

s=1

NGauss∑

p=1

[
δw1T

s,p

(
B1

s,pM
1T
s,p +M1

s,pB
1T
s,p

)]
Jpwp = 0,

∫

Ω2,d
0

GTP {y} dV δũ {y}+
N

2,nm
s⋃

s=1

NGauss∑

p=1

[
δw2T

s,p

(
B2

s,pM
2T

s,p +M2
s,pB

2T

s,p

)]
Jpwp = 0,

λ1
Disc = −λ2

Disc.

(7.32)

Since the previous equation is satisfied for all admissible δũ {y} and δwi
p, splitting the

total displacement fluctuation field in its Interior and Boundary counterparts, denoted

respectively by ũI and ũB , and properly modifying matrices Bs,p, M s,p and ws,p, the

previous equation can be conveniently expressed as a system of equations:
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



f1,I {y} = 0,

f1,B {y}+
N

1,nm
s⋃

s=1

NGauss∑

p=1

[(
Bs,pM

T
s,p

)
λ
1
s,p

]
Jpwp = 0,

N
1,nm
s⋃

s=1

NGauss∑

p=1

[(
M s,pB

T
s,p

)
w1

s,p

]
Jpwp = 0,

f2,I {y} = 0,

f1,B {y}+
N

2,nm
s⋃

s=1

NGauss∑

p=1

[(
Bs,pM

T
s,p

)
λ
2
s,p

]
Jpwp = 0,

N
2,nm
s⋃

s=1

NGauss∑

p=1

[(
M s,pB

T
s,p

)
w2

s,p

]
Jpwp = 0,

λ1
Disc = −λ2

Disc,

(7.33)

where matrices M
T
s,p and B

T
s,p have been already defined in Section 5.2.2 as well as

vectors wi
s,p and λ

i
s,p.

Due to the highly non-linear nature of the previous system of equations, a suitable

numerical method needs to be considered to solve it. Following the same approach of

the previous chapters of the present document, the iterative Newton-Raphson will be

used. For this purpose, the linearization of the previous system of equations is mandatory

which in the present case, leads to:
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Figure 7.2: Schematic illustration of all possible shapes that a localization band may
assume.
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Figure 7.3: Domain 1 of the decomposed RVE domain.
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Figure 7.4: Simplest shape configuration of the localization band.
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


K1II K1IB 0 0 0 0 0

K1BI

K1BB
N1,nm

s⋃

s=1

NGauss∑

p=1

[
B

1
s,pM

1T

s,p

]
Jpwp 0 0 0 0

0

N1,nm
s⋃

s=1

NGauss∑

p=1

[
M

1
s,pB

1T

s,p

]
Jpwp 0 0 0 0 CT

0 0 0 K2II K2IB 0 0

0 0 0 K2BI

K2BB
N2,nm

s⋃

s=1

NGauss∑

p=1

[
B

2
s,pM

2T

s,p

]
Jpwp 0

0 0 0 0

N2,nm
s⋃

s=1

NGauss∑

p=1

[
M

2
s,pB

2T

s,p

]
Jpwp 0 −CT

0 0 C 0 0 −C 0




(j)





δũ1I

δũ1B

δλ1

δũ2I

δũ
2B

δλ2

0





(j+1)

= −





f1I {y}

f
1B {y}+

N1,nm
s⋃

s=1

NGauss∑

p=1

[(
B

1
s,pM

1T

s,p

)
λ

1
s,p

]
Jpwp

N1,nm
s⋃

s=1

NGauss∑

p=1

[(
M

1
s,pB

1T

s,p

)
w

1
s,p

]
Jpwp

f2I {y}

f
2B {y}+

N2,nm
s⋃

s=1

NGauss∑

p=1

[(
B

2
s,pM

2T

s,p

)
λ

2
s,p

]
Jpwp

N2,nm
s⋃

s=1

NGauss∑

p=1

[(
M

2
s,pB

2T

s,p

)
w

2
s,p

]
Jpwp

0


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.

(7.34)
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In the previous system of equations, C consists on a matrix fulfilled with 1 and 0

responsible for imposing the condition define by the last expression of (7.32) and (j)

denotes the Newton-Raphson iteration index.

It is relevant to emphasize that the previous system of equations is generic and does not

take into account information concerned with the strategy which may be used to detect

and define a localization band. Note that, numerical frameworks exclusively developed

to describe the propagation of a localization band (i.e. discontinuity) may be coupled

with the previous system of equations. Among several others, remeshing [163], eXtended

Finite Element Method (X-FEM) [164] and Partition of Unity Method (PUM) [165] may

be selected.

Nevertheless, probably the simple case consists on the definition of a set of nodes where

a specific internal variable (i.e. damage or accumulated plastic strain) reaches a criti-

cal value. Despite of being simple, this approach demands additional modifications to

(7.34). These modifications are due to the fact that, since the nodes which define the

localization band belong simultaneously to both sub-domains, it is necessary to perform

the condensation of the system of equations (7.34) in order to obtain a stable and solv-

able system of equations. Unfortunately, this development has not been yet carried out

mainly by two reasons: the elimination of equations from (7.34) is not straightforward

and it needs to be performed for each geometric possible case illustrated in Figure 7.2.

7.3.1.1 Integration scheme

From the formulation introduced above for the new concept of periodicity, we recognise

that the integration scheme will play a critical role. The fundamental basis of the

numerical integration scheme, which will be used in this new boundary condition, has

already been introduced in Section 5.2.5. Nevertheless, in Section 5.2.5, this approach

was introduced for one particular case: parallel surfaces with non-conform meshes. Since

the final objective is to consider localization bands with arbitrary configurations, this

method needs to be extended. In what follows, this extension will be addressed.

As a matter of fact, in terms of requirements which the numerical integration scheme

should fulfil, they are the same as described in Section 5.2.5: should provide an exact

result regardless of the complexity of the boundary; the approach needs to be suitable

for a vast variety of finite element types. Despite of being out of the scope of the work,

the method should allow the extension of the formulation to 3-dimensional problems.
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Expanding the coefficients of the matricial product B
i
s,pM

iT

s,p and M
i
s,pB

iT

s,p one can

write

anmi,j =

N
i,nm
s⋃

s=1

NGauss∑

p=1

Ni

{
ξp
}
Mj

{
ξp
}
Jpwp, (7.35a)

ami,j = −
N

i,nm
s⋃

s=1

NGauss∑

p=1

Ni

{
ζ
{
ξp
}}

Mj

{
ξp
}
Jpwp. (7.35b)

Whilst the numerical integration of Equation (7.35a) is straightforward since all variables

are defined at the same Non-Mortar surface and, hence, the standard Gaussian quadra-

ture can be easily applied, this is not true for Equation 7.35b. In this case, there are

terms defined over different boundaries with possible non-conform meshes. Therefore,

it is necessary to introduce a numerical approach that is capable to solve this issue.

This is carried out by introducing a segmentation procedure. In this work, the segmen-

tation method considered was proposed by [3–5]. The main idea of this method consists

on the definition of a continuous normal field over the non-Mortar domain, Γi,nm. This

procedure is schematically illustrated in Figure 7.5. From a geometric point of view,

l1

l2

−→
NB

s

−→
NA

s N̂

Figure 7.5: Definition of the normal vectors at nodes [3–5]

it is possible to define two distinct normal vectors in each node which result from the

intersection of two non-collinear lines: each normal vector associated to each segment

(not represented in Figure 7.5). Nevertheless, since it is necessary to consider a normal

vector for each non-Mortar node, in order to define the set of integration segments, it is

necessary to choose one. However, this selection is not arbitrary since it may result on

discontinuities. In order to avoid this geometrical issue, Yang et al. [3] have proposed

a simple but rather effective methodology. The idea is simply consider for each node,

the normal vector N̂ which is given by an average of both unit outward normal vectors

intrinsic with each segment which define the node. The normal vector, N̂ , is given by

N̂ =
l2
−→
NA

s + l1
−→
NB

s

‖l2
−→
NA

s + l1
−→
NB

s ‖
, (7.36)
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where l1 and l2 are the length of the segments in the neighbourhood of the node and
−→
NA

s and
−→
NB

s are the respective outward unit normal vectors.

Having defined for each node a unique normal vector at the non-Mortar surface,
−→
Nnm,

it is possible to set up a strategy to define the integration segments based exclusively

on the non-Mortar surface. This approach is performed in two steps. In the first, the

projection of a point with coordinates Y nm inside of a s non-Mortar segment defined

by its outward unit normal vector,
−→
N s, onto a Mortar segment defined by its nodes,

Y m
1 and Y m

2 is determined by the following linear equation

[N1 {ζ}Y m
1 +N2 {ζ}Y m

2 − Y nm]×−→
Nnm

s = 0 (7.37)

The second step consists on the projection of a generic node from the Mortar discretized

boundary with coordinates Y m onto a non-Mortar segment s defined by its nodes with

coordinates Y nm
1 and Y nm

2 and associated unit outward normal vectors N̂
nm

1 and N̂
nm

2 :

[N1 {ξ}Y nm
1 +N2 {ξ}Y nm

2 − Y m]×
[
N1 {ξ} N̂

nm

1 +N2 {ξ} N̂
nm

2

]
= 0. (7.38)

The final result of these two steps are schematically illustrated in Figure 7.6(a).

Performed the segmentation of the surfaces, it possible to numerically determine co-

efficients ai,nmij (Equation 7.35b). However, it is necessary to introduce an extra local

coordinate system, ηp, as illustrated in Figure 7.6(b), given rise to

ai,nmij =

N
i,nm
s⋃

s=1

Nseg∑

seg=1

NGauss∑

p=1

Ni

{
ζ
{
ηp

}}
Mj

{
ξ
{
ηp

}}
Jpwp, (7.39)

where the jacobian is given by

Jp =
∂Y

∂ξ

∂ξ

∂η
. (7.40)

7.3.1.2 General considerations

Despite the potential of this new kinematical boundary condition, there are some as-

sumptions that have to be made with regard to the configuration of the localization

band. This is not exclusively related to numerical issues, which may arise due to the

complexity of the shape of the localization band, but also, due to the non-physical phe-

nomena which may be modelled. A typical example consists on a localization band

which intersects twice the same border of the RVE. Even under quite complex load-

ing conditions, according to the knowledge of the author, this effect is highly unlikely
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(a) Mortar integration scheme: segmentation.
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domain.

Figure 7.6: Mortar integration scheme for non-parallel discretized surfaces.

to occur. Probably, other non-sense geometries and considerations inherent with the

propagation of the localization band need to be analysed.

Moreover, at this stage of the work, the formulation does not contemplate the evolution

of the localization band or the possibility of bifurcation. However, it will be possible to
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model these two phenomena in future iterations. For this purpose, the current formula-

tion needs to be enhanced. In particular, the definition of sub-domains which inevitably

needs to be extended. For instance, in order to include the possibility of bifurcation,

more than two sub-domains will be required.

7.3.2 Activation of the New Periodic boundary condition

Whenever a localization band is not present on the RVE domain, standard Periodic

boundary condition should be considered. As a matter of fact, the standard enforcement

of theMortar Periodic boundary condition proposed in Chapter 5 can be used regardless

of the complexity of the geometry modelled at the micro-structure. However, when a

localization band develops in the RVE until it intersects two distinct boundaries of the

RVE, it is necessary to switch from standard Periodic boundary condition to the new

concept proposed in this chapter.

In order to detect the presence of a localization band, a suitable criterion needs to be

considered. Different approaches may be selected. Probably the most simple one consists

on the use of an internal variable such as damage or accumulated plastic strain. In this

case, we switch to the new concept above described, which is able to tackle the presence

of a localization band, when these variables reach a critical value over a specific path

(i.e. localization band). It is also possible to combine this approach with an automatic

image analysis as used by Coenen et al. [63].

As previously pointed, the approach proposed throughout this document is a concept

and, therefore, it deserves a considerable amount of work to validate as well as to explore

all potentialities. However, in order to present a simple and illustrative preliminary

example, the above cited approach without an image detection algorithm was considered.

This is due to the fact that, it is the simplest approach available at this stage of the

work.

7.4 Numerical results

In this final section, a very preliminary result obtained with the new concept of Periodic

boundary condition is introduced. The main goal of this numerical result, rather than

a fully assessment of the new concept, is basically to illustrate on the global behaviour

of the RVE in terms of its final shape. Thus, it will be possible to have an idea about

the response, which should be expected, with the new concept.
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Localization band

Figure 7.7: Mesh of the RVE used on the first preliminary result of the new con-
cept of Periodic boundary condition. 1800 linear quadrilateral elements used on the

discretization of the RVE. In red, the imposed localization band.

As pointed out in Sections 7.3.1.1 and 7.3.2, some numerical enhancements need to be

carried out in order to explore all potentialities of this new concept: fix the issue con-

cerned with the undetermined system of equations (7.34) by performing the condensation

for all possible admissible cases (Figure 7.2); implement an algorithm to automatically

detect a localization band. Aiming to circumvent these issues, two coarse assumptions

were considered. The former is related with the identification of the localization band.

In this case, a RVE with a very simple geometry was considered as shown in Figure

7.7. Since the RVE only includes a centered void corresponding to a volume fraction of

12.5%, and considering the following macroscopic deformation gradient, F {x},

F {x} =

[
1.2 0.0

0.0 1.0

]
, (7.41)

which corresponds to a pure tensile deformation state in direction x, a vertical localiza-

tion band at the center of the RVE is expected. This particular localization band will be

defined by the nodes which belong to the vertical line starting from the middle node at

the bottom frontier of the RVE to the top surface. This feature is highlighted in Figure

7.7. The later assumption is associated with the necessity of getting a stable system of

equations (7.34). For this purpose, the displacement fluctuation, ũ, at the nodes which

define the localization band will be prescribed. Although this assumption is severe and,

in fact, in complete disagreement with the formulation proposed: the localization band

is a dynamic feature of a solid and therefore, its shape may change throughout the

deformation process of the structure.

As a matter of fact, 1800 linear quadrilateral elements were used on the spatial dis-

cretization of the RVE and a linear elastic law was considered with Young Modulus
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and Poisson ration equal to E = 70 GPa and v = 0.3, respectively. In line with the

two-dimensional numerical examples introduced in this document, plane strain condition

was considered. Moreover, Dual base interpolation functions (see Section 5.2.4.2) were

considered.

In Figure 7.8 it is possible to observe the final shapes of the RVE obtained with stan-

dard Periodic boundary condition, Figure 7.8(a) and with the new concept of periodicity,

Figure 7.8(b). As it is possible to observe, the final shapes are notoriously different. Ne-

glecting the final shape of the void, which in the case of the new concept assumes a

strange format due the severe constraint applied to the nodes which define the local-

ization band, there is a notable difference on the shapes of left and right borders of

the RVE. Whereas standard Periodic boundary condition imposes the same fluctuation

displacement at left and right surfaces, when the new boundary constraint is consid-

ered, a symmetric displacement was obtained from the solution of the micro-equilibrium

problem. Apart from the small effect that is observable (the author really believes that

it will be much more pronounced when the concept would be completely implemented),

the final shape obtained is in agreement with the initial goals proposed at the beginning

of this new concept. Considering the definition of a localization band, which roughly

consists on a material region that loses its stiffness and load capacity, the left side will

no be linked to the right side and vice-versa. Thus, the displacement fluctuation field

at the left side will not be dependent on the displacement fluctuation at right side and

vice versa. Instead, it will depend on the shape of the localization band. In this case,

since the localization band crosses a void, this geometrical feature will influence the

deformation of the border of the RVE.

2424 12882 23340

Equivalent Stress

(a) Standard Periodic boundary condition .

2448 12894 23340

Equivalent Stress

(b) New Periodic boundary Condition.

Figure 7.8: Final configuration of the RVE obtained with standard and new Periodic
boundary conditions. A magnification factor equal to 4 was used to highlight the

differences.
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7.5 Conclusions

In this chapter, a new concept of a Periodic boundary condition that is able to tackle

the presence of a localization band was introduced. As pointed out throughout this

chapter, this is an embryonic concept and, hence, a significant amount of work needs

to be carried out in the future, in particular to improve two issues: unsolvable system

of equations which defines the micro-equilibrium problem and an algorithm to detect

a localization band taking into account a particular criteria (i.e. critical accumulated

plastic strain or critical damage). With regard to the first issue, it may be solved by

performing the condensation of the system of equations. This task basically consists on

removing from this system of equations repeated unknowns and needs to be carefully

carried out for each possible cases.

With regard to the formulation of the new concept, all foundations were consistently in-

troduced either in terms of continuum or discrete approach. Moreover, special attention

was given to the numerical framework to implement this new concept.

Unfortunately, due to the complexity of the problem, only one preliminary numerical

example was introduced. As previously explained, the idea was not to assess all po-

tentialities of the new concept, but, instead, highlight the main differences compared

with standard Periodic boundary condition. With this example it was possible to have

positive feedback since the final shape of the RVE obtained was in agreement with the

expected results.



Chapter 8

Final Remarks

Notwithstanding the huge impact that electronic engineering has had in typical me-

chanical industries such as automotive and aeronautic over the last three decades, the

future of these industries is inevitably linked with the development of new materials, the

optimization of their manufacturing processes and their integration into efficient struc-

tures. In this context, despite being a recent methodology, coupled multi-scale models

will be an allied on the design of complex materials with practical application over a

wide spectrum of applications in a near future.

Trying to anticipate the future of this methodology, the author believes that coupled

multi-scale models will be widely used in the industry, particularly for the character-

ization of material properties under a wide range of loading conditions and different

regimes (i.e. elastic, hardening, softening, crack propagation, thermal effects, cyclic

loads, among several others). Even though it is possible to use this method to fully

design a component or a critical part of a mechanical system, the author’s opinion is

that, for this particular application, its use will be reduced since for the industry, ”time”

is a severe constraint of a project.

The initial goal of the present work was to use coupled multi-scale models to characterize

complex materials, which have their global properties deeply dependent on the micro-

structure, taking into account thermals effects at the fine scale. Nevertheless, since this

work started from scratch, it was necessary to develop and implement several routines

able to solve coupled multi-scale problems. In the course of the work, some numerical

issues arose which led to the change of the focus of the present thesis. As a consequence,

particular attention to numerical issues that coupled multi-scale models have shown

were discussed. Some of these discussions lead to some scientific contributions. In what

follows, a global summary of the present work is introduced chapter by chapter.

167
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Chapter 3

In Chapter 3, the foundations of coupled multi-scale models such as homogenization

and Hill-Mandel principles as well as boundary constraints, which are kinematically

admissible, are introduced. Based on the underlying theory, the formulation of this

method was undertaken and a numerical framework was proposed which lead to the

development of two finite element codes: MSP , Micro-Scale Problem and CMSP ,

Coupled Multi-Scale Problem. The former is exclusively devoted to solve the micro-

equilibrium problem when a particular deformation gradient is known, whereas, the

latter is able to solve a fully First-Order Coupled Multi-Scale Model. As a matter of

fact, both codes were implemented in the spirit of finite strains. In this Chapter, special

attention was given to the consistent linearization of macro and micro problems.

Chapter 4

Upon the implementation of CMSP, it was verified that the CPU time for the so-

lution of a coupled multi-scale problem is strongly dependent on the efficiency of the

Newton-Raphson method implemented at the micro-scale. Thus, in order to minimize

the computational cost, an adaptive sub-incremental strategy for the micro-equilibrium

problem was proposed. This numerical strategy is introduced and described in detail

in Chapter 4. The main idea was to enhance the Newton-Raphson method at fine scale

with Line-Search and Arc-Length methodologies. With this enhancement, two signifi-

cant achievements are attained: the minimization of the number of macroscopic cutting

increments, leading to a significant computational cost reduction and according to the

evolution of the problem, it is possible to automatically perform the incrementation of

the microscopic equilibrium problem. These two numerical technologies were developed

in order to guarantee perfect quadratic asymptotic convergence rates of the Newton-

Raphson method at both scales.

As a final result, the two numerical frameworks have dramatically improved the robust-

ness and efficiency of the Newton-Raphson scheme at the micro-scale. This is particularly

true when both numerical tools are used together.

Chapter 5

In Chapter 5, a new strategy for the enforcement of Periodic boundary condition is

proposed based on the Mortar decomposition method. This approach stands out from

standard approaches due to the fact that it does not require conform meshes, i.e. meshes

which have adjacent boundaries discretized by means of the same number of nodes and
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with the same relative position. This new Periodic enforcement was introduced and

implemented for two and three-dimensional problems.

The resulting approach has demonstrated a notable robustness in prescribing Periodic

boundary conditions over non-conform meshes. This conclusion was withdrawn by com-

paring the results obtained with the new enforcement and the standard Periodic bound-

ary constraint when simple benchmarks are analysed. Moreover, as demonstrated by

means of the three-dimensional problems introduced in Chapter 5, the new approach

provides a significant flexibility to the users of numerical homogenization approaches

mainly due to the fact that, when complex three-dimensional RVEs are modelled it is

quite complicated or even impossible in some cases to build conform meshes.

Chapter 6

The mesh dependence pathology observed when coupled multi-scale models are used to

characterize solids was addressed in Chapter 6. Due to the presence of two spatial scales,

micro and macro, the effect of the mesh dependence was investigated at both scales.

In order to minimize this numerical issue inherent to the spatial discretization, two

different non-local methodologies of integral type were proposed. Whilst for the fine

scale a standard non-local method of integral type was applied, where a scalar internal

variable was chosen as non-local variable (i.e. damage variable), at the macroscopic

level, a completely different methodology was followed. In this case, due to the lack

of internal variables, a tensorial kinematic variable was chosen as non-local variable:

the macroscopic deformation gradient, F {x, t}. Special attention to the numerical

implementation of both methods was given, in particular with regard to the consistent

linearization of the problems at both scales. It is relevant to emphasize that, once again,

the formulation proposed was developed within the context of finite strains which in

terms of linearization procedure leads to a greater challenge.

As demonstrated by a set of numerical examples, with the proposed non-local method-

ology at the micro-scale, the mesh dependence was dramatically minimized. Moreover,

when implemented within the context of coupled multi-scale models, it has shown a

beneficial impact on the global response of the specimen. It is noteworthy to mention

that, the non-local approach at the micro-scale was proposed and developed specifically

for heterogeneous media.

Notwithstanding, the non-local approach of integral type specifically developed for the

macroscopic domain, has promoted a small improvement to the problem. As it is shown,

when the non-local characteristic length reaches a certain value, spurious effects appear
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in the final shape of the macroscopic specimen. Probably, with further research with

regard to the tensorial kinematic variable, which should be selected as non-local param-

eter, would lead to a more robust and generic solution. A possible approach consists

in splitting the total deformation gradient into volumetric and isochoric counterparts.

With this decomposition at hand, it would be possible to consider only one part to be

non-local variable.

Chapter 7

In Chapter 7, an embryonic Periodic boundary condition that is able to tackle the

presence of a localization band with and arbitrary shape was introduced. The main

underlying idea of this new concept consists on the decomposition of the total RVE

domain into a set of sub-domains, taking into account the shape of the localization band.

Having defined this set of sub-domains, the Periodic boundary condition is prescribed

over each one. For this purpose, once again, the Mortar decomposition method is

applied. In addition to the foundations required for the formulation of this new concept,

attention was given to the proof of admissibility of the new boundary constraint as well

as to the numerical integration scheme, which plays a critical role on this development.

Despite demanding a significant amount of work, some positive results were obtained.

In particular with regard to the final shape of a RVE with a circular void at its center

where a vertical localization band was defined. In contrast with the standard Periodic

boundary condition, the boundaries of the RVE parallel to the localization band did

not assume the same shape at the end but, instead, they attained a non-periodic shape.

This is due to the fact that, when a localization band is introduced, the relation between

adjacent boundaries is disrupted and, a new one is established taking into account the

localization band.

8.1 Future works

At the end of this manuscript, some suggestions for future work are given.

Paralellization of the CMSP code

With the level of depth and development achieved in the present work in terms of for-

mulation and numerical implementation, it will be now possible to characterize complex

materials taking into account its microstructure for elastic and hardening regimes. In

particular, it will be possible to predict and understand the macroscopic behaviour of
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the material as a function of the microstructure considered. Nevertheless, although the

numerical tools introduced in Chapter 4 have dramatically reduced the CPU time for

solving coupled multi-scale problems, the parallelization of CMSP is still vital. This

parallelization coupled with Line Search and Arc-Length approaches will really increase

the speed of CMSP code.

Being more specific about the parallelization framework, the author suggests that it

should be performed at the macroscopic element level. Thus, for each core available on

the desktop, or cluster, the whole information concerned to each element (i.e. number

of integration Gauss points and information linked to each point, nodal displacement

of the macroscopic element) is sent for a single CPU (core). Note that, conversely with

standard finite element codes where the main computational cost is inevitably associated

with the solution of the system of equations, which defines the equilibrium problem of

the structure, in this case, the critical feature in terms of CPU time is related to the

macroscopic stress-update, which solves for each macroscopic integration Gauss point

the associated micro-equilibrium problem.

Improve the non-local method of integral type at the macro-scale

Despite some positive indications obtained with the non-local approach of integral type

at the macro-scale (Chapter 6), it is still necessary to further investigate how a non-local

macroscopic deformation gradient should be defined in order to simultaneously guarantee

the minimization of the mesh dependence pathology verified at this scale domain and

the elimination of spurious effects. A possible solution may be the selective usage of the

volumetric and isochoric components of the macroscopic deformation gradient to define

the non-local variable.

Conclusion of the implementation of the new concept of Periodic bound-

ary condition

In Chapter 7, only the main foundations of the new concept of Periodic boundary

condition that is able to tackle the presence of a localization band (or discontinuity)

were introduced and, therefore, a significant amount of work should be carried out in

order to complete the concept. In what follows, the more urgent tasks to finalise this

new kinematical enforcement are listed:

• Perform the condensation of the system of equations which establishes the equi-

librium of the RVE for all possible localization band shapes. This task is critical

in order to obtain a well-posed system of equations. Note that , this approach is
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only valid when the nodes which define the localization band belong to more than

two sub-domains;

• Implement an algorithm that is able to automatically detect and define the pres-

ence of a localization band considering, for example, the critical value of an internal

variable (i.e. accumulated plastic strain or internal damage). Different method-

ologies may be used however, image analysis that considers the contour map of a

specific variable may be a suitable solution.

• Try to validate the new concept if possible with experimental data.

In addition to these three suggestion, others may be pointed out such as

• Enhance the new concept of Periodicity with the capacity of tackle the evolution of

the localization band. A possible solution consists in the introduction of X-FEM

and PUM methods.

• Implement the new concept into CMSP. For this purpose, as pointed out in

Chapter 7, it is necessary to enhance the transition between macro and micro

domains and vice-versa.

• Extend the framework to three-dimensional analysis.

Three-dimensional implementation of CMSP

As a final suggestion, a three-dimensional version of CMSP is highly desirable. With

this version it would be possible to automatically generate RVEs based on three-dimensional

images obtained from image analysis of complex materials (i.e. X-Ray technology). Part

of this work has already been carried out being only necessary to extend the algorithm

used at the macro-scale domain. At this level, particular attention should be given to

the construction of the consistent material tangent operator required to obtain perfect

quadratic convergence rates of the Newton-Raphson at this scale.



Appendix A

Consistent tangent operators for

First-Order Coupled Multi-Scale

Models

A.1 Microscopic solution problem for different boundary

conditions

Linear Boundary Condition

The Linear boundary condition imposes that all nodes on the edges of the RVE are

prescribed. Thus, for this particular case, Equation (3.27) is defined as:

ũ {y}T =
{

ũf
0 0 0

}T

. (A.1)

Due to the prescription of all degrees of freedom at the boundary of the RVE, Equation

(3.31) can be significantly simplified, resulting:

[
kff
](j)
n+1

{
δũf

}(j+1)
=
{
−f f

}(j)

n+1
. (A.2)

Periodic Boundary Condition

According to the definition of a periodic displacement fluctuation field at the boundary

of the RVE (Equation (3.13)) the decomposition of the total displacement fluctuation
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field can be carried out in the following fashion:

ũ {y}T =
{

ũf ũi ũd ũp
}T

,

=
{

ũf ũ+ ũ−
0

}T

.

(A.3)

Since {ũ+} = {ũ−}, we conclude that the dependency matrix is an identity matrix.

Taking into account that α = I as well as Equation (A.3), we finally obtain the equation

system which governs the equilibrium problem at the micro-scale for Periodic boundary

condition: [
kff kf+ + kf−

k+f + k−f k++ + k−+ + k+− + k−−

](j)

n+1

{
δũf

δũ+

}(j+1)

=

−

{
ff

f+ + f−

}(j)

n+1

.

(A.4)

Remark A.1. In order to avoid rigid body displacements and rotations, it is necessary

to add additional artificial constraints. One possible solution consists in fixing one

corner of the RVE plus an additional degree of freedom of any other corner. However,

as a consequence of the Periodic assumption, all corners are, in practice, completely

prescribed. For this reason, and in order to simplify the numerical implementation, all

corners of a square RVE are completely fixed. Note that this manipulation is still valid

within the Periodic boundary hypothesis.

Uniform Traction Condition

As previously stressed out in Section 3.2.6.3, Uniform Traction condition is defined by

Equation (3.5) which is here recovered for convenience:

∫

∂Ω0

ũ {y, t} ⊗N {Y } dA = 0. (A.5)

The discretized version of previous kinematical constraint is given in matrix format by

the following expression

Cũb = 0, (A.6)

where C is the constraint matrix of the degrees of freedom over the boundary of the

RVE. In three-dimensional problems, matrix C assumes the form
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C =




∫
N1N 1dA 0 0

∫
N2N 1dA 0 0 ...

∫
NnN 1dA 0 0

0
∫
N1N 2dA 0 0

∫
N2N 2dA 0 ... 0

∫
NnN2dA 0

0 0
∫
N1N 3dA 0 0

∫
N2N 3dA ... 0 0

∫
NnN 3dA∫

N1N 2dA 0 0
∫
N2N 2dA 0 0 ...

∫
NnN 2dA 0 0

∫
N1N 3dA 0 0

∫
N2N 3dA 0 0 ...

∫
NnN 3dA 0 0

0
∫
N1N 1dA 0 0

∫
N2N 1dA 0 ... 0

∫
NnN1dA 0

0
∫
N1N 3dA 0 0

∫
N2N 3dA 0 ... 0

∫
NnN3dA 0

0 0
∫
N1N 1dA 0 0

∫
N2N 1dA ... 0 0

∫
NnN 1dA

0 0
∫
N1N 2dA 0 0

∫
N2N 2dA ... 0 0

∫
NnN 2dA




, (A.7)

and, in case of two-dimensional problems:

C =




∫
N1N 1dA 0

∫
N2N 1dA 0 ...

∫
NnN 1dA 0

0
∫
N1N 2dA 0

∫
N2N 2dA ... 0

∫
NnN2dA∫

N1N 2dA 0
∫
N2N 2dA 0 ...

∫
NnN 2dA 0

0
∫
N1N 1dA 0

∫
N2N 1dA ... 0

∫
NnN1dA



. (A.8)

In the previous two expressions, Ni denotes the i − th shape function and N i is the i − th direction of the outward unit vector N , normal to

the boundary ∂Ω0.
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Remark A.2. Within the finite element framework, the global constraint matrixC results

from the assembly procedure of each element constraint matrix, Ce

C =

nelem⋃

i=1

Ce
i ,

where
⋃

denotes a suitable assembly operator.

Considering the decomposition proposed for the fluctuation displacement field in Section

(3.3.2.2), where the displacement at the boundary of the RVE were divided into inde-

pendent, ũi, dependent, ũd, and prescribed, ũp and applying the same decomposition to

matrix C, Equation (A.6) may be we-written into the following fashion

[
Ci Cd Cp

]




ũi

ũd

ũp





= 0. (A.9)

Since ũp = 0, after a basic algebra manipulation we finally arrive to a closed expression

for α matrix when Uniform Traction boundary condition is prescribed

α = −
[
Cd
]−1

Cf . (A.10)

Remark A.3. The dependent degrees of freedom should be selected in order to guarantee

that matrix Cd is invertible. In case of a square RVE (two-dimensional problem), it is

possible to consider the degrees of freedom of two corners.

A.2 Derivation of the discretized homogenized material

tangent modulus

The Condensation method starts from the basic definition of the consistent matrix,

which is given by the differentiation of the First Piola-Kirchhoff stress tensor with

regard to the macroscopic deformation gradient:

An+1 {x} =
∂P n+1 {x}

∂F n+1 {x}

=
∂

∂F n+1 {x}

(
1

V0
DbF

int
bn+1

)
=

1

V0
Db

∂Fint
bn+1

∂F n+1 {x}
.

(A.11)

According to the variational formulation introduced in Section 3.2, the set of internal

forces at the boundary of the RVE are dependent on the displacement field at the

fine-scale. In addition, the microscopic displacement is additively composed by two
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parts: the former is linear with the macroscopic deformation gradient and the latter is

the fluctuation displacement field, which is a consequence of the boundary constraint

selected as well as the discretization performed inside the RVE.

Remark A.4. In what follows, the notation related with the time/pseudo-time will be

omitted for sake of simplicity since all parameters and variables are defined at the same

instant tn+1.

At the fine-scale domain, the total displacement field may be characterized by:

u {y} = D
T (F {x} − I) + ũ {y} , (A.12)

where D is the total nodal coordinate matrix. Extrapolating this result for all sub-sets,

which compose the global microscopic displacement u {y}, one can write:

u {y} =




D
fT

(F {x} − I) + ũ
f

D
iT (F {x} − I) + ũi

D
dT (F {x} − I) + ũd

D
pT (F {x} − I)


 =




D
fT

(F {x} − I) + ũ
f

D
iT (F {x} − I) + ũi

D
dT (F {x} − I) +αũi

D
pT (F {x} − I)


 . (A.13)

With this decomposition of the microscopic displacement field and the internal force

vector (Equations (3.27) and (3.29)) at hand and using the chain rule, Equation (A.11)

can be re-written as:

A {x} =
∂P {x}

∂F {x}

=
1

V0
Db

[
∂Fint

b

∂uf {y}

∂uf {y}

∂F {x}
+

∂Fint
b

∂ui {y}

∂ui {y}

∂F {x}
+

∂Fint
b

∂ud {y}

∂ud {y}

∂F {x}
+

∂Fint
b

∂up {y}

∂up {y}

∂F {x}

]

=
1

V0
Db

[
∂Fint

b

∂uf {y}

(
D
fT

+
∂ũf

∂F {x}

)
+

∂Fint
b

∂ui {y}

(
D
iT +

∂ũi

∂F {x}

)

+
∂Fint

b

∂ud {y}

(
D
dT +α

∂ũi

∂F {x}

)
+

∂Fint
b

∂up {y}
D
pT

]
.

(A.14)

The derivatives of the internal forces over the boundary of the RVE, Fint
b , with regard to

the different sub-sets of the fluctuation displacement field are, by definition, sub-matrices

of the global microscopic stiffness matrix:

∂Fint
b

∂uf {y} = kbf , (A.15a)

∂Fint
b

∂ui {y} = kbi, (A.15b)

∂Fint
b

∂ud {y} = kbd, (A.15c)
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∂Fint
b

∂up {y} = kbp. (A.15d)

Thus, after straightforward algebraic manipulations, Equation (A.14) may be rewritten:

A {x} =
1

V0
Db

[
k
bf ∂ũ

f

∂F {x}
+ k

bi ∂ũ
i

∂F {x}
+ k

bd
α

∂ũ
i

∂F {x}
+K

b
D

T
Total

]

=
1

V0
Db




[

kbf

kbi + kbdα

]T {
∂ũf

∂F{x}

∂ũi

∂F{x}

}
+

[
K

B
]
[DTotal]

T



 ,

(A.16)

where KB is defined by

KB =
[ [

kbf
] [

kbi
] [

kbd
] [

kbp
] ]

, (A.17)

and DTotal is the total reference nodal coordinate matrix of the RVE:

DTotal =
[ [

D
f
] [

D
i
] [

D
d
]

[Dp]
]
. (A.18)

In order to conclude this process, it is necessary to compute the partial derivatives

∂ũf/∂F {x} and ∂ũi/∂F {x}. When the equilibrium of the RVE is satisfied, by defini-

tion, we have 



∂Fint
f

∂F {x}
∂Fint

i

∂F {x} +αT ∂Fint
d

∂F {x}



 = {0} . (A.19)

Therefore, following the same procedure, it is possible to find out a closed-form to

compute the missing relations.

∂Fint
f

∂F {x}
=

∂Fint
f

∂uf {y}

(
D
f +

∂ũf {y}

∂F {x}

)
+

∂Fint
f

∂ui {y}

(
D
i +

∂ũi {y}

∂F {x}

)

+
∂Fint

f

∂ud {y}

(
D
d +α

∂ũi {y}

∂F {x}

)
+

∂Fint
f

∂up {y}
D
p

= kff

(
D
f +

∂ũf {y}

∂F {x}

)
+ kfi

(
D
i +

∂ũi {y}

∂F {x}

)

+ kfd

(
D
d +α

∂ũi {y}

∂F {x}

)
+ kfp

D
p

(A.20)

∂Fint
i

∂F {x}
=

∂Fint
i

∂uf {y}

(
D
f +

∂ũf {y}

∂F {x}

)
+

∂Fint
i

∂ui {y}

(
D
i +

∂ũi {y}

∂F {x}

)

+
∂Fint

i

∂ud {y}

(
D
d +α

∂ũi {y}

∂F {x}

)
+

∂Fint
i

∂up {y}
D
p

= kif

(
D
f +

∂ũf {y}

∂F {x}

)
+ kii

(
D
i +

∂ũi {y}

∂F {x}

)

+ kid

(
D
d +α

∂ũi {y}

∂F {x}

)
+ kip

D
p

(A.21)
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αT ∂Fint
d

∂F {x}
= αT ∂Fint

d

∂uf {y}

(
D
f +

∂ũf {y}

∂F {x}

)
+αT ∂Fint

d

∂ui {y}

(
D
i +αT ∂ũi {y}

∂F {x}

)

+αT ∂Fint
d

∂ud {y}

(
D
d +α

∂ũi {y}

∂F {x}

)
+αT ∂Fint

d

∂up {y}
D
p

= αTkdf

(
D
f +

∂ũf {y}

∂F {x}

)
+αTkdi

(
D
i +

∂ũi {y}

∂F {x}

)

+αTkdd

(
D
d +α

∂ũi {y}

∂F {x}

)
+αTkdp

D
p

(A.22)

Finally, after a rearrangement of the previous equations we obtain a system of equations

that allow us to compute the terms ∂ũf

∂F {x} and ∂ũi

∂F {x} :

[
kff kfi + kfdα

kif +αTkdf kii + kidα+αTkdi +αTkddα

]{
∂ũf

∂F{x}

∂ũi

∂F{x}

}
=

−

[ [
Kf

]
[
Ki

]
+αT

[
Kd

]
]
.
[
D

Total
]T

,

(A.23)

where the matrices Kf , Ki and Kd are respectively defined by:

Kf =
[ [

kff
] [

kfi
] [

kfd
] [

kfp
] ]

, (A.24a)

Ki =
[ [

kif
] [

kii
] [

kid
] [

kip
] ]

, (A.24b)

Kd =
[ [

kdf
] [

kdi
] [

kdd
] [

kdp
] ]

. (A.24c)

Linear Boundary Condition

With the RVE in equilibrium and for Linear Boundary Condition, the macroscopic

tangent modulus may be computed by the following expression

A {x} =
1

V0
Db

[[
kbf

]{
∂ũf

∂F {x}

}
+
[
KB

]
[DTotal]

T
]
, (A.25)

where the derivative ∂ũf

∂F {x} is computed by solving following equation system

[
kff

]{
∂ũf

∂F {x}

}
= −

[
Kf
]
[DTotal]

T . (A.26)

Periodic Boundary Condition

With the RVE in equilibrium and for Periodic Boundary Condition, the macroscopic

tangent modulus may be computed by the following expression

A {x} =
1

V0
Db



[

kbf

kb+ + kb−

]T 


∂ũf

∂F {x}

∂ũ+

∂F {x}



+

[
KB

]
[DTotal]

T


 , (A.27)
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where the derivatives ∂ũf

∂F {x} and ∂ũ+

∂F {x} are computed by solving following equation

system [
kff kf+ + kf−

k+f + k−f k++ + k+− + k−+ + k−−

]{
∂ũf

∂F {x}

∂ũ+

∂F {x}

}
=

−

[
Kf

K+ +K−

]
[DTotal]

T
.

(A.28)



Appendix B

Tangent operators for the

non-local approach

In this Appendix, the linearization of the weak equilibrium equations at both scales,

micro and macro, enhanced with a non-local strategies of integral type will be described.

In addition, the tangent moduli for the explicit damage model introduced in Section 6.3.6

will be also described. It is important to emphasize that within the context of implicit

finite element codes, it is only possible to obtain quadratic rates of convergence with a

correct linearization of the problem.

B.1 Definition of directional derivative

Before to proceed, it is mandatory to introduce the definition of directional derivative.

In fact, from the mathematical point of view, the linearization of a problem consists in

determining the directional derivative of a function which models it [166]. Considering

a generic function

f (x) = 0, (B.1)

its linearisation with respect to the unknown x about an arbitrary argument x∗ consists

in finding the directional field d such that:

Lx∗ (d) = f (x∗) +Df (x∗) .d = 0, (B.2)

where L is the linearised functional of equation f and

Df(x∗).d =
d

dε

∣∣∣∣
ε=0

f(x∗ + εd) (B.3)

181
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is the directional derivative of f at x∗ in the direction d.

B.2 Linearization of the weak equilibrium problem en-

hanced with a non-local strategy at the micro-scale

At the micro-scale, the weak equilibrium equation for the micro-scale problem enhanced

with the non-local strategy of integral type is given by

G {u {y, t} ,η} =

∫

Ω0

P {F {ξ, t}} : ∇pηdV = 0 (B.4)

where ξ denotes the coordinate of points which affect the stress state of point with

coordinate y. In other words, ξ are inside to the non-local circumference with radius

defined by the non-local length, L, and centred at point y. In the limit case, when the

non-local length parameter is equal to 0 the last expression recover the standard local

weak equilibrium equation.

Remark B.1. For sake of simplicity, in this section, information about scale domain and

time will be omitted. Note that all variables are defined at the micro-scale domain and

defined at the same instant.

Considering the concept of directional derivative above defined, one can write

DG {u,η} [d] = d

dε

∣∣∣∣
ε=0

∫

Ω0

P {F ε {ξ}} : ∇pηdV, (B.5)

where F ε {ξ} denotes the perturbed microscopic deformation gradient at point ξ defined

by

F ε {ξ} = I +∇p (u
∗ {ξ}+ εd) = F ∗ {ξ}+ ε∇pd. (B.6)

Applying the chain rule, one can write

DG {u,η} [d] =
∫

Ω0

A : ∇p,ξd : ∇pηdV, (B.7)

where A denotes the material tangent modulus (fourth-order tensor) defined by

A =
∂P

∂F {ξ} . (B.8)
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B.2.1 Map the linearized expression to the spatial configuration

With the linearized expression of the weak equilibrium problem at the micro-scale en-

hanced with non-local strategy of integral type at the material configuration, it is nec-

essary to map expression (B.7) to the spatial configuration. Introducing expressions

(2.28b) and (2.29) into Equation B.7 results

DG {u,η} [d] =
∫

ϕ(Ω0)
a : ∇x,ξd : ∇xηdV (B.9)

where a denotes the spatial tangent modulus, which is given by the following expression

in Einstein’s notation:

aijkl =
1

det (F )
AimknF jmF ln

ξ . (B.10)

In the previous equation, the fourth-order tensor Aimkn is given by

Aimkn =
Pim

Fkn {ξ}
. (B.11)

Based on basic concepts of Continuum Solid Mechanics, the First Piola-Kirchhoff stress

tensor, P , can be re-written as function of the Kirchhoff stress tensor, τ

P = τF−T . (B.12)

With this relation at hand, Equation (B.11) can be re-written as follows

Aimkn =
∂

∂Fkn {ξ}
[
τ ip (Fmp)−1

]
(B.13)

Applying the chain rule to the previous equation, one can write

Aimkn =
∂τ ip

∂F kn {ξ} (Fmp)−1 + τ ip
∂ (Fmp)−1

∂F kn {ξ} . (B.14)

There are two possible results for the derivative of the last term of the right hand side

on the previous equation. If point ξ = y results [167]

∂ (Fmp)−1

∂F kn {ξ}

∣∣∣∣∣
y=ξ

= −
(
Fmk

)−1
(Fnp)−1 . (B.15)

However, when ξ 6= y, the derivative is equal to zero.



Appendix B. Tangent operators for the non-local approach 184

Substituting the previous result into Equation (B.14) results

Aimkn =
∂τ ip

∂F kn {ξ} (Fmp)−1 − τ ip
(
Fmk

)−1
(Fnp)−1

∣∣∣∣
y=ξ

. (B.16)

Finally, the substitution of the previous result into Equation (B.10) and after some

straightforward algebraic manipulation, we finally arrive to the spatial tangent modulus

for the weak equilibrium problem enhanced with a non-local approach of integral-type:

aijkl =
1

det (F )

∂τ ij

∂F km {ξ}F
lm {ξ} − σikδjk

∣∣∣
y=ξ

. (B.17)

B.3 Tangent operator for the local explicit damage model

In the spirit of small strains theory, by definition, the consistent tangent operator is

given by

D
ep
n+1 =

∂σn+1

∂εe Trial
n+1

, (B.18)

where ε denotes the logarithmic deformation tensor at instant t = tn+1. Applying this

definition to the effective stress tensor σ∗
n+1, Equation (6.7), results:

D∗
n+1 =

∂σ∗
n+1

∂εe Trial
n+1

= (1−Dn+1)D
ep
n+1 − σn+1 ⊗

∂Dn+1

∂εe Trial
n+1

.

(B.19)

In the previous equation, Dep denotes the consistent tangent operator intrinsic with the

constitutive model coupled with the explicit damage law introduced in Section 6.3.6.

Since the von Mises elasto-plastic constitutive model was considered, the elasto-plastic

tangent operator of this model is given by [6]:

D
ep
n+1 = 2G

(
1− 3G∆γ

qTrial
n+1

)(
I− 1

3
I ⊗ I

)

+ 6G2

(
∆γ

qTrial
n+1

− 1

3G+H

)
Nn+1 ⊗Nn+1 +KI ⊗ I,

(B.20)

where

Nn+1 =
sTrial
n+1

‖ sTrial
n+1 ‖ . (B.21)

In Equation (B.20), parameters G and K corresponds to the shear and Bulk modulus of

the material and H corresponds to the derivative of the hardening curve of the material

in relation of the accumulated plastic strain.
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The derivative of the damage variable, Dn+1, in relation to the the logarithmic elastic

trial deformation tensor, εe Trial
n+1 , is given by:

∂Dn+1

∂εe Trial
n+1

=
1

εf

∂∆γ

∂εe Trial
n+1

. (B.22)

As previously pointed out, the explicit damage model is coupled with the von Mises

elasto-plastic model, and, therefore, the plastic multiplier, ∆γ, is dependent on εe Trial
n+1 .

Thus, it is possible to write:

∂∆γ

∂εe Trial
n+1

= −
[
∂res∆γ

∂∆γ

]−1 ∂res∆γ

∂εe Trial
n+1

, (B.23)

where

res∆γ = σTrial
eqn+1

− 3G∆γ − σy (ε
p +∆γ) , (B.24)

and
∂res∆γ

∂εe Trial
n+1

=

√
3

2

2G

‖ εe Trial
dn+1

‖ε
e Trial
dn+1

:

(
I− 1

3
I ⊗ I

)
. (B.25)

B.4 Linearization of the macroscopic equilibrium problem

enhanced with a non-local formulation of integral type

We start this section by recovering the definition of the First Piola-Kirchoff stress tensor

P {x} = (detF {x})σ
{
F {x}

}
F−T {x}

=
(detF {x})(
detF {x}

) P̂
{
F {x}

}
F

T {x}F−T {x}
(B.26)

where

P̂
{
F {x}

}
=
(
detF {x}

)
σ
{
F {x}

}
F

−T {x} (B.27)

Remark B.2. For sake of simplicity, information related to the scale where the variables

are defined will be omitted. It is noteworthy to mention that all variables used through-

out the linearization of the present problem are defined at the macro-scale domain as

well as at the some instant t.

With the previous definition of the First Piola-Kirchoff, the material version of the

internal virtual work functional of the First Order non-local multi-scale model with the

deformation gradient as non-local variable is given by

Gint (u,η) =

∫

Θ0

∇pη :

[
(detF )(
detF

) P̂
{
F
}
F

T
F−T

]
dV (B.28)
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In order to linearize the problem it is necessary to consider the definition of the directional

derivative introduced in Section B.1 which demands the definition of the perturbed

deformation gradient (either local and its non-local counterpart). The perturbed non-

local deformation gradient, F ǫ {x}, is given by:

F ǫ {x} =

∫

Ωnl
0

α {x, ξ}F ǫ {ξ} dV {ξ} (B.29)

where F ǫ {ξ} is given by

F ǫ {ξ} = I +∇p,ξ (u
∗ + ǫd) = F ∗ + ǫ∇p,ξd (B.30)

Considering the definition of directional derivative it is possible to write

DGint (u,η) [d] =
d

dε

∣∣∣∣
ε=0

∫

Θ0

∇pη :

[
(detF ε)(
detF ε

) P̂
{
F ε

}
F

T
ε F

−T
ε

]
dV (B.31)

Applying the chain rule to the previous equation results

DGint (u,η) [d] =

∫

Θ0

∇pη :

[(
(detF )F−T : ∇pd

)
(
detF

) P̂
{
F
}
F

T
F−T

]
dV

+

∫

Θ0

∇pη :

[
(detF )(
detF

)
(
A :

∫

Ωnl
0

β {x, ξ}∇p,ξddV

)
F

T
F−T

]
dV

+

∫

Θ0

∇pη :

[
(detF )(
detF

) P̂
{
F
}
(
IT4 :

∫

Ωnl
0

β {x, ξ}∇p,ξddV

)
F−T

]
dV

+

∫

Θ0

∇pη :

[
(detF )(
detF

) P̂
{
F
}
F

T
(
∂F−T

∂F
: ∇pd

)]
dV

−
∫

Θ0

∇pη :

[
(detF )(
detF

)
(
F

−T
:

∫

Ωnl
0

β {x, ξ}∇p,ξddV

)
P̂
{
F
}
F

T
F−T

]
dV.

(B.32)

B.4.1 Map the linearised expression to the spatial configuration

Before to proceed with this mapping, it is convenient to introduce a tensorial relation

for second-order tensors

(
M ⊗ F−T

)
: ∇pd =

(
F−T : ∇pd

)
M =

(
I : ∇pdF

−1
)
M = (M ⊗ I) : ∇xd. (B.33)

It is also important to note that, in order to perform this mapping, once again, expres-

sions (2.28b) and (2.29) will be used.
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We start from the first on the right side of Equation (B.32):

∫

Θ0

∇pη :

[(
(detF )F−T : ∇pd

)
(
detF

) P̂
{
F
}
F

T
F−T

]
dV =

=

∫

Θ0

∇pη :

[
(detF )(
detF

) (F−T : ∇pd
) (

P̂
{
F
}
F

T
F−T

)]
dV

=(detF )

∫

Θ0

∇pη :
[(
F−T : ∇pd

) (
σ
{
F
}
F−T

)]
dV

=(detF )

∫

Θ0

∇pη :
[(
σ
{
F
}
F−T

)
⊗ I

]
: ∇xddV

=(detF )

∫

Θ0

∇pη
ij
[(
σ
{
F
}
F−T

)
⊗ I

]ijkl∇xd
kldV

=

∫

ϕ(Θ0)
∇xη

imFmj
[(
σ
{
F
}
F−T

)
⊗ I

]ijkl∇xd
kldV

=

∫

ϕ(Θ0)
∇xη

imqimkl
1 ∇xd

kldV

=

∫

ϕ(Θ0)
∇xη : q1 : ∇xddV

(B.34)

where q1 is a fourth-order tensor defined by

qimkl
1 = Fmj

[(
σ
{
F
}
F−T

)
⊗ I

]ijkl
(B.35)

With regard to the second term on the right side of Equation (B.32), one can write

∫

Θ0

∇pη :

[
(detF )(
detF

)
(
A :

∫

Ωnl
0

β {x, ξ}∇p,ξddV

)
F

T
F−T

]
dV =

=
(detF )(
detF

)
∫

Θ0

∇pη :

[(
A :

∫

Ωnl
0

β {x, ξ}∇p,ξddV

)
F

T
F−T

]
dV

=
(detF )(
detF

)
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∇pη
ij

[(
Ailmn

∫
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0
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mndV

)(
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)lk (

F−T
)kj
]ij
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1(
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ioF oj

[(
Ailmn
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)kj
]ij
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ioq
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mpdV

]
dV
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∫
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∇xη : q2 :

[∫
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(B.36)

where q2 is given by

q
iomp
2 =

1(
detF

)F ojAilmn
(
F ξ
)pn (

F
T
)lk (

F−T
)kj

(B.37)
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The map of the third term on the right side of Equation (B.32) is given by

∫

Θ0

∇pη :

[
(detF )(
detF

)P̂
{
F
}
(
IT :
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Ωnl
0
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(B.38)

where q3 is given by

q
iomp
3 =

1(
detF

)F ojP̂ ik (IT )
klmn

(
F ξ
)pn (

F−T
)lj

(B.39)

Considering the fourth term of the right side of Equation (B.32), its map to the spatial

configuration is given by

∫

Θ0

∇pη :
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(B.40)

where q4 is given by

q
iomp
4 =

1(
detF

)F ojP̂ ik
(
F
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)kl(∂F−T
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)ljmn

F pn
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(
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)ljmn

F pn

(B.41)
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Finally, the map of the last term on the right side of Equation (B.32) is given by

−
∫
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where q5 is given by

q
iomp
5 =

1(
detF

)F oj
(
F

−T
)mn (

F ξ
)pn

P̂ ik
(
F

T
)kl (

F−T
)lj

= F oj
(
F

−T
)mn (

F ξ
)pn

σil
(
F−T

)lj
(B.43)

With the different terms of Equation (B.32) mapped to the spatial configuration, the

global expression for the stiffness tangent matrix is given by

K {x} =

∫

ϕ(Θ0)
GT {x} (q1 + q4)G {x} dV

+ α {x, ξ}
∫

ϕ(Θ0)
GT {x} (q2 + q3 − q5)G {ξ} dV

(B.44)

whereG {x} and G {ξ} are the discrete gradient operator at points x and ξ respectively.

Finally, the term α {x, ξ} is a scalar parameter related to the non-local integral.
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scheme for multi-scale analysis of solids. Computer Methods in Applied Mechanics

and Engineering, 198:1006–1016, 2009.

[112] I. Saiki, K. Terada, K. Ikeda, and M. Hori. Appropriate number of unit cells in

a representative volume element for micro-structural bifurcation encountered in a

multi-scale modeling. Computer Methods in Applied Mechanics and Engineering,

191:2561–2585, 2002.

[113] F.J.P. Reis and F.M. Andrade Pires. An adaptive sub-incremental strategy for

the solution of homogenization-based multi-scale problems. Computer Methods in

Applied Mechanics and Engineering, 257:164–182, 2013.

[114] Cécile Dobrzynski, Maxime Melchior, Laurent Delannay, and Jean-François

Remacle. A mesh adaptation procedure for periodic domains. International Jour-

nal for Numerical Methods in Engineering, 86:1396–1412, 2011.

[115] R. Wentorf, R. Collar, M.S. Shephard, and J. Fish. Automated modeling for

complex woven mesostructures. Computer Methods in Applied Mechanics and

Engineering, 172:273–291, 1999.

[116] Zheng Yuan and Jacob Fish. Toward realization of computational homogenization

in practice. International Journal for Numerical Methods in Engineering, 73:361–

380, 2007.

[117] J. M. Tyrus, M. Gosz, and E. DeSantiago. A local finite element implementation

for imposing periodic boundary conditions on composite micromechanical models.

International Journal of Solids and Structures, 44:2972–2989, 2007.



Bibliography 201
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[138] Z.P. Bažant and G. Pijaudier-Cabot. Nonlocal Continuum Damage, Localization

Instability and Convergence. Journal of Applied Mechanics, 55:287–290, 1988.
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[140] M. Jirásek. Nonlocal models for damage and fracture: comparison of approaches.

International Journal of Solids and Structures, 35:4133–4145, 1998.
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